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Abstract

Climate change constitutes a rising challenge to the agricultural base of developing coun-

tries. Most of the literature has focused on the impact of changes in the means of weather

variables on mean changes in production and has found very little impact of weather upon

agricultural production. Instead, we focus on the relationship between extreme events in

weather and extreme losses in crop production. Indeed, extreme events are of the greatest

interest for scholars and policy makers only when they carry extraordinary negative effects.

We build on this idea and for the first time, we adopt a conditional dependence model for

multivariate extreme values to understand the impact of extreme weather on agricultural

production. Specifically, we look at the probability that an extreme event drastically reduces

the harvest of any of the major crops. This analysis, which is run on data for six different

crops and four different weather variables in a vast array of countries in Africa, Asia and

Latin America, shows that extremes in weather and yield losses of major staples are associ-

ated events. We find a high heterogeneity across both countries and crops and we are able

to predict per country and per crop the risk of a yield reduction above 90% when extreme

events occur. As policy implication, we can thus assess which major crop in each country is

less resilient to climate shocks.

Introduction

This paper investigates the effect of temperature and precipitation extremes on major staple

crops in different regions of Asia, Africa, and Latin America. We provide two key contribu-

tions to the literature. First, we adopt a conditional dependence model for multivariate

extreme values developed by [1]. Although this modelling approach already has some applica-

tions in environmental or food chemicals studies, see e.g. [2, 3], there has been no previous

attempt to use the model in the context of extremes in weather and crop production losses.

Secondly, we provide evidence that these extreme events are associated and we are able to esti-

mate their dependence structure.
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The relation between climate and agriculture is a highly debated issue. By focusing on the

agricultural sector of countries in Latin America, Africa and Asia, numerous studies discussed

the impact on weather variables on food production [4–13]. For example, [4] found both posi-

tive and negative impacts of temperature and precipitation trends for different major crops at

the global level. Specifically, trends in temperature affect mainly yield, whereas precipitation

influences inter-annual changes in crop production. More recently, their estimates have been

corroborated by [12].

This stream of research makes use of linear regression models and focuses on the mean

effects of weather on average crop production [4, 14, 15]. The results of, e.g., [16] reveal that

time constant country-fixed effects and time trends explain most of the variation in yields of

different agricultural products. Regional characteristics such as soil quality or crop manage-

ment and country-specific trends, e.g., technological progress in crop production or warming,

are the most crucial factors, whereas annual mean changes in weather provide only a minor

explanation of the overall variation. This approach suggests that the relation between weather

and production is non-linear and difficult to model with linear regression analysis. [17] discuss

the importance of non-linear responses to temperature in agricultural and non-agricultural

production for both rich and poor countries: production peaks at an annual average tempera-

ture of 13 degrees Celsius and decreases substantially at higher temperatures. However, the

average temperature is higher in poor countries, which leads to stronger effects of temperature

on production in these countries. Projections suggest that further warming will reduce pro-

ductivity and income in countries with high average temperatures.

The assessment of weather impacts on crop production includes not only the focus on

changes in the mean values of weather variables but also on the probability, frequency, and

severity of extreme events, which substantially influence yields [18–22]. Several empirical

works, such as [23] in European countries, [24] in the United States, [25] in the UK, and [26]

in France show a substantial impact of extreme weather events on the yields for major crops.

Moreover, changes in the frequency of extreme weather events also determine the quality of

the crop harvest [27]. [22] estimate the impact of heat stress and drought oat the global level

over the period 1980–2010.

This evidence deserves a deeper analysis, since both the frequency and the magnitude of

extreme weather events such as heat-waves are likely to rise due to warming climate conditions

[25]. Looking at countries globally, [28] find extreme heat events to be unfavourable for major

producing regions and lower income countries and, according to [25], extreme high and low

temperature can seriously harm crops or even cause plant death, whereas intensive precipita-

tion can lead to contamination of ground water and soil erosion. In addition to the direct

effects of heat, drought, and flooding, extreme events indirectly affect crops through pests,

changing soil processes and nutrient dynamics [29]. Similarly, [20] analyses the damages of

extreme weather disasters on crop production and find that drought and extreme heat signifi-

cantly harm national staple crop production worldwide. More recently, [30] make use of

threshold effects of extreme weather events to estimate cereal yields in India.

Based on these studies, we surmise that the missing piece in the literature consists of relat-

ing the extreme events in weather with substantial losses in production. Indeed, extreme events

are of the greatest interest for scholars and policy makers when they have extraordinary nega-

tive impacts [31]; otherwise the extreme events are irrelevant. Specifically, we test the hypothe-

sis that the tails of weather variables and crops yields are associated. We also test that this

association is heterogeneous across countries and staple crops. In the remainder of the paper,

we model the conditional extreme dependence of extraordinary yields losses with four differ-

ent weather variables for six different staple crops, separately for different regions in Asia,

Africa and Latin America.
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Materials and methods

Data

This study covers countries in Africa, Asia, and Latin America ranging from low to upper mid-

dle income countries [32] and includes annual data observations from 1961 to 2002. The staple

crops of interest are wheat, rice, maize, soybeans, barley, and sorghum which constitute the six

most commonly cultivated crops worldwide [6]. Country-level data on yields are available

from the FAO website(http://faostat3.fao.org).

We make use of [4]’s precipitation and temperature data; the authors constructed

weather data based both on [33]’s crop calendar to derive the growing season of each crop

and on the agricultural maps of [34] to identify the growing regions of each crop. [4]

extracted growing season- and region-specific weather data from the CRU TS 2.1 historical

climate data set [35] and created national precipitation and temperature aggregates for each

year. Different growing regions and different growing seasons among countries result in dif-

ferent precipitation and temperature data by crop and by country. Table 1 gives an overview

of the variables.

The initial sample consists of 42 yearly observations for each country and each variable of

analysis. We omit year-country pairs when data are missing for one of the variables. Because

42 observations constitute a small sample to conduct an analysis of extreme values, we pool

countries into regions based on the UN Statistics Division composition of geographical

regions (http://unstats.un.org/unsd/methods/m49/m49regin.htm). Table 2 summarizes the

geographical areas, which consist of countries geographically related but still not identical in

terms of economic and weather conditions. To account for this heterogeneity within each

pool of countries, we standardize the production and weather data independently for each

Table 1. Overview of variables.

Variable Description

Yield Total production divided by area (hg/ha)

Prec Total growing season precipitation in millimeters

tMin Average minimum daily growing season temperature in degree Celsius

tMax Average maximum daily growing season temperature in degree Celsius

https://doi.org/10.1371/journal.pone.0261839.t001

Table 2. Geographical regions.

Region Countries

South America Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Guyana, Paraguay, Peru,

Suriname, Uruguay, Venezuela

Central America & Caribbean Belize, Costa Rica, Cuba, Dominican Republic, El Salvador, Guatemala, Haiti,

Honduras, Jamaica, Mexico, Nicaragua, Panama, Trinidad and Tobago

Western Africa Benin, Burkina Faso, The Gambia, Ghana, Guinea, Ivory Coast, Liberia, Mali,

Mauritania, Niger, Nigeria, Senegal, Sierra Leone, Togo

Eastern Africa Burundi, Comoros, Djibouti, Eritrea, Ethiopia, Kenya, Madagascar, Malawi,

Mozambique, Rwanda, Somalia, Sudan, Uganda, United Republic of Tanzania,

Zambia, Zimbabwe

Middle & Southern Africa Angola, Botswana, Cameroon, Central African Republic, Chad, Congo, Gabon,

Lesotho, Namibia, South Africa, Swaziland

South & South-Eastern Asia &

Melanesia

Bangladesh, Brunei, Bhutan, Cambodia, Indonesia, India, Fiji, Laos, Malaysia,

Myanmar, New Caledonia, Papua New Guinea, Philippines, Solomon Is., Thailand,

Vanuatu, Vietnam

https://doi.org/10.1371/journal.pone.0261839.t002
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country, subtracting the country-specific mean and dividing by the country-specific standard

deviation. This standardization ensures comparability and avoids missing extremes for some

countries when pooling data.

Fig 1 shows scatter plots of the standardized yields (Yield), precipitation (Prec), maximum

temperature (tMax) and minimum temperature (tMin), using maize data in Eastern Africa as

a representative example of the data. Fig 1 shows that a regression analysis is not a convenient

option because there are no grounds to assume a clear positive or clear negative dependence of

the yield and any of the weather variables. Instead, we model the extremes, that is for instance,

the set of observations in the bottom right corner of Fig 1a.

We define extreme events in precipitation, temperature, and yield as the values of the corre-

sponding variable above (below) a threshold value, so that the observations subject to the anal-

ysis are located in the upper (lower) tail of the distribution [36]. We are mostly interested in

the effect that extremely high or low temperatures and high or low precipitations have on the

probability of observing severe yield losses.

Methods

Let X = (X1, . . ., Xd) be a vector variable with unknown distribution function F(x), and mar-

ginal distribution functions Fxi
, with i = 1, . . ., d. The idea is to model the joint tail of F(x) and,

more specifically, the conditional distribution of X−i|Xi> x when x is large, where X−i denotes

the vector X excluding the ith component. In this framework, we follow [1], who proposed a

semi-parametric model F̂xi
for the marginal distributions based on the generalized Pareto dis-

tribution (GPD),

F̂ xi
¼

1 � f1 � ~Fxi
ðuxi
Þgf1þ xiðx � uxi

Þ=big
� 1=xi
þ

x > uxi

~Fxi
ðxÞ x � uxi

(

where (βi,ξi) are the scale and shape parameters of a GPD for the exceedances over the thresh-

old uxi
and ~Fxi

is the empirical distribution of Xi.

Fig 1. Annual standardized yield and precipitation (a), maximum temperature (b), and minimum temperature

(c), using maize data in Eastern Africa (1961–2002).

https://doi.org/10.1371/journal.pone.0261839.g001
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Following [37], we use the estimated distributions F̂ xi
to transform X component-wise to

follow Laplace marginal distributions:

Yi ¼

logf2FXi
ðXiÞg for Xi < F� 1

Xi
ð0:5Þ

� 2logf2½1 � FXi
ðXiÞ�g for Xi � F� 1

Xi
ð0:5Þ:

8
<

:
ð1Þ

The aim is to model the distribution of Y−i|Yi = y for y large. For that purpose, univariate

extreme value theory is extended to a multivariate context. Assume that there exist normaliz-

ing functions a|i(x), b|i(x): R! Rd� 1
/ 8 fixed z 2 Rd� 1

and any sequence of yi values such that

yi!1 (i.e., high enough):

limyi!1
½Y� i � ajiðyiÞ þ bjiðyiÞzjijYi ¼ yi� ¼ GjiðzjiÞ: ð2Þ

Denote by Gi the ith marginal distribution of G|i, a non-degenerate distribution function

with limz!1{Gi(z)} = 1 8i. The method assumes that the limiting distribution holds 8 yi > uYi

for a suitable high threshold uYi
. When Yi = yi, with yi > uYi

, the (standardized) random vari-

able Z|i is defined as:

Zji ¼
Y� i � ajiðyiÞ

bjiðyiÞ
ð3Þ

and the limiting distribution of Z|i:

limyi!1
PðZji � zjijYi ¼ yiÞ ¼ GjiðzjiÞ: ð4Þ

Under this assumption, conditionally on Yi > uYi
, as uYi

!1, the variables Yi � uYi
ð> 0Þ

and Z|i are independent in the limit and their limiting marginal distributions are exponential

and G|i(z|i), respectively [37].

The extremal dependence behaviour is characterized by a|i(y), b|i(y) and G|i; hence estimates

of the three are needed to derive the conditional distribution. To do so, [1] propose a semi-

parametric model. The parametric part involves estimating a|i(y) and b|i(y) using the regres-

sion model:

Y� i ¼ ajiðyÞ þ bjiðyÞZji ¼ ajiyþ ybjiZji: ð5Þ

Specifically, a|i(y) and b|i(y) are expressed in terms of y as a|i(y) = a|i y and bjiðyÞ ¼ ybji , with

the restrictions (a|i, b|i) 2 [−1, 1]d−1 × (−1, 1)d−1. Further joint constraints on the parameters

have been imposed by [37] to avoid problems of inconsistent inferences with respect to the

marginal distributions and parameter identification. Positive and negative dependence are

defined by aj|i, the component of a|i linked to Yj and large Yi, being 0< aj|i� 1 and −1� aj|i<

0 respectively [37]. Assuming that (a|i, b|i) are known, G|i can be estimated non-parametrically

using the empirical (or kernel smoothed) distribution of replicates of the random variable Ẑ ji:

Ẑ ji ¼
Y� i � â jiðyiÞ

b̂ jiðyiÞ

for Yi ¼ yi > uYi
. Pseudo-samples can then be generated using the fitted model to estimate the

conditional probability of interest. Confidence intervals can be obtained using bootstrap meth-

ods, see [1] for computational details.
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Results

Empirical analysis

In the case of Prec, we consider both extreme high and low precipitation values. Because [1]

model the upper tail of the distribution, for extreme low precipitation, we consider the reflec-

tion of the variable Prec, defined as PrecRefl. The same procedure applies to Yield because we

are interested in yield losses and we therefore consider the reflection YieldRefl. For each crop,

we define four two-dimensional vectors X = (X1, X2) with unknown distribution function F(x),

where X1 is always YieldRefl of the specific crop and X2 is one of the four weather variables.

We thus model the extreme values in a bivariate context and run a separate analysis for each

pair of crop and weather variables. To illustrate the procedure of fitting the dependence

model, we report results of the two variables YieldRefl and Prec using maize data of Eastern

Africa from 1961 to 2002. Results for the set of specifications with different marginal weather

variables and for different crops or regions are available on request. The analysis was con-

ducted using the R packages texmex [38], evd [39], ggplot2 [40] and rworldmap [41].

We first fit a generalized Pareto distribution separately for each variable and then transform

X component-wise following Eq (1) to obtain identical Laplace marginal distributions. The

fitting of the GPD requires an appropriate selection of the threshold above which the GPD

model is valid. For this reason, linearity of the mean residual life plots has to be ensured,

which is already the case for very low thresholds of Prec and YieldRefl for maize data in Eastern

Africa. However, probability, quantile and return level plots suggest that the estimated distri-

bution function is a reasonable estimate of the theoretical function only above the threshold

of the 80th percentile [36], which we then choose as the threshold for Prec and YieldRefl.
Based on these marginal variables with identical Laplace distributions, we describe the

dependence structure of the variables. We explore the behaviour of the variable YieldRefl condi-

tional on extreme values of the variable Prec. We choose the threshold uYi
over which the limit-

ing distribution holds by examining the threshold stability of the estimated parameters a|i and

b|i of the dependence model (5) using the 50th to 90th quantiles of the conditioning variable Prec
as potential thresholds. The 90th quantile was found to be adequate, leading to parameter esti-

mates âjji ¼ 0:355 and b̂jji ¼ � 0:394. Imposing the ordering constraints to the values of the

parameters as explained in Section Methods, parameter estimates can be sensitive to the initial

value of the optimization procedure for the estimation [42]. However, constrained dependence

parameter estimates are located in the maximum of the profile likelihood surface, as shown in

Fig 2. With âjji ¼ 0:355, the variables YieldRefl and Prec exhibit positive extremal dependence

[37]. Using maize data from Eastern Africa, we see that the form of dependence between Yiel-
dRefl and the weather variables varies. In contrast to YieldRefl and Prec, the pair YieldRefl and

PrecRefl shows an extremal negative dependence with an âjji ¼ � 0:6265. The results of the

other regions and for the other crops show that the dependence structure does not only change

for different conditioning variables but also for different crops and regions. The uncertainty of

the parameter estimates was evaluated by means of bootstrapping, see [1] for details.

Finally, plotting Z|i against Yi for values of Yi over the threshold chosen to fit the model, we

conclude that the standardized variable and the conditioning variable are independent. More-

over, the fitted quantiles of the conditional distribution and the observations on the original

scale match indicating that the model fits well.

Extrapolation

The semiparametric model fitted in the previous section is used to simulate from the joint dis-

tribution of (YieldRefl, Prec) conditional on Prec> quPrec, where quPrec is the 91st to 99,99th
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quantile of the conditioning variable Prec. We simulate 1000 observations, which are then

used to calculate the conditional probabilities P(YieldRefl> quYieldRefl|Prec> quPrec), where

quYieldRefl is always set as the 90th quantile of the variable YieldRefl. Thus, we are interested in

the change of the probability of high losses in basic food production given rising extremes in

precipitation. The uncertainty of each point estimate is assessed by creating 95% confidence

intervals of the conditional probabilities based on 100 bootstrap samples.

Fig 3 contains conditional probabilities and the corresponding confidence intervals of high

losses in maize production given a range of thresholds, i.e. from 91st to 99.99th quantiles, for

high precipitation. The plots in Fig 3 cover all considered regions in Asia, Africa and Latin

America. In Middle & Southern Africa, the conditional probabilities of lower confidence inter-

val bounds are equal to zero, indicating no evidence of an association between extremes in

high precipitation and high yield losses. The probability of high losses in maize production

given increasing extremes in high precipitation increases sharply up to 94% in Eastern Africa

but with widening confidence intervals. Eastern Africa aside, the probabilities do not change

significantly with increasing thresholds for high precipitation among the different regions

and are mostly below 25%. For the opposite case of extremes in low precipitation, Fig 6 in S1

Annex plots the conditional probabilities for all regions. South America is affected more

than the other regions because losses in its maize production are more likely to occur given

extremely low rainfall. Point estimates up to 74% show higher uncertainties, although the con-

fidence intervals do not include zero. In Central America & Caribbean, the lower confidence

Fig 2. Constrained dependence parameter estimates âjji (a) and b̂jji (b) of the conditional distribution of (YieldRefl|Prec) conditional

on Prec> quPrec, with quPrec being the 90th quantile of the conditioning variable Prec, correspond to the maximum of the profile

likelihood surface using maize data of Eastern Africa.

https://doi.org/10.1371/journal.pone.0261839.g002
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interval bounds of the conditional probabilities are equal to zero. The conditional probabilities

for Eastern Africa are approximately 25% and are less than 25% for the other regions. Sum-

ming up, events of extremely high precipitation affect maize production the most in Eastern

Africa and the least in Middle and South Africa, while drought has severe consequences on

Maize production in South America and limited ones in In Central America & Caribbean.

In the case of extremes in minimum temperature, see Fig 7 in S1 Annex, the lower confi-

dence interval bounds are equal to zero in South America, Western Africa and South & South-

Eastern Asia & Melanesia. The other regions do not show remarkable differences. In Central

America & Caribbean and Eastern Africa, the conditional probabilities slightly increase with

higher extremes in minimum temperature. However, the point estimates are around or below

25%. The picture looks similar for the maximum temperature as the conditioning variable,

which is shown in Fig 8 in S1 Annex. The conditional probabilities rarely exceed 25%, and the

lower confidence interval bounds are equal to zero in Western Africa and South & South-

Fig 3. Point estimates and 95% confidence intervals of the conditional probability P(YieldRefl> quYieldRefl|Prec> quPrec), where quYieldRefl is always set as the 90th

quantile of the variable YieldRefl and quPrec is the 91st to 99,99th quantile of the conditioning variable Prec. Estimation is done using maize data from 1961 to 2002.

In Eastern Africa conditional probabilities sharply increase with widening confidence intervals for high thresholds of the conditioning variable. In Middle & Southern

Africa the conditional probabilities or the lower confidence interval bounds are zero indicating no evidence of an association between extremes in high precipitation and

high yield losses.

https://doi.org/10.1371/journal.pone.0261839.g003
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Eastern Asia & Melanesia. The conditional probability plots for barley, rice, sorghum, soy

and wheat also reveal a mixed picture and are shown in the supporting material to this paper

[43, pp. 20–35]. Production losses due to weather extremes are not equally likely among the

regions. Depending on the crop, the weather extremes and the region, the occurrence of severe

production losses is more or less likely. The results emphasize the complexity of interaction

factors.

Fig 4 visually summarizes this heterogeneity and displays the highest point estimates and

the 95% confidence intervals of the probability of observing a high loss in yield, i.e., the proba-

bility to observe a reduction of Yield below the 10%, conditional to the occurrence of a weather

extreme in the 98th quantile.

Fig 4 shows that each of the considered regions is likely to have severe losses in its produc-

tion of staple food due to extreme weather events. However, the effect of extreme weather var-

ies among regions depending on the crop and the type of weather extreme. Sorghum, which

is the main staple in Africa, has the highest risk of severe yield losses for different weather

extremes in the three African regions. Extreme high maximum temperature and low

Fig 4. Highest point estimates of the conditional probabilities, i.e. the probabilities of yield losses above the 90th quantile given minimum temperature, maximum

temperature or high precipitation extremes above the 98th quantile or low precipitation extremes below the 2nd quantile. If the 95% confidence interval includes

zero, the conditional probabilities are not shown.

https://doi.org/10.1371/journal.pone.0261839.g004
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precipitation are the main weather conditions leading to extraordinary yield losses, which is in

line with the distribution of sorghum in arid regions in Africa or in regions where precipita-

tion is erratic and characterized by short periods of high precipitation [44]. In Eastern and

Western Africa extreme high minimum temperature lead to severe reduction in sorghum

yield. High losses in maize production are due to extreme high minimum temperature in Mid-

dle & Southern Africa and are due to extreme high precipitation in Eastern Africa. Noteworthy

because of the importance of rice, which is a main staple in Western Africa [45], high losses in

rice production are likely to occur with extreme events in high precipitation.

Central America & Caribbean exhibits the highest conditional probabilities due to weather

extremes for rice and maize, whereas South America shows it for barley and soybean which

are among the most important staple crops in the regions. Weather patterns are diverse in

Latin America. Whereas South America experiences rising temperature and changing precipi-

tation patterns leading to mixed effects on agriculture, an increase in temperature severely

damages agricultural output in Central America. Moreover, even though Central America is

marked by a decline in precipitation, floods remain among the most frequent extreme weather

events [46]. The estimated conditional probabilities suggest that in Central America & Carib-

bean maize production reacts mainly to extremes in high precipitation and temperature and

rice production reacts to extreme low precipitation. In South America, barley and soybean

production losses are likely to increase with extremes in temperature and low precipitation

respectively.

In Asia a main staple crop is rice where 90% of rice production and consumption is concen-

trated [45]. The dependency on rice is reflected by the fact that we obtain the highest condi-

tional probabilities for rice in South & South-Eastern Asia & Melanesia. Losses in rice

production are likely due to extreme high minimum temperature. The finding is in line with

[45] who state that higher minimum temperatures become increasingly a major cause of yield

losses of rice in Asia. On the other side, the occurrence of very low rice yields is likely due to

high precipitation. Only in South Asia yield losses of rice due to floods are about 4 million t

per year [45]. Interestingly, the probability of production losses given extreme low precipita-

tion is the highest for maize in the tropical region of South & South-Eastern Asia & Melanesia.

The finding is plausible as maize production is predominantly rain-fed in South and South-

Eastern Asia [47].

The point estimates of conditional probabilities shown in Fig 4 are at maximum 40%,

which is the case for sorghum in Eastern Africa given extreme low precipitation. Overall, the

highest conditional probabilities given different weather extremes are in Eastern and Middle &

Southern Africa as well as in South America. In contrast, the conditional probabilities are less

than 30% for all types of weather extremes in Central America & Caribbean and South &

South-Eastern Asia & Melanesia.

Summing up the results, we find that, first, maize and sorghum have the highest conditional

probabilities of extreme high losses in crop production given the occurrence of extreme

weather conditions. Second, extreme low precipitation and extreme high maximum tempera-

ture are the defining weather extremes, except for Latin America and Western Africa. In Latin

America, the probabilities do not change significantly among different conditioning variables,

and in Western Africa, the highest conditional probability is due to extreme high precipitation

in the case of rice. Third, losses in staple crop production given extreme weather events are

more likely in the African regions and South America.

Finally, Fig 5 shows the worst-case scenario by displaying the maximum upper bound of

the 95% confidence interval of the conditional probability estimates, i.e., the probability esti-

mates of yield losses above the 90th quantile given the minimum temperature, maximum tem-

perature or high precipitation extremes above the 98th quantile or low precipitation extremes
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below the 2nd quantile. The maximum upper bound of the 95% confidence interval is chosen

from all of the weather variables and crops in a region. Each region has a different worst-case

scenario, i.e., a different crop and weather variable for which we obtain the maximum upper

confidence interval bound. In Central America & Caribbean, South America, Eastern Africa

and Middle & Southern Africa, extreme high temperature is the condition that leads to the

highest production losses. Whereas in the African regions, the associated crop is sorghum, the

associated crop is maize in Central America & Caribbean and barley in South America. The

worst-case scenario for Western Africa constitutes high losses in rice yields due to extremes in

high precipitation. In the Asian region, extremes in low precipitation is the defining weather

variable in the worst-case scenario and rice is the affected crop. The worst-case scenarios occur

with different probability in the different regions. The probability ranges from around 25% in

Central America & Caribbean and South & South-Eastern Asia & Melanesia to 56% in Eastern

Africa and South America, whereas probabilities of approximately 50% are found in Western

and Middle & Southern Africa.

This worst case scenario can be employed as a fragility index which can be used to assess

strengths and weakness of different areas conditional to the type of crops they mostly harvest.

It can thus became a valuable instrument for policy design. As a matter of fact, the same index

can be applied to different areas other than agriculture, but still linked with climate change,

such as desertification, diffusion of deceases, and poverty rate.

Discussion and conclusion

The influential paper on African countries by [16] reports an expected 7% reduction of aggre-

gate agriculture productivity with a probability of 95% probability due to change in the mean

of weather variables in Sub-Saharan Africa with an R-squared between 0.5 and 0.7 according

Fig 5. Worst-case scenario: The maximum upper bound of the 95% confidence interval of the conditional probability estimates, i.e. the probability estimates of

yield losses above the 90th quantile given minimum temperature, maximum temperature or high precipitation extremes above the 98th quantile or low

precipitation extremes below the 2nd quantile.

https://doi.org/10.1371/journal.pone.0261839.g005
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to the type of staple. Their work, as any other standard approach for assessing the impact of

weather on crops has largely focused on the mean values. In line with a recent stream of

research on extreme weather events, we do not focus on the mean but on the tails of the distri-

butions. We find systematic evidence that extreme losses in production of major food staples

are likely to occur in times of extreme conditions in weather and the probability depends on

the type of weather extreme, the crop, and the region. The alleged increase in the number of

extreme events should be taken seriously because the potential damage can be extraordinary.

As a comparison with [16], independently on the mean, seasonal extreme events of drought

can reduce Sorghum production in Sub-Saharan Africa by 40%, that is 7 times higher than the

projected reduction of 7%. We are able to provide this measure of risk for each region, that is

specific to both the crop and the extreme weather event. This outcome can also be used as a

index for the resilience of a region and to help policy makers to intervene and set priorities. In

the short run, a country cannot change the risk of incurring high losses due to weather events.

However, the resilience of a country depends on many factors, such as the adoption of

advanced irrigation technology, the diffusion of fertilizer, and the introduction of new and

resistant crops, which can be highly influenced by the policy makers. This work is highly com-

plementary with the ones focusing on the mean impact of the present trend of weather vari-

ables. While these works [6, 16, 24, 48, 49] can provide an assessment of the future long term

development on average, we highlight that this path will be punctuated by events with a much

higher disrupting effect. Thus, long term policy for climate change intervention should be

accompanied by immediate action for counteracting the impact of very likely extreme events.

This work leaves some questions unanswered due to data availability. Specifically, the same

type of weather extremes can lead to different crop responses based on the time of the year and

the crop growth stage [26]. The use of growing-season national aggregates of weather to

account for weather extremes instead of using precise weather data is critical because growing-

season aggregates do not to capture inter-annual ups and downs and extremes within a grow-

ing period. The drawback occurs because extreme weather conditions are particularly harmful

in certain stages of plant growth [50]. In addition, studies that focus on the occurrence of

extreme weather events have to be accompanied by studies that also include the severity of

extremes, such as the length of heatwaves or floods. The main constraint for a large fraction of

countries worldwide is the lack of access to long-term weather data with high time and spatial

resolution [51], which are now available for case studies limited in time and space. We try to

mitigate this problem by looking at aggregates of weather in the growing season and for differ-

ent growing regions and we analyse the occurrence of periods of extreme hot, dry or wet con-

ditions from a long-term perspective. The value of this paper is to provide an indication of the

probability of extreme losses in basic food production due to extreme weather events in a spe-

cific region under historic climate conditions. This analysis provides a perspective that is com-

plementary to more detailed localized studies focusing on one particular region with higher

time and spatial resolution data.

To conclude, studying weather changes and the impacts on agricultural production

remains a challenging task. To evaluate crop production responses the uncertainty of

weather changes needs to be further addressed. The uncertainty in the evaluation of current

and future impacts of weather on agricultural production stems from uncertainties that arise

in the estimation of crop responses to changes in average growing season temperature and

precipitation [48]. We believe that the uncertainties also come from the extreme events that

are by nature difficult to model. Given that future climate is likely to be prone to a higher fre-

quency of extreme weather events, our results contribute to this discussion by providing the

probabilities of severe staple crop production losses conditioned on extremes in temperature

and precipitation.
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