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Abstract

Detecting and measuring lag-dependencies is very important in time-series analysis.
This study is commonly carried out by focusing on the linear lag-dependencies via the
well-known autocorrelogram. However, in practice, there are many situations in which
the autocorrelogram fails because of the nonlinear structure of the serial dependence.

To cope with this problem, in this paper the R package SDD is introduced. Among
the available approaches to analyze the lag-dependencies in an omnibus way, the SDD
package considers the autodependogram and some of its variants. The autodependogram,
defined by computing the classical Pearson χ2-statistic at various lags, is a graphical
device recently proposed in the literature to analyze lag-dependencies. The concept of
reproducibility probability, and several density-based measures of divergence, are consid-
ered to define the variants of the autodependogram. An application to daily returns of
the Swiss Market Index is also presented to exemplify the use of the package.

Keywords: serial dependence, autocorrelogram, autodependogram, reproducibility probability,
divergence functional.

1. Introduction

Investigating the temporal dependence structure is of fundamental importance in time-series
analysis. The autocorrelogram, which measures the strength of linear dependencies (autocor-
relations) as a function of the time lags, has been one of the primary tools for exploring and
testing serial dependence for many decades. However, in practice, there are many situations
in which the autocorrelogram fails because of the nonlinear structure of the serial dependence.
A typical example is given by the GARCH model, whose components are uncorrelated but
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dependent (see Diks 2009, p. 6253, for another example). Despite the fast advancement in
nonlinear time series models, there are few tools which can explore the complex dependence
structures in nonlinear time series, like the autocorrelogram does for the linear ones. Start-
ing from these considerations, several diagrams have been recently proposed which are very
similar, in aspect and intent, to the autocorrelogram but they are widely applicable to both
linear and nonlinear time series (see Anderson and Vahid 2005, Bagnato, Punzo, and Nicolis
2012, Bagnato, De Capitani, and Punzo 2014, 2013a, and Zhou 2012).

In this paper we present the R (R Core Team 2014) package SDD (Bagnato, De Capitani,
Mazza, and Punzo 2015) which allows for the calculation and display of some of the de-
pendence measures discussed above. Note that, although R is well-provided with functions
(such as acf()) and packages (such as tseries, Trapletti and Hornik 2013), to analyze time
series (see also McLeod, Yu, and Krougly 2007, Hyndman and Khandakar 2008, Gasparrini
2011, Cowpertwait and Metcalfe 2009, and Hyndman 2014 for an overview), it does not offer
graphical tools of the type described above.

The paper is organized as follows. Sections 2, 3, and 4, review the theoretical foundations of
the dependence measures implemented in the SDD package. The relevance of these diagrams
is shown, via a real data set, in Section 5, and conclusions are finally given in Section 6.

2. The autodependogram

Let {Xt}t∈N represent a strictly stationary and ergodic stochastic process. Moreover, let
(X1, . . . , Xn) be an observed time series of length n from {Xt}t∈N. To study the generic
dependence of lag r, r < n, let us consider the nr = n−r couples {(Xi, Xi+r)}nr

i=1. Bagnato and
Punzo (2010) propose to group these couples in a k×k contingency table, with marginal sets of
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. The statistical hypothesis of interest

is
Hr

0 : p(r)uv = θ(r)uv ∀ (u, v) ∈ {(i, j) , i, j = 1, . . . , k} , (1)

with θ
(r)
uv = p

(r)
u+p

(r)
+v. This hypothesis can be tested using the Pearson χ2 statistic
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where p̂
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uv denote the sample counterparts of p

(r)
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uv , respectively. In particular,

it results that p̂
(r)
uv = n

(r)
uv /nr, p̂
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denotes the number of couples in {(Xi, Xi+r)}nr
i=1 belonging to C

(r)
u × D(r)

v and n
(r)
u+ (n

(r)
+v)

denotes the number of values in {Xi}nr
i=1 ({Xi+r}nr

i=1) belonging to C
(r)
u (D

(r)
v ). In Bagnato

et al. (2012) it is shown by simulations that, also in the serial context, the large sample null
distribution of δ̂r is well-approximated by the χ2 with (k − 1)2 degrees of freedom. This fact
allows to test the null hypothesis of independence for lag r using δ̂r as test statistic: denoting
with χ2

[η;q] the q-quantile of the χ2 distribution with η degrees of freedom, the null hypothesis

is rejected at level α if δ̂r > χ2
[(k−1)2;1−α].
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In conformity with the autocorrelogram (ACF), the diagram obtained by plotting δ̂r as a
function of the time lags r, r = 1, . . . , l, is called autodependogram (ADF) by Bagnato et al.
(2012). The autodependogram may be applied to time series with missing data and can be
used for model diagnostic checking of nonlinear models (Bagnato and Punzo 2013).

To completely specify the test statistic δ̂r it is necessary to define the partitions {Cu}ku=1

and {Dv}kv=1. Following Bagnato et al. (2012), the so-called equifrequency interval, which
assigns equal frequencies to each interval Cu and to each interval Dv, will be adopted. Using
the equifrequency intervals, only the value of k must be selected. As a default in the SDD
package, k is chosen such that

k = min {ks, kp} with ks =

⌊(nl
5

) 1
2

⌋
and kp =

⌊
2

11
10

(
nl − 1

|z1−α|

) 1
5

⌋
, (3)

where b·c denotes the floor function while z1−α stands for the (1− α)-quantile of the standard
normal distribution (see Bagnato et al. 2012 to find out more on the motivation of this rule
and for simulation results confirming its validity). Note that, based on (3), k is a function of n.
In particular, if n→∞, then also k →∞ (although with a lower rate of divergence) and the
limiting null distribution of δ̂r, conveniently standardized, will be a standard normal (Morris
1975). As suggested by the discussion in Mann and Wald (1942), this asymptotic normality
can be heuristically justified by the fact that the χ2 distribution tends to the normal when
the degrees of freedom diverge. However, for low values of k, the normal approximation of
the χ2 distribution is poor and, since rule (3) provides small values of k even when n is large
(as an example, for n = 100 and n = 1000 we obtain k = 4 and k = 7, respectively), the SSD
package always uses the χ2 distribution.

Being k fixed and equal in each lag r, the same level-α critical value χ2
[(k−1)2;1−α] can be

used for each of the l tests of lag-independence. This allows a horizontal line at height
χ2
[(k−1)2;1−α] to be added to the autodependogram. Analogously with reference lines used in

autocorrelograms, this line (hereafter level-α critical line or, simply, critical line) demarcates
acceptance and rejection regions for each lag.

2.1. Some considerations

As documented in Bagnato et al. (2014), although the autodependogram is very similar in
aspect to the autocorrelogram, the latter graphically represents the strength of the linear
lag-dependencies through the autocorrelations, while the former displays the evidence of the
presence of linear/nonlinear lag-dependencies. To clarify this distinction, it is sufficient to
observe the different behavior of these diagrams when n diverges. In this case, the level-α
critical lines of the autocorrelogram collapse to 0 while its bars tend toward the true values
of the autocorrelations; on the other hand, the level-α critical line of the autodependogram
remains fixed and the bars diverge with n under the alternative, and converge to zero under the
null. Another important difference is that, the autodependogram is able to capture various
and general serial dependence structures while the autocorrelogram points out only linear
relationships. This feature of the autodependogram motivates the adjective omnibus used in
Bagnato et al. (2012). Obviously, this generality is paid for in terms of power, and hence
in the resulting descriptive ability under certain dependence structures. For example, the
autodependogram will be less informative with respect to the autocorrelogram when the lag-
dependencies are linear, or with respect to a representation using rank correlation statistics
when the lag-dependencies are monotonic.
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2.2. Normalizations

Lags may be ranked according to the evidence of their dependence, as measured by the
autodependogram bars. Nevertheless, being the not normalized χ2 statistic, these bars do not
reveal clearly the strength of this evidence and do not allow comparisons between different
time series. A better alternative, proposed in Bagnato et al. (2012, Section 6), consists in
substituting δ̂r with the Cramer contingency coefficient (C-ADF)

ν̂r =

√
δ̂r

nr (k − 1)
, r = 1, . . . , l. (4)

Because the denominator in (4) is equal to the maximum value that the numerator can
assume, this statistic can be considered as a “normalized dependence measure” assuming
values between 0 (independence) and 1 (maximum dependence). It is interesting to note
that, through the application of the transformation in (4) to the critical value χ2

[(k−1)2;1−α],

the (different) critical values for the tests based on ν̂r are obtained. These values allow to
superimpose on the diagram of ν̂r, r = 1, . . . , l, a level-α critical line which, in this case, will
not be horizontal but increasing in r. However, as it is well-known, ν̂r attains values near to
its maximum sporadically (see Bagnato et al. 2012, Section 6).

A further normalized diagram representing the evidence of the presence of dependence can
be obtained substituting δ̂r with

p̃r = 1− p̂r, r = 1, . . . , l, (5)

where p̂r = 1−F(k−1)2
(
δ̂r

)
denotes the p value associated with δ̂r and Fp is the cumulative χ2

distribution with p degrees of freedom. Also in this case a level-α critical line at height 1−α
can be added to the resulting diagram. Nevertheless, p̃r unbalances the two decision regions
by mapping the rejection one only on (1− α, 1]. To avoid the last problem, it is possible to
introduce a particular monotonic decreasing transformation p∗r = g (p̂r), on [0, 1], such that
g (α) = 1/2. In this way the acceptance and the rejection regions are mapped on [0, 1/2] and
(1/2, 1], respectively. For example:

p∗r =


2α−p̂r
2α if p̂r < α

1−p̂r
2(1−α) if p̂r ≥ α

, r = 1, . . . , l. (6)

The transformation in (6) preserves the autodependogram’s ability to detect autodependen-
cies.

3. The reproducibility probability autodependogram

A particularly appealing alternative diagram, proposed by Bagnato et al. (2014), stems from
the reproducibility probability (RP; Goodman 1992) representation of the χ2-test of indepen-
dence.

Under local alternatives of dependence of lag r, Bagnato et al. (2014) show that the large
sample distribution of δ̂r is generally well-approximated by a noncentral χ2 with (k − 1)2

https://www.researchgate.net/publication/236628988_Detecting_Serial_Dependencies_with_the_Reproducibility_Probability_Autodependogram?el=1_x_8&enrichId=rgreq-7db8e825-aae8-495d-b5e1-89e9d44586ef&enrichSource=Y292ZXJQYWdlOzI3MzkwNjUwMDtBUzoyMTI2NzA2NDYwOTk5NzJAMTQyNzcxNjA0MTI3OA==
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degrees of freedom and noncentrality parameter

δr = nr

k∑
u=1

k∑
v=1

(
p
(r)
uv − θ(r)uv

)2
θ
(r)
uv

.

This result allows the definition of the approximated power function

πα,n (δr) = 1− F(k−1)2,δr

(
χ2

[(k−1)2;1−α]

)
, (7)

where Fη,q denotes the cumulative noncentral χ2 distribution with η degrees of freedom and
noncentrality parameter q. The function πα,n (·) associates the probability of rejecting the
null hypothesis of lag-independence to each possible value of δr. It is strictly increasing and
continuous since Fη,q (x) is strictly decreasing in q for each x > 0 and η ∈ N (see Johnson,
Kotz, and Balakrishnan 1995, p. 444). Then, the χ2-test of lag-independence is strictly
unbiased and it can be re-defined using the RP-testing technique, according to Martini (2008).
To understand this technique (see also De Capitani 2013, for a simple introduction) it is useful
to represent the test by the so called critical function:

Ψ(r)
α

[{
Xi

}n
i=1

]
=

 1 if δ̂r > χ2
[(k−1)2;1−α]

0 if δ̂r ≤ χ2
[(k−1)2;1−α]

. (8)

Representation (8) highlights that the test is a Bernoulli random variable and so the random
nature of the statistical test results.

Given n, denote with δ∗r the true but unknown value of the noncentrality parameter. The value
assumed by the power function in correspondence to δ∗r , that is πα,n (δ∗r ), is the true power of
the test and it coincides with the only unknown parameter of the Bernoulli random variable

Ψ
(r)
α . Thus, the randomness of the test is completely described by πα,n (δ∗r ) and this makes

the true power the key element to evaluate the reliability of the test result. The true power
is also known as reproducibility probability (RP; Goodman 1992) since it is the probability
of obtaining a rejection of the null hypothesis in subsequent and identical replications of the
test.

From a practical point of view, the RP is unknown since δ∗r is unknown too. The most
natural way to obtain an RP estimator is to plug δ̂r (which is an estimator of δr) into the

power function obtaining π̃r = πα,n

(
δ̂r

)
. A further possible solution considers the estimator

π̂r = πα,n

(
δ̂•r

)
, where

δ̂•r : F
(k−1)2,δ̂•r

(
δ̂r

)
= 1/2, (9)

which satisfies P
(
δ̂•r ≤ δ∗r

)
= 1/2. Martini (2008) shows that π̂r, differently from π̃r, allows

the replication of the test (8) with the following critical function:

Ψα

[{
(Xi, Xi+r)

}nr

i=1

]
=

{
1 if π̂r > 1/2
0 if π̂r ≤ 1/2

. (10)

In practice: “when the probability to reject the null hypothesis is estimated to be greater
than that to accept it, then the null is rejected” (Martini 2008, Remark 2). The usefulness of
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the RP-based decision rule is also due to the fact that the RP estimate provides a rational
indicator of the reproducibility of the test outcome. It is worth noting that, the equivalence
between the RP-based decision rule and the classical one holds for all the values of α and
n since their effect is implicit in the definition of the power function (Martini 2008 and De
Capitani and Martini 2011).

The RP-autodependogram (RP-ADF) of Bagnato et al. (2014) is obtained by substituting δ̂r
with

π̂r = πα,nr

(
δ̂•r

)
, r = 1, . . . , l, (11)

where π̂r can be interpreted as reproducibility probability of the level-α independence test
at lag r. This additional information is very precious since it clearly quantifies the evidence
of the presence of lag dependence. Moreover, for the values of α commonly used, the RP-
autodependogram bars are almost normalized since the values of π̂r range in [α, 1]. Thanks
to the RP-testing result in (10), this diagram is also endowed with a level-α critical line,
at height 1/2, which balances the acceptance and the rejection regions by mapping them
on [α, 1/2] and (1/2, 1], respectively. Note that the sample size nr and the level α do not
influence the height of the critical line but they have a great impact on the bars of the RP-
autodependogram. In more detail: the greater the value of α, the higher the bars of the
RP-autodependogram (ceteris paribus); the greater the sample sizes nr, the higher the bars
of the RP-autodependogram (ceteris paribus). Note that this behavior is in agreement with
the influence of nr and α on the power of the test (Bagnato et al. 2014).

4. The divergence-based autopedendograms

In addition to the requirements introduced at the beginning of Section 2, suppose that X1

has an absolutely continuous density g with support IR. Moreover, assume that (X1, X1+r)
has an absolutely continuous joint density fr with support IR2. For a motivation about these
additional assumptions, see Bagnato et al. (2013a). The presence of dependence for lag r can
be checked by testing the statistical hypothesis

Hr
0 : fr (x, y) = g (x) g (y) almost surely. (12)

To evaluate the discrepancy between fr (x, y) and g (x) g (y), with the aim to obtain a test
statistic for the testing problem (12), several divergence functionals can be considered (see,
e.g., Diks 2009). By analogy with Bagnato, De Capitani, and Punzo (2013b), all the func-
tionals considered in SDD have the form

∆(r) =

∫
IR2

D{fr (x, y) , g(x), g(y)}fr (x, y) dxdy, (13)

where D is a real-valued function. An example of (13) is the generalized entropy of Tsallis
(1988)

∆(r)
γ =


1

1− γ

∫
IR2

[
1−

(
g(x)g(y)

fr (x, y)

)1−γ
]
fr (x, y) dxdy γ 6= 1,

∫
IR2

log

(
fr (x, y)

g(x)g(y)

)
fr (x, y) dxdy γ = 1.

(14)

https://www.researchgate.net/publication/236628988_Detecting_Serial_Dependencies_with_the_Reproducibility_Probability_Autodependogram?el=1_x_8&enrichId=rgreq-7db8e825-aae8-495d-b5e1-89e9d44586ef&enrichSource=Y292ZXJQYWdlOzI3MzkwNjUwMDtBUzoyMTI2NzA2NDYwOTk5NzJAMTQyNzcxNjA0MTI3OA==
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It is easy to note that: ∆
(r)
1/2 coincides with the Hellinger metric, ∆

(r)
1 is the Kullback-Leibler

(KL) divergence, while ∆
(r)
2 can be interpreted as the “continuous counterpart” of the Pearson

χ2 statistic adopted in Section 2. A further intuitive dependence measure is the L1-distance:

∆
(r)
L1

=

∫
IR2

|fr (x, y)− g(x)g(y)| dxdy. (15)

It can be interpreted as the “continuous counterpart” of the well-known Mortara dependence
index (Mortara 1922). Similarly, in line with Rosenblatt (1975) and Skaug and Tjøstheim
(1993), the following functionals can be respectively introduced:

∆
(r)
SD =

∫
IR2

[fr (x, y)− g(x)g(y)]2 dxdy, (16)

∆
(r)
ST =

∫
IR2

[fr (x, y)− g(x)g(y)] fr (x, y) dxdy. (17)

Naturally, all the aforementioned functionals are sensitive to departures from independence
and, consequently, the testing problem (12) can be solved using an estimator ∆̂(r) of ∆(r) as
test statistic with the null hypothesis rejected for large values of ∆̂(r).

Once chosen ∆, the corresponding autodependogram, hereafter simply denoted as ∆-auto-
dependogram (∆-ADF), is obtained by substituting p̂r in (6) with the p value q̂r related to
∆̂(r):

q∗r =

{
2α−q̂r
2α if q̂r < α
1−q̂r

2(1−α) if q̂r ≥ α
, r = 1, . . . , l. (18)

The SDD package implements the ∆-ADF based on the eight functionals ∆
(r)
1/2, ∆

(r)
1 , ∆

(r)
2 ,

∆
(r)
3 , ∆

(r)
4 , ∆

(r)
L1

, ∆
(r)
SD, and ∆

(r)
ST . Among them, the ∆1-ADF proposed in Bagnato et al.

(2013a) is considered as default. This choice follows from the results of a wide simulation
study on several data generating processes presented by Bagnato et al. (2013b) which shows

that ∆
(r)
1 seems to be, among the eight aforementioned functionals, the best performer.

Several methodologies are proposed in the literature to implement ∆̂(r); the differences among
the various approaches stem from the way: (i) the densities fr and g are estimated, (ii) the
integral in (13) is computed, (iii) the p values q̂r, r = 1, . . . , l, are obtained. Among the
alternatives considered by Bagnato et al. (2013b), the Gaussian kernel density estimator, an
approximated numerical integration (similarly to Granger, Maasoumi, and Racine 2004), and
the permutation approach, appear to be the best solutions for (i), (ii) and (iii), respectively.
Details on these settings are given below.

4.1. Gaussian kernel density estimator

The Gaussian kernel (GK) estimator for the univariate density g is

ĝ(x) =
1

n

n∑
i=1

Kh (x;Xi) , (19)

where Kh (x;Xi) = (2πh2)−1/2 exp
{
−1

2

[
h−1 (x−Xi)

]2}
and h > 0 is the bandwidth. Simi-
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larly, the GK (product) estimator for the bivariate density fr is

f̂r(x, y) =
1

n− r

n−r∑
i=1

Kh (x;Xi)Kh (y;Xi+r) , (20)

where Kh is defined as in (19).

To apply the GK density estimators (19) and (20), a value for the bandwidth h needs to
be chosen. With this aim, in the literature, several data dependent procedures have been
proposed. Examples are the Silverman’s rule of thumb and the likelihood cross-validation
method (see Silverman 1986, p. 45 and Section 3.4.4, respectively). The bandwidth obtained
with the latter procedure, denoted with hLCV, is particularly useful in this context because, as
observed in Granger et al. (2004, p. 654), it produces optimal density estimators according to
the KL-criterion. In detail, working on the estimator in (19), hLCV is obtained by minimizing
the cross-validation statistic

CV (h) = n−1
n∑
i=1

ln [ĝ−i (x)] ,

where
ĝ−i (x) = (n− 1)−1

∑
j 6=i

Kh (x;Xj)

is the estimated density constructed from all the data points except Xi. The obtained value
of hLCV is then used also in (20).

However, it is well-known that a bandwidth which is optimal for estimation is usually sub-
optimal for testing. In particular, although hLCV suffices to establish consistency of the test
statistics, this choice could not be optimal in terms of the power of the resulting tests. As
observed by Anderson, Hall, and Titterington (1994), in testing procedures a relative over-
smoothing may be appropriate for some dependence functionals (test statistics). Nevertheless,
the simulation results of Bagnato et al. (2013b) highlight that when the GK density estima-
tor is adopted to define the estimator of ∆(r), the use of hLCV is appropriate and, then, no
oversmoothing is applied in SDD.

4.2. Estimation of the dependence functional

Simulation results in Bagnato et al. (2013b) indicate that a good solution for the estimation
of ∆(r) is

∆̂(r) = 10−4
100∑
i=1

100∑
j=1

D
{
f̂r (x̃i, ỹj) , ĝ (x̃i) , ĝ (ỹj)

}
f̂r (x̃i, ỹj) , (21)

where f̂r and ĝ are the GK estimates of f and g, and where, following the default setting of
the sm package (Bowman and Azzalini 2014),

x̃i =
(
x(1) − a

)
+ (i− 1)

x(n) − x(1) + 2a

99
,

with a =
(
x(n) − x(1)

)
/4 and x(1) (x(n)) denoting the minimum (maximum) observed value.

The values ỹj are defined in the same way. Note that (21) is an approximation of

∆̂(r) =

∫
IR2

D
{
f̂r (x, y) , ĝ (x) , ĝ (y)

}
f̂r (x, y) dxdy (22)



Journal of Statistical Software – Code Snippets 9

based on the 100× 100 grid of equally spaced values {(x̃i, ỹj) : i, j = 1, . . . , 100}.

4.3. Computing p values

Among the various proposals to compute the p value q̂r, the simulation studies of Bagnato
et al. (2013b,a) suggest that a permutation approach represents a good compromise between
simplicity and performance. It exploits the fact that, conditionally on the observed data
x1, . . . , xn, each of the possible n! permutations is equally likely under the assumption of
serial independence (see Diks 2009). In detail, let ∆̂(r,0) denote the value assumed by ∆̂(r)

for the observed data. Analogously, let ∆̂(r,b) be the dependence functional estimate obtained
from a random permutation of the original data, with b = 1, . . . , B. Under the assumption of
serial independence, ∆̂(r,1), . . . , ∆̂(r,B) are equally likely and the p value can be defined as in
Diks and Panchenko (2007):

q̂r =
#
{

∆̂(r,s) : ∆̂(r,s) > ∆̂(r,0) ; s = 0, 1, . . . , B
}

+ L

B + 1
, r = 1, . . . , l, (23)

where L is defined as follows. Let Z = #
{

∆̂(r,s) : ∆̂(r,s) = ∆̂(r,0); s = 0, 1, . . . , B
}
≥ 1 denote

the number of ties plus one. If Z = 1 then L = 1, while if Z > 1 then L is drawn from the
discrete uniform distribution on {1, . . . , Z}. The above procedure for computing the p value
leads to a randomized test having an exact level α if the null is rejected whenever q̂r ≤ α and
0 < α = c/(B + 1) < 1 for some integer c.

4.4. Testing independence on more than one lag simultaneously

The SDD package also allows to test independence on a set of lags, say R, specified by
the user. Such a procedure is typically used to test the more general hypothesis of serial
independence (cf. Diks 2009). Among the available procedures (see Bagnato et al. 2013b, for
some examples), the SDD package handles the “multiple-lag testing problem”

HR0 : fr (x, y) = g (x) g (y) almost surely ∀ r ∈ R

in two simple ways.

A first way, the most common, consists in building a “Portmanteau test” (P-test); when the
∆-ADF is considered, the test statistic is Q̂R =

∑
r∈R ∆̂(r). In this case, recalling (23), the

p value is computed as

q̂R =
#
{
Q̂

(s)
R : Q̂

(s)
R > Q̂

(0)
R ; s = 0, 1, . . . , B

}
+ L

B + 1
, (24)

where Q̂
(s)
R =

∑
r∈R ∆̂(r,s). If the user adopts δ̂r instead of ∆̂(r) (similar reasoning holds for

the C-ADF), the asymptotic distribution of Q̂R =
∑

r∈R δ̂r, used to compute the p value, is a

χ2 with (k − 1)2 card (R) degrees of freedom (see Bagnato and Punzo 2010, 2012, for details),
where card (R) denotes the cardinality of R.

A second simpler way consists in using a “Simultaneous test” (S-test); it is based on the
adjustment of the p values q̂r, r ∈ R, in order to take a decision about the simultaneous
independence for the lags in R. A lot of methods exist for adjustment (see, e.g., Wright

https://www.researchgate.net/publication/263398444_On_the_Use_of_Chi-Square_Test_to_Check_Serial_Independence?el=1_x_8&enrichId=rgreq-7db8e825-aae8-495d-b5e1-89e9d44586ef&enrichSource=Y292ZXJQYWdlOzI3MzkwNjUwMDtBUzoyMTI2NzA2NDYwOTk5NzJAMTQyNzcxNjA0MTI3OA==
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1992); the package SDD implements all the methods allowed by the function p.adjust() of
the stats package. As an example, the famous Bonferroni adjustment leads to the following
decision rule: “do not reject HR0 if all the single tests, for lags belonging to R, do not reject
at level α/card (R)”.

As can be inferred from the simulations of Bagnato et al. (2013b), the P-test seems to be a
better choice. A further alternative, whose performance is comparable to the P-test, would be
the use of the multiple-lag procedure described in Bagnato et al. (2013b). However, because
the computational burden required is substantial, this technique is not considered here.

5. Package description and illustrative example

Package SDD is developed in an object-oriented design, using the standard S3 paradigm. Its
main function, ADF(), allows for the computation and the plot of all the different types of
serial dependence diagrams illustrated in the paper and it returns an object of class ‘SDD’. Its
arguments, along with their description, are listed in Table 1.

To illustrate the use of the package, the SMI dataset included in the SDD package and already
analyzed in Bagnato et al. (2014) and Bagnato and Punzo (2013) is considered. Data consist
of n = 660 daily returns of the Swiss Market Index spanning the period from 2009-08-12
to 2012-03-06 (the share prices used to compute the daily returns are downloadable from
http://finance.yahoo.com/).

To begin the analysis, data are loaded by

R> library("SDD")

R> data("SMI", package = "SDD")

In the financial context, a first glance to the serial dependence can be obtained by considering
the autocorrelogram of the squared raw series. The corresponding plot is obtained via the
command

R> res1 <- ADF(SMI^2, dtype = "ACF", main = "")

It produces the plot in Figure 1(a), which shows linear dependencies, on the squared raw data,
for the majority of the considered lags. The function acf(), of the stats package, is used and
the autocorrelogram is displayed without the first bar referred to lag zero. The presence of
serial dependence on the squared raw data is also corroborated by the autocorrelation-based
tests, whose results are printed via the print() method

R> print(res1)

ACF bars for series 'SMI^2'

1 2 3 4 5 6 7 8 9 10 11

0.3739 0.3132 0.1842 0.3274 0.2460 0.2329 0.1606 0.1988 0.0948 0.1064 0.1265

12 13 14 15 16 17 18 19 20 21 22

0.2346 0.1566 0.0655 0.1125 0.1651 0.2498 0.1912 0.1470 0.0641 0.1472 0.1774

23 24 25 26 27 28

0.1344 0.1107 0.1240 0.0132 0.0522 0.0537

http://finance.yahoo.com/
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Arguments Description

x Univariate time series (x1, . . . , xn).

dtype Autodependence function to be computed: "ACF" for the ACF; "ADF"
(default) for the ADF; "CADF" for the C-ADF; "RPADF" for the RP-
ADF; "DeltaADF" for the ∆-ADFs.

lag.max Maximum lag l considered.

alpha Significance level α for the critical line.

num.clas Value of k in the contingency table used for the χ2-based ADFs. If
not specified, it is determined internally using the rule of thumb (3).

bandwidth Bandwidth h in the GK density estimator. If not specified, hLCV is
used.

B Number of permutations B used to compute p values for the ∆-ADF.

delta Divergence functional considered in the ∆-ADF as defined in
equations from (14) to (17); options are: "Delta_1" (default),
"Delta_0.5", "Delta_2", "Delta_3", "Delta_4", "Delta_SD",
"Delta_L1", "Delta_ST", and "Delta_fdiv" when the user wants
to provide an alternative external divergence function (see fdiv).

fres Alternative external function specifying the resampling method from
the raw series; it is used to compute p values.

fdenest Alternative external function to perform estimation of g (x) and
fr (x, y).

fdiv Alternative external divergence function used when delta =

"Delta_fdiv".

plot If TRUE (default), the diagram specified by dtype (and eventually by
delta) is plotted.

R The set R of Section 4.4.

p.adjust.method Adjustment method in the simultaneous test. It must be one of
p.adjust.methods (see the stats package).

Table 1: List of arguments for the function ADF().

Simultaneous Test

adjustment method: holm

adjusted p-value: 0

Portmanteau Test (Box-Pierce test)

p-value: 0

Tested lags

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28
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Figure 1: Dependence diagrams on the SMI data.

With both the simultaneous and Portmanteau tests, the null hypothesis HR0 , with R =
{1, . . . , 28}, is rejected with any α > 0.

Instead of considering directional (specific) types of lag-dependencies, we can act in an om-
nibus way by displaying the autodependogram variants. The following command

R> res2 <- ADF(SMI, main = "")

produces the ADF in Figure 1(b); its first two bars show evidence in favor of the alterna-
tive hypothesis of lag-dependence. As before, to check serial independence, we can run the
command

R> print(res2)
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ADF bars for series 'SMI'

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

66.8 62.0 45.1 50.3 39.2 56.6 45.4 48.5 35.7 52.0 55.9 30.4 52.2 32.5 37.2

16 17 18 19 20 21 22 23 24 25 26 27 28

37.1 33.6 39.0 36.3 24.7 42.8 30.9 54.6 35.3 31.7 28.8 34.0 33.0

Simultaneous Test

adjustment method: holm

adjusted p-value: 0.038

Portmanteau Test

p-value: 0

Tested lags

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28

Also in this case, serial independence is rejected at any significance level by the Portmanteau
test and at levels greater than 0.038 by the simultaneous test.

The RP-ADF and the ∆1-ADF, shown respectively in Figure 1(c) and Figure 1(d), are ob-
tained with the commands

R> res3 <- ADF(SMI, dtype = "RPADF", main = "")

R> set.seed(1)

R> ADF(SMI, dtype = "DeltaADF", main = "")

In particular, the RP-ADF allows for additional interpretation; by focusing on the first two
bars π̂1 and π̂2, using the following command

R> res3$res$vbar[1:2]

[1] 0.8890191 0.8085375

we can conclude that the null hypothesis of lag-1 (lag-2) independence is rejected and we
estimate that this hypothesis will be rejected with probability 0.88901 (0.80853) if the same
test is performed on a different time series of the same length from the same generating
process. On the other hand, the ∆1-ADF in Figure 1(d) detects more lag-dependencies.
From this point of view, it seems more similar to the ACF on the squared residuals. As
stated in Bagnato et al. (2013a), it should be due to the higher power of the ∆1-ADF among
the implemented autodependograms.

In order to capture the underlying dependence structure, in line with the common practice
for financial time series (see, e.g., Bollerslev, Chou, and Kroner 1992), we consider a GARCH
model. In particular, a GARCH(1, 1) with Gaussian innovations is estimated, with the max-
imum likelihood approach, using the garch() function of the R package tseries, and the
residuals are obtained as

R> library("tseries")

R> residuals <- garch(SMI, order = c(1, 1))$residuals[-1]
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Figure 2: Dependence diagrams on the residuals obtained fitting the GARCH(1, 1) on the
SMI data.

Figure 2 shows the ACF on the squared residuals, the RP-ADF, the ∆1-ADF, and the ∆1/2-
ADF on the residuals. These plots are obtained via the commands

R> res4 <- ADF(residuals^2, dtype = "ACF", main = "")

R> res5 <- ADF(residuals, dtype = "RPADF", main = "")

R> set.seed(1)

R> ADF(residuals, dtype = "DeltaADF", main = "")

R> set.seed(1)

R> ADF(residuals, dtype = "DeltaADF", delta = "Delta_0.5", main = "")

As it can be seen from Figure 2(a), the autocorrelogram does not display significant linear
dependencies among the squared residuals. Serial independence is also confirmed by the
simultaneous and the Portmanteau tests obtained via the command
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R> print(res4)

ACF bars for series 'residuals^2'

1 2 3 4 5 6 7

-0.005790 0.052679 -0.020194 0.009306 -0.015073 -0.000694 0.024682

8 9 10 11 12 13 14

0.026763 -0.021902 -0.044663 0.017074 -0.002904 0.032077 -0.030425

15 16 17 18 19 20 21

0.023796 -0.055524 0.032010 -0.046304 -0.025401 -0.030701 -0.018324

22 23 24 25 26 27 28

0.039210 0.027600 0.100133 -0.016851 -0.035821 -0.017693 -0.042427

Simultaneous Test

adjustment method: holm

adjusted p-value: 0.284

Portmanteau Test (Box-Pierce test)

p-value: 0.752

Tested lags

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28

On the contrary, the RP-ADF in Figure 2(b) highlights that a dependence structure involving
the first three lags still exists. We can evaluate the entity of this decaying memory dependence
via the commands

R> res5$res$vbar[1:3]

[1] 0.6611932 0.5633196 0.5167406

The other two diagrams in Figure 2(c) and Figure 2(d) detect such lag-dependencies too.

6. Conclusions

In this paper we have presented the SDD package for the R environment. It provides several
diagrams to analyze linear/nonlinear lag-dependencies for time series. Differently from other
implemented and existing diagrams, like the autocorrelogram, this analysis is carried out in
an omnibus way, without focusing on specific (directional) forms of lag-dependence. In other
words, we can detect lag-dependencies that are more general than, for example, the linear or
monotonic ones. The package also includes an illustrative data set on daily returns of the
Swiss Market Index (SMI). Through the application of variants of the autodependogram to this
data set, we have presented the usefulness of the SDD package for detecting and evaluating
the lag-dependencies present in both raw data and residuals of a fitted model. We believe the
availability of such diagnostic checks will be appreciated by other R users as well. Extensions
to either “partial” or “cross” variants of the considered diagrams will be implemented in future
versions of the package.
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