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We compute the topological susceptibility of the SU(N) Yang–Mills theory in the large-N limit with a 
percent level accuracy. This is achieved by measuring the gradient-flow definition of the susceptibility at 
three values of the lattice spacing for N = 3, 4, 5, 6. Thanks to this coverage of parameter space, we can 
extrapolate the results to the large-N and continuum limits with confidence. Open boundary conditions 
are instrumental to make simulations feasible on the finer lattices at the larger N .
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1. Introduction

The limit of large number of colors N has proved to be a fruitful 
tool in the study of SU(N) Yang–Mills theories [1]. One example is 
the Witten–Veneziano formula explaining the large value of the 
mass of the η′ meson in the chiral limit [2,3]

lim
N→∞

m2
η′ F 2

π

2Nf
= lim

N→∞
χYM with χYM =

∫
d4x 〈q(x)q(0)〉YM ,

(1.1)

where Fπ is the pion decay constant, Nf the number of massless 
quark flavors, and q = 1

32π2 εµνρσ tr Fµν Fρσ the topological charge 
density. This formula can be given a precise meaning in quantum 
field theory by properly defining the topological susceptibility χ in 
QCD and in the Yang–Mills theory [4–7]. The value of χYM found 
in SU(3) Yang–Mills theory [8] is large enough to solve the U(1)A
problem in QCD, a fact which makes it extremely interesting to 
study its value in the large-N limit.
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Exploratory computations with cooling techniques at large N
have a long tradition on the lattice [9–11], with quoted errors for 
the topological susceptibility at the 10% level. These results, how-
ever, reflect the short-comings of the techniques available at the 
time. In particular, a theoretically sound definition of the topo-
logical susceptibility with a well-defined and universal continuum 
limit had not been used. Only Ref. [12] opted for the theoretically 
clean but expensive definition via the index of a chiral Dirac oper-
ator, and was therefore limited to a very coarse lattice spacing and 
small statistics.

The second problem affecting all simulations concerned with 
topological quantities is the quickly freezing topological charge as 
the continuum limit is approached. At large values of N this makes 
it exceedingly hard to perform reliable simulations at small lattice 
spacings, since the number of updates needed rises dramatically 
with the inverse lattice spacing [10,13]. This comes on top of the 
increase of the cost of the updates growing with N3, such that it 
cannot be overcome by a brute force approach.

Taking advantage of the conceptual, algorithmic and techni-
cal developments of the last decade, we are in the position to 
improve significantly over these results. The exceptional slowing 
down of the topological modes can be avoided by using open 
boundary conditions in time [14]. With the introduction of the 
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gradient flow, a theoretically clean and numerically cheap defini-
tion of the topological charge has become available [15,16]. In the 
continuum limit the corresponding topological susceptibility satis-
fies the singlet chiral Ward identities when fermions are included, 
and is the proper quantity to be inserted in the Witten–Veneziano 
formula [17].

The aim of this Letter is to compute the topological susceptibil-
ity in the large-N and continuum limits with percent accuracy. We 
measure χYM for the groups SU(4), SU(5) and SU(6), and combine 
the results with previous ones for SU(3) [17]. Since leading cor-
rections are expected to be O(N−2), this gives us a factor of four 
in their size. For each group the three lattice spacings simulated 
range from 0.096 fm to 0.065 fm with leading O(a2) discretization 
effects decreasing by more than a factor 2 in size. This coverage of 
parameter space allows for a robust extrapolation of the results to 
the large-N and continuum limits.

This Letter starts with giving the continuum definitions of the 
observables in Section 2 followed by the details of the lattice setup 
in Section 3. The extrapolations to the continuum and large-N
limit, giving the final results, are presented in Section 4 before 
some concluding remarks.

2. Observables

The Yang–Mills gradient flow has proved to be a very versatile 
tool to define a variety of observables with a smooth continuum 
limit [15,18]. It evolves, in the continuum, the gauge field Bµ as 
a function of the flow time t ≥ 0 solving the initial value prob-
lem [15]

∂t Bµ = DνGνµ , Bµ

∣∣∣
t=0

= Aµ , (2.1)

where

Gµν = ∂µBν − ∂ν Bµ − i[Bµ, Bν ] , Dµ = ∂µ − i[Bµ, ·] , (2.2)

and thus providing a Gaussian smoothing of the gauge fields with 
a radius 

√
8t . We are interested in the energy density et and the 

topological charge density qt at flow time t , which are defined as

et(x) = 1
2

tr
[
Gµν(x)Gµν(x)

]
and

qt(x) = 1
32π2 εµνρσ tr

[
Gµν(x)Gρσ (x)

]
. (2.3)

The power of the flow resides in the fact that at t > 0 operators 
made up of evolved fields, such as et(x) and qt(x), are finite as 
they stand once inserted in correlation functions, i.e. no ultravi-
olet renormalization is required. Moreover, short-distance singu-
larities cannot arise, and integrated correlators are well defined. 
These properties carry over to the discretized theory, where (inte-
grated) correlators have a finite and universal continuum limit as 
they stand.

Thanks to the topological nature of qt , continuous deformations 
of the gauge field induced by the gradient flow do not affect the 
cumulants of the topological charge, which, in the continuum the-
ory, are constant along the flow [15,17].

2.1. Definition of the reference scale t0

In order to relate results in theories with different N , we need 
to define a reference scale in terms of which the observables are 
expressed. While different choices are logically possible, it is desir-
able to choose a quantity which is a (non-zero) constant at leading 
order in 1/N , and that can be computed with high numerical pre-
cision. We opt for generalizing t0 proposed for N = 3 in Ref. [15]
to arbitrary values of N , by requiring

Table 1
Parameters of the simulation. For each of the three gauge groups SU(N) we give 
the inverse coupling β , the inverse of the ’t Hooft coupling λ0 = g2

0 N to four sig-
nificant digits, the dimensions of the lattice, the approximate lattice spacing using √

t0 = 0.166 fm followed by the number of measurements and their separation in 
Cabibbo–Marinari updates of the lattice.

#run N β 1/λ0 T /a L/a a[fm] #meas. #it.

A(4)1 4 10.92 0.3413 64 16 0.096 22k 40
A(4)2 4 11.14 0.3481 80 20 0.078 41k 80
A(4)3 4 11.35 0.3547 96 24 0.065 21k 160

A(5)1 5 17.32 0.3464 64 16 0.095 15k 120
A(5)2 5 17.67 0.3534 80 20 0.077 27k 240
A(5)3 5 18.01 0.3602 96 24 0.064 14k 480

A(6)1 6 25.15 0.3493 64 16 0.095 30k 250
A(6)2 6 25.68 0.3567 80 20 0.076 17k 500
A(6)3 6 26.15 0.3632 96 24 0.063 16k 450

t2 〈
et 〉

∣∣∣
t=t0

= 0.1125 (N2 − 1)/N , (2.4)

such that the right hand side attains the canonical value of 0.3 for 
SU(3). At small t , perturbation theory gives

t2 〈
et 〉 = 3

128π2

N2 − 1
N

λt(q)
[

1 + c1λt(q) + (λ2
t )

]
, (2.5)

where λt(q) = Ng2(q) at the scale q = (8t)−1/2 is the renormal-
ized ’t Hooft coupling, and c1 = 1

16π2 ( 11
3 γE + 52

9 − 3 ln 3). The sub-

leading term on the r.h.s. of Eq. (2.4) has been included following 
the indication of the perturbative expression.

Since SU(N) Yang–Mills theory is not realized in Nature, any 
conversion of this result to physical units is a matter of convention. 
For the sake of clarity in the presentation, however, it is useful 
to assign a physical value to t0, which we choose to be 

√
t0 =

0.166 fm for all values of N . This is motivated by the fact that in 
the SU(3) theory 

√
8t0/r0 = 0.941(7) [17], together with a value of 

the Sommer scale r0 = 0.5 fm [19]. We will use this value of t0 to 
express the lattice sizes and lattice spacings in physical units, but 
not to convert the final results, which instead will be expressed 
always in units of t0.

For completeness, it is useful to remember that in the SU(3)
theory 

√
t0 ,MS = 0.200(16) [20], where ,MS is the lambda pa-

rameter of the theory. It would be desirable in the future to com-
pute this quantity at higher N , and eventually take the N → ∞
limit.

3. Lattice details

The standard discretization of SU(N) Yang–Mills theory on four-
dimensional lattices of size T × L3 and lattice spacing a is used 
throughout this study. We use the Wilson plaquette action

SW[U ] = β
∑

P

w P

(
1 − 1

N
Re tr U P

)
, β ≡ 2N

g2
0

= 2N2

λ0
, (3.1)

where U P is the ordered product of links around the plaquette P , 
λ0 is the bare ’t Hooft coupling, and w P = 1 everywhere except 
for the space-like plaquettes on the time slices 0 and T − a where 
w P = 1/2 [21]. This because we opted for open boundary condi-
tions in time as implemented in Ref. [14], while spatial directions 
are periodic.

The parameters of the simulation are collected in Table 1: for 
each of the three gauge groups SU(4), SU(5) and SU(6), three val-
ues of β are chosen such as to give approximately the same t0/a2. 
Using 

√
t0 = 0.166 fm, they correspond to lattice spacings of ap-

proximately 0.096, 0.078 and 0.065 fm. The size of the boxes have 
been scaled such that L ≈ 1.5 fm, while the temporal extent is 
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chosen to be T = 4L, so that a sufficiently large bulk region with 
negligible boundary effects is available for the measurements.

3.1. Wilson flow observables

We employ the standard discretization of the Wilson flow. It 
is integrated with the third-order Runge–Kutta integrator defined 
in [15] with an integration step size such that the integration error 
is well below the statistical accuracy of the observables. The two 
primary observables et(x) and qt(x) are measured with a 0.04a2

resolution in the flow time t and interpolated quadratically from 
the neighboring points to get the observables at arbitrary values 
of t .

Following again Ref. [15], the discretized et(x) and qt(x) are 
defined through the standard “clover” field strength tensor and im-
mediately summed over the spatial directions

ēt(x0) =
∑

,x
et(,x, x0) , q̄t(x0) =

∑

,x
qt(,x, x0) . (3.2)

Because of the open boundary conditions, time translation in-
variance is broken and some care must be taken when averaging 
over the x0 coordinate. A plateau range needs to be determined, 
where boundary effects can be neglected. To this end, for each ob-
servable we first perform a fit to the symmetrized data using the 
contribution of one excited state f (x0) = A + Be−x0m in a region 
where this ansatz describes the data well.

With this result, we determine the minimal distance of the 
plateau fit from the boundary requiring that | f (d) − A| < σ /4, with 
σ being the average error of the measurement for x0 > d. Using 
this criterion, the choice of d = 9.5

√
t0 guarantees that boundary 

effects in ēt(x0) at t = t0 are negligible with our statistics, and 
therefore we define

〈
et 〉 = a4

(T − 2d) L3

T −a−d∑

x0=d

〈
ēt(x0)

〉
. (3.3)

3.2. Topological susceptibility

For the topological susceptibility, we use the approach of 
Ref. [22]. The topological charge correlator is to be averaged over 
the bulk region given by a minimal distance d from the bound-
aries

C̄ t(-) = a4

(T − 2d − -)L3

T −a−d−-∑

x0=d

〈
q̄t(x0)q̄t(x0 + -)

〉
. (3.4)

Again we determine d such that for all values of - boundary ef-
fects are negligible. Using the same strategy as for the energy 
density above, d = 7.5

√
t0 turns out to be a conservative choice 

for all ensembles.
An estimator of the topological susceptibility is then obtained 

by truncating the sum over - with a cut-off r

χ t,corr
YM (r) = C̄ t(0) + 2

r∑

-=a

C̄t(-) , (3.5)

where r has to be chosen such that the contribution of the ne-
glected tail is insignificant compared to the statistical accuracy of 
the result. Such an r can always be found, because the correlator 
converges exponentially to zero for large separations -. Unfortu-
nately, the combination of the smoothing by the gradient flow and 
the numerical errors obscure this behavior in the actual data.

Due to the smoothing, the correlation function C̄ t(-) is posi-
tive for small values of - and would be expected to turn negative 
before exponentially converging to zero for - - √

8t0. We can-
not resolve this latter feature due to the numerical uncertainties 

of our data, the correlator being zero within errors typically from 
- = 5

√
t0 on.

In order to get a better handle on the contribution of the tail, 
we use high precision data in SU(3) [23]. Assuming that the rel-
ative contribution of the tail does not change drastically with N , 
and given the accuracy of our data, cutting the summation over -
at r = 7

√
t0 is a conservative choice, leading to a negligible sys-

tematic error.

3.3. Finite volume

By their nature, lattice simulations are done in a finite volume, 
which can distort the results. For a large enough lattice dimension, 
these systematic effects are exponentially suppressed, but we need 
to verify that they are negligible given the target accuracy.

The lattices employed in this study are slightly larger than the 
ones used for SU(3) in Ref. [17]. Despite significantly smaller sta-
tistical errors, no significant finite size effects could be detected 
in the SU(3) study. In order to avoid relying only on the inde-
pendence of these finite volume effects on N , we also generated 
lattices with L = 1.1 fm and 2.3 fm for SU(4) and SU(5) at the 
smallest values of β . These lattices bracket the L = 1.5 fm used in 
our analysis. With a numerical accuracy matching our target, no 
significant differences between the three sizes are found, such that 
we conclude that also this systematics is under control.

3.4. Autocorrelations

Simulations like the one presented here are known to be chal-
lenging due to a rapid rise of the autocorrelation times τint, 
in particular of topological observables. Numerical evidence sug-
gests they increase with a very high power or even exponentially 
with 1/a and N when periodic boundary conditions are imple-
mented [10].

In our study, the gauge field is updated with the Cabibbo–
Marinari scheme [24]: one update consists of a heat bath sweep 
of the full lattice followed by nov ∝ a−1 overrelaxation sweeps. 
Both the heat bath and the overrelaxation sweeps update all the 
N(N − 1)/2 SU(2) subgroups of a given SU(N) link. The number of 
these updates between measurements is given in Table 1 and cho-
sen such that for all our observables autocorrelations are hardly 
detectable. We take them into account in our analysis using the 
standard methods of Ref. [25].

To study the effect of the open boundaries, we have computed 
τint for the coarser lattices A(4)1, A(5)1 and A(6)1 with dedicated 
runs in the presence of periodic and open boundaries, putting 
fewer updates between measurements for increased sensitivity.

In units of updates with nov = L/(2a), τint of χYM for the pe-
riodic lattices is 16(2), 54(6) and 187(19) for N = 4, 5 and 6, 
respectively. With open boundaries the corresponding values are 
12(1), 46(6) and 111(10). For all values of N we observe a reduc-
tion in τint for open compared to periodic boundary conditions. It 
is most significant at N = 6 and hardly statistically significant for 
the other values of N .

Going to finer lattices, this advantage is expected to be more 
pronounced. The exponential scaling observed in Ref. [10] with 
periodic boundary conditions would suggest a value of τint one 
or two orders of magnitude larger than the one we observe with 
open boundaries. Therefore the finer lattice spacings would not 
have been feasible with our computer resources.

4. Results

The results for the observables for the three gauge groups are 
listed in Table 2. At finite lattice spacing, we reach accuracies on 
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Fig. 1. Left: Combined continuum and large-N extrapolation of the topological susceptibility by fitting the data in the region indicated by the solid lines to Eq. (4.1). 
Right: Same data as in left plot as a function of 1/N2. The data points indicate the continuum result of the global fit for N > 3. For N = 3 the data is taken from Ref. [17].

Table 2
Results for t0, t2

0χYM and its fourth root.

Ensemble t0/a2 104 t2
0χYM t1/2

0 χ1/4
YM

A(4)1 2.9900(7) 6.61(6) 0.1603(4)

A(4)2 4.5207(8) 6.54(5) 0.1599(3)

A(4)3 6.4849(16) 6.68(7) 0.1607(4)

A(5)1 3.0636(7) 6.47(7) 0.1595(4)

A(5)2 4.6751(8) 6.73(7) 0.1611(4)

A(5)3 6.8151(17) 6.62(8) 0.1604(5)

A(6)1 3.0824(4) 6.57(6) 0.1601(4)

A(6)2 4.8239(9) 6.81(8) 0.1615(5)

A(6)3 6.9463(13) 6.80(7) 0.1615(4)

the percent level for χYM and below the permille level for t0. Here 
and in the following χYM is evaluated at t = t0 if not otherwise 
stated. The values for the dimensionless product t2

0χYM are dis-
played in the left plot of Fig. 1, where we also add the SU(3)
results from Ref. [17]. It is clear that, both, the effects of finite 
N and finite cut-off a are roughly at the level of our statistical er-
rors.

In order to extrapolate the raw data to the continuum and the 
N → ∞ limit, we use the functional form

t2
0χYM(1/N,a) = t2

0χYM(0,0) + c1
1

N2 + c2
a2

t0
, (4.1)

which takes into account the leading corrections dictated by the 
Symanzik and the large-N expansion. This is motivated by the 
observation that both corrections are small, given the statistical 
accuracy of our data. The fact that the N-dependence of the O(a2)
term can be neglected within our precision is further supported 
by the observation that discretization effects in the ratio χ t

YM/χ t0
YM, 

which can be captured to exceedingly high accuracy, turn out to be 
independent of N .

Our main result is obtained by fitting Eq. (4.1) to the two finer 
points of SU(4), SU(5) and SU(6) data together with the two finer 
data points for SU(3), where the latter is only used to constrain the 
coefficient c2. Discarding the coarser lattice points and the small-
est N reduces the assumptions made on the scaling region of our 
results. This fit renders

t2
0χYM(0,0) = 7.03(13) · 10−4 , (4.2)

i.e. a 2% accuracy is reached. The fit quality is excellent with a 
χ2/dof = 0.94. In the continuum limit the fit gives
t2

0χYM(1/N, 0) = 6.68(12) ·10−4, 6.81(11) ·10−4 and 6.87(11) ·10−4

for N = 4, 5 and 6 respectively, see right plot of Fig. 1.
To get a better handle on possible systematic effects of this 

result, many other fits to the data have been tried, all of them 
leading to similar results. Among them the most obvious mod-
ification is to include also the third finest point of the SU(3)
data determining the discretization effects. This changes the re-
sult to t2

0χYM(0, 0) = 7.13(10) · 10−4 with χ2/dof = 1.1, compat-
ible with the above number. If the three finest SU(3) points are 
globally fitted with the two finer points of the other groups, the 
results is t2

0χYM(0, 0) = 7.09(7) · 10−4 with an excellent value of 
χ2/dof = 1.0. A global fit of Eq. (4.1) to all data, including the 
three finer SU(3) ones, adding an a2/N2 term to Eq. (4.1), gives 
t2

0χYM(0, 0) = 7.02(13) · 10−4 with a χ2/dof = 1.7. Performing the 
continuum limit group-by-group and applying the large-N extrap-
olation only in a second step also gives a compatible result. An 
extended discussion of these fits can be found in Ref. [26].

From these analyses we conclude that the systematic effects 
coming from the continuum and large-N extrapolations are under 
control within the errors quoted.

5. Conclusions

This is the first investigation of the large-N behavior of the 
topological susceptibility in pure Yang–Mills theory using a theo-
retically sound definition of χYM, and small lattice spacings which 
allow for control over the continuum limit. As a final result we 
quote for N → ∞
t2

0χYM(0,0) = 7.03(13) · 10−4. (5.1)

This result proves that the leading anomalous contribution to the 
η′ mass is large enough to solve the U(1)A problem in QCD. The 
bulk of the mass of the pseudoscalar singlet meson is gener-
ated by the anomaly through the Witten–Veneziano mechanism. 
The 1/N2 corrections that we have found in t2

0χYM(0, 0) are at 
most of the expected size (even a bit smaller), with no large 
prefactor in the expansion. This explains why the N = 3 result, 
t2

0χYM = 6.67(7) · 10−4, in Ref. [17] is already large enough to ex-
plain the large value of the η′ mass in Nature. The difference with 
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the N → ∞ value is barely visible within errors, despite their high 
accuracy.

In the Yang–Mills theory, it will be challenging to improve sig-
nificantly on these results by brute force. Discretization effects and 
large-N effects are roughly of the same level. The much higher 
accuracy needed to resolve higher order effects in the large-N
expansions will therefore require significantly smaller lattice spac-
ings. These are still computationally very expensive, even with the 
open boundary conditions, which make those used in the present 
study possible.

The accuracy presented here is certainly sufficient for the com-
pletion of the proof of the Witten–Veneziano relation in Eq. (1.1). 
It will need to be matched by the one on the hadronic quantities 
entering the relation to be computed in the large-N limit of QCD.
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