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Abstract
This paper focuses on studying the relationships among a set of categorical (ordi-
nal) variables collected in a contingency table. Besides the marginal and conditional
(in)dependencies, thoroughly analyzed in the literature, we consider the context-
specific independencies holding only in a subspace of the outcome space of the
conditioning variables. To this purpose we consider the hierarchical multinomial
marginal models and we provide several original results about the representation of
context-specific independencies through these models. The theoretical results are sup-
ported by an application concerning the innovation degree of Italian enterprises.

Keywords Context-specific independence · Ordinal variable · Hierarchical
multinomial marginal model

1 Introduction

In this work we deal with categorical (ordinal) variables collected in a contingency
table and we propose a model able to capture different kinds of independence rela-
tionships involving variables. Several models have been proposed in the literature
focusing on the independence or on the dependence structure. In particular, we refer
to Marginal models, see e.g. (Bergsma and Rudas 2002), which impose constraints on
marginal distributions of the tables in order to test different independence hypotheses.
More specifically, we focus on hierarchical multinomial marginal (HMM) models,
(Colombi et al. 2014) based on the work of Bartolucci et al. (2007) and extended by
Cazzaro and Colombi (2014). The HMM models are specified by a set of marginal
distributions of the contingency table together with a set of interactions: logits and

B Federica Nicolussi
federica.nicolussi@unimi.it

1 Department of Economics, Management and Quantitative Methods, University of Milano,
Milano, Italy

2 Department of Statistics and Quantitative Methods, University of Milano Bicocca, Milano, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10260-019-00503-8&domain=pdf
http://orcid.org/0000-0003-1659-5021


768 F. Nicolussi, M. Cazzaro

higher order effects [i.e. contrasts of logarithms (of sums) of probabilities], defined
within different marginal distributions.Well-known special cases of HMMmodels are
the classical Log-Linear models, the Marginal models, (Bergsma and Rudas 2002),
and theMultivariate Logistic models, (Glonek andMcCullagh 1995). In particular, we
take advantage of the different interactions that the HMMmodels are able to deal with,
that are significant, especially, for ordinal variables, see Cazzaro and Colombi (2008,
2014). In this framework, we focus on the relationships among a set of categorical
(ordinal) variables with the aim of testing marginal, conditional and context-specific
independencies (CSIs), see, among others (Boutilier et al. 1996; Højsgaard 2004;
Roverato 2017). The first two are well known relationships among variables collected
in a contingency table; theCSI, instead, is a conditional independencewhich holds only
in a subspace of the outcome space of the conditioning variables. For instance, given 3
variables X1, X2 and X3, it may occur X1 ⊥ X2|X3 = 1 while X1 �⊥ X2|X3 �= 1. It is
interesting to study this kind of independence as it allows to focus on the category(ies)
which discriminate(s) and really affect(s) the connection among the variables. Further-
more, adding also the CSIs to the independencies to test in a model admits to reduce
the number of parameters needed for describing the joint probability distribution, in
compliance with the principle of parsimony.

Nyman et al. (2016), provide the conditions and the constraints to investigate the
CSIs in classical Log-Linear models where the independencies to test involve all the
variables selected. In addition, La Rocca and Roverato (2017), show further results
in order to test CSI hypotheses also on subsets of variables, by using the so-called
log-mean linear parametrization. In this work, we focus on the HMM model and we
provide the linear constraints to imposeon its parameters in order to test,where possible
at the same time, conditional, marginal, and context-specific hypotheses. Furthermore,
we take into account parameters based on several types of logits, in order to consider
the possible different nature of the variables. These different parameters, as we will
see, involve different constraints.

The work follows this structure. In the next section, we give an overview of the
HMMmodels. In Sect. 3, we introduce the representation of CSI viaHMMmodels.We
present the CSI under a double definition, one, as already presented in the literature,
more suitable for categorical variables, and the new one that makes sense for ordinal
variables. The reasons of this double definition of CSIs lie in the attempt to make the
results more interpretable in compliance with the nature of the variables. As a matter
of fact, with the formulation suitable for ordinal variables, the constraints on HMM
parameters are more manageable and meaningful to interpret. In Sect. 3.1 we deal
with the first formulation apt to categorical variables. At first, similarly to Nyman
et al. (2016), but in a marginal framework, we provide the CSI constraints where the
parameters are based on baseline logits, the parameters used in classical Log-Linear
models. Furthermore, we provide, as new result, how it is possible to define a CSI by
using other interactions more suitable for ordinal variables. In Sect. 3.2, we deal with
the new formulation of CSIs that results to be more appropriate for ordinal variables.
Finally, in Sect. 4 we provide an application to a real dataset on the innovation status
of small and medium Italian firms, Istat (2012). Some conclusions are presented in
Sect. 5. The proofs of all the theorems are located in the “Appendix” in order to
improve the readability of the paper.
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2 Hierarchical multinomial marginal models

Let us consider a vector of randomvariables XV = (
X j

)
j∈V where the generic variable

X j takes value i j in a set of finite categories I j = (1, . . . , i j , . . . , I j ). Let us denote
with the symbol | · | the cardinality of a set. The contingency table of the |V | variables
is defined by IV = × j∈V I j where the generic cell is defined as iV = (i j , j ∈ V ). The
strictly positive probability of a generic cell, iV of IV , is denoted with π(iV ), thus the
probability of the whole contingency table is represented by the vector π , obtained by
stacking each π(iV ) in the lexicographical order. Similarly, by considering a vector
of variables in XM with M ⊆ V which generate the marginal M-contingency table
IM = × j∈MI j , the marginal probability of the generic cell iM is π(iM), obtained
by summing with respect to the variables in XV \M. Again, the probabilities of the
M-contingency table IM, π(iM), are stacked in πM in the lexicographical order.

A one-to-one function η = f (π) defines a parametrization of π in terms of η. In
the HMM models, the elements of η are the parameters based on different types of
logits and defined onmarginal distributions. Note that the classical Log-Linear models
are built on the log-linear parameters based on the so-called baseline logits defined
on the joint distribution of the involved variables. Indeed, the HMM parameters can
be defined as contrasts among the logarithms of (sum of) probabilities of disjoint
subsets of cells defined within different marginal distributions, associated to a non
decreasing sequence of marginal sets of variables, H = {M j

}
j=1,...,s , such that

M j ⊆ Mi implies j < i , whereMs = V . Given a set of variable XV with the vector
containing the cell probabilities of the joint distribution π , a set of HMM parameters,
listed in η, is a parametrization of the probability distribution if the hierarchy and
the completeness properties are satisfied, see Bergsma and Rudas (2002), Bartolucci
et al. (2007). That is, in HMMmodels, every parameter is defined in one and only one
marginal distribution (completeness property) and within the first marginal set in the
non decreasing sequence H which contains it (hierarchy property).

The formula (1) shows the form of the HMM parameter referring to the variables
in XL, fixed at the level iL and defined in the marginal table IM. Hereafter we call
L interaction set and M marginal set.

Thus, the HMM parameter has the following form:

ηML (iL|IM\L) =
∑

J⊆L
(−1)|L\J | logπM

(
iJ , i∗L\J , IM\L

)
, (1)

where the symbol I A denotes the set of the last level I j of each variable X j with
j ∈ A and A ⊆ V . The vector of indices marked with the asterisk, i∗, changes
in correspondence of the type of logits assigned to each variable. When, for all the
variables X j with j ∈ L, we choose the baseline logits, hereafter baseline criterion,
the cell i∗L is equal to a predetermined arbitrary cell, that, without loss of generality,
we set equal to IL. Further, in this paper, we consider also the parameters based on
local and continuation logits, hereafter considered as local and continuation criterion
for aggregating the probabilities within the parameters. In the case of local criterion,
the cell i∗L is equal to the cell of coordinates i j + 1 for all X j with j ∈ L, for brevity
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iL + 1. In the continuation criterion, the symbol i∗L denotes a list of certain cells
of coordinates

{
i j + 1, . . . , I j

}
, for all j ∈ L. While the baseline criterion is useful

when we deal with unordered categorical variables, the other two types of aggregation
criteria are typically used when we deal with ordinal variables, see Bartolucci et al.
(2007); Cazzaro and Colombi (2014). Note that, when the variables are dichotomous,
the interactions have the same form whatever the aggregation criterion was chosen.
Finally, the variables in XM\L in formula (1), which are not involved in the parameter,
are fixed equal to the levels IM\L, without loss of generality. Since there are no
ambiguity, we omit the wording IM\L from the definition of the parameter:

ηML (iL|IM\L) = ηML (iL). (2)

Each parameter ηML (iL) is equal to zero if there is at least a variable X j , with j ∈ L,
at level i j = I j . This result comes from formula (1).

As discussed before, the list of all parameters, ∀L ⊆ V and M ∈ H, consti-
tutes the HMM parametrization of the vector π . We stack all these parameters in the
lexicographical order within the vector η:

η =
[
ηML (iL)

]
. (3)

The following example shows the parametrization of two variables in correspondence
of different aggregation criteria.

Hereafter, for brevity, the elements of a set, placed in the subscript or superscript,
will be listed without parentheses and commas, so for instance X(1,2) becomes X12.

Example 1 Let us consider the vector of two variables X12 collected in a 3× 3 contin-
gency table IM, whereM = (1, 2). The parameters in formula (2), according to the
different aggregation criteria, are displayed in Table 1. Note that each row of Table
1 shows the different criteria used to code the variables in X12 in the 8 parameters
of the HMM model: 2 logits for each univariate variable and 4 contrasts of logits.
For simplicity, in every parametrization we use the same aggregation criterion for
all variables, this, however, is not mandatory. In general it is possible to choose an
aggregation criterion for each variable.

The vector of HMMparameters η defines the saturatedmodel, where all the |IV |−1
parameters are free. Certain constraints to zero on HMM parameters, defined on suit-
able marginal distributions, highlight marginal and/or conditional independencies. For
instance, given the vector of three variables X123, in order to represent the conditional
independence X1 ⊥ X2|X3 we have to impose η12312 (i12) = η123123(i123) = 0 for all
i12 ∈ I12 and i123 ∈ I123.

It is worthwhile to note that not all the lists of marginal and/or conditional inde-
pendencies are representable through HMM models. In the literature, this topic is
thoroughly discussed, see among others (Drton 2009; Forcina 2012; Rudas et al.
2010). Bergsma and Rudas (2002) and Bartolucci et al. (2007) proved that, if a list of
marginal and/or conditional independencies is representable through the parameters
in formula (3), these parameters provide a parametrization of the vector π .
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3 Context-specific independence in HMMmodels

Let us suppose we want to investigate a CSI among the variables in the vector XM
withM ⊆ V , saying

XA ⊥ XB |(XC = i ′C ), i ′C ∈ KC , (4)

where A ∪ B ∪ C = M, and i ′C is the vector of certain level(s) of the variable(s) in
XC , such that X j = i ′j for all j ∈ C , and it takes value in the list of levels KC ⊆ IC
for which the independence in formula (4) holds. Henceforth, we refer to the CSI in
formula (4), as a CSI with equality (in the conditioning set).

Remark 1 If KC = IC in formula (4), the statement corresponds to the conditional
independence XA ⊥ XB |XC .

In general, a notation like XA ⊥ XB |(XC = i ′C ) for all i ′C ∈ (IC1 ×KC2), means that
the independence holds for all levels i ′C1

∈ IC1 combined with the levels i ′C2
∈ KC2 .

This means that the independence holds between the variables in XA and the variables
in XB given all the levels of the variables in XC1 and the levels i ′C2

∈ KC2 for the
variables in XC2 .

When we deal with ordinal variables, it is more interesting to investigate if the CSIs
hold only for high or low values of the conditioning variables. We refer to these cases
with the following notations:

XA ⊥ XB |(XC ≥ i ′C ) (5)

or
XA ⊥ XB |(XC ≤ i ′C ). (6)

These inequalities mean that the independence holds for all the values i j of X j in
XC that jointly are equal or greater(lower) than i ′j , in formula ∩ j∈C X j ≥ i ′j or
∩ j∈C X j ≤ i ′j . Henceforth, we refer to the CSI in formula (5) and (6), as a CSI with
inequality (in the conditioning set).

Remark 2 If i ′C is equal to 1C (the first cell of IC ) in (5) or it is equal to IC in (6), the
corresponding statement is the conditional independence XA ⊥ XB |XC .

The plausible CSIs according to formulas (5) and (6) are considered in the ones
obtained from formula (4). However, these statements lead to advantages in the for-
mulation of the constraints and in the interpretation of the parameters. First, (5) and
(6) lead to more manageable constraints than (4). Indeed, when we express the CSIs
with inequality such as in formulas (5) or (6), as we will see, the constraints set to zero
certain parameters while, according to formula (4) with equality, the constraints set
to zero sums of parameters that make them of difficult interpretation. In addition, to
explain a CSI with equality is less intuitive than a CSI with inequality when the class
KC in formula (4) contains several levels. The choice of the definitions to use depends
on the aim of the analysis. If we take advantage of the CSIs for reducing the number
of free parameters these alternative definitions are worthless. On the other hand, if
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the aim lies on the study of the effect of certain levels, especially extreme values, of
the conditioning variables that discriminate between independence and dependence,
these alternative formulations advantageous the meanings.

In the following subsections we deal with the CSIs in HMM models when the
parameters are based on different types of logits. A justification of the use of different
parameters lies in the interpretation of unconstrained parameters. Let us suppose that
we are interested in investigating the relationship between gender and work position
conditioning to high levels of age. By testing this hypothesis, the aggregation criterion
chosen for the age makes no difference. However, the interpretation of the uncon-
strained parameters referring also to the age is more informative if we use local or
continuation criteria.

Section 3.1 deals with the CSI statement with equality such as in formula (4) when
we use the parameters based on baseline or local logits. As it is shown in Table 1, when
we use the continuation criterion, the parameters involve also sum of probabilities.
This makes impossible to explicit constraints to define the CSIs with equality (4).
However, when we deal with ordinal variables, handling with inequality, such as in
formulas (5) or (6), is more appropriate. Hence, in Sect. 3.2 we provide the constraints
needed to represent theseCSIswhenwe use the baseline, local or continuation criteria.

3.1 Constraints on HMMparameters for the CSI with equality

As already stated, Nyman et al. (2016), provide the condition to define a CSI such
as express in formula (4) in classical log-linear models, where all the variables are
coded with the baseline approach and there is only one marginal set equal to the
joint distribution M = V . Furthermore, La Rocca and Roverato (2017), show the
same result on the log-linear models and provide the constraints to define CSIs on
log-mean linear parameters. In this work, we provide the conditions to define the CSIs
on HMM models, that are, as we already said, a wider class of models. At first, we
focus on the possibility to define a CSI also on marginal distributions, maintaining the
baseline approach. In this case, the HMMmodels corresponds to theMarginal models,
(Bergsma andRudas 2002). Aswewill see, the obtained constraints are the same of the
ones presented in the literature, but defined on suitable marginal distributions. Then,
we take into account also different aggregation criteria, that characterize the HMM
models, reaching out different results. Note that, for simplicity, wewill consider all the
variables codedwith the sameapproach, in this case allbaseline, but it is notmandatory,
as we already said. Indeed, the constraints involved in the CSI statement are influenced
only by the approach used to code just the variables in the conditioning set, XC . In
the following Theorem 1 we present the constraints that the HMM parameters must
satisfied in order to impose the CSI with equality in formula (4) in a HMM model.

Theorem 1 Let us consider a set of variables XV , with probability distribution P
parametrized through the parameters in formula (3), where the baseline criterion is
used. Then, the probability distribution P obeys to the CSI with equality in formula
(4) if and only if the following constraints on the HMM parameters are satisfied:
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∑

c⊆C

ηML (iL) = 0 where L = q ∪ c, and iL ∈ Iq × Kc, (7)

and where q takes values in the class Q = {q ⊆ (A ∪ B) : A ∩ q �= ∅, B ∩ q �= ∅}.
Thus, the parameters involved in the constraints definition refer to the whole set of
categories of the variables Xq and refer to the subset of categories in Kc for the
variables Xc. Example 2 shows an application of the formula (7) in correspondence
of two different CSI hypotheses.

Example 2 Let us consider the vector of four variables X1234 collected in the marginal
contingency table I1234 of dimension 3 × 3 × 3 × 3 and let us suppose that the CSI
X1 ⊥ X2|(X34 = (1, 1)) holds. In this case, the three sets A, B, and C in formula
(4) are A = (1), B = (2), and C = (3, 4). Thus, the HMM parameters involved in
formula (7) are η123412 (i12), η1234123 (i123), η1234124 (i124), and η12341234(i1234), for all values
i12 ∈ I12, i123 ∈ I12 × {(1)}, i124 ∈ I12 × {(1)}, and i1234 ∈ I12 × {(1, 1)}. Thus,
for each i12 ∈ I12, the parameters are

η123412 (i12) = log

(
π(i1233)π(3333)

π(i1333)π(3i233)

)

η1234123 (i12, 1) = log

(
π(i1213)π(i1333)π(3i233)π(3313)

π(i1233)π(i1313)π(3i213)π(3333)

)

η1234124 (i12, 1) = log

(
π(i1231)π(i1333)π(3i233)π(3331)

π(i1233)π(i1331)π(3i231)π(3333)

)

η12341234(i12, 1, 1) = log

(
π(3333)π(i1233)π(i1313)π(3i213)π(i1331)π(3i231)
π(i1333)π(3i233)π(3313)π(i1213)π(3331)π(i1231)

)
.

Trivial mathematical steps show that the sum of all these four parameters is equal to
zero, for each i12 ∈ I12.

In the case of CSI X1 ⊥ X2|(X34 = (1, 3)), since I4 = 3, the parameters involving
the variable X4 at the third category are zero by definition, thus formula (7) becomes

η1234123 (i123) + η123412 (i12) = 0

where i123 ∈ I12 × {(1)} and i12 ∈ I12.
Let us suppose that the conditioning set in (4) is composed only of ordinal variables
so that we consider the local criterion for all variables. The CSI hypothesis can be
described by the constraints listed in Theorem 2.

Theorem 2 Let us consider a set of variables XV , with probability distribution P
parametrized through the parameters in formula (3), where the local criterion is used.
Then, the probability distribution P obeys to the CSI with equality in formula (4) if
and only if the following constraints on the HMM parameters are satisfied:

∑

c⊆C

∑

ic≥i ′c

ηML (iL) = 0 where L = q ∪ c, iL ∈ Iq × Kc, and ∀i ′c ∈ Kc (8)
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and where q takes values in the class Q = {q ⊆ (A ∪ B) : A ∩ q �= ∅, B ∩ q �= ∅}.
Note that, comparing with Theorem 1, we have here a double summation: the external
one referring to the subsets of variables in C and the internal one referring to certain
categories ic which the parameter refers.

We apply formula (8) in the next example.

Example 3 Given a set of variables, let us suppose that we are interested in representing
the CSI X1 ⊥ X2|X3 = 2. Then, we consider the marginal set M = (1, 2, 3), and
the corresponding marginal contingency table IM of dimension 2× 2× 4. Here, the
sums in formula (8) are as follows:

η12312 (1, 1) + (
η123123(1, 1, 2) + η123123(1, 1, 3)

) =
= log

(
π(224)π(114)
π(124)π(214)

)
+ log

(
π(123)π(213)π(222)π(112)
π(223)π(113)π(122)π(212)

)
+

+ log
(

π(124)π(214)π(223)π(113)
π(224)π(114)π(123)π(213)

)
.

By simplifying the probabilities in the different logarithms, we obtain

log

(
π(222)π(112)

π(122)π(212)

)
,

that is equal to zero in force of the CSI.

Remark 3 Given a CSI statement such as in formula (4), the number of zero constraints

to impose on a HMM model is
[∏

j∈(A∪B)

(
I j − 1

)] × |KC |.

3.2 Constraints on HMMparameters for the CSI with inequality

When we deal with ordinal variables, it is helpful also to consider the subclass of CSI
statements with the inequality such as displayed in formulas (5) and (6). Indeed, this
approach presents some advantages. Firstly, the CSI statements are more immediate
to understand with respect to the CSIs in formula (4). Further, as it will be described
in Theorem 3, the HMM parameters involved in the constraints are all null (not only
their sum). This, once again, makes the output of the parameters more interpretable.

Obviously, since the class of CSIs in formula (5) [or (6)] is a special case of the class
of CSIs in formula (4), if the constraints in Theorems 1 and 2 are satisfied for each
iC ≥ i ′C (iC ≤ i ′C ), then formula (5) [or (6)] holds too. However, for the baseline,
local and continuation aggregation criteria, there is an easiest way to define the CSI
in formula (5), as shown in the following Theorem 3.

Theorem 3 Let us consider a set of variables XV , with probability distribution P
parametrized through the parameters in formula (3), where the baseline, the local or
the continuation criterion is used. Then, the probability distribution P obeys to the
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CSI with equality in formula (5) if and only if the following constraints on the HMM
parameters are satisfied:

ηML (iL) = 0 where L = q ∪ c, c ⊆ C, iq ∈ Iq and ic ≥ i ′c (9)

and q takes values in the class Q = {q ⊆ (A ∪ B) : A ∩ q �= ∅, B ∩ q �= ∅}.
Example 4 By considering the same context of Example 3, let us suppose we are
interested in defining the CSI X1 ⊥ X2|X3 ≥ 2; then, according to Theorem 3, the
following constraints must hold

η12312 (1, 1) = 0, η123123(1, 1, 2) = 0, η123123(1, 1, 3) = 0.

The first parameter η12312 (1, 1), independently from the kind of aggregation criterion
we choose, has the form

η12312 (1, 1) = log

(
π(114)π(224)

π(124)π(214)

)
.

Note that, X1 ⊥ X2|X3 ≥ 2 implies X1 ⊥ X2|X3 = 4. Then the previous parameter
is equal to zero. This holds only when the variables not considered in the parameter
XM\L are set up to the last category. However, if we choose, in the model definition,
to fix the variables XM\L equal to the first category, it is enough to list the modalities
of the variables in the reverse order, with attention to consider the CSI in (6) instead
of the CSI in (5).

Concerning the second parameter, when we use the baseline criterion, we have

η123123(1, 1, 2) = log

(
π(124)π(214)π(222)π(112)

π(224)π(114)π(122)π(212)

)
;

when we use the local criterion, we have

η123123(1, 1, 2) = log

(
π(123)π(213)π(222)π(112)

π(223)π(113)π(122)π(212)

)
;

and finally, when we adopt the continuation criterion, we have

η123123(1, 1, 2) = log

(
(π(123) + π(124)) (π(213) + π(214)) π(222)π(112)

(π(223) + π(224)) (π(113) + π(114)) π(122)π(212)

)
.

(10)
Note that, whatever the aggregation criterion we choose, the variable X3 appears only
with categories 2, 3 and 4, according to which the CSI holds. In the case of baseline or
local criterion it is easy to see that, by rewriting every joint probability π(i123) as the
product π(i13)π(i23), the numerator and the denominator simplified. Thus the nullity
of the correspondent parameter is highlighted.
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On the other hand, the parameters coded with the continuation criterion, as showed
in Agresti (2013), can be conveyed as a second order contrast of baseline logits of the
following conditional probabilities

ω112 = P(X123=(1, 1, 2)|X1=1, X2=1, X3 ≥ 2) = π(112)

(π(112) + π(113) + π(114))

ω122 = P(X123=(1, 2, 2)|X1=1, X2=2, X3 ≥ 2) = π(122)

(π(122) + π(123) + π(124))

ω212 = P(X123=(2, 1, 2)|X1=2, X2=1, X3 ≥ 2) = π(212)

(π(212) + π(213) + π(214))

ω222 = P(X123=(2, 2, 2)|X1=2, X2=2, X3 ≥ 2) = π(222)

(π(222) + π(223) + π(224))
.

Few mathematical steps show that the parameter in (10) is equal to the contrast

η123123(1, 1, 2) = log

(
ω112

1 − ω112

ω222

1 − ω222

1 − ω122

ω122

1 − ω212

ω212

)
. (11)

Since ωs probabilities concern distributions where the CSI holds, the parameter (11),
based on baseline criterion, is null.

In the same way we proceed for the third parameter η123123(1, 1, 3) that is equal to
zero.

Remark 4 Whenwe are interested in defining aCSI as expressed in formula (6), we can
proceed in an analogous way, previously sorting in a descending order the categories
of the variable of interest.

Example 5 Let us consider three variables taking values in i1 ∈ {1, 2}, i2 ∈ {1, 2},
and i3 ∈ {1, 2, 3, 4}, respectively. If we want to test the CSI X1 ⊥ X2|X3 ≤ 2 it
is enough to invert the order of the categories. We replace the letter instead of the
number for more clarity. Thus, we get i1 ∈ {a = 2, b = 1}, i2 ∈ {a = 2, b = 1},
and i3 ∈ {a = 4, b = 3, c = 2, d = 1} and the CSI becomes X1 ⊥ X2|X3 ≥ c. The
parameters involved in the independence are the same of Example 4. For instance the
first one is:

η12312 (a, a) = log

(
π(aad)π(bbd)

π(abd)π(bad)

)
.

That actually is

η12312 (2, 2) = log

(
π(221)π(111)

π(211)π(121)

)
,

where the CSI holds.
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Remark 5 Given a CSI statement such as in formula (5) or (6), the number of zero

constraints to impose on a HMM model is
∑

c⊆C

[∏
j∈(A∪B)

(
I j − 1

)] × (|Kc| − 1)

where iC ∈ KC if and only if iC ≥ i ′C .

Example 6 In the Example 4 we considered the CSI X1 ⊥ X2|X3 ≥ 2 where the
variables have 2, 2, and 4 levels, respectively. Thus, the total number of constraints
are (1×1)+ (1×1)(2) = 3: η12312 (1, 1) = 0, η123123(1, 1, 2) = 0, and η123123(1, 1, 3) = 0.

In general, we can decide to codify the variables heterogeneously, each of them with
different types of aggregation criteria, in order to suit the nature of the single variable.
Here, we present an example in order to show how to apply the different conditions
on constraints when we deal with variables coded with diverse types of aggregation
criteria.

Example 7 Let us consider a marginal set M = (1, 2, 3, 4) composed of 4 variables
collected in a 2 × 2 × 4 × 4 contingency table IM. We codify the variables with
baseline, baseline, local and continuation aggregation criteria, respectively. We are
interested in checking the CSI X1 ⊥ X2|X3,4 ≥ (2, 2) that means that the CSI must
hold when the variables X3 and X4 assume, respectively, the values X3 ≥ 2 and
X4 ≥ 2, that is for the cells {(2, 2); (2, 3); (3, 2); (3, 3)}. In this case, noting that the
variables in the conditioning set are coded with the local and the continuation aggre-
gation criteria, the result dues to Theorem 3 implies that the parameters η12341234(i1234)
with i1234 ∈ {(1, 1, 2, 2); (1, 1, 2, 3); (1, 1, 3, 2); (1, 1, 3, 3)}, η1234123 (i123)with i123 ∈
{(1, 1, 2); (1, 1, 3)}, η1234124 (i124) with i124 ∈ {(1, 1, 2); (1, 1, 3)} and η123412 (1, 1)
involving the conditioning variables with values greater or equal to (2, 2), have to
be zero, how effectively is.

4 Application

In this section, we use the HMM model to study the small and medium Italian firms’
innovation. In particular, our aim is to highlight the (in)dependence relationships
among different aspects of the enterprises, by taking into account the possible order
of the categories of the considered variables. For this reason, we take advantage of the
CSIs as presented in Sect. 3.

We take into account the Italian Innovation Survey concerning the period starting
from 2010 to 2012 (Istat 2012).We select 7 variables of interest, pertaining to different
environments of the firms’ life. The first type of variables is the firms’ featuring: the
enterprise size,DIM (1 = Small, 2 =Medium), the percentage of graduate employers,
DEG (1 = 0% � 10%, 2 = 10% � 50%, 3 = 50% � 100%) and the main market
(in revenue terms), MRKT (1 = Regional, 2 = National, 3 = International), hence-
forth denoted as variables X1, X2 and X3, respectively. Then, there are the variables
concerning the innovation in some aspects of the enterprises: innovation in marketing
strategies, IMAR (1 = Yes, 2 = No), innovation in organization system, IOR (1 =
Yes, 2 = No) and innovation in products or services or production line or investment
in R&D, IPR (1 = Yes, 2 = No), henceforth denoted as variables X4, X5 and X6,
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respectively. Finally, we consider the revenue growth variable in 2012, GROW (1 =
Yes, 2 = No) henceforth denoted as variable X7.

The survey covers 18 697 firms, collected in a 2×3×3×2×2×2×2 contingency
table with only one empty cell on 288, thus the hypothesis of strictly positivity of the
probability distribution can be credible.

Our aim is manifold, firstly we want to investigate if the presence/absence of inno-
vation in some aspects of the enterprise life can be affected by the firms’ features.
Thus, we have to consider the independence X123 ⊥ X456. Secondly, also the effect of
the firms’ features and the innovation variables on the revenue growth is another aspect
that we want to study. Thus, the independence X123456 ⊥ X7 must be considered.

A HMM parametrization, able to describe these two independencies, can be
based on the hierarchical class of marginal sets H = {(1, 2, 3); (1, 2, 3, 4, 5, 6),
(1, 2, 3, 4, 5, 6, 7)}. The previous class H takes into account the nature of the vari-
ables and, at the same time, it satisfies the condition of Rudas et al. (2010), that assures
the representativeness of a list of independencies. The validation of the HMM model
with the previous marginals and the constraints induced by the two independencies is
done with the likelihood ratio test G2 which compares the model under investigation
with the saturated (unconstrained) one. Under the null hypothesis the test statistic G2

follows theχ2 distributionwith degree of freedom, d f , equal to the difference between
the free parameters in the two models (the saturated one and the model that we want to
test). We reject the hypothesis that the selected model provides a good representation
of the dataset when we get the p value lower than a chosen critical value.

The likelihood ratio test applied to the model, where both the conditional indepen-
dencies hold, provides the following results: G2 = 3548.47, d f = 262, p value =
0.000. Since for these two variables the model is not a good representation, we pro-
ceed to test different nested models. The nested models can contain both conditional
independencies or CSIs. The choice of the nested models to test was driven from the
support of further statistical tools such as the mosaic plots.

As highlighted in Nyman et al. (2016), it can occur that the constraints to impose
on the parameters in order to satisfy both conditional independencies and CSIs are too
restrictive, underlying stronger independence relationships. In this case,we ascertained
that each list of conditional independencies and/or CSIs was well represented by the
constraints. That means we checked if there were no other independencies implied by
these constraints.

The best fitting model, with G2 = 155.79, d f = 132, p value = 0.08 results the
one where the following independencies hold simultaneously:

(a) X24 ⊥ X7|X1356
(b) X2 ⊥ X6|X1345 ≥ (2, 2, 2, 1)
(c) X13 ⊥ X4|X256 ≥ (3, 1, 2).

Thus, in the best fitting model the revenue growth (X7) results independent from the
percentage of graduated employers (X2) and the innovation in marketing strategies
(X4) given by all the other variables. Further, we have also the following CSIs. The
percentage of graduated employers (X2) is independent from the innovation in product
or services or investments (X6), when the dimension of the enterprise is big (X1 ≥ 2),
when themainmarket is national or international (X3 ≥ 2),when there is no innovation
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Table 2 List of the values of the second order parameters, ηML (iL), (logarithms of odds ratios) of the best
fitting model

DEG X2 MRKT X3 IMAR X4 IOR X5 IPR X6 GROW X7

2 3 2 3 2 2 2 2

DIM X1 2 0.10 0.92*** 0.94*** 0.86*** 0.00 0.27 1.47*** −0.04

DEG X2 2 0.03 0.64*** 0.32** 0.50* 0.00 0.00

3 0.42*** 0.46*** −0.02 0.60*** 0.00 0.00

MRKT X3 2 0.00 −0.15 0.85*** 0.15*

3 0.00 −0.22 0.84*** −0.54***

IMAR X4 2 1.48*** 1.90*** 0.00

IOR X5 2 1.20*** 0.01

IPR X6 2 0.00

The second column and row refer to the levels of the corresponding variables
The asterisk denotes the parameters that are significantly different from zero (*** with α ≤ 0.01; ** with
0.01 ≤ α ≤ 0.05; * with 0.05 ≤ α ≤ 0.1), according to the Wald test

in marketing strategies (X4 ≥ 2) and if there is or there is not innovation in the
organization system (X5 ≥ 1). Finally, the dimension of the enterprise (X1) and the
main market (X3) are jointly independent from the innovation in marketing strategies
(X4) when the firm has a high level of graduated employers (X2 ≥ 3), whatever is the
innovation in the organization system (X5 ≥ 1), and when there is no innovation in
product and services (X6 ≥ 2).

In Table 2 the second order parameters, logarithms of odds ratios, of the best fitting
model are displayed. The asterisk denotes the parameters significantly different from
zero (with a significance level α at most equal to 0.01) according to the Wald test.
A brief consideration on the model is here discussed starting from these parameters.
We use for all variables the continuation criterion. At first, note that, according to the
conditional independence (a), the parametersηV

27(2, 2),η
V
27(3, 2) andηV

47(2, 2) are null.
Obviously, also the parameters of greater order involving these pairs of variables are
null. However, one of the most advantages in defining the CSIs as in formula (5) or (6)
lies on the fact that all the parameters involved in the constraints are null [not only the
sum such as for the case of CSIs in formula (4)]. Thus, also η23456734 (2, 2), η23456734 (3, 2),
η23456726 (2, 2), η23456726 (3, 2) and ηV

14(2, 2) are null according to theCSIs (b) and (c). The
remaining parameters inform us on how each pair of variables affect each other. Note
that the parameter η23456767 (2, 2) is null even if it not involved in any independencies.
Worthy of note is the parameter η12345646 (2, 2) = 1.90 meaning that, the probability to
have innovation in both marketing strategies and products and services and to not have
innovation in both is greater than the probability of discordance of these two variables.
The same trend, even if not so strong, is in almost all the remaining parameters. Thus,
focusing on the relationships between the revenue growth and the other variables, the
only one that seems to affect significantly the revenue growth is themainmarket where
the firm works as we can see from ηV

37(3, 2) = − 0.54. In particular, by increasing the
main market there is a negative trend between the innovation and bigger market.
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All the analysis were carried out with the statistical software R, (R Core Team
2014), with the help the package hmmm, Colombi et al. (2014) for testing the HMM
models.

5 Conclusion

In this work we provide several results concerning the framework of CSIs. Besides
the classical definition of CSI we introduce a new point of view where the CSI holds
for certain categories of few variables satisfying an inequality. While the classical
definition is appropriate for unordered variables, the new one is more suitable for
ordinal variables and it leads to benefits in the interpretation of the parameters. Con-
cerning the classical definition of CSI we confirm the results for parameters based on
baseline logits such as provided in Nyman et al. (2016), even in the marginal model
context, and we also provide the results in the case of local criterion. On the other
hand, when we deal with the definitions with inequality, we provide original results for
different aggregation criteria: baseline, local and continuation. Although these new
definitions consider a subset of CSIs with respect to (4), they make the parameters
more meaningful since the involved ones are null, not only their sum.

The application shows a part of the potentiality of this work.

Appendix : Proofs and further results

We are going to prove Theorems 1, 2, and 3. Note that, in order to do that, we prelim-
inary need to declare and demonstrate the following results: Lemma 1 and Corollary
1.

Lemma 1 Given a HMM parameter ηML (iL), where the interaction set can be
expressed as union of two incompatible sets, L = L ∪ C, belonging in M, it can
be decomposed as follows

ηML (iL) = ηML (i L |iC ) −
∑

J ⊆ C
J �= ∅

ηML\J (iL\J |i∗J ). (12)

Proof of Lemma 1 From the Proposition (1) of Bartolucci et al. (2007), each parameter
ηML (iL), where L = L ∪ C can be rewritten as

ηML (iL) =
∑

J⊆C

(−1)|C\J |ηML (i L |i J , i∗C\J , IM\L), (13)

where ηML (i L |i J , i∗C\J , IM\L) is the HMM parameter ηML evaluated in the condi-
tional distribution where the variables in X J assume values i J and the variables in
XC\J are set to the categories i∗C\J .
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When the set C is composed of only one index, C = γ1, the decomposition in
formula (13) becomes

ηML (iL) = ηML (i L |iγ1 , IM\L) − ηML (i L |i∗γ1 , IM\L), (14)

that corresponds to formula (12).
When two variables belong to the set C , C = {γ1, γ2}, by applying formula (13)

only to γ1 we get

ηML (iL) = ηML\γ1(iL\γ1 |iγ1 , IM\L) − ηML\γ1(iL\γ1 |i∗γ1 , IM\L). (15)

Note that, the first addend, on the right hand side, can be further decomposed by using
the (13) as:

ηML\γ1(iL\γ1 |iγ1 , IM\L) = ηML (i L |iC , IM\L) − ηML (i L |iγ1 , i∗γ2 , IM\L). (16)

Now, by considering the HMM parameter ηML\γ2(iL\γ2 |i∗γ2 , IM\L) and by applying
the formula (13) to γ1, we get

ηML\γ2(iL\γ2 |i∗γ2 , IM\L) = ηML (i L |iγ1 , i∗γ2 , IM\L) − ηML (i L |i∗C , IM\L). (17)

It is easy to see that the last addend on the right hand side of the (16) is exactly the first
addend on the right hand side of (17). Thus, by replacing the (16) and (17) in formula
(15) we get:

ηML (iL) = − ηML\γ1(i iL\γ1 |i i∗γ1 , I IM\L) − ηML (i iL|i i∗C , I IM\L)

− ηML\γ2(i iL\γ2 |i i∗γ2 , I IM\L) + ηML (i i L |i iC , I IM\L) (18)

that again corresponds to formula (12).
In general, when the set C is composed of k variables, C = {γ1, . . . , γk}, we apply

formula (13), focusing on only one variable of C . Thus, at first step we get

ηML (iL) = ηML\γ1(iL\γ1 |iγ1 , IM\L) − ηML\γ1(iL\γ1 |i∗γ1 , IM\L). (19)

Then, we apply formula (13) recursively, focusing on only one variable of C at a time,
to any parameter in the formula without any index i∗ in the conditioning set

ηML (iL) = ηML (i L |iC , IM\L) −
k∑

j=1

ηML\γ j p
(iL\γ j p |i∗γ j

, iγ j p\γ j , IM\L). (20)

where γ j p = ∪ j
i=1γi .

Now,we take into account all the parameters having both i and i∗ in the conditioning
set. Let us denote them as ηML (i L |i A, i∗B, IM\L AB). We can recognize it in the last
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term of the right hand side of the decomposition (21) obtained applying the (13) to
ηML\B(iL\B |i∗B, IM\L AB):

ηML\B(iL\B |i∗B, IM\L AB) = ηML (i i L |i i A, i∗B, I IM\L AB) +
−

∑

J ⊆ A
J �= ∅

ηML (i i L |i i A\J , i i∗BJ , I IM\L AB). (21)

Thus, we can isolate the term ηML (i L |i A, i∗B, IM\L AB) as follows:

ηML (i L |i A, i∗B, IM\L AB) =
∑

J⊆A

ηML (i L |i A\J , i∗BJ , IM\L AB). (22)

Now, in formula (20), we replace each addend like ηML (i L |i A, i∗B, IM\L AB) with the
expression in formula (22) and we apply this procedure recursively to each addend
like ηML (i L |i∗A\J , i BJ , IM\L AB). In this way we finally obtain exactly formula (12).

��
Corollary 1 A parameter ηML can be decomposed as the sum of greater order param-
eters as follows:

ηML (i L |iC ) =
∑

J⊆C

ηML\J (iL\J |i∗J ), (23)

where L = L ∪ C and C ∩ L = ∅.
Proof of Corollary 1 The proof comes easily by isolating the first term in the right hand
side of the formula (12) of Lemma 1. ��
We are now ready to go into details of the proofs of the theorems.

Proof of Theorem 1 Let us consider the parameters ηML whenL = (A∪ B∪C) ⊆ M.
From Lemma 1 we can decompose it as

ηML (iL) = ηML\C (iL\C |iC , IM\L) −
∑

J⊆C
J �=∅

ηML\J (iL\J |i∗J , IM\L) (24)

where ηML\C (iL\C |iC , IM\L) is the marginal parameter ηML\C evaluated in the condi-

tional distribution (A ∪ B|C = iC ). The term ηML\C (iL\C |iC , IM\L) is equal to zero
if and only if the CSI in formula (4) holds. Thus,

ηML (iL) +
∑

J ⊆ C
J �= ∅

ηML\J (iL\J |i∗J , IM\L) = 0

∑

J⊆C

ηML\J (iL\J |i∗J , IM\L) = 0. (25)
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Note that in the case of baseline aggregation criterion, the cell i∗J is equiva-
lent to IJ thus, from formula (2), the parameter ηML\J (iL\J |i∗J , IM\L) is equal to

ηML\J (iL\J , I (M\L)J ).
Finally, by considering that the previous decomposition holds for each set q ∈ Q =

{q ⊆ (A ∪ B) : A ∩ q �= ∅, B ∩ q �= ∅}, the formula (7) comes. ��
Proof of Theorem 2 By resuming the proof of Theorem 1, note that all the consid-
erations until the decomposition in formula (25) still hold. However, by using the
local aggregation criterion i∗J �= IJ it is worthwhile to consider that the identity
ηML\J (iL\J |i∗J , IM\L) = ηML\J (iL\J , I (M\L)J ) does not hold any more, such as in
the local coding i∗J is equal to (i j + 1) for all j ∈ J , in short-cut i J + 1. Further,
the parameter ηML\C (iL\C , I (M\L)C ) is built in the conditional distribution where the

variables in XC assume the reference value IC . Note that ηML\J (iL\J |i J +1, I (M\L)J )

does not belong to the HMM parametrization. Now we remark that between the base-
line parameters, η(·)b, and the local parameters η(·)l, the following relationship holds:

ηML (i ′L)b =
∑

iL≥i ′L

ηML (iL)l. (26)

When the variables in the conditioning set C are coded with the local approach, it is
enough to apply the decomposition (26) only to the categories of the variables in the
conditioning set C in order to return to the baseline approach. Thus we can rewrite
(25) as: ∑

c⊆C

∑

ic≥i ′c

ηMA∪B∪c(i A∪B∪c|IM\c) = 0, (27)

where ηMA∪B∪c are the local parameters and they are exactly the same of formula (8).
As in the proof of Theorem 1, the previous equivalence must hold for each subset q
of A ∪ B with at least one element in A and one element in B. ��
Proof of Theorem 3 Let us consider the inequality CSI statement as listed in formula
(5).

When the set of categories i ′C in formula (5) is equal to IC , i.e. when the CSI
holds only when all variables in C assume the last level, the parameters ηML (iL)

are null. Indeed, when L = q ∪ c, with c ⊆ C and c �= ∅ the parameter is equal to
ηML (iq , Ic) that is null by definition, whatever we code the variables (baseline, local or
continuation). However, when c = ∅, the parameter becomes ηMq (iq) that is a contrast
of logits or an higher order parameter evaluated in the (conditional) contingency table
of Xq |XC = IC . Hence, the parameter is null if and only if the independence holds, it is
shown in the Example 4. Thus, since the ηML (iq , Ic) ∀q ∈ Q and ∀c ⊆ C are evaluated
in the conditional distribution XC = IC where the CSI holds, these parameters are
equal to zero.

When the i ′C is equal to (IC\ j , I j − 1), that is the level of each variable is equal to
the last level but the variable j assumes the level I j −1, as before, we have that all the
parameters ηML (iL) with L = q ∪ c and c ⊆ C\ j are equal to zero. However, note
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that in the parameter ηML (iq j ), whatever the aggregation criteria is chosen (baseline,
local or continuation), the variable X j takes value I j − 1 or I j . Since in each of these
distributions the CSI (5) holds, also this parameter is equal to zero and vice versa.

In general, when the CSI in (5) holds for a generic i ′C , the parameters ηML (iL), with
L = q ∪ c for any ic greater or equal to i ′c, involve the categories of each variable X j

in XC , i j or I j (baseline approach), or i j + 1 (local approach) or ((i j + 1)+· · ·+ I j )
(continuation approach). Since in all these cells the CSI holds, the parameters are
equal to zero and vice versa. ��
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