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Abstract The cushion seastar Culcita schmideliana has

gained major attention in the last few years because of its

selective predation on juvenile corals, as well as its ability

to generate large demographic assemblages, causing delays

in coral recovery after large mortality events in the

Republic of Maldives. However, a lack of data regarding

the factors affecting its distribution and habitat selection

still persists in this area. Here, we adopted a novel

approach in the study of corallivorous seastar habitat

selection that combined ecological and digital pho-

togrammetry data. In this regard, we tested 3 different

parameters as factors influencing seastar habitat choice in

the South-East region of Faafu Atoll, Republic of Mal-

dives, namely prey abundance, Linear Rugosity Index

(LRI), and Average Slope (AS). The analysis of selectivity

coefficient (Ei) of seastars for different habitat types

showed a preference for reefs characterized by medium AS

values (Ei = 0.268), a LRI included between 2 and 2.5

(Ei = 0.180), and a juvenile coral density ranging between

10 and 20 colonies m-2 (Ei = 0.154). A multiple linear

regression analysis showed that different AS and LRI

values explained the 43.1% (R2 = 0.431, P = 0.007) and

the 48.1% (R2 = 0.481, P = 0.024) of variance in seastars

abundance, respectively, while juvenile coral densities did

not significantly affect this (R2 = 0.132, P = 0.202). These

results provide new information on the distribution and

behaviour of an important corallivore of Maldivian reefs,

such as C. schmideliana.

Keywords Corallivory � Cushion seastar � Habitat
selection � Structure from Motion

Introduction

Predation on scleractinian corals is a common and well

described ecological phenomenon in coral reef ecosystems

(Rice et al. 2019). Corallivores are a trophic guild that

encompass several taxa of vertebrate and invertebrate

organisms adopting different strategies for coral con-

sumption, i.e. removing mucus, tissue, or skeleton from the

cnidarian prey (Cole et al. 2008; Rotjan and Lewis 2008).

Among coral predators, corallivorous seastars represent a

major plague for tropical reefs, in particular because of

massive population outbreaks of the crown of thorns

seastar (Acanthaster spp.), widely described to cause

extensive coral mortality and shifts in coral assemblages,

with implications for the whole reef community (Pratchett

2010; Kayal et al. 2012; Baird et al. 2013). The effects of

corallivorous seastars are particularly grievous considering

the large number of stressors affecting coral reefs’ integrity

in the last years, such as extreme climatic events and

subsequent mass bleaching, or increased pollution (Car-

penter et al. 2008; Patricola and Wehner 2018; Rice et al.

2019). In this context, it is important to consider the role of

other coral feeding seastars, which, despite being still

poorly studied, have been shown to affect reef resilience, in

particular following large coral mortality events (Raj et al.

2018; Mah 2020).
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Cushion seastars (Culcita spp.) have been reported as

resident organisms of Indo-Pacific coral reefs, representing

a persisting element affecting benthic community structure

and integrity (Raj et al. 2018; Bruckner and Coward 2019).

Despite sharing some common features with crown of

thorns seastars, such as the same predation modality and

similar larval ecology, Culcita spp. generally consume

lower amounts of coral prey per year than Acanthaster

spp., and show a lower fecundity (Glynn and Krupp 1986;

Birkeland and Lucas 1990; Quinn and Kojis 2003). How-

ever, cushion seastars show several peculiar feeding habits.

In particular, they exert a preferential predation towards

juvenile corals of a few genera, such as Pocillopora and

Pavona, directly compromising the reef community struc-

ture and composition, as well as its recovery and resilience,

as previously described for Maldivian coral reefs (Bruckner

and Coward 2019; Montalbetti et al. 2019a). Indeed, in the

Republic of Maldives Culcita schmideliana has gained

special attention due to its ability to generate large demo-

graphic assemblages, with seastar densities often exceeding

those recorded for Acanthaster planci in the same area,

causing delays in reef recovery (Saponari et al. 2018;

Bruckner and Coward 2019; Montalbetti et al. 2019b).

Although the feeding preferences and different ecological

patterns of C. schmideliana in the Maldivian archipelago

have been already explored (Bruckner and Coward 2019;

Montalbetti et al. 2019a; Montalbetti et al. 2021), the biotic

and abiotic factors affecting the distribution of seastars are

still unknown and need further study. Among these, prey

availability has been hypothesized to represent an influ-

encing factor controlling the distribution of cushion seast-

ars, as demonstrated for other corallivorous organisms

(Brooker et al. 2013; Wolf et al. 2014; Saponari et al.

2021). In addition, it has been hypothesized that the limited

mobility of the cushion seastar, due to its round-shaped un-

armed body, could compromise its ability to climb on and

consume large coral colonies, preventing its ability to

move on complex three-dimensional coral reefs (Tho-

massin 1976; Hawkins 2006). However, no experimental

evidence has been provided so far.

Reef structural complexity is primarily influenced by

coral species abundance and composition and by the

physical conditions in which corals grow (Luckhurst and

Luckhurst 1978; Todd 2008), and has been largely reported

to influence biodiversity and community structure of coral

reefs at multiple scales (Richardson et al. 2017; Price et al.

2019). Among the wide spectrum of habitat metrics used to

quantify coral reefs habitat structure (Fukunaga et. al

2019), Linear Rugosity Index (LRI) and Average Slope

(AS) represents two efficient indices to estimate habitat

morphological complexity, providing a useful instrument

that can numerically express bottom profile heterogeneity

(Risk 1972; Friedman et al. 2012, Dustan et al. 2013; Burns

et al. 2016; Pascoe et al. 2021). Linear rugosity has been

defined as the comparison of a straight line transect with a

flexible chain draped over the reef along the same transect,

while the slope indicates the maximum rate of elevational

change from each cell to its neighbours in units of degrees

(Risk 1972; Burrough and McDonell 1998). In previous

studies, these indices have been used to correlate reef

complexity with the abundance of reef organisms, such as

reef fishes (Risk 1972; Knudby and LeDrew 2007; Kuffner

et al. 2007; Gonzalez-Riviero et al. 2017; Nugraha et al.

2020). Furthermore, recent advance in photogrammetry

techniques and the application of Structure from Motion

(SfM) algorithms allowed to obtain 3-dimensional (3D)

models from sequences of overlapping images acquired

from multiple viewpoints (Westoby et al. 2012; Fonstad

et al. 2013; Leon et al. 2015; D’Urban et al. 2020). The

application of these methods allows to calculate topo-

graphic metrics of reef areas with high precision, reducing

costs and time necessary for surveys and providing more

reliable values of reef complexity (Figueira et al. 2015;

Storlazzi et al. 2016; Urbina-Barreto et al. 2021; Anelli

et al. 2017; Rossi et al. 2021; Ventura et al. 2021).

The aim of the present study was to investigate different

factors possibly influencing C. schmideliana distribution

and habitat choice on Maldivian reefs. Specifically, we

tested the hypothesis that C. schmideliana distribution

could be influenced by biotic factors, such as the avail-

ability of juvenile coral prey, and abiotic factors, such as

3D complexity. For this purpose, we designed field

experiments that combined digital modelling of reef geo-

morphology with ecological data, in order to characterize

seastar selectivity for areas displaying different values of

these biotic and abiotic parameters.

Materials and methods

Study area

The logistic base of the sampling activity was the MaRHE

Center on the inhabited island of Magoodhoo

(3�4049.08‘‘N, 72�57057.19’’E), Faafu Atoll, Republic of

Maldives (Fig. 1). In the South-East region of the atoll, six

different sites were chosen, depending on their accessibil-

ity, their geographical location, and their geomorphological

and environmental features. In particular, three sites,

namely Dharamboodhoo reef, Dhigu reef, and Route 66

reef, were located on the external ocean-facing side of the

atoll rim, usually subject to intense hydrodynamic condi-

tions and characterised by steep walls, and thus classified

as ‘‘outer’’ reefs. The other three sites, namely

Freeclimbing reef, Maaga reef, and Sunny reef, were

located inside the atoll rim, exhibiting typical low-energy
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reef features with several different growth morphologies of

corals, gentle slopes, and lagoon-patch reefs, and thus

classified as ‘‘inner’’ reefs (Montano et al. 2012) (Fig. 1).

Culcita schmideliana and juvenile coral abundance

The distribution of C. schmideliana was estimated through

the belt transect method at each sampling site. Specifically,

three depth ranges (0–5 m, 5–10 m, and 10–15 m) were

considered for each site, and three 50 9 4 m belt transects

(200 m2 each) spaced at least 10 - 20 m apart were ran-

domly placed at each depth zone, for a total of nine tran-

sects per site. In each transect, the total number of seastars

encountered was recorded and the maximum diameter of

each specimen was measured to the nearest centimeter

(cm) using a ruler.

We considered as juvenile corals all those colonies with

a maximum diameter lower than 10 cm, since these spec-

imens have been demonstrated to represent the preferred

coral prey of Culcita spp. (Glynn and Krupp 1986; Nor-

ström et al. 2007; Montalbetti et al. 2019a). In order to

estimate their abundance, a minimum of eight PVC quadrat

of 1 9 1 m were randomly placed within the area covered

by each belt transect. Photographs of quadrats were taken

using a Canon G7X Mark II camera in a Fantasea FG7XII

underwater housing, and then analysed with the ImageJ

software (http://rsb.info.nih.gov/ij/). Each quadrat was

scaled through dimensional references present on the PVC

frame, and the maximum diameter of coral colonies within

the square area was measured. The total number of juvenile

corals was then recorded for each quadrat and the density

per m2 was calculated for each depth zone and site.

Underwater photogrammetry data acquisition

The image acquisition was done following the metric tape

as ground referencing, in correspondence with belt tran-

sects for each sampling site, using a Canon G7X Mark II

camera in a Fantasea FG7XII underwater housing. A dive

computer was used to record the depth at each end of the

metric tape.

For each depth range, photographs were collected with a

fixed acquisition protocol along two transects of 20 m

(Fig. 2). Approximately 250 images were shot for each

transect covering an area of 50/60 m2. Specifically, shots

were taken continuously (with a rate of 1 photo every

1/2 s) while swimming roughly two meters above the

monitored areas beside two parallel paths. The camera lens

Fig. 1 a Satellite overview of the Maldivian archipelago. b Satellite

close-up of the study area corresponding to South-Eastern region of

Faafu Atoll. Sampling sites are marked in red. The position of

MaRHE Center is marked in blue (Basemap sources: Esri, Digi-

talGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping,

Aerogrid, IGN, IGP, swisstopo, and the GIS User Community)
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was kept parallel to the substrate, and the frontal overlap

between two consecutive images was always higher than

80%, while the lateral overlap was 70%. Finally, to com-

plete the survey, the diver took additional shots with the

camera lens at a 45� angle along the same paths. The

overall time for image acquisition along a single transect

was * 20 min.

SfM data processing

The software Agisoft Metashape Professional (https://

www.agisoft.com/) was used to perform SfM processing on

the acquired images. The photo sets of each transect were

processed following a standard SfM workflow (Figueira

et al. 2015; Agisoft 2018; Fallati et al. 2020) divided into

four main steps. 1) Overlapping images were aligned by

identifying common points, using a high accuracy setting,

achieving a 3D sparse point cloud. 2) A dense point cloud

was generated from the sparse cloud, with high quality and

moderate filter settings. 3) A Digital Elevation Model

(DEM) was obtained from the dense cloud. 4) A high-

resolution orthomosaic was derived from the DEM as the

final output. Moreover, in order to correctly scale the

models, we used the metric tape as a known length object

in the scene to create scale bars (Leon et al. 2015; Ferrari

et al. 2016, 2017). Specifically, after the photos alignment,

we placed on the tape four markers spaced 10 cm apart, in

order to obtain DEMs and orthomosaics correctly scaled

for each sampling site (Young et al. 2017). Then, the

models were imported into a GIS environment for further

analysis.

Structural complexity evaluation

The orthomosaics and DEMs were imported in ArcMap

10.8 (ESRI) and analyzed using the 3D Analyst Tools to

extrapolate LRIs and AS along the transects (Burns et al.,

2019; Magel et al. 2019; Fallati et al. 2020). First, a virtual

transect of 20 m was laid along with the metric tape

(clearly visible on screen thanks to the ultra-high resolution

of the model, i.e. 0.02 cm) on the central part of each

processed orthomosaic and DEM. We used the function

‘‘Interpolate shape’’ to add the z-values, associated with

the grids of the DEM, to the linear transect. Then, using the

function ‘‘Add surface information’’ we calculated the 3D

distance of the line. The LRI was calculated as the distance

of a transect that considered changes in vertical surfaces

(3D), divided by the linear distance of a transect (2D):

LRI ¼ 3DLength� 2DLength

Values of LRI close to 0 indicate a lower three-dimen-

sionality, while larger values indicate a higher degree of

morphological complexity.

Fig. 2 Example of underwater images acquisition and data analysis

of Freeclimbing reef (0–5 m depth). a 3D model of the surface

obtained from SfM processing. b Digital Elevation Model (DEM)

representing the elevation gradient along the surveyed substrate. The

dashed line indicates the virtual linear transect laid in correspondence

with the metric tape visible on the model. c Profile graph of the

transect following the substrate contour. From the actual distance

(3D) of this transect divided by the linear length (2D), the LRI is

calculated
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In addition, the Average Slope (AS) along the transects

was estimated using ‘‘Functional surface algorithms’’

included in the 3D Analyst Tools. AS was obtained by

weighing each slope, calculated at each segment along the

line, by its 3D length, and then determining the average.

The output slope values were calculated as ’percent slope,’

which is the rise divided by run (tangent h) multiplied by

100 (Burrough and McDonell 1998; Burns et al.

2015, 2016; Fallati et al. 2020). A small AS value reflects

flat terrain, while a large AS value infers a steep terrain.

Data analysis

Data normality was verified through Shapiro–Wilk test. For

purpose of comparison, seastars densities have been

reported as seastars ha-1 (Bruckner and Coward 2019;

Montalbetti et al. 2019b). Two-way ANOVA followed by

Tukey’s post-hoc test was performed to evaluate significant

differences in seastar abundance in the different depth

zones, and in different reef types (outer vs inner). The AS

values obtained in different sites were grouped into three

categories: ‘‘low’’ (\ 1000), ‘‘medium’’ (1000–2000), and

‘‘high’’ ([ 2000). These were calculated considering the

maximum and the minimum slope recorded, and symmet-

rically dividing this range into three bins. Similarly, LRI

values were grouped in three categories (\ 2, 2–2.5,

and[ 2.5). In order to evaluate significant differences of

seastar size between different AS categories, one-way

ANOVA followed by Tukey’s post-hoc test was per-

formed. Kruskal–Wallis test followed by multiple pairwise

comparisons was used to test significant differences in

seastar size among different LRI categories, since data did

not meet the assumption of normality (Zar 1999).

Seastar habitat preferences for different AS and LRI

categories and different coral juvenile densities (classified

in four density categories:\ 5, 5–10, 10–20,[ 20 juve-

niles m-2) were tested through Van der Ploeg and Scavia

selectivity coefficient (Ei), following Lechowicz (1982).

This coefficient is defined for a group i as: Ei ¼ ½Wi�ð1nÞ�
½Wiþð1nÞ�

where Wi represents the value of Chesson’s a, and n

represents the number of habitat types (Lechowicz 1982).

Chesson’s a value (Wi) is defined as: Wi ¼ ri
Pi =

P

i

ri=Pi

where ri represents the frequency of a habitat category

(AS, LRI, and juvenile density) in the environment, and Pi

represents the frequency of the same habitat category in

which the organism of interest is found (Chesson 1978).

Values of selectivity coefficient range between -1 and 1,

with -1 meaning complete avoidance of a habitat category,

and 1 meaning exclusive preference for a habitat type (Van

der Ploeg and Scavia 1979).

A multiple linear regression analysis was performed to

examine the relationship between the abundance of seastars

and the AS, LRI, and juvenile coral density. All statistical

analysis were performed using the SPSS software version

27 (IBM, New York), and data are presented as

mean ± standard error (SE), unless otherwise stated.

Results

Habitat characterisation

Thirty-six ultra-high-resolution 3D models were generated

from the 7946 images acquired in correspondence of the

six sampling sites. The average DEMs cell size was

1.2 ± 0.5 mm, while the orthomosaics had a pixel reso-

lution of 0.4 ± 0.07 mm. The average LRI of the whole

investigated area was 2.02 ± 0.10, with the maximum

complexity reached in Dharamboodhoo reef (2.48 ± 0.33),

which also showed the highest AS value

(2275.42 ± 110.14), and the minimum 3-dimensionality

recorded in Freeclimbing reef (1.46 ± 0.04), where the

lowest AS value was also obtained (697.75 ± 295.82)

(Table 1).

Culcita schmideliana and juvenile coral abundance

In the whole study area, an average density of

17.88 ± 3.74 coral juveniles m-2 was found (Table 1).

Notably, the site with maximum and minimum juvenile

density were again Dharamboodhoo reef (26.14 ± 8.80

juveniles m-2) and Freeclimbing reef (3.07 ± 1.63 juve-

niles m-2), respectively (Table 1).

A total number of 201 seastars were found in the study

area, with an average density of 186.1 ± 22.34 seastars

ha-1 (Table 1). Specifically, the site with the highest

seastar density was Sunny reef (283.32 ± 75.15 seastars

ha-1), while the lowest density was recorded in

Freeclimbing reef (133.33 ± 28.87 seastars ha-1). No

significant differences were found in the number of C.

schmideliana at different depths or in outer and inner sites

and the combination of both factors (Two-way ANOVA,

P[ 0.05).

Size of seastars in different habitats

The size of seastars was significantly different in relation to

AS values and LRIs of the investigated sites (Fig. 3). In

particular, C. schmideliana diameter was significantly lar-

ger in sites showing LRI value lower than 2 (Kruskal–

Wallis test P = 0.033) (Fig. 3a), and medium AS values

(One-way ANOVA, F = 12.95 P\ 0.0001) (Fig. 3b).
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Culcita schmideliana habitat preferences

Three main factors and their influence on C. schmideliana

choice of habitat were tested through the selectivity coef-

ficient (Ei) (Fig. 4). Seastars exhibited a general preference

for habitat with medium AS values (Ei = 0.268), a marked

avoidance for habitat with low AS values (Ei = -0.353),

and a slight avoidance of areas with high AS values (Ei = -

0.118) (Fig. 4a).

Considering seastar preferences for habitats with dif-

ferent degrees of seafloor morphological complexity, the

preferred habitat of C. schmideliana was characterized by a

LRI value included between 2 and 2.5, with a Ei = 0.180

(Fig. 4b). Areas with a LRI larger than 2.5, thus meaning

those with the highest complexity, were avoided by

seastars and gave an Ei value of -0.213 (Fig. 4b). More-

over, areas showing the lowest three-dimensionality, con-

sidered as those with a LRI lower than 2, gave an Ei close

to 0 (Ei = -0.025), indicating a level of selectivity coeffi-

cient close to random (Fig. 4b).

Concerning juvenile corals density, the preferred habi-

tats of C. schmideliana were those characterized by a

density of juveniles m-2 included between 10 and 20

(Ei = 0.154), while areas with the lowest juvenile density

were avoided (Ei = -0.269) (Fig. 4c). Areas with more than

20 juveniles m-2, and areas with a juvenile density

between 5 and 10 m-2, showed a slight preference and

avoidance, respectively, even if close to random, with

values of Ei = 0.079 for the first, and Ei = -0.059 for the

latter (Fig. 4c).

The multiple linear regression analysis allowed us to

define which of the factors considered exerted the highest

influence on the cushion seastar abundance in the study

area. A significant regression equation was found for AS

values (F(3.28) = 2.8, R2 = 0.431, P = 0.007) (Fig. 5a), and

for linear rugosity (F(3.28) = 2.8, R2 = 0.481, P = 0.024)

Table 1 Average values (± SE) of seastar densities, coral juvenile densities, AS values, and LRIs found in each sampling site

Site Coral Cover % Seastars/ha Coral recruits/m2 LRI Slope Value

Dharamboodhoo 53.45 172.22 ± 30.93 26.14 ± 8.80 2.8 ± 0.33 2275.42 ± 110.4

Dhigu Reef 27.37 211.11 ± 33.79 15.66 ± 5.8 2.05 ± 0.3 1419.99 ± 163.95

Freeclimbing 19.8 133.33 ± 28.87 3.7 ± 1.63 1.46 ± 0.04 697.5 ± 295.82

Maaga 10.01 144.5 ± 30.93 12.61 ± 7.25 1.87 ± 0.20 1632.5 ± 529.93

Route 66 24.68 172.18 ± 5.56 25.73 ± 11.98 2.11 ± 0.14 1451.35 ± 123.60

Sunny Reef 35.38 283.32 ± 75.15 24.08 ± 6.77 2.16 ± 0.17 2266.88 ± 319.28

Total 28.46 ± 6.6 186.1 ± 22.34 17.88 ± 3.74 2.2 ± 0.10 1623.96 ± 242.70

(a) (b)

Fig. 3 Average diameter (± SE) of seastars found in areas a with

different values of LRI and b with different AS values. Kruskal–

Wallis test followed by multiple pairwise comparisons was used to

test significant differences in seastars diameter in areas with different

LRI (P\ 0.033). One-way ANOVA followed by Tukey’s post-hoc

test was used to test significant differences in diameters of seastars

found in areas with different AS values (P\ 0.0001). Significant

differences are marked with * in proximity of each relative column
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(Fig. 5b), showing that the 43.1% and the 48.1% of the

variance in seastar abundance was explained by differences

in AS values and LRI, respectively. The regression equa-

tion to assess the variation in seastar abundance in relation

to the variation of juvenile coral densities resulted to be not

significant (F(3.28) = 2.8, R2 = 0.132, P = 0.202) (Fig. 5c).

Discussion

Among the wide range of disturbances that have affected

the integrity of Maldivian reefs in the last decades,

including mass bleaching events (Tkachenko 2015; Perry

and Morgan 2017), coral diseases (Seveso et al.

2012, 2015; Montano et al. 2015, 2016), and land recla-

mation (Fallati et al. 2017), corallivorous outbreaks rep-

resent one of the greatest threats, and C. schmideliana has

certainly played a fundamental role (Saponari et al. 2014;

Saponari et al. 2018; Montalbetti et al. 2019a; Caragnano

et al. 2021). However, the factors driving the distribution

and the habitat choice of this organism still remain unclear.

In this study, we analyzed the role of different geomor-

phological parameters in the habitat selection of C.

schmideliana, through the use of novel photogrammetry

(a)

(b)

(c)

Fig. 4 Values of Van der Ploeg and Scavia Selectivity coefficient (-

1 = complete avoidance; 0 = random choice; ? 1 = exclusive pref-

erence) of seastars for areas with a different AS values b different

LRIs and c different densities of coral juveniles

(a)

(b)

(c)

Fig. 5 Multiple linear regression analysis displayed as partial

regression plots. Relationships between seastar density and a AS

values (P = 0.007) b LRI (P = 0.024) and c juvenile corals m-2

(P = 0.202). All data relative to the three independent variables have

been log-transformed in the partial regression plots. Continuous lines

indicate partial regression of each independent variable
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techniques that allowed us to accurately reconstruct the

reef topology. In addition, prey availability has also been

investigated as a possible influencing factor.

The abundance of seastars in the investigated area was

not affected by the site exposure, as a comparable number

of individuals was observed in inner and outer reefs. Fur-

thermore, seastar distribution resulted to be relatively

homogeneous at different depth ranges, similar to a pre-

vious study in which seastar density did not change sig-

nificantly within the first 30 m of depth (Montalbetti et al.

2019a). Although the cushion seastar has been occasionally

reported at depths of up to 50–60 m, it seems to prefer

shallowest areas with high coral cover, probably due to the

larger availability of coral prey (Thomassin 1976; Glynn

and Krupp 1986). Moreover, since larval settlement is

influenced by sea bottom substrate, it could also represent

an influencing factor of adult seastar distribution in dif-

ferent reef habitats and depths (Ebert 1983). Indeed, it has

been shown that settlement of Acanthaster cf. solaris lar-

vae in relatively shallow waters could forewarn seastar

population eruptions and tend to increase with the pro-

portion of coral rubble, while decreasing with the propor-

tion of live hard coral (Wilmes et al. 2020). Since very

little is known about C. schmideliana larval settlement and

its success on different substrates, the possibility that early

life stage population of seastars can influence adult distri-

bution needs to be further explored.

As long as the ability to move on complex reefs is a key

component of the behaviour of corallivorous echinoderms,

our results about seastar size suggested that C. schmi-

deliana mobility could be influenced by body anatomy.

Indeed, seastars found in areas with a low morphological

complexity were significantly larger compared to those

found in more complex areas, suggesting that larger

specimens could be prevented from moving within com-

plex reef frames. Culcita schmideliana is a round-shaped

un-armed seastar, and these peculiar anatomical features

have been hypothesized to represent a strong influencing

factor in its distribution and habitat choice (Quinn and

Kojis 2003; Montalbetti et al. 2019a). Limited mobility

caused by anatomical features could also explain the lower

average size of seastars found in areas with elevated AS

values. The largest specimens were found in areas with

medium AS values, and smaller seastars were found in

reefs with low degree of inclination. These results

strengthen the hypothesis that body size could represent a

key element of C. schmideliana habitat choice. Echino-

derms have a strict connection with reef structure due to

different ethological aspects, such as diurnal cryptic

behaviour that is often reported for coral predator seastars

(Dumont et al. 2007; Pratchett et al. 2017). In particular,

crown of thorns often showed a radical behavioral change

between diurnal and nocturnal conditions, being hidden

within reef crevices and cavities during the day and getting

out for preying during night (Rivera-Posada et al. 2014;

Burn et al. 2020). Diurnal crypticity has been reported also

for cushion seastars and other corallivore invertebrates

(Wolf et al. 2014; Enochs and Glynn 2017). In this context,

we hypothesized that seastar anatomical features and the

need of hiding during daylight hours could be correlated

with the choice of habitats with different degrees of

steepness and 3-dimensionality, although this aspect should

be further investigated.

Morphological complexity has been reported as an

ecological factor correlated with fish assemblage biodi-

versity and biomass in different tropical regions, such as

the Caribbean Sea and Indian Ocean (Harborne et al. 2012;

Darling et al. 2017). Furthermore, reef 3-dimensionality

has been addressed as a strong predictor of abundance,

biomass, diversity, and trophic structure of diurnal, non-

cryptic reef fishes (Darling et al. 2017; Nugraha et al.

2020). However, how these morphological factors can

influence the distribution of mobile invertebrates is a far

less examined question (Stella et al. 2011; Graham and

Nash 2013). Our results suggest that seastars tend to avoid

habitats with high values of linear rugosity, highlighting

once again that the anatomical shape of seastars could play

a crucial role in habitat selection. The same pattern of

distribution has previously been observed for other reef

invertebrates such as sea urchins, which seem to aggregate

more frequently and more abundantly on reefs with mod-

erate rugosity due to their scarce ability to climb on

complex coralline structures (Weil et al. 2005; Dumont

et al. 2007). On the contrary, for smaller benthic organ-

isms, such as penaeid shrimps, an increase in substrate

rugosity and complexity coincided with an increased dif-

ferentiation of their spatial distribution due to a larger

number of micro-habitats suitable for prey, thus allowing

the coexistence of several prawn species, each exploiting

different microhabitats and patches (Gribble et al.

2004, 2007). In the case of C. schmideliana, the prefer-

ential choice of habitats with a medium value of rugosity

could result from the sum of different factors, such as body

anatomy, behavioral traits, and larval settlement. In addi-

tion, selectivity coefficient values indicated a well-defined

pattern of avoidance by seastars of reef areas with low and

high AS values, while habitats displaying medium AS

values were preferred. The role of reef inclination in

determining the distribution patterns of benthic organisms

has been largely ignored so far, but our data suggest that C.

schmideliana could selectively prefer areas with medium

AS values. We hypothesize that this selection may be

related to the settlement of juvenile seastars. Juveniles

recruitment patterns have been shown to influence adult

distribution in several echinoderm species, and are con-

trolled by different factors, such as availability of food,
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sedimentation rates, and reef complexity (Glynn and Krupp

1986; Birkeland and Lucas 1990; Klumpp and McKinnon

1992; Quinn and Kojis 2003).

Finally, prey availability has widely been reported to

influence corallivorous seastar distribution and movement

on coral reefs (Burn et al. 2020; Ling et al. 2020). In the

Maldives, C. schmideliana was observed preying prefer-

entially on small coral colonies (diameter\ 10 cm) of

Pocillopora spp. and Pavona spp., although it was able to

consume a large number of different coral genera (Mon-

talbetti et al. 2019a). Here, seastar preference for reef areas

with a number of favourite preys larger than 10 m-2 was

observed, confirming previous findings. Coral juvenile

quantification through photoquadrats analysis resulted to be

an effective and quick method to investigate large portions

of reef. Possible errors related to this methodology, in

particular considering a qualitative identification of juve-

nile corals, should be taken into account in future studies,

as described in Burgess et al. (2010). In this work, a coral

identification at the genus level was not performed, but in

future research a possible correlation between seastar

densities and abundance of different coral genera should be

explored.

However, taken together, our results indicate that both

the morphological factors considered, namely LRIs and AS

values, resulted to be more effective in explaining variance

in C. schmideliana densities, compared to prey availability.

Therefore, the substrate complexity and inclination mostly

affected the habitat choice of C. schmideliana, rather than

food abundance. It is important to emphasize that this kind

of hierarchical approach has been rarely applied to seastar

habitat choice studies. Previously, it was observed that

juveniles of two temperate water seastar species, Pisaster

ochraceus and Evasterias troschelii, chose their habitat

primarily depending on bottom complexity in order to

escape predators, and once they attained a size unsuit-

able for predators, they select their habitat mainly on the

base of prey availability (Rogers and Elliot 2013). How-

ever, the information about predation on C. schmideliana

are still scarce, whereas it is known that Acanthaster spp.

are preyed by different organisms at different life stages

(Cowan et al. 2017; Balu et al. 2021). It is reasonable to

hypothesize a similar predatory pressure on Culcita spp., at

least at the larval stage, considering that these two coral-

livorous seastars share many ecological similarities (Glynn

and Krupp 1986). Therefore, we cannot exclude that pre-

dation could represent an influencing factor of habitat

choice by C. schmideliana, and further investigations are

needed to clarify this point.

In conclusion, this study provided new insights about the

distribution and the habitat choice of an important coral-

livore of the Maldivian archipelago, partially confirming

previous untested hypotheses, and adding new information

that could be useful for a better understanding of the

behaviour of this understudied organism. In particular, we

found that body anatomy could represent a driver of habitat

choice, which, combined with other behavioral traits of the

seastar, could influence the distribution of these organisms.

Furthermore, despite preferring areas with larger avail-

ability of food, C. schmideliana selects its habitat primarily

on the base of the morphological features of the reef, like

3-dimensional complexity and steepness. Our results pro-

vide new important information about the ecology of

corallivore organisms that should be considered in devel-

oping programmes for the monitoring and prevention of the

impacts of this plague in Maldivian coral reefs.
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