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Abstract. For a prime number ` we say that an oriented pro-` group (G, θ) has

the Bogomolov-Positselski property if the kernel of the canonical projection on its

maximal θ-abelian quotient πab
G,θ : G → G(θ) is a free pro-` group contained in

the Frattini subgroup of G. We show that oriented pro-` groups of elementary

type have the Bogomolov-Positselski property (cf. Theorem 1.2). This shows that

Efrat’s Elementary Type Conjecture implies a positive answer to Positselski’s ver-

sion of Bogomolov’s Conjecture on maximal pro-` Galois groups of a field K in case

that K×/(K×)` is finite. Secondly, it is shown that for an H•-quadratic oriented

pro-` group (G, θ) the Bogomolov-Positselski property can be expressed by the in-

jectivity of the transgression map d2,12 in the Hochschild-Serre spectral sequence (cf.

Theorem 1.4).

1. Introduction

Data Availability Statement: Data sharing not applicable to this article as no

datasets were generated or analysed during the current study (required by the Jour-

nal’s policy).

By an `-oriented profinite group for a prime number ` we understand a profinite group

G together with a continuous homomorphism of profinite groups θ : G→ Z×` , where Z×`
denotes the group of units of the ring of `-adic integers Z`. An `-oriented pro-` group

(G, θ) will be simply called an oriented pro-` group. For a field K, we denote by GK =

Gal(K̄sep/K) its absolute Galois group, where K̄sep denotes a separable closure of K. For

any prime number `, GK carries naturally the cyclotomic `-orientation θ̃K,` : GK → Z×`
(cf. Example 2.1 and [28, (1.3)]). The following conjecture formulated by L. Positselski

in [21, Conjecture 2] was motivated by an earlier conjecture of F. Bogomolov (cf. [2]

and [21, Conjecture 1], see also Remark 3.3 below).

Conjecture 1.1. Let K be a field containing a primitive `th-root of unity, and also√
−1 if ` = 2, and set

`∞
√
K = K

(
`n
√
a, a ∈ K, n ≥ 1

)
.

Then the maximal pro-` Galois group of `∞
√
K is a free pro-` group.

A profinite group G admits a maximal pro-` quotient G(`) = G/O`(G), where O`(G)

is the closed normal subgroup of G being generated by all pro-q Sylow subgroups for all
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prime numbers q 6= `. Apart from ker(θ), an oriented pro-` group (G, θ) contains the

distinguished closed subgroups

Kθ(G) = cl
(〈

h−θ(g)ghg−1 | g ∈ G, h ∈ ker(θ)
〉)

(1.1)

and

Iθ(G) = cl
(〈

h ∈ ker(θ) | ∃k ∈ N0 : h`
k

∈ Kθ(G)
〉)

(1.2)

— the former introduced in [11] — i.e., Iθ(G) is the closure of the isolator (cf. [13, §66])

of Kθ(G) in ker(θ). An oriented pro-` group (G, θ) is said to be θ-abelian, if the subgroup

Kθ(G) is trivial and if ker(θ) is a free abelian pro-` group (in this case G is a free abelian-

by-cyclic pro-` group for ` 6= 2, cf. Remark 2.2).By definition Kθ(G) is a closed normal

subgroup of G contained in the Frattini subgroup Φ(G) = cl(G` · [G,G]) of G. Note

that

(1.3) [ker(θ), ker(θ)] ⊆ Kθ(G) ⊆ ker(θ),

so that the quotient ker(θ)/Kθ(G) is an abelian pro-` group, and Iθ(G)/Kθ(G) is its

torsion subgroup. In particular, if θ : G→ Z×` is trivial (i.e., θ is identically equal to 1),

then Kθ(G) coincides with the closure of the commutator subgroup of G.

Every oriented pro-` group (G, θ) admits a maximal θ-abelian quotient (G(θ), θ̄),

where G(θ) = G/Iθ(G) and θ̄ : G(θ)→ Z×` is the homomorphism induced by θ. Namely,

(G(θ), θ̄) is θ̄-abelian and one has a canonical surjective homomorphism

πab
G,θ : (G, θ) −→ (G(θ), θ̄)

of oriented pro-` groups satisfying the following: for every homomorphism ψ : (G, θ)→
(A, θ◦) of oriented pro-` groups onto a θ◦-abelian pro-` group (A, θ◦) there exists a

unique homomorphism of oriented pro-` groups ψab
θ : (G(θ), θ̄) → (A, θ◦) such that

ψ = ψab
θ ◦ πab

G,θ (cf. Proposition 2.3).

The hypothesis of Conjecture 1.1 on the primitive `th-roots lying in K implies that

the maximal pro-` quotient GK(`) of the absolute Galois group GK carries naturally an

`-orientation

(1.4) θ̃K,` : GK(`) −→ Z×` .

So, Conjecture 1.1 predicts that Iθ̃K,`(GK(`)) is a free pro-` group contained in the

Frattini subgroup Φ(GK(`)) of GK(`) (cf. Proposition 2.6 and § 3.1). At this point it

should be mentioned that in fact one has to deal with two properties of oriented pro-`

groups. The oriented pro-` group (G, θ) is said to be Kummerian, if Iθ(G) = ker(πab
G,θ)

is contained in the Frattini subgroup Φ(G) of G. This property can be reformulated

in several different ways (cf. Proposition 2.6). Bearing this fact in mind we say that

the Kummerian (cf. §2.3) oriented pro-` group (G, θ) has the Bogomolov-Positselski

property, if Iθ(G) = ker(πab
G,θ) is a free pro-` group. E.g., the oriented pro-` group

(G,1), where 1 is the trivial `-orientation on G, is Kummerian if, and only if, the

maximal abelian pro-` quotient Gab = G/G′ is a free abelian pro-` group, and has the

Bogomolov-Positselski property if, and only if, it is Kummerian and the closure of the

commutator subgroup of G is a free pro-` group.

The class of oriented pro-` groups ET` of elementary type is the smallest class of

oriented pro-` groups containing Z` with all its `-orientations, all Demushkin pro-`
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groups with their natural `-orientation (cf. [28, Proposition 5.2]) and which is closed

with respect to free products in the category of oriented pro-` groups and fibre products

(cf. § 5.3). The Elementary Type Conjecture formulated by Ido Efrat in [8] predicts

that for every field K containing an `th-root of unity (and also
√
−1 if ` = 2) satisfying

|K×/(K×)`| < ∞ the oriented pro-` group (GK(`), θ̃K,`) must be of elementary type.

The first main purpose of this paper is to establish the following theorem relating the

Elementary Type Conjecture with Conjecture 1.1.

Theorem 1.2. Every oriented pro-` group of elementary type has the Bogomolov-Posit-

selski property.

From Theorem 1.2 one concludes the following (cf. Proposition 5.13):

Corollary 1.3. Let K be a field containing a primitive `th-root of 1 (and also
√
−1 if

` = 2), such that the quotient K×/(K×)` is finite. Then Conjecture 1.1 holds true in

the following cases:

(a) K is finite;

(b) K is a pseudo algebraically closed (PAC) field, or an extension of relative trascen-

dence degree 1 of a PAC field;

(c) K is an extension of trascendence degree 1 of a local field;

(d) K is `-rigid (for the definition of `-rigid field see [36, p. 722]);

(e) K is an algebraic extension of a global field of characteristic not `.

By the Norm Residue Theorem (cf. [12,35,37,38]), the mod `-MilnorK-ringKM
• (K)/`

of a field K is isomorphic to the cohomology algebra H•(GK(`),F`) provided ` 6= char(K)

and K contains a primitive `th-root of unity. Moreover, L. Positselski showed in [21, The-

orem 1.4] that Conjecture 1.1 is a consequence of a strong Koszulity property of the

cohomology algebra H•(GK(`),F`).
Our second objective is to establish the following criterion ensuring the Bogomolov-

Positselski property of an abstract oriented pro-` group (G, θ). Surprisingly, it only

depends on low-dimensional group cohomology, but in a sophisticated way (cf. Theo-

rem 4.5).

Theorem 1.4. Let (G, θ) be a Kummerian oriented pro-` group with a quadratic F`-
cohomology algebra H•(G,F`), and let

(1.5) s : {1} // Iθ(G) // G // G(θ) // {1}

be the canonical extension of pro-` groups. Then G has the Bogomolov-Positselski prop-

erty if, and only if, the transgression map

(1.6) d2,1
2 : H2(G(θ), H1(Iθ(G),F`)) −→ H4(G(θ),F`)

is injective.

Remark 1.5. As s is a Frattini pro-` cover (i.e., Iθ(G) is contained in the Frattini sub-

group of G, cf. § 3.2), inflation yields an isomorphism j1 : H1(G(θ),F`) → H1(G,F`).
Since H•(G,F`) is quadratic, inflation may also be considered as a surjective homomor-

phism of graded F`-algebras

(1.7) j• : H•(G(θ),F`) −→ H•(G,F`),
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where the left-side term of (1.7) is the exterior algebra generated by H1(G(θ),F`) (cf.

§ 4.1). By [21, Theorem 1.4], (G, θ) has the Bogomolov-Positselski property provided

H•(G,F`) is a Koszul F`-algebra and ker(j•) is a Koszul H•(G,F`)-module (cf. [21,

§3.3]). Hence the natural question arising in this context is, whether one can express

ker(d2,1
2 ) in terms of Exts,tH•(G,F`)(F`, ker(j•)), s 6= t.

Acknowledgment. The authors would like to thank I. Efrat, A. Jaikin-Zapirain and

P. Zalesskii as well as K. Ersoy, I. Snopce and M. Vannacci for interesting and helpful

discussions. The authors would also like to thank the anonymous referee for several

helpful comments.

2. Oriented pro-` groups

For a pro-` group G and a positive integer n, Gn will denote the closed subgroup of G

generated by the n-th powers of all elements of G. Moreover, for two elements g, h ∈ G,

we set
gh = ghg−1, and [g, h] = gh · h−1,

and for two subgroups H1, H2 of G, [H1, H2] will denote the closed subgroup of G

generated by all commutators [g, h] with g ∈ H1 and h ∈ H2. In particular, G′ will

denote the closure of the commutator subgroup of G.

2.1. `-Orientations of profinite groups. Let Z` denote the ring of `-adic integers,

and let Z×` denote its group of units. Note that Z×` is a virtual pro-` group, in more

detail:

(a) if ` 6= 2 then the Sylow pro-` subgroup of Z×` is 1 + `Z` = {1 + `λ | λ ∈ Z`},
which is free pro-` cyclic;

(b) if ` = 2 then Z×2 = 1 + 2Z2 ' Z/2 × (1 + 4Z2), and the factor 1 + 4Z2 is

isomorphic to Z2.

An oriented pro-` group (G, θ) is a pro-` group G together with a continuous group

homomorphism θ : G → Z×` . Moreover, (G, θ) is said to be torsion-free if ` 6= 2, or if

` = 2 and im(θ) ⊆ 1 + 4Z2 — observe that in a torsion-free oriented pro-` group (G, θ),

G need not be a torsion free pro-` group, e.g., (Z/`,1) is a torsion-free oriented pro-`

as im(1) = {1}.
Oriented pro-` groups where introduced by I. Efrat in [8] under the name “cyclotomic

pro-` pairs”. For an oriented pro-` group (G, θ), Z`(1) will denote the continuous left

Z`[[G]]-module which is isomorphic to Z` as an abelian pro-` group, such that g·v = θ(g)·v
for every g ∈ G and v ∈ Z`(1) (cf. [28, § 1]). Conversely, if a pro-` group G comes

endowed with a continuous left Z`[[G]]-module M which is isomorphic to Z` as an abelian

pro-` group, then M induces an orientation θ : G → Z×` by θ(g) · v = g · v for every

g ∈ G and v ∈M , such that M ' Z`(1).

The fundamental examples of oriented pro-` groups arise in Galois theory (cf. [11,

§ 4]).

Example 2.1. For a field K, let K̄sep denote a separable closure of K, and let µ`∞

denote the group of roots of 1 of `-power order lying in K̄sep. If K contains a primitive

`th-root of unity, then µ`∞ is contained in the maximal pro-` extension K(`) of K.As

µ`∞ ' Z[ 1
` ]/Z and Aut(Z[ 1

` ]/Z) is isomorphic to Z×` , the action of the maximal pro-`
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Galois group GK(`) = Gal(K(`)/K) of K on µ`∞ fixes the primitive `th-roots of unity,

and induces the `-cyclotomic character

θ̃K,` : GK(`) −→ Z×` .

In particular,

σ(ζ) = ζ θ̃K,`(σ) for all σ ∈ GK(`), ζ ∈ µ`∞ .
Furthermore, one has im(θ̃K,`) = 1 + `fZ` — where f is the positive integer satisfying

|µ`∞ ∩ K×| = `f — in case µ`∞ ∩ K× is non-empty and finite, and im(θ̃K,`) = {1} if

µ`∞ ⊆ K×. The continuous GK(`)-module Z`(1) induced by the cyclotomic character

is called the 1st Tate twist of Z` (cf. [20, Def. 7.3.6]), and for every n ≥ 1, Z`(1)/`n is

isomorphic to the GK(`)-module of the `n-th roots of 1.

Note that oriented pro-` groups form a category Or`, i.e., for (G, θ), (H, θ′) ∈ ob(Or`)

a morphism of oriented pro-` groups φ : (G, θ) → (H, θ′) is a continuous group homo-

morphism φ : G→ H of pro-` groups satisfying θ′ ◦ φ = θ.

For an oriented pro-` group (G, θ) one has the following constructions.

(a) Let N be a normal subgroup of G such that N ⊆ ker(θ). Then one has an

oriented pro-` group

(G, θ)/N := (G/N, θ̄),

where θ̄ : G/N → Z×` is the orientation induced by θ.

(b) Let A be an abelian pro-` group. Then one has an oriented pro-` group

Ao (G, θ) := (AoG, θ̃),

where gag−1 = aθ(g) for all g ∈ G and a ∈ A, and θ̃ = θ◦π, where π : AoG→ G

is the canonical projection.

2.2. The maximal θ-abelian quotient of an oriented pro-` group. Let (G, θ) be

a torsion-free oriented pro-` group. Then G/ker(θ) ' im(θ) is torsion-free, and thus

either trivial or isomorphic to Z`. Therefore, the epimorphism G � G/ker(θ) splits,

and since ghg−1 ≡ hθ(g) mod Kθ(G) for every g ∈ G and h ∈ ker(θ), one concludes that

(2.1) (G, θ)/Kθ(G) ' ker(θ)

Kθ(G)
o (im(θ), Idim(θ)).

Remark 2.2. By (2.1), if (G, θ) is a torsion-free θ-abelian oriented pro-` group, then

it is isomorphic to the oriented pro-` group ker(θ)o (im(θ), Idim(θ)). Conversely, if A is

a free abelian pro-` group, and (Ḡ, θ) is an oriented pro-` group satisfying ker(θ) = {1},
then the oriented pro-` group (G, θ̃) = A o (Ḡ, θ) is θ̃-abelian, since ker(θ̃) = A is a

free abelian pro-` group, and as ghg−1 = hθ̃(g) for every g ∈ Ḡ and h ∈ A and thus

Kθ̃(G) = {1}.

Let (G, θ) be an oriented pro-` group. Put Ḡ = G/Iθ(G) and let θ̄ : Ḡ→ Z×` denote

the induced orientation. Since the quotient ker(θ)/Iθ(G) is torsion-free (cf. § 1), the

oriented pro-` group (G(θ), θ̄) is θ̄-abelian. This group together with the canonical

projection

(2.2) πab
G,θ : G −→ G(θ)

has the following universal property.
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Proposition 2.3. Let (G, θ) be an oriented pro-` group, let (A, θ◦) be an oriented

θ◦-abelian pro-` group, and let ψ : (G, θ) → (A, θ◦) be a continuous homomorphism

of oriented pro-` groups. Then ψ factors through πabG,θ, i.e., there exists a (unique)

continuous group homomorphism

ψab
G,θ : (G(θ), θ̄) −→ (A, θ◦)

satisfying ψ = ψab
G,θ ◦ πab

G,θ.

Proof. As ψ is a homomorphism of oriented pro-` groups, and as (A, θ◦) is θ◦-abelian,

one has

(2.3) ψ(ker(θ)) ⊆ ker(θ◦) and ψ(Kθ(G)) ⊆ Kθ◦(A) = {1}.

As ker(θ◦) is torsion-free, this implies that ψ(Iθ(G)) = {1}. Hence the induced homo-

morphism ψab
G,θ : G(θ)→ A of oriented pro-` groups has the desired properties. �

Remark 2.4. Let (G, θ) ' Ao((G, θ)/ker(θ)) be a torsion-free θ-abelian oriented pro-`

group. Then for every subgroup H of G one has

H ' (H ∩A) o (H/ker(θ|H)),

and thus the oriented pro-` group (H, θ|H) is split θ|H -abelian (cf. [28, Remark 3.12]).

2.3. Kummerian oriented pro-` groups. Let (G, θ) be an oriented torsion-free pro-`

group. Since im(θ) ⊆ 1 + `Z`, the action of G on the quotient Z`(1)/` of the continuous

G-module Z`(1) is trivial, i.e., Z`(1)/` ' F` as a trivial left Z`[[G]]-module. In the proof

of the subsequent proposition we will make use of the following

Fact 2.5. Let A be an abelian pro-` group, and let B be a closed subgroup of A which

is a direct summand of A satisfying B ⊆ A`. Then B = {0}.

Proof. Let A = B ⊕ C. Then A` = B` ⊕ C`, and as B` ⊆ B, and B ∩ C = {0} one

concludes that B ⊆ B`, i.e., B = B` = Φ(B). Hence B = {0}. �

A torsion-free oriented pro-` group (G, θ) is said to be Kummerian if the following

equivalent properties are satisfied.

Proposition 2.6. Let (G, θ) be a torsion-free oriented pro-` group. Then the following

are equivalent:

(i) the map H1(G,Z`(1)/`n) −→ H1(G,F`) induced by the epimorphism of discrete

left G-modules Z`(1)/`n � Z`(1)/` ' F`, is surjective for every n ≥ 1 (cf. [11]).

(ii) The quotient ker(θ)/Kθ(G) is a free abelian pro-` group.

(iii) The oriented pro-` group (G, θ)/Kθ(G) = (G/Kθ(G), θ̄) is θ̄-abelian.

(iv) Kθ(G) is isolated in ker(θ), i.e., Iθ(G) = Kθ(G).

(v) The group H2
cts(G,Z`(1)) is a torsion-free Z`-module.

(vi) Iθ(G) ⊆ Φ(G).

(Here H∗cts denotes continuous cochain cohomology as defined by J. Tate in [34]).

Proof. For G finitely generated the equivalences between (i) and (ii) was shown in

[11, Thm. 5.6], and the equivalence between (ii) and (iii) follows from Remark 2.2. For

general G the equivalences were shown in [26, Thm. 1.2]. The equivalence between (i)

and (v) is shown in [28, Prop. 2.1], and (iii) ⇔ (iv) is a direct consequence of (2.1)
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and Remark 2.2. Hence (i)–(v) are equivalent. As Kθ(G) ⊆ Φ(G) one has (iv) ⇒ (vi).

Thus it remains to show that (vi) ⇒ (iv). Let π : G → G/Φ(G) denote the canonical

projection, and let

(2.4) π∗ : ker(θ)/Kθ(G) · ker(θ)` −→ G/Φ(G)

denote the induced map — note that Kθ(G) ker(θ)` = ker(θ)`[G, ker(θ)], by (1.1). As

im(θ) — which is isomorphic to either Z` or {1} — is projective, the 5-term exact

sequence associated to the Hochschild-Serre spectral sequence yields an exact sequence

(2.5) H1(G,F`)
π∨∗ // H1(ker(θ),F`)G // {0}

Thus, by Pontrjagin duality, π∗ is injective. Note that

(2.6) tor(ker(θ)/Kθ(G)) = Iθ(G)/Kθ(G)

is a direct summand of the abelian pro-` group ker(θ)/Kθ(G) (cf. § 1). Since π(Iθ(G)) =

{1} by (vi), and since π∗ is injective, one concludes that Iθ(G) ⊆ Kθ(G) ·ker(θ)`. Hence

Iθ(G)/Kθ(G) = {1} by Fact 2.5. �

Example 2.7. (a) If (G, θ) is a torsion-free θ-abelian pro-` group, then, by Propo-

sition 2.6–(ii), (G, θ) is Kummerian, as Kθ(G) = {1} and ker(θ) is free abelian

by definition.

(b) If G is a free pro-` group, then by Proposition 2.6–(v) the oriented pro-` group

(G, θ) is Kummerian for any orientation θ : G → Z×` , as cd(G) = 1 (cf. [20,

Prop. 3.5.17]).

(c) If (G, θ) is an oriented pro-` group with trivial orientation θ ≡ 1, then (G, θ) is

Kummerian if, and only if, the abelianization Gab is a free abelian pro-` group

(cf. [11, Example 3.5–(1)]).

The following result is a consequence of Kummer theory (cf. [11, Thm. 4.2]).

Theorem 2.8. Let K be a field containing a primitive `th-root of 1 (and also
√
−1 if

` = 2). Then (GK(`), θK,`) is a torsion-free Kummerian oriented pro-` group.

From Proposition 2.3 and Proposition 2.6–(iv), one concludes the following fact.

Corollary 2.9. Let (G, θ) be a Kummerian torsion-free oriented pro-` group. Then

(G/Kθ(G), θ̄) is the maximal θ-abelian quotient of G.

3. The Bogomolov-Positselski property

3.1. Bogomolov’s conjecture. Let K be a field containing a primitive `th-root of 1

(and also
√
−1 if ` = 2), and let L = `∞

√
K denote the compositum of all radical

extensions K( `n
√
a), with a ∈ K× and n ≥ 1, i.e.,

(3.1) L =
`∞
√
K = K

(
`n
√
a | a ∈ K×, n ≥ 1

)
.

The maximal pro-` Galois group GL(`) of the field L is equal to the pro-` group

Kθ̃K,`
(GK(`)) associated to the oriented pro-` group (GK(`), θ̃K,`) (cf. [11, Thm. 4.2]).

Observe that the `-cyclotomic character associated to the maximal pro-` Galois group

of L is the trivial `-orientation 1 : Kθ̃K,`
(GK(`))→ {1} ⊆ Z×` .
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Motivated by a conjecture formulated by F. Bogomolov in [2] — see Remark 3.3

below —, L. Positselski stated the following conjecture on the pro-` group GL(`) =

Kθ̃K,`
(GK(`)) (cf. [21, Conjecture 1.2]).

Conjecture 3.1. Let K be a field containing a primitive `th-root of 1, and also
√
−1 if

` = 2. Then the maximal pro-` Galois group GL(`) of L = `∞
√
K is a free pro-` group.

Conjecture 3.1 is the motivation for the following definition.

Definition 3.2. A Kummerian oriented pro-` group (G, θ) is said to have the Bogomolov-

Positselski property if the subgroup Kθ(G) is a free pro-` group.

Hence, Conjecture 3.1 may be restated as follows: if K is a field containing a primitive

`th-root of 1 (and also
√
−1 if ` = 2), then the oriented pro-` group (GK(`), θ̃K,`) has

the Bogomolov-Positselski property.

Remark 3.3. The original formulation of Bogomolov’s conjecture states that if K is

a field containing an algebraically closed field then the (closure of the) commutator

subgroup of the Sylow pro-` subgroup of the absolute Galois group GK of K is a free

pro-` group. Furthermore, the (closure of the) commutator subgroup of the maximal

pro-` Galois group GK(`) should be a free pro-` group as well (see also [3, Conjecture 6.2]

and [19, § 3.1.2], where the conjecture is stated for function fields).

In [21], Positselski observed that the only essential part of the condition about the

algebraically closed subfield of K is that K should contain all the roots of 1 of `-power

order. Consequently, he formulated the following conjecture (cf. [21, Conjecture 1.1]):

the pro-` Sylow subgroup of the absolute Galois group GL, with L = `∞
√
K and K

an arbitrary field, is a free pro-` group, i.e., cd`(GL) ≤ 1 (or, equivalently, GL is `-

projective, cf. [32, §I.3.4, Proposition 16]). Note that this conjecture is stronger than

Conjecture 3.1, and likely hard to approach, while — as stated by Positselski himself,

cf. [21, § 1.3] — the latter is closer to Bogomolov’s original conjecture.

Example 3.4. (a) Let (G, θ) be a torsion-free θ-abelian oriented pro-` group. Then

(G, θ) is Kummerian (cf. Example 2.7–(a)), and by Proposition 2.6–(iv) one has

Iθ(G) = Kθ(G) = {1}.

So, (G, θ) has the Bogomolov-Positselski property.

(b) Let (G, θ) be an oriented pro-` group with G being a free pro-` group. Then

(G, θ) is Kummerian by Example 2.7–(b), and it has the Bogomolov-Positselski

property as every closed subgroup of G is again a free pro-` group.

(c) Let

G = 〈 x, y, z | [x, y] = z, [x, z] = [y, z] = 1 〉

=


 1 a c

0 1 b

0 0 1

 | a, b, c ∈ Z`


be the Heisenberg group over Z`, and set (G,1), where 1 : G→ Z×` is the trivial

orientation. Then Kθ(G) = G′ ' Z` is the cyclic pro-` subgroup generated by z,

and Gab ' Z2
` . Hence (G, θ) is Kummerian by Example 2.7–(c), and it has the

Bogomolov-Positselski property. Nevertheless, G does not occur as the maximal

pro-` Galois group of any field containing µ`∞ (cf. [25, Ex. 5.4]).
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3.2. Self-isolated pro-` groups and Frattini pro-` covers. Let G be a pro-` group,

and let H ⊆ G be a subgroup. The isolator of H is the subgroup

Iso(H) = cl (〈 g ∈ G | gn ∈ H for some n ≥ 1 〉)

(cf. [13, § 66]). We say that H is self-isolated if Iso(H) = H. In particular, if N is

a normal subgroup of G, then G is self-isolated if, and only if, the quotient G/N is a

torsion-free pro-` group. The following fact is almost straightforward.

Fact 3.5. Let (G, θ) be a torsion-free θ-abelian oriented pro-` group. Let N be a normal

subgroup of G contained in both ker(θ) and Φ(G). If N is self-isolated, then N = {1}.

Proof. By Remark 2.2, Φ(G)∩ker(θ) = ker(θ)`. As N ⊆ ker(θ) is an isolated subgroup,

it is a direct summand of ker(θ). Thus by Fact 2.5, N is trivial. �

Fact 3.5 has the following consequence.

Proposition 3.6. Let (G, θ) be a torsion-free Kummerian oriented pro-` group. Let

N E G be a closed normal, self-isolated, subgroup of G contained in ker(θ) satisfying

Kθ(G) ⊆ N ⊆ Φ(G).

Then N = Kθ(G).

A Frattini pro-` cover of pro-` groups is a short exact sequence of pro-` groups

(3.2) {1} // N // G
τ // Ḡ // {1}

satisfying N ⊆ Φ(G). One also says that τ : G→ Ḡ is a Frattini pro-` cover of Ḡ. One

may characterize those pro-` groups which may be completed into Kummerian oriented

pro-` groups with the Bogomolov-Positselski property as follows.

Theorem 3.7. A pro-` group G may be completed into a Kummerian oriented pro-`

group (G, θ) with the Bogomolov-Positselski property if, and only if, G is a Frattini pro-`

cover (3.2)of Ḡ, where (Ḡ, θ̄) is a θ̄-abelian oriented pro-` group and N is a free pro-`

group.

Proof. If (G, θ) is Kummerian with the Bogomolov-Positselski property, then, by Propo-

sition 2.6, (G/Kθ(G), θ̄) = (G, θ)/Kθ(G) is θ̄-abelian and N = Kθ(G) is a free pro-`

group by Definition 3.2. This shows one implication.

Conversely, if (Ḡ, θ̄) is θ̄-abelian, then the epimorphism of oriented pro-` groups

(G, θ) → (Ḡ, θ̄) factors through (G, θ)/Iθ(G) by Proposition 2.3. Hence Iθ(G) ⊆ N ,

while N ⊆ Φ(G) by hypothesis, thus (G, θ) is Kummerian by Proposition 2.6:(vi).

Thus, Iθ(G) = Kθ(G) by Proposition 2.6:(iv), and since

Kθ(G) = Iθ(G) ⊆ N ⊆ Φ(G),

Proposition 3.6 yields N = Kθ(G), i.e., (G, θ) has the Bogomolov-Positselski property.

�
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4. The Bogomolov-Positselski property and cohomology

4.1. Quadratic cohomology and the Norm Residue Theorem. Let G be a pro-`

group. The cohomology groups Hn(G,F`), n ≥ 1, where F` is the trivial G-module

isomorphic — as abelian group — to F` = Z/`Z, come endowed with the bilinear cup-

product

Hs(G,F`)×Ht(G,F`)
∪−→ Hs+t(G,F`), s, t ≥ 0,

which is associative and graded-commutative, i.e., β∪α = (−1)stα∪β for α ∈ Hs(G,F`)
and β ∈ Ht(G,F`) (cf. [20, Ch. I, § 4]). Thus,

H•(G,F`) =
∐
n≥0

Hn(G,F`)

is a connected N0-graded, graded-commutative, associative F`-algebra.

For an F`-vector space V , let T•V denote the F`-tensor algebra, i.e.,

(4.1) T•V =
∐
n∈N0

TnV where TnV = V ⊗
n

.

The N0-graded associative F`-algebra A• is said to be generated in degree 1, if the canon-

ical homomorphism φ• : T•A1 → A• of N0-graded associative F`-algebras is surjective.

Moreover, A• is said to be quadratic, if it is 1-generated and ker(φ•) = 〈ker(φ2)〉, i.e.,

the ideal ker(φ•) is generated in degree 2.

Definition 4.1. A pro-` group G is said to be H•-quadratic if H•(G,F`) is a quadratic

algebra.

For an F`-vector space V , let Λ•V = T•V/〈 v ⊗ v | v ∈ V 〉 denote the exterior

F`-algebra spanned by V , and S•V = T•V/〈 v ⊗ w − w ⊗ v | v, w ∈ V 〉 denote the

symmetric F`-algebra spanned by V . Then G is H•-quadratic if the cup-product induces

an isomorphism of graded F`-algebras

(4.2) Ξ•H1(G,F`)/〈W 〉
∼−→ H•(G,F`),

where Ξ• = Λ• if ` is odd, and Ξ• = S• if ` = 2. Moreover,

(4.3) W = ker
(

Ξ2(H1(G,F`))
∪−→ H2(G,F`)

)
.

By the Norm Residue Theorem, if the field K contains a primitive `th-root of unity, then

the maximal pro-` Galois group GK(`) is H•-quadratic (cf. [23] or [28]).

Remark 4.2. Let ` = 2 and let G be a pro-2 group. Then one has α ∪ α = 0 for every

α ∈ H1(G,F2) if, and only if, the map

H1(G,Z/4) −→ H1(G,F2),

induced by the epimorphism of trivial G-modules Z/4 → F2, is surjective (cf. [28,

Fact 7.1]). In particular, if (G, θ) is a torsion-free Kummerian oriented pro-2 group, one

concludes that α ∪ α = 0 for all α ∈ H1(G,F2). This is the case for (GK(2), θ̃K,2), with

K a field containing
√
−1, i.e., H•(GK(2),F2) is quadratic and also a quotient of the

exterior algebra Λ•H1(GK(2),F2).
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Example 4.3. Let (G, θ) be torsion-free θ-abelian oriented pro-` group. Then G is a

torsion free powerful pro-` group (cf. [5, Ch. 4, § 1]), and

G ' lim←−
i∈I

Ai o im(θ)

for finitely generated free abelian pro-` groups Ai. Thus by M. Lazard’s theorem (cf.

[15]) one has Λ•H
1(G,F`) (see, e.g., [28, Thm. 3.13]), and hence G is H•-quadratic.

4.2. Quadratic cohomology and the Bogomolov-Positselski property. Let (G, θ)

be a torsion-free Kummerian oriented pro-` group. The short exact sequence of pro-`

groups

(4.4) {1} // Iθ(G) // G // G(θ) // {1}

induces the 5-terms exact sequence in cohomology

(4.5)

0 H1(G(θ),F`) H1(G,F`) H1(Iθ(G),F`)G(θ)

H2(G(θ),F`) H2(G,F`)

inf1G(θ),G
res1G,Iθ(G)

d0,12

inf2G(θ),G

(cf. [20, Prop. 1.6.7]). As (G, θ) is Kummerian, one has Iθ(G)= Kθ(G) ⊆ Φ(G) (cf.

Proposition 2.6(iv)). Hence inf1
G(θ),G is an isomorphism and res1

G,Iθ(G) is the 0-map. As

(G(θ), θ̄) = (G, θ)/Iθ(G) is θ̄-abelian, one has

(4.6) H•(G(θ),F`) ' Λ•H1(G,F`)

(cf. Example 4.3). If in addition G is H•-quadratic, then H•(G,F`) is a quotient of

Λ•H1(G,F`) (cf. Remark 4.2). In particular, the inflation map ψ• = inf•G(θ),G induces

a surjective homomorphism of N0-graded F`-algebras

(4.7) H•(G(θ),F`) ' Λ•H1(G,F`)
ψ• // // H•(G,F`)

satisfying

(4.8) ker(ψn) ' ker(ψ2) ∧
(
Λn−2H1(G,F`)

)
for all n ≥ 2.

Since res1
G,Kθ(G) is trivial, one concludes from (4.5) that d0,1

2 is injective, im(d0,1
2 ) =

ker(ψ2), and H2(G,F`) ' H2(G(θ),F`)/im(d0,1
2 ). Thus, as H•(G,F`) is quadratic, one

has

(4.9) H•(G,F`) ' H•(G(θ),F`)/〈 im(d0,1
2 ) 〉.

4.3. A cohomological criterion. Let (G, θ) be a Kummerian torsion-free oriented

pro-` group which is H•-quadratic. Let (Es,tr , ds,tr ) denote the Hochschild-Serre spectral

sequence with coefficients in F` associated to the short exact sequence (4.4), i.e.,

(4.10) Es,t2 = Hs(G(θ), Ht(Iθ(G),F`)) =⇒ Es,t∞ , s, t ≥ 0,
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with differentials ds,tr : Es,tr → Es+r,t−r+1
r satisfying dr ◦ dr = 0 (cf. [20, Ch. II, § 4]). In

particular, by (4.7) one has E•,02 ' Λ•H1(G,F`). For α ∈ Es,02 = Hs(G(θ),F`), s ≥ 0,

and β ∈ E0,1
2 = H1(Iθ(G),F`)G(θ), one has

α ∪ β ∈ Hs(G(θ),F` ⊗H1(Iθ(G),F`)) = Es,12 ,

ds,12 (α ∪ β) = (−1)s+1α ∪ d0,1
2 (β) ∈ Es+2,0

2

(4.11)

(cf. [20, Ch. II, Ex. 4.5]).

Proposition 4.4. Let (G, θ) be a torsion-free Kummerian oriented pro-` group with G

being H•-quadratic. Then

(i) Es,t∞ is concentrated on the 0th line, i.e., Es,t∞ = 0 for every s ≥ 0 and t ≥ 1;

(ii) Es,03 ' Es,0∞ ' Hs(G,F`) for every s ≥ 0.

Proof. Since (G, θ) is Kummerian, by (4.6) one has E•,02 ' Λ•H1(G,F`). For every

t ≥ 0 there exists a descending separating filtration (F kHt(G,F`))0≤k≤t satisfying

F 0Ht(G,F`) = Ht(G,F`) and

(4.12) F sHs+t(G,F`)/F s+1Hs+t(G,F`) ' Es,t∞
where F s+t+1Hs+t(G,F`) = {0} (cf. [1, p. 99]). By [20, Ch. II, § 4, Ex. 1], the composite

of the maps

Es,02 = Hs(G(θ),Fp) // // Es,03
// // · · · // // Es,0∞ // // Hs(G,Fp)

is the s-th left edge morphism (cf. [20, p. 99]) and hence coincides with the inflation

map infsG(θ),G, which is surjective by (4.7). Thus F 0Ht(G,F`) = Ht(G,F`) for all t ≥ 0,

i.e., E•,0∞ ' H•(G,Fp), and consequently Ek,t∞ = 0 for every 1 ≤ k ≤ t. This shows (i).

By (4.11), one has canonical homomorphisms of N0-graded F`-algebras

(4.13)
σ• : H•(G(θ),F`)/〈 im(d0,1

2 ) 〉 −→ E•,03 ,

τ• : E•,03 −→ H•(G,F`).

Moreover, σ• and τ• are surjective, σk and τk are isomorphisms for k ∈ {0, 1, 2}, and

their composition is an isomorphism of quadratic F`-algebras by (4.9). Thus σ• and τ•

are isomorphisms which shows (ii). �

Let (G, θ) be a Kummerian torsion-free oriented pro-` group, and put Kθ(G)ab =

Kθ(G)/Kθ(G)′. Recall that if K is a field containing a primitive `th-root of 1 and

(G, θ) = (GK(`), θ̃K,`), then Kθ(G)ab is a free abelian pro-` group, as the oriented pro-`

group (Kθ(G), θ|Kθ(G)) is again Kummerian, and since θ|Kθ(G) is trivial. The short

exact sequence of pro-` groups

(4.14) {1} // Kθ(G)ab ι // G/Kθ(G)′
π // G(θ) // {1} ,

where G(θ) = G/Kθ(G), defines a cohomology class u ∈ H2
cts(G(θ),Kθ(G)ab) (cf. [20,

p. 143]), where Kθ(G)ab is considered as a topological left Z`[[G(θ)]]-module and H∗cts

denotes continuous cochain cohomology (cf. [20, Ch. II, § 7]). Since [G,Kθ(G)] ⊆ Φ(G),

one has

Hom(Kθ(G),F`) = Hom(Kθ(G),F`)G(θ) = E0,1
2 .
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Thus, the pairing

Kθ(G)ab × E0,1
2 −→ F`,

(hKθ(G)′, β) 7−→ β(h), for h ∈ Kθ(G),

induces a map

(4.15) φu : E2,1
2 = H2(G(θ),Hom(Kθ(G),F`)) −→ E4,0

2 = H4(G(θ),F`)

given by φu(α) = u ∪ α (cf. [20, p. 114]).

Theorem 4.5. Let (G, θ) be a Kummerian torsion-free oriented pro-` group with G an

H•-quadratic pro-` group. Then the following are equivalent.

(i) (G, θ) has the Bogomolov-Positselski property;

(ii) the differential map d2,1
2 : E2,1

2 → E4,0
2 ' Λ4H1(G(θ),F`) is injective;

(iii) the map φu is injective, i.e., u ∪ α 6= 0 for every non-trivial α ∈ E2,1
2 .

If these conditions hold, then the spectral sequence Es,t2 ⇒ Es,t∞ collapses at the E3-page,

i.e., E3 = E∞.

Proof. By Proposition 4.4(ii), for every s ≥ 0 one has Es,03 ' Es,04 ' . . . ' Es,0∞ . Since,

by definition, Es,04 = Es,03 /im(ds−3,2
3 ), one concludes that the maps

ds−3,2
3 : Es−3,2

3 −→ Es,03 ' Hs(G,F`)

must be the 0-maps for every s ≥ 3. In particular, E0,2
4 = ker(d0,2

3 ) is equal to E0,2
3 ,

which is ker(d0,2
2 ) by definition. As Es,tr is a first-quadrant spectral sequence, one has

E0,2
r+1 = ker(d0,2

r ) and the map d0,2
r : E0,2

r → Er,3−rr = 0 is the 0-map for every r ≥ 4.

This implies that E0,2
3 = E0,2

4 = . . . = E0,2
∞ . Thus, applying Proposition 4.4(i), yields

(4.16) 0 = E0,2
∞ = E0,2

3 = ker(d0,2
2 ),

i.e., d0,2
2 : E0,2

2 → E2,1
2 is injective.

Moreover, one has E2,1
3 = E2,1

4 = E2,1
∞ , as E2,1

r+1 = ker(d2,1
r )/im(d2−r,r

r ) and both

maps

d2,1
r : E2,1

r −→ E2+r,2−r
r = 0 and d2−r,r

r : E2−r,r
r = 0 −→ E2,1

r

are the 0-maps for every r ≥ 3. Applying Proposition 4.4(i) again yields

(4.17) 0 = E2,1
∞ = E2,1

3 = ker(d2,1
2 )/im(d0,2

2 ),

i.e., ker(d2,1
2 ) = im(d0,2

2 ).

Thus, if (G, θ) has the Bogomolov-Positselski property, then Iθ(G) = Kθ(G) is a free

pro-` group. Then Ht(Kθ(G),F`) = 0 for every t ≥ 2 (cf. [20, Prop. 3.5.17]), and thus

E0,t
r = 0 for all r ≥ 2 and t ≥ 2. In particular, the map d0,2

2 : H2(Iθ(G),F`)G(θ) → E2,1
2 is

trivial, and hence by (4.17), one has ker(d2,1
2 ) = 0. This proves the implication (i)⇒(ii).

Conversely, if d2,1
2 is injective, then, by (4.17), one has im(d0,2

2 ) = ker(d2,1
2 ) = 0.

Since d0,2
2 is injective by (4.16), this implies that E0,2

2 = H2(Iθ(G),F`)G(θ)= 0. Since

G is a pro-` group, the equality H2(Iθ(G),F`)G(θ) = 0 implies that H2(Iθ(G),F`) = 0,

and thus Iθ(G) is free by [20, Prop. 3.5.17]. This proves the implication (ii)⇒(i). The

equivalence between (ii) and (iii) follows from [20, Thm. 2.4.4].

Finally, if Iθ(G) is a free pro-` group, one has Es,tr = 0 for all s ≥ 0, t ≥ 2, and r ≥ 2.

Hence, all maps ds,t3 are trivial, for all s, t ≥ 0, so that Es,t3 = Es,t∞ . �
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Question 4.6. Let (G, θ) be a Kummerian torsion-free pro-` group with G being an

H•-quadratic pro-` group, and let (Es,tr , ds,tr ) be the Hochschild-Serre spectral sequence

associated to (4.4). By Proposition 4.4, for every s ≥ 0 one has Es,03 ' Es,0∞ , and Es,t∞ = 0

for s ≥ 0 and t ≥ 1. Moreover, by Theorem 4.5, if (G, θ) has the Bogomolov-Positselski

property, then

(4.18) Es,t3 ' Es,t∞ for every s, t ≥ 0,

i.e., Es,tr collapses at the E3-page. It would be interesting to understand whether (4.18)

implies the Bogomolov-Positselski property for (G, θ). We suspect that the answer

should be affirmative. However, we could not find any evidence for this speculation.

Remark 4.7. Let K be a field containing a primitive `th-root of unity (and also
√
−1

if ` = 2), put L = `∞
√
K and consider the torsion-free Kummerian oriented pro-` group

(GK(`), θ̃K,`). The oriented pro-` group (Iθ̃K,`(GK(`)),1) is again Kummerian and torsion

free, and thus one has

Iθ̃K,`(GK(`))′ = K1(GL(`)) = G `∞√L(`)(4.19)

Kθ̃K,`
(GK)ab = GL(`)ab = Gal(

`∞
√
L/L),(4.20)

where the latter is a free abelian pro-` group (cf. Example 2.7–(c)). Hence, the short

exact sequence (4.14) translates into

(4.21) {1} // Gal( `∞
√
L/L)

ι // Gal( `∞
√
L/K)

π // Gal(L/K) // {1} .

Recall that by Kummer theory one has an isomorphism of (discrete) `-elementary

abelian groups H1(Gal( `∞
√
L/L),F`) ' L×/(L×)`, where L× = L r {0} denotes the

multiplicative group of the field L. Then by Theorem 4.5 the cohomology element

u ∈ H2
cts(Gal(L/K),Gal( p∞

√
L/L)) associated to the extension of pro-` groups (4.21)

induces a homomorphism

φu,L : H2
(
Gal(L/K),L×/(L×)`

)
−→ H4(Gal(L/K),F`)

which is injective if, and only if, L satisfies Conjecture 3.1. In view of Theorem 4.5, the

knowledge of the structure of L×/(L×)` as continuous Gal(L/K)-module, or an arith-

metic interpretation of the map φu,L, may contribute to the solution of Conjecture 3.1.

5. Oriented pro-` groups of elementary type

5.1. Demushkin groups and one-relator pro-` groups. A Demushkin group is

a Poincaré duality pro-` group of dimension 2, namely, a pro-` group G whose F`-
cohomology satisfies the following conditions:

(i) dim(H1(G,F`)) <∞;

(ii) H2(G,F`) ' F`;
(iii) cup-product induces a perfect pairing H1(G,F`)×H1(G,F`)→ H2(G,F`)

(cf. [20, Def. 3.9.9]). Note that by condition (ii) such a pro-` group G has a single

defining relation, namely, G may be defined as the quotient F/N of a free pro-` group

F over a normal subgroup N ⊆ F generated as a normal subgroup of F by a single

element contained in Φ(F ) (cf., e.g., [20, p. 231–232]).

A Demushkin group comes equipped with a distinguished orientation ðG : G → Z×` ,

induced by the action of G on its dualizing module, described in [14, Thm. 4]. The
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orientation ðG : G → Z×` is the only orientation which completes G into a Kummerian

oriented pro-` group (G,ðG) (cf. [28, Prop. 5.2]). The oriented pro-` group (G,ðG)

enjoys also the Bogomolov-Positselski property.

Theorem 5.1. Let G be a Demushkin group, endowed with the canonical orientation

ðG : G → Z×` , and suppose that im(ðG) ⊆ 1 + 4Z2 if ` = 2. Then the oriented pro-`

group (G,ðG) has the Bogomolov-Positselski property.

Proof. Since (G,ðG) is Kummerian, by [28, Prop. 5.2], Proposition 2.6(iii) and Re-

mark 2.2, one has G/IðG(G) ' Zd−1
` o Z`, with d = dim(H1(G,F`)). Therefore,

IðG(G) = KðG(G) is a subgroup of G of infinite index, and thus it is a free pro-`

group by [32, § I.4.5, Exercise 5(b)]. �

As mentioned above, Demushkin groups have a single defining relation. One may

prove the Bogomolov-Positselski property also for 1-relator pro-` groups G with qua-

dratic F`-cohomology which can be completed into a Kummerian oriented pro-` group

(G,1) with a trivial orientation.

Proposition 5.2. Let G be a finitely generated pro-` group with a single defining relation

such that

(i) H•(G,F`) is a quadratic algebra;

(ii) (G,1) is Kummerian.

Then (G,1) has the Bogomolov-Positselski property.

Proof. Since (G,1) is Kummerian, the quotient Gab is a free abelian pro-` group (cf.

Example 2.7(c)). We need to show that G′ = K1(G) = I1(G) is a free pro-` group.

Since G has a single defining relation, H2(G,F`) ' F` (cf. [20, Cor. 3.9.5]). Moreover,

since H•(G,F`) is quadratic, H2(G,F`) is generated by cup products χ∪ψ with χ, ψ ∈
H1(G,F`), so that the cup product from H1(G,F`) to H2(G,F`) is not trivial (see also

[24, Prop. 4.2]). Consequently, [39, Cor. 2] yields a short exact sequence of pro-` groups

{1} // N // G // Ḡ // {1}

which satisfies the following three properties: N is a free pro-` group; Ḡ is a Demushkin

group; and for every subgroup S of G containing N , the inflation map

(5.1) inf2
S,N : H2(S/N,F`) −→ H2(S,F`)

is an isomorphism (this last property is shown to hold in the proof of [39, Cor. 2]).

Since G is finitely generated, also Ḡ is finitely generated. Moreover, by (5.1) the

inflation map H2(Ḡ,F`) → H2(G,F`) is an isomorphism, and thus by the five-terms

exact sequence (cf. [20, Prop. 1.6.7]) the restriction map

res1
G,N : H1(G,F`) −→ H1(N,F`)G

is surjective. Since (G,1) is Kummerian, and since res1
G,N is surjective, [26, Thm. 1.2]

implies that also the oriented pro-` group (Ḡ,1) = (G,1)/N is Kummerian. Hence,

the canonical orientation ðḠ : Ḡ → Z×` must coincide with the trivial orientation 1

(cf. [28, Proposition 5.2]). By Theorem 5.1, the oriented pro-` group (Ḡ,1) has the

Bogomolov-Positselski property, and thus K1(Ḡ) — which coincides with Ḡ′ — is a free

pro-` group.
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Let S be the normal subgroup of G containing N such that S/N ' Ḡ′. Thus, G/S '
Ḡ/Ḡ′ is abelian, and therefore S ⊇ G′. By (5.1), one has H2(S/N,F`) ' H2(S,F`),
and the term on the left-hand side is trivial as S/N is a free pro-` group. Hence, also

H2(S,F`) = 0, and S is a free pro-` group (cf. [20, Prop. 3.5.17]). Since G′ ⊆ S, and

cd`(G
′) ≤ cd`(S) = 1, G′ must be free (cf. [32, § 3.3, Proposition 14]). �

Remark 5.3. Let F be a finitely generated free pro-` group, let r be an element of

Φ(F ) and let R denote the normal subgroup of F generated by r. Suppose that ` 6= 2.

By [24, Prop. 4.2] and Example 2.7(c), the pro-` group G = F/R satisfies the conditions

(i)–(ii) in Proposition 5.2 if, and only if, r ∈ F ′ and r /∈ F p · [F ′, F ].

5.2. Free constructions. By [8, § 3], the free product of two oriented pro-` groups

(G1, θ1) and (G2, θ2) is the oriented pro-` group (G, θ) where G is the free pro-` product

of G1, G2, and θ : G→ Z×` is the orientation induced by θ1, θ2 via the universal property

of G (see also [28, § 3.4]).

One may extend the above definition to free amalgamated pro-` products of ori-

ented pro-` groups (we refer to [31, § 9.2] for the definition of free amalgamated pro-`

products).

Definition 5.4. Let (G1, θ1) and (G2, θ2) be two oriented pro-` groups such that G1

and G2 have a common subgroup H ⊆ G1, G2 satisfying θ1|H = θ2|H . The amalgamated

pro-` product of oriented pro-` groups of (G1, θ1) and (G2, θ) with amalgamation in H

is the oriented pro-` group (G, θ) = (G1, θ1) qˆ̀
H (G2, θ2), where G = G1 q

ˆ̀
H G2 is the

free amalgamated pro-` product of G1 and G2 over H, and θ : G→ Z×` is the orientation

which makes the diagram

H //

��

G1

ϕ1

�� θ1

��

G2
ϕ2 //

θ2 //

G

θ
""
Z×`

commute.

Note that the morphisms ϕ1 and ϕ2 may not be injective (cf. [31, p. 369]). If they

are, the free amalgamated pro-` product is said to be proper.

If H = {1}, then (G1, θ1)qˆ̀
H (G2, θ2) coincides with the free product of oriented pro-`

groups. In this case we simply write (G1, θ1)qˆ̀
(G2, θ2), instead of (G1, θ1)qˆ̀

{1} (G2, θ2).

Free products of oriented pro-` groups preserve Kummerianity (cf. [11, Prop. 7.5]).

Proposition 5.5. Let (G1, θ1) and (G2, θ2) be two Kummerian oriented pro-` groups.

Then the free product (G1, θ1)qˆ̀
(G2, θ2) is again Kummerian.

We prove that — under certain conditions — if the free amalgamated pro-` product

of two Kummerian oriented pro-` groups with the Bogomolov-Positselski property is

again Kummerian, then it has also the Bogomolov-Positselski property.

Theorem 5.6. Let (G1, θ1) and (G2, θ2) be torsion free Kummerian oriented pro-`

groups with the Bogomolov-Positselski property, with common finitely generated subgroup
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U = G1 ∩G2 such that θ1|U = θ2|U and that (U, θU ) is θU -abelian, where θU = θi|U for

i = 1, 2. Suppose that

(i) the amalgamated pro-` product (G, θ) = (G1, θ1)qˆ̀
U (G2, θ2) is Kummerian;

(ii) the restriction maps

res1
G,Gi : H1(G,F`)→ H1(Gi,F`) and res1

Gi,U : H1(Gi,F`)→ H1(U,F`)

are surjective for both i = 1, 2.

Then (G, θ) has the Bogomolov-Positselski property.

Remark 5.7. (a) If U in the statement of Theorem 5.6 is the trivial group, then

(G, θ) is the usual free product of oriented pro-` groups, and the two conditions

are satisfied by (G, θ). For condition (i), see Proposition 5.5, and condition (ii)

is trivially satisfied. Hence, the Bogomolov-Positselski property is preserved by

free products of oriented pro-` groups.

(b) By duality, for i ∈ {1, 2} the map res1
G,Gi

, respectively the map res1
Gi,U

, is

surjective if, and only if, the map ῑi : Gi/Φ(Gi) → G/Φ(G) induced by the

inclusion ιi : U ↪→ Gi, respectively the map ῑU,i : U/Φ(U)→ Gi/Φ(Gi) induced

by the inclusion ιU,i : U ↪→ Gi, is injective.

Proof. By [23, Thm A], U is a uniformly powerful pro-` group, and therefore [27,

Prop. 5.22] implies that G = G1 q
ˆ̀
U G2 is a proper amalgam. Moreover, by hypothesis

one has the monomorphisms of `-elementary abelian groups ῑi and ῑU,i, with i = 1, 2

(cf. Remark 5.7(b)). Hence, also ῑU = ῑi ◦ ῑU,i : U/Φ(U)→ G/Φ(G) is injective for both

i = 1, 2.

Let ιU : U ↪→ G be the inclusion of U in G, and for i = 1, 2, set

ψU = πab
G,θ ◦ ιU : U −→ G(θ) = G/Kθ(G),

ψi = πab
G,θ ◦ ιi : Gi −→ G(θ) = G/Kθ(G).

Then

(5.2) ker(ψU ) = U ∩Kθ(G) and ker(ψi) = Gi ∩Kθ(G).

Now consider the commutative diagram

(5.3)

U

,,

++ ++
ιU,1 //

ιU,2

  

ιU

''

G1

ι1
��

// //

ψ1

))

G1/Φ(G1)

ῑ1
''

U/Φ(U)

ῑU,2

pp

ῑU,1
mm

ῑU
uu

G πab
G,θ

// // G(θ) // // G/Φ(G)

G2

ι2

OO

// //

ψ2

55

G2/Φ(G2)

ῑ2

77

where the dotted arrow from U to G(θ) is ψU . By Remark 2.4, the oriented pro-` groups

(im(ψU ), θ|im(ψU )) and (im(ψi), θ|im(ψi)) are θ|im(ψU )- and θ|im(ψi)-abelian, respectively.

In particular,

(5.4) ker(ψi) ⊇ Iθi(Gi) = Kθi(Gi),
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where the left-hand side inclusion follows by Proposition 2.3, and the right-side equality

follows by Proposition 2.6(iv), as (Gi, θi) is Kummerian for i ∈ {1, 2} by hypothesis.

Consequently, the pro-` groups im(ψU ) and im(ψi) are torsion-free, so that ker(ψU )

and ker(ψi) are self-isolated subgroups of U and Gi respectively. On the other hand,

by duality one has ker(ψU ) ⊆ Φ(U) and ker(ψi) ⊆ Φ(Gi), as the maps ῑU and ῑi are

injective. Altogether, by (5.2) and (5.4) one has

Kθ|U (U) = {1} ⊆ U ∩Kθ(G) ⊆ Φ(U) and Kθi(Gi) ⊆ Gi ∩Kθ(G) ⊆ Φ(Gi),

and thus {1} = U ∩Kθ(G) and Kθi(Gi) = Gi ∩Kθ(G) by Proposition 3.6.

Now, let T = (V (T ),E (T )) be the pro-` tree whose vertices and edges are given by

V (T ) = { gG1, gG2 | g ∈ G} and E (T ) = { gU, gU | g ∈ G },

respectively. In particular, every edge gU ∈ E (T ) defines an origin, the G1-coset gG1

and a terminus, the G2-coset gG2. For gU ∈ E (T ) the roles of the terminus and origin

are interchanged. Then T is a second countable pro-` tree, with a natural G-action (cf.

[30, Example 6.2.3]). For v = gGi ∈ V (T ) and e = hU ∈ E (T ), with g, h ∈ G and

i ∈ {1, 2}, let Kv and Ke denote the stabilizers of v and e in Kθ(G), respectively. Hence

Kv = { x ∈ Kθ(G) | xg ∈ gGi } = Kθ(G) ∩ gGig−1,

Ke = { x ∈ Kθ(G) | xh ∈ hU } = Kθ(G) ∩ hUh−1.

Since Kθ(G) is a normal subgroup of G, for every v = gGi ∈ V (T ) the subgroup Kv

is isomorphic to Kθ(G) ∩ Gi = Kθi(Gi), which is free by hypothesis; while for every

e = hU ∈ E (T ) the subgroup Ke is equal to {1}, and hence no non-trivial element

of Kθ(G) stabilizes an edge. Therefore, by [17, Thm. 5.6], Kθ(G) has the following

decomposition as free pro-` product:

(5.5) Kθ(G) =

( ∐
v∈V ′

Kv

)
q F,

for some subset V ′ of V (T ), where F is a free pro-` group. Hence Kθ(G) is the free

pro-` product of free pro-` groups, and thus it is a free pro-` group as well. �

Example 5.8. Let (G1, θ1) and (G2, θ2) be the oriented pro-` groups with

G1 =
〈
x, y1, y3 | [y1, y3] = 1, xyj = y1+`

j , ∀ j ∈ {1, 3}
〉
' Z2

` o Z`,

G2 =
〈
x, y2, y3 | [y2, y3] = 1, xyj = y1+`

j , ∀ j ∈ {2, 3}
〉
' Z2

` o Z`,

and such that θi(x) = 1 + ` and θi(yi) = θi(y3) = 1 for both i = 1, 2. By Remark 2.2,

these two oriented pro-` groups are respectively θ1- and θ2-abelian. Set U = G1 ∩ G2

— i.e. U is the subgroup generated by x, y3. Clearly, θ1|U = θ2|U , and

(U, θi|U ) = 〈 y3 〉o (〈 x 〉, θi|〈 x 〉) for both i = 1, 2,

which is θi|U -abelian by Remark 2.4. Moreover, it is straightforward to see that the

maps ῑU,i : U/Φ(U) → Gi/Φ(Gi) are injective for both i = 1, 2. Now let (G, θ) be the

oriented pro-` group (G1, θ1)qˆ̀
U (G2, θ2). Then

G =
〈
x, y1, y2, y3 | [y1, y3] = [y2, y3] = 1, xyi = y1+`

i , ∀ i ∈ {1, 2, 3}
〉
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and θ(x) = 1+`, θ(yj) = 1 for j = 1, 2, 3. Moreover, one has an epimorphism of oriented

pro-` groups τ : (G, θ)→ (Ḡ, θ̄), where

Ḡ =
〈
x̄, ȳ1, ȳ2, ȳ3 | [ȳj , ȳj′ ] = 1, x̄ȳj = ȳ1+`

j , ∀ j, j′ ∈ {1, 2, 3}
〉
' Z3

` o Z`,

and x̄ = τ(x), ȳj = τ(yj) for j = 1, 2, 3. By Remark 2.2, (Ḡ, θ̄) is θ̄-abelian, and thus

ker(τ) ⊇ Iθ(G) by Proposition 2.3. On the other hand, it is straightforward to see that

Φ(G) ⊇ ker(τ), and hence (G, θ) is Kummerian by Proposition 2.6–(vi). Since (G1, θ1)

and (G2, θ2) have the Bogomolov-Positselski property by Example 3.4–(a), Theorem 5.6

implis that also (G, θ) has the Bogomolov-Positselski property. Observe that G is H•-

quadratic (cf. [27, Rem. 5.25–(c)]).

5.3. Pro-` groups of elementary type. Let (G, θ) be an oriented pro-` group, and

let A be a free abelian pro-` group. Recall that the semidirect product A o (G, θ) =

(AoG, θ ◦ π) is the oriented pro-` group where gag−1 = aθ(g) for all a ∈ A and g ∈ G,

and π : AoG→ G is the canonical projection (cf. [8, § 3]).

The following is straightforward (cf., e.g., [11, Prop. 3.6]).

Proposition 5.9. Given an oriented pro-` group (G, θ) and a free abelian pro-` group

A, one has Kθ◦π(AoG) = Kθ(G). In particular, Ao (G, θ) is Kummerian if, and only

if, (G, θ) is Kummerian; and Ao (G, θ) has the Bogomolov-Positselski property if, and

only if, (G, θ) has the Bogomolov-Positselski property.

The family ET` of oriented pro-` groups of elementary type is the smallest class of

finitely generated oriented pro-` groups satisfying (cf. [8, § 3])

(a) the oriented pro-` group (G,ðG), with G a Demushkin group, is of elementary

type;

(b) the oriented pro-` group (Z`, θ), with θ : Z` → Z×` arbitrary, is of elementary

type;

(c) if the oriented pro-` group (G, θ) is of elementary type and A is a finitely gen-

erated free abelian pro-` group, then also the semidirect product A o (G, θ) is

of elementary type;

(d) if (G1, θ1) and (G2, θ2) are oriented pro-` groups of elementary type then also

the free pro-` product (G1, θ1)qˆ̀
(G2, θ2) is of elementary type.

Remark 5.10. (a) In the original definition of oriented pro-2 groups of elementary

type one has that also the cyclic group C2 of order 2, endowed with the non-

trivial orientation θC2
: C2 � {±1} ⊂ Z×2 , is a pro-2 group of elementary type

(cf. [8, p. 242]). Since our results always assume oriented pro-` groups to

be torsion-free, we may safely exclude (C2, θC2) from the above definition of

oriented pro-` groups of elementary type.

(b) From the results in [28, § 3.3–3.4], one may deduce that a finitley generated

subgroup H of an oriented pro-` groups of elementary type (G, θ) gives rise to

a pro-` groups of elementary type (H, θ|H).

(c) If (F, θ) is a torsion-free oriented pro-` group with F a finitely generated free

pro-` group and θ : F → Z×` any orientation, then (F, θ) is of elementary type.

Indeed, if θ = 1, then (F, θ) is isomorphic to the free pro-` product of d copies

of the oriented pro-` group (Z`,1), where d is the minimal number of generators
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of F . Otherwise, im(θ) ' Z`, and the short exact sequence of pro-` groups

{1} // ker(θ) // F // im(θ) // {1}

splits. In this case, let {x1, . . . , xd} be a minimal generating set where θ(x1) 6=
1 and θ(xi) = 1 for i ≥ 2, and let H be the subgroup of F generated by

{x2, . . . , xd}, which is free. Then, (F, θ) ' (H,1)qˆ̀
(im(θ), idim(θ)), where both

factors are oriented pro-` groups of elementary type.

From Example 2.7–(b), § 5.1, and Propositions 5.5 and 5.9, one concludes that ori-

ented pro-` groups of elementary type are Kummerian. I. Efrat’s Elementary Type

Conjecture states that if K is a field containing a primitive `th-root of 1 (and also√
−1 if ` = 2) and if the maximal pro-` Galois group GK(`) is finitely generated, then

(GK(`), θ̃K,`) is of elementary type (cf. [6, 7], see also [16, § 10] and [28, § 7.5]).

Example 5.11. The oriented pro-` group (G, θ) as in Example 5.8 is not of elementary

type. Indeed, the subgroup of G generated by {x, y1, y2} contains a finitely generated

subgroup which does not complete into a Kummerian oriented pro-` group (cf. [26,

Ex. 5.3]) — in particular, G does not occur as the maximal pro-` Galois group of a field

containing a primitive `th-root of unity (and also
√
−1 if ` = 2). Therefore, (G, θ) is not

of elementary type by Remark 5.10–(b).

Theorem 5.12. Let (G, θ) be an oriented pro-` group of elementary type. Then (G, θ)

has the Bogomolov-Positselski property.

Proof. If G is a free pro-` group, then (G, θ) has the Bogomolov-Positselski property

by Example 3.4–(a). If G is a Demushkin group and θ = ðG, then (G,ðG) has the

Bogomolov-Positselski property by Theorem 5.1.

By Proposition 5.9, if (G, θ) = A o (G0, θ|G0) where A is a free abelian pro-` group

and the right side factor is an oriented pro-` group of elementary type, then (G, θ)

has the Bogomolov-Positselski property — provided that (G0, θ|G0
) has the Bogomolov-

Positselski property.

Finally, by Theorem 5.6, if (G, θ) = (G1, θ1)qˆ̀
(G2, θ2) and both (G1, θ1) and (G2, θ2)

have the Bogomolov-Positselski property, then also (G, θ) has the Bogomolov-Positselski

property. �

Let K be a field containing a primitive `th-root of unity, and set K× = Kr{0}. Since

Kummer theory yields an isomorphism of (discrete) `-elementary abelian pro-` groups

H1(GK(`),F`)∨ ' K×/(K×)`, the pro-` group GK(`) is finitely generated if, and only

if, the quotient K×/(K×)` is finite. One has the following (see [18, Thm. D], and [9] for

item (f)).

Proposition 5.13. Let K be a field containing a primitive `th-root of 1 (and also
√
−1

if ` = 2), such that the quotient K×/(K×)` is finite. Then the oriented pro-` group

(GK(`), θK,`) is of elementary type in the following cases:

(a) K is finite;

(b) K is a pseudo algebraically closed (PAC) field, or an extension of relative trascen-

dence degree 1 of a PAC field;

(c) K is an extension of trascendence degree 1 of a local field;
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(d) K is `-rigid (cf. [36, p. 722], see also [4, § 3]);

(e) K is algebraic extension of a global field of characteristic not `;

(f) K = k((T )), where (Gk(`), θk,`) is of elementary type.

Corollary 1.3 follows from Theorem 5.12 and Proposition 5.13.
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