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Abstract 

In our everyday life, we often need to anticipate the potential occurrence of events and their 

consequences. In this context, the way we represent contingencies can determine our ability to 

adapt to the environment. However, it is not clear how agents encode and organize available 

knowledge about the future to react to possible states of the world. In the present study, we 

investigated the process of contingency representation with three eye-tracking experiments. In 

Experiment 1, we introduced a novel Relational-inference task in which participants had to 

learn and represent conditional rules regulating the occurrence of interdependent future events. 

A cluster analysis on early gaze data revealed the existence of two distinct types of encoders. 

A group of (sophisticated) participants built exhaustive contingency models that explicitly 

linked states with each of their potential consequences. Another group of (unsophisticated) 

participants simply learned binary conditional rules without exploring the underlying relational 

complexity. Analyses of individual cognitive measures revealed that cognitive reflection is 

associated with the emergence of either sophisticated or unsophisticated representation 

behavior. In Experiment 2, we observed that unsophisticated participants switched towards the 

sophisticated strategy after having received information about its existence, suggesting that 

representation behavior was modulated by strategy generation mechanisms. In Experiment 3, 

we showed that the heterogeneity in representation strategy emerges also in conditional 

reasoning with verbal sequences, indicating the existence of a general disposition in building 

either sophisticated or unsophisticated models of contingencies. 

 

Keywords: representation, eye-tracking, strategy generation, cognitive abilities, individual 

differences 
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Introduction 

The main challenge we face in our everyday experience is adapting to the environment we live 

in. We need to foresee that some events might take place in the future, and to be aware of the 

possible consequences of their occurrence (Schultz et al., 1997; Suddendorf & Corballis, 2007). 

However, our world is not always predictable: we can learn how to respond to a specific event, 

but we may not know whether this event will actually occur. For example, I know that I will 

have to take the bus if the train does not arrive, but the (non-) arrival of the train is in some way 

unforeseeable. In this context, the way we encode and organize relevant knowledge about the 

world (i.e. the type of environmental representation we generate) can affect our ability to 

respond to future events (Bar, 2007; Gilbert & Wilson, 2007). On the one hand, agents may 

build an exhaustive representation of the relational structure underlying interrelated 

contingencies and plan future behavior taking into consideration every predictable 

consequence of potential states. In our example, I am prepared for the possibility that the train 

does not arrive, and so I bring my bus pass in order to be ready to respond optimally to the 

occurrence of both states of the world. On the other hand, agents may learn only basic units of 

knowledge (e.g. binary associations between a state and an outcome), without building an 

explicit model of how these simple rules relate to each other. Only once a specific condition 

takes place, these latter agents would use stored knowledge to react to that specific event. In 

our example, this representation process would lead me to realize that I need the bus pass only 

after apprehending that the train has not arrived, potentially catching me unprepared (i.e. I may 

have left the bus pass at home). These two types of representation process express different 

degrees of sophistication: despite the latter behavior might be occasionally efficient, the former 

is more sophisticated since it is suitable for responding optimally to every predictable 

environmental contingency. Although this behavioral difference is reminiscent of the 

distinctions between rule abstraction and memorization in category learning (McDaniel et al., 
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2014), proactive and reactive cognitive control (Braver, 2012), model-based and model-free 

learning (Daw et al., 2005, 2011; Konovalov & Krajbich, 2016) and problem-model and direct-

translation strategies in problem-solving (Boote et al., 2016; Mayer & Hegarty, 1996), it is still 

unclear how agents build internal contingency models starting from available relational 

knowledge. In particular, we should understand whether distinct processes of relational 

representation do exist, as well as the cognitive sources of this heterogeneity. In order to 

explore these issues, we ran three different eye-tracking experiments. 

In Experiment 1, we designed a novel Relational-inference task in which each trial was 

composed of two phases: Representation and Response. In the Representation phase, 

participants had a limited amount of time to learn triplets of between-state rules connected by 

higher-order transitive relations (i.e. if the state X occurs, then the state Y follows; if the state 

Y occurs, then the state Z follows; if the state Z occurs, then the state W occurs as well). These 

pieces of information established the conditional relations regulating the occurrence of states, 

but did not provide information about their actual occurrence (i.e. participants know that state 

Y follows from the occurrence of state X, but do not know if state X will actually occur). In 

the Response phase, the occurrence of a specific state was disclosed, and participants had to 

infer which other states necessarily followed given the relational model acquired in the 

Representation phase. In the Relational-inference task, we used eye-tracking to explore top-

down attentional mechanisms including search, selection and binding of relevant information, 

which can reveal how agents spontaneously build representations of the current relational 

environment. Specifically, in the Representation Phase, we expect some (sophisticated) 

participants to explore the environment searching for all possible relational information in 

order to construct a representation that explicitly expresses all the existing relations between 

states. Conversely, unsophisticated agents should not explore the relational properties of the 
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current relational set, since they do not aim to build a comprehensive model of the relational 

structure of the environment.  

Results of a cluster analysis on early gaze data in the Representation phase confirmed the 

existence of two distinct groups of participants that respectively exhibited sophisticated and 

unsophisticated behaviors, and showed marked differences in task performance.  

In order to explore the cognitive mechanisms driving heterogeneity in representation behavior, 

in Experiment 2 we collected data on a new pool of participants performing the Relational-

inference task in two different sessions (pre- and post- treatment). In the pre-treatment session, 

participants performed the Relational-inference task with the same modalities of Experiment 

1. At the beginning of the post-treatment session, the same participants were informed about 

the existence of sophisticated and unsophisticated strategies and their respective average 

efficiencies. Then they were asked to complete again the Relational-inference task in the way 

they preferred. We therefore compared the representation strategy implemented by participants 

in the two sessions. We found a notable strategy switch from the unsophisticated towards the 

sophisticated strategy, suggesting that the implementation of a specific strategy is not driven 

by cognitive capacity or motivation, but rather by strategy generation mechanisms. 

In Experiment 3, we investigated whether the heterogeneity in Experiment 1 and 2 could 

generalize to a Verbal-Inference task requiring conditional reasoning in real life scenarios.  The 

Verbal-inference task differed from the Relational-inference task in different ways. First, it 

included verbal instead of symbolic content, setting conditional reasoning in a more naturalistic 

context; second, task resolution was not dependent on short-term memory components and 

encoding time constraints. The Verbal-inference task was completed by participants of 

Experiment 2, since we aimed to compare individual representation strategies in the two tasks. 

Results show that sophisticated participants, as defined in the Relational-inference Task, 

spontaneously adopted sophisticated representation behavior in the Verbal-Inference task, 
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suggesting the existence of general, context-independent processes of encoding, integration 

and representation of relational information between hypothetical states of the world. 

 

Cognitive drivers of sophisticated and unsophisticated representation processes 

To date, we lack evidence about the contribution of cognitive abilities in modulating 

representation-building mechanisms. We can hypothesize that high working memory is 

necessary for the generation of sophisticated representations, since it constitutes the workspace 

where relational representations are constructed (Doumas et al., 2008; Halford et al., 2010), 

and guarantees that agents can build, retain and update representations (Oberauer et al., 2009). 

However, it is possible that working memory sustains active maintenance and manipulation of 

representations without affecting the type of representation that is generated. To investigate the 

role of working memory in these processes, we collected four different working memory 

measures: digit span forward and backward (Wechsler, 2008) and the n-back task (in two 

versions of increasing difficulty, 2-back and 3-back, Kirchner et al., 1958). The forward version 

of the digit span assesses simple short-term maintenance and recall of elements in working 

memory, while the backward version requires the additional component of mental 

manipulation of digits (Baddeley, 1996; Koenigs et al., 2009; Monaco et al., 2013). The n-back 

task tests the ability to maintain and update a dynamic set of information, targeting processes 

related to cognitive control, such as inhibition and interference resolution (Kane, Conway, 

Miura, & Colflesh, 2007).  

Another cognitive ability that could intervene in the representation process is fluid intelligence, 

which expresses the ability to adapt to unknown contexts and reason on abstract information 

with minimal dependence on crystalized knowledge (Cattell, 1963). However, we do not know 

if fluid intelligence intervenes in an early stage of representation generation or simply sustain 

updating and inferential mechanisms, as recently suggested by Shipstead et al. (2016). To 
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collect individual measures of fluid intelligence, we tested participants on the Raven Advanced 

Progressive Matrices Test (APM; Raven et al., 1998). 

Finally, we investigated whether cognitive reflection, measured by the Cognitive Reflection 

Test (CRT; Frederick, 2005), could be a potential candidate to predict the existence of distinct 

representation processes. The CRT traditionally assesses the individual tendency to implement 

either reflective or reflexive cognitive processes. In particular, a high cognitive reflection level 

expresses the ability to reason exhaustively about the characteristics of a problem, inhibiting 

intuitive but incorrect responses. Conversely, a low cognitive reflection level indicates an 

aptitude for generating heuristics on salient information at the expense of problem 

understanding (Toplak et al, 2011; 2014).  In recent years, several studies underlined the 

relevance of the CRT beyond the classical deliberation-intuition trade-off (Baron et al., 2014; 

Mata et al., 2013; Szaszi et al., 2017). In particular, it has been linked to the tendency to use 

more thorough search processes (Cokely and Kelley, 2009; Cokely et al., 2009) and to the 

ability to accurately process and represent task-relevant information (Mata et al., 2014; Sirota 

et al., 2014). Furthermore, recent evidence pointed out that the CRT is related to analytical 

thinking (Hoppe & Kusterer, 2011), behavioral biases (Oechssler et al., 2009), probabilistic 

reasoning (Koehler & James, 2010; Liberali et al., 2012) and rule abstraction (Don et al., 2016), 

suggesting a broader involvement of cognitive reflection in intelligent behavior. 

 

Experiment 1 

Methods 

Relational-inference task 

In this novel task, participants were presented series of three conditional statements of the form 

“if A, then B” connecting pairs of symbols. Symbols represented “states of the world” whose 

occurrence was uncertain, while conditional relations between symbols prescribed the 
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necessary occurrence of a state (e.g. B) upon the occurrence of another state (e.g. A). 

Importantly, conditional relations could be linked by transitive relations (for example, given 

the two conditionals “if A then B” and “if B then C”, you can conclude that “if A then C”). 

Henceforth, we will refer to the three conditional statements as C1, C2 and C3. Four abstract 

symbols (square, circle, triangle and cross) were used to represent states (Figure 1, left panel). 

Using this set of items, we created 80 different relational sets. From all the possible 

combinations of symbols and relations, we excluded those including a specific symbol 

simultaneously repeated in all three antecedents or in all three consequents of the conditionals. 

Each configuration could contain 0, 1, 2 or 3 transitive relations connecting conditionals in up-

down or down-up directions. 

Each trial of the task consisted of two phases: Representation and Response. In the 

Representation phase (Figure 1, left panel), participants had 9 seconds to learn all the relevant 

pieces of information in a series before their disappearance. In the Response phase, one of the 

symbols presented in the Representation phase (source state) was highlighted, meaning that 

that state had indeed occurred. Given this novel information and the conditional relations 

shown in the Representation phase, participants had to select all the states (i.e. symbols) that 

necessarily followed the occurrence of the source state (Figure 1, right panel). There was no 

delay between the two phases. In the Response phase, each of the four symbols was paired with 

a specific response key. An intuitive interface supported the Response phase (Figure 1, right 

panel). Key-symbol associations remained stable along the entire experiment.1 Symbols could 

be pressed in any order. Participants had the opportunity to re-press the same response-key to 

de-select or re-select a specific symbol. Participants were instructed that de-selecting and re-

selecting symbols would not have affected their score; final selection was confirmed by 

                                                           
1 We checked for possible effects due to the position of symbols and corresponding keys in the response interface 

and we did not find any effect of source state (see Table 1.B1 in section 1.B.1, Appendices). 
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pressing the space bar and only this response was taken into account for evaluation. In sum, a 

trial was classified as correct if participants selected all and only the states that necessarily 

followed the occurrence of the source state and as incorrect in all other cases. Participants had 

unlimited time in the Response phase, and they were instructed that reaction times would not 

influence their final score. 

 

################# 

Insert Figure 1 here 

                                                          ################# 

 

We created two different categories of relational set: linear and non-linear. In linear sets, the 

order of the presented triplet of conditionals was aligned with the latent relational structure (i.e. 

with the ordered sequence of concatenated events) (Figure 2, left panel). In non-linear sets, the 

underlying relational structure did not match with the order of the presented triplet of 

conditionals (Figure 2, right panel). The presence of non-linear trials allowed us to disentangle 

sophisticated from unsophisticated representation processes: sophisticated participants should 

indeed search for all possible relations between states in every potential direction and location, 

while unsophisticated participants should encode binary conditional rules independently of 

their higher-order relations.  

 

################# 

Insert Figure 2 here 

#################   

 

All these aspects of the task were carefully explained to participants with examples, control 

questions and training trials (we report full instructions and control questions in the Online 

Supplementary Material). In particular, we ensured that participants correctly understood all 
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the conditional, transitive and spatial properties of the task. Participants were provided with 

three 2-minute breaks (one every 20 trials). The order of trials was randomized across 

participants. Each trial was preceded by a fixation-point positioned in one of four possible 

locations outside the symbol space.  

The task was made incentive-compatible by paying participants according to their proportion 

of correct responses (minimum 0, maximum 14 euros).  

 

Visual search control task 

The Visual search task served as a control for individual differences in visual scan efficiency. 

In this task, participants had to detect a target among a variable number of distractors. They 

were instructed to be as accurate and fast as possible, and they were reimbursed based on a 

scoring formula combining accuracy and reaction times (see section 1.A.2 in Appendices). 

 

Cognitive measures 

Raven Advanced Progressive Matrices Test (APM). Participants performed the Raven 

Advanced Progressive Matrices Test (APM). In particular, we used a 20-minute timed version 

of the task, which has been shown to be an adequate predictor of the untimed APM score 

(Hamel & Schmittmann, 2006). Participants were paid according to the number of correct 

responses (20 cents for each correct response, maximum 7.20 euros). 

Cognitive Reflection Test (CRT). Participants answered the three questions of the CRT without 

any time limit. The CRT score reflected the number of correct responses in the test. 

N-back task (2-back and 3-back). Participants performed a computerized version of the 2-back 

and 3-back task. In each of these tasks, participants were presented with a series of individual 

letters appearing at the center of the screen (100 letters in total) and they had to decide whether 

the current letter matched the one observed two (in the 2-back task) or three (in the 3-back task) 
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trials before. Each letter was presented for 1000 ms, followed by a blank screen for 1000 ms. 

At each trial, participants indicated their choice by pressing a response key for “match” or 

pressing nothing for “non-match”. In both tasks, participants were paid according to their 

proportion of correct responses (min 1 euro, max 3 euros for each task).  

Forward and backward digit span: Participants were asked to repeat orally series of digits in 

the presented order (digit span forward) or in reversed order (digit span backward). They 

repeated increasingly long sequences of digits until they made two mistakes.  

 

Participants and procedure 

Participants were 50 students from the University of Trento, Italy (38 females, mean age 23.16, 

SD 2.80). The study was approved by the local ethics committee and all participants gave 

informed consent. Every participant took part in two experimental sessions on consecutive 

days. Participants performed the different experimental tasks in fixed order. 

In the first experimental session, participants completed the Relational-inference task while 

their eye movements were registered. After completing the Relational-inference task, 

participants performed the Visual search control task.  

In the second experimental session, participants completed the Raven Advanced Progressive 

Matrices Test (APM), the Cognitive Reflection Test (CRT), 2-back and 3-back tasks and 

forward and backward digit span tests in fixed order. Feedback about performance and 

respective earnings in each task were provided at the end of the second experimental session. 

 

Relational-inference task: eye-tracking analysis 

Classification of transitions 
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To analyze eye movements, we defined six Regions of Interest (ROIs) in correspondence of 

the six symbols (see section 1.A.1.2 in Appendices). We classified transitions as eye 

movements from one ROI to the next.  

We classified a transition as Transitive Transition (henceforth, Transitive-T) if it was suitable 

for detecting a transitive relation within a relational set. More specifically, we focused on 

transitions connecting the consequent of a conditional relation to the antecedent of another 

conditional, since premise integration in transitive inference is generally achieved by the 

compression of the repeated term in a single token (Sternberg, 1980). 

We also divided transitive-Ts in linear transitive-Ts and non-linear transitive-Ts (Figure 3). 

Linear transitive-Ts were those transitions suitable for detecting transitive relations in linear 

relational sets (up-down transitive relations between adjacent conditionals). On the contrary, 

non-linear transitive-Ts were coherent with an attempt to individuate transitive relations in non-

linear sets (any down-up transitive relations or transitive relations connecting non-adjacent 

conditionals).  

 

################# 

Insert Figure 3 here 

################# 

 

Representation-building and Representation-consolidation intervals 

In order to individuate the type of representation process employed by each participant, we 

need to segregate processes purely related to the generation of representations from 

mechanisms associated with retention of information in working memory. In fact, within the 

Representation phase, we expect 1) a first stage more oriented to information acquisition, meant 

to build a representation of the current relational structure and 2) a second stage more dedicated 

to the consolidation of information in working memory, in view of the Response phase. These 
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two stages should be marked by a peculiar difference in terms of cognitive load: the initial 

phase of information-search should require a lower memory load than the process of mnemonic 

consolidation of the final representation. Recent eye-tracking evidence highlighted a relation 

between computational load and fixation length: in particular, exploratory behavior is 

associated with short fixations, while higher-order processes are characterized by longer 

fixations (Graffeo et al., 2015; Velichkovsky et al., 1999, 2002). Moreover, several studies on 

gaze data revealed that exploratory behavior emerges in an initial phase of the visual analysis, 

while integration of information intervenes in a later stage (Castelhano et al., 2009; Unema et 

al., 2005). For these reasons, we expect the first stage to be characterized by shorter fixations 

compared to the second stage. Taking advantage of this property of gaze data, we performed 

several within-participant and within-trial cluster analyses using as variables of interest 1) the 

fixation length (ms) and 2) the time point of the fixation (ms).2 Datasets included data-points 

from single trials in individual participants. We used a k-means cluster analysis using an 

algorithm based on L1 (Manhattan) distance to individuate two clusters in each dataset.3 We 

performed 4000 (50 participants * 80 trials) different cluster analyses on 4000 different 

datasets, individuating in each trial two clusters of fixation events: an early set of fixation that 

we associated with the representation-building process and a later cluster of fixations related 

to representation-consolidation mechanisms (Figure 4). Henceforth, we will refer to these 

temporal phases as Representation-building and Representation-consolidation intervals. This 

                                                           
2 We used end of fixation instead of start of fixation as temporal indicator of fixation occurrence since it facilitates 

the detection of the temporal switch from short to long fixations by the clustering algorithm.  

3 We chose an algorithm based on L1 distance since it has been shown to be more robust to the influence of 

outliers compared to higher-order distance metrics including Euclidean distance and Mahalanobis distance 

(Sidiropoulos, 1999; Zhong et al., 2012) and to better deal with overpower of large-scale features (Loohach & 

Garg, 2012). 
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method allowed us to individuate intervals based on actual eye data of single participant in 

single trials. This aspect is important because it allowed us 1) not to assume any arbitrary length 

of the two intervals, 2) to preserve between-subject variability (differences in interval lengths 

across participants) and 3) to maintain within-subject heterogeneity (differences in interval 

lengths across trial categories). 

 

                                                           ################# 

Insert Figure 4 here 

                                                           ################# 

 

Attentional indices 

Once having isolated a time interval closely related to representation-building mechanisms 

(Representation-building interval), we investigated whether we could detect distinct 

information-search patterns expressing sophisticated and unsophisticated representation 

processes. We expect sophisticated participants to explore the relational space to detect higher-

order transitive relations between conditionals, while unsophisticated participants should not 

search for transitive relations and should encode binary rules without exploring the underlying 

higher-order relational complexity. We therefore individuated three attentional indices that 

could express whether agents searched for relational information in the Representation-

building interval.  

These are the three indices of interest: 

1) Relational Search (RS): An agent who aims to search for all possible relations in the 

environment should perform a considerable number of transitions in a short time window. The 

Relational Search index expresses the tendency to perform a high rate of transitions in the 

Representation-building interval.  
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We calculated individuals’ Relational Search indices dividing, for each trial, the total number 

of transitions by the duration of the respective representation-building interval. Then we 

calculated the average of these trial-by-trial search indices to obtain a single individual measure 

of Relational Search. The greater the index magnitude, the higher the rate of transitions carried 

out by the respective participant in the Representation-building interval. 

2) Attentional Bias (AB): Since the relational structure of sets can be spatially expressed in 

different ways (e.g. linear and non-linear sets), searching for relations requires homogeneous 

distribution of attention in the entire relational space. Conversely, heterogeneous spread of 

attention might indicate a lack of purely exploratory behavior and suggest enhanced 

computation on the most-attended items, since agents tend to focus their attention on the 

elements they are processing (Devetag et al., 2016; Polonio et al., 2015; Rayner, 1998). The 

Attentional Bias index reflects the ability to distribute attention homogeneously across ROIs 

during the Representation-building interval.  

More specifically, the present index measures the magnitude of deviation from the perfect 

distribution of attention (1/6 of total fixation time for each of the 6 ROIs). The Attentional Bias 

index was generated by calculating, for each trial, the Euclidean distance from the expected 

homogeneous distribution of attention across the six ROIs to the actual distribution of fixations 

across the ROIs. We used the average of these trial-by-trial indices of attention to express 

individual indices of Attentional Bias across participants. The lower the index value, the lower 

the distance from perfectly homogenous distribution of attention. 

3) Relational Bias (RB): A participant who aims to build an exhaustive model of the relational 

environment should search for all the potential types of high-order relations in the current 

structure. In particular, agents should perform both types of transitive-T (linear and non-linear) 

in the Representation-building interval. The Relational Bias index expresses the ability to 

perform every type of transition to detect potential higher-order relations.  
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Since we individuated two types of linear transitive-Ts and four types of non-linear transitive-

Ts (Figure 4), we calculated Relational Bias as the Euclidean distance between the actual ratio 

of non-linear transitive-Ts (over transitive-Ts) and the expected proportion of non-linear 

transitive-Ts (2/3 of the total number of transitive-Ts).4 The lower the index value, the lower 

the distance from the expected distribution of linear and non-linear transitive-Ts. 

 

Hypotheses 

Expected gaze patterns in sophisticated and unsophisticated participants 

Sophisticated: We expect sophisticated participants to build a representation that explicitly 

expresses the relational structure of the relational set. They should therefore search for every 

possible relation characterizing a relational set, showing a high rate of transitions in their 

Representation-building interval (high RS), exhibiting a homogenous distribution of attention 

across ROIs (low AB) and implementing both linear and non-linear transitive-Ts (low RB). 

Unsophisticated: In the Representation-building interval, participants implementing an 

unsophisticated representation process should not search for higher-order relations linking 

conditional rules. We expect them to acquire and memorize triplets of conditionals in 

sequential order, without trying to manipulate and rearrange them in a model that resembles 

the actual relational structure of the trial. Such lack of pure exploratory behavior in favor of a 

tendency to memorize non-integrated chunks of information should slow down acquisition of 

information, leading to a low rate of transitions in their representation-building phase (low RS). 

Moreover, since sequences of only two to four digits at a time can be memorized (Cowan, 

2012), they should spend a significant proportion of their representation-building phase on a 

                                                           
4 Number of transitive-Ts and of non-linear transitive-Ts were computed pooling data from all trials, since single 

trial data in the representation-building stage contained few occurrences of transitive-Ts (especially non-linear). 

Using trial-by-trial ratios, RB indices would have been noisier indicators of relational search behavior. 
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subset of the six elements (high AB). Finally, we predict them to perform few non-linear 

transitive-Ts (high RB), since their strategy requires a simple up-down, left-right sequential 

and ordered scan path, as expected by western cultural visual scan propensity (Abed 1991; 

Chua et al. 2005; Ishii et al. 2011). 

 

Performance in the Relational-inference task 

In the Relational-inference task, we expect sophisticated participants to show higher average 

accuracy rates than unsophisticated participants, since their comprehensive model of the 

relational environment should allow them to respond to the occurrence of every possible state.  

The performance drop of unsophisticated participants should be particularly pronounced in 

non-linear relational sets, since the mismatch between the latent relational structure and their 

internal representation should lead to a high error rate when applying transitive inference in the 

Response phase (Halford, 1984).  

 

The role of working memory, fluid intelligence and cognitive reflection 

After individuating two groups of participant expressing sophisticated and unsophisticated 

representation processes, we plan to compare measures of working memory, fluid intelligence 

and cognitive reflection across groups. If these cognitive abilities are involved in the emergence 

of a specific type of representation process, we should observe differences between the two 

groups: in particular, we would expect higher levels of working memory, fluid intelligence or 

cognitive reflection in the sophisticated group, in respect to the unsophisticated one. Moreover, 

it is possible that one or more of these cognitive abilities sustain processes of retention and 

updating of information independently of the representation process implemented. In this case, 

we should observe intra-group modulation of performance by these cognitive measures. This 
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would indicate that these constructs sustain correct recall of information and efficient update 

of information in the Response phase, when the source state is provided. 

 

Results and discussion 

Representation-building and Representation-consolidation intervals 

To separate Representation-building and Representation-consolidation intervals, we run 4000 

independent k-means cluster analyses on within-participant and within-trial fixation data using 

fixation length and time point of fixation as variables. On average, datasets included 22.5 data-

points (fixations). The average time boundary between the two intervals was 4.37 seconds (SD 

= 0.65). Importantly, average fixation length in the Representation-building interval was 

significantly lower than the one in the Representation-consolidation interval (Representation-

building, mean = 261.77 ms, SD = 53.92; Representation-consolidation, mean = 308.87 ms, 

SD = 92.06; Wilcoxon matched-pairs signed-rank test, z = -5.613, effect size (r) = 0.79, p < 

.001), suggesting that they express two distinct phases of information processing. 

 

Disclosing sophisticated and unsophisticated representation processes 

In order to investigate the existence of two distinct representation processes, we conducted a 

between-subject k-means cluster analysis on our three attentional indices. To estimate the 

optimal number of clusters in our dataset, we computed the gap statistics (Giancarlo et al., 

2008; Tibshirani et al., 2001). Results revealed that k = 2 was the best solution (Table 1.B2 in 

section 1.B.1 in Appendices), suggesting that the heterogeneity in the three attentional indices 

was best explained by two types of behavior.  

In Figure 5, we report results of the cluster analysis (k = 2, L1 as distance measures and RS, 

AB and RB as variables of interest). Cluster-1 (N = 25) was characterized by high RS, low AB 

and low RB; conversely, cluster-2 (N = 25) showed low RS, high AB and high RB, reflecting 
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expected differences in the process of representation generation of sophisticated and 

unsophisticated agents. For this reason, we will refer to cluster-1 as the sophisticated group and 

to cluster-2 as the unsophisticated group. Examples of visual analyses of sophisticated and 

unsophisticated participants are shown in Figure 6.  

 

################# 

Insert Figure 5 here 

################# 

                                                                      ################# 

Insert Figure 6 here 

################# 

 

A one-way Multivariate Anova with Relational Search, Attentional Bias and Relational Bias 

as dependent variables and group as independent factor confirmed that the two groups express 

significantly different behaviors in terms of attentional indices (F (3, 46) = 46.58, p < 0.001). 

Individual index comparisons confirmed that all three indices were significantly different 

across groups (RS: z = 5.93, p < .001; AB: z = - 5.52, p < .001; RB: z = 2.86, p = .004. All p 

values were significantly at Bonferroni corrected threshold, p = 0.017). Interestingly, subject 

classification was remarkably stable along the time course of the experiment: we ran two 

different cluster analyses for the first and second halves of the experiment, and we found that 

88% of our participants were consistent in terms of strategy. 

A possible alternative explanation of the observed differences in representation strategy 

concerns visual processing speed: in line with this hypothesis, participants in the 

unsophisticated group would show the observed attentional index levels simply due to low 

efficiency in scanning the relational environment. We tested this hypothesis by comparing the 

two groups in the Visual search task: if visual scan efficiency drove the eye-movement 

differences in the Relational-inference task, the sophisticated group would show higher 
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performance in the Visual search task. However, the two groups did not differ in any of the 

efficiency measures we collected (accuracy, reaction times, earnings; see Table 1.B8 in section 

1.B.2 in Appendices). These results suggest that the inter-group differences observed in the 

Relational-inference task were not related to general efficiency in visual scanning. 

Then we investigated whether the lookup patterns of sophisticated and unsophisticated 

participants changed along the time course of the trial depending on relational set type. We 

considered the proportion of non-linear transitive-Ts as measure of interest since its evolution 

in time should reflect the degree of understanding of the current relational structure. As shown 

in Figure 7, in non-linear sets, sophisticated participants accumulated evidence about the 

existence of non-linear transitive-Ts in the first part of the trial and, once they individuated 

them, maintained a stable ratio of non-linear transitive-Ts to favor consolidation of these 

relations in working memory. In linear sets, sophisticated agents maintained a low proportion 

of non-linear transitive-Ts, given their absence in this type of set. These results suggest that 

sophisticated agents were building a representation that explicitly expressed the relational 

structure of the environment. Conversely, we do not observe differences in the proportion of 

non-linear transitive-Ts across relational sets in unsophisticated participants, suggesting that 

they did not grasp the relational structure of the current environment. 

 

                                                           ################# 

Insert Figure 7 here 

################# 

 

Performance in the Relational-inference task 

We ran a mixed-design Anova with mean accuracy as dependent variable, group (sophisticated 

and unsophisticated) and relational set (linear and non-linear) as independent factors. Results 

show significant main effects of group (F (1, 48) = 18.20, p < .001) and category (F (1, 48) = 
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27.09, p < .001), and a significant interaction effect (F (1, 48) = 17.62, p < .001), indicating 

that the relation between performance in linear and non-linear sets differed across groups. 

Figure 8 shows that sophisticated groups show higher average accuracy than unsophisticated 

ones, who in turn exhibited a significant decrease in performance in non-linear relational sets. 

These results point out that sophisticated representation behavior is more effective than 

unsophisticated processing, especially when the relational structure underlying the current 

environment is implicit and not easily recognizable.  

 

                                                                            ################## 

Insert Figure 8 here  

                                                          ################## 

 

Cognitive abilities, representation processes and performance 

We tested whether sophisticated representation behavior was accompanied by higher abilities 

in cognitive reflection, fluid intelligence or working memory (Table 1). Tests of the six 

directional hypotheses (higher score for sophisticated participants in each cognitive test) were 

conducted using Bonferroni adjusted alpha levels of .008 per test (.05/6). The sophisticated 

group indeed showed higher CRT score than the unsophisticated group (one-tailed Mann 

Whitney U test, z = 2.508, effect size (r) = 0.35, p = .006), suggesting that cognitive reflection 

had an impact on the emergence of distinct representation processes. On the other hand, APM 

score and measures of working memory did not differ across groups (one–tailed Mann Whitney 

U test: APM, z = 0.20, p = .419; Forward digit span, z = 1.94, p = .026; Backward digit span, 

z = .253, p = 1.00; 2-back, z = -0.22, p = .412; 3-back task, z = 0.26, p = 0.397). 

 

################# 

Insert Table 1 here 

################ 
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To corroborate these findings, we run a stepwise backward logistic regression (Draper & Smith, 

1998; Efroymson, 1960; Hocking, 1976) with group as dependent variable and all the six 

cognitive measures as independent variables. A low Variance Inflation Factor (VIF, 

Marquaridt, 1970) of 1.38 indicated no collinearity between variables (see Table 1.B3 in 

section 1.B.1 in the Appendices, for between-measure correlation table). Results confirmed 

that the CRT score was the only cognitive measure significantly predicting the type of 

representation process used (B = 0.78, p = .015, see Table 1.B4 in section 1.B.1 in the 

Appendices). Furthermore, we tested if one or more of our cognitive measures modulated 

within-group performance in the Relational-inference task. We observed that performance in 

the unsophisticated group was significantly affected by the level of fluid intelligence and 

backward span score (stepwise backward regression, Table 2). In the sophisticated group, 

performance was modulated by APM score, and marginally by working memory measures 

such as backward span and 2-back score (Table 2). These results suggest that fluid intelligence 

and working memory sustain the representation process by modulating mechanisms of 

retention and updating of stored information. It is not surprising that the effect of working 

memory is stronger in the unsophisticated group. In fact, the individuation of transitive 

relations in sophisticated participants could have allowed them to chunk information more 

efficiently in the Representation phase, decreasing memory load in the Response phase. 

 

################ 

Insert Table 2 here 

################ 

 

Causal mediation analysis 
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In order to understand the interplay between the type of representation process and cognitive 

measures in explaining task performance, we used Causal Mediation Analysis to test whether 

representation behavior could serve as a mediator in explaining the effect of one or more of our 

cognitive measures on performance in the Relational-inference task. To obtain a single and 

continuous measure of representation behavior that could serve as a mediator factor, we 

standardized and averaged our three attentional indices in a unique index (Representation 

Index).5 Using the approach implemented in the “Mediation” R package (Imai et al., 2010), we 

first estimated a linear mediator model with Sophistication Index as dependent variable and 

our six cognitive measures as predictors. Only CRT score significantly predicted Sophistication 

Index (B = 0.40, p < .001, see Table 1.B5 in section 1.B.1, Appendices). This finding is in line 

with the results previously reported (Table 1 in the main text, Table 1.B4 in section 1.B.1, 

Appendices), indicating that cognitive reflection is the only measure differing across groups. 

The second step of the analysis consisted of estimating a linear outcome model with overall 

accuracy as dependent variable and Sophistication Index and the six cognitive measures as 

independent variables (Table 1.B6 in section 1.B.1, Appendices). Sophistication Index (B = 

0.56, p < .001), APM score (B = 0.29, p < .001) and Backward Span (B = 0.26, p = .015) 

significantly predicted overall accuracy, while CRT score did not predict accuracy (B = .11, p 

= .324). However, running a linear regression dropping Sophistication Index as predictor, CRT 

score significantly predicted accuracy (B = 0.33, p = .014, Table 1.B7 in section 1.B.1, 

Appendices), suggesting complete mediation of Sophistication Index on the relation between 

cognitive reflection and performance. 

Finally, we tested the statistical significance of the indirect effect. Confidence intervals were 

calculated using the bias-corrected and accelerated bootstrap method (BCa) (Di Ciccio & 

                                                           
5 We changed the sign of AB and RB indices in order to have a continuous index indicating sophisticated 

representation behavior for positive values and unsophisticated representation behavior for negative values. 
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Efron, 1996), a procedure specifically recommended in mediation analysis (Preacher & Hayes, 

2008). As expected, the average causal mediation effect of Sophistication Index on the relation 

between CRT score and overall accuracy was statistically significant (p = .02, based on 10000 

bootstrap samples), accounting for an estimated 68% of the total effect between CRT score and 

overall accuracy (Table 3). 

 

################# 

Insert Table 3 here 

################ 

 

In sum, Causal Mediation Analysis revealed a remarkable effect of cognitive reflection on 

representation-building processing, which in turn highly predicted accuracy in the Relational-

inference task. The relationship between cognitive reflection and performance was largely due 

to this mediating effect.  

 

Summary 

In Experiment 1, we introduced a novel eye-tracking task to investigate the process of 

spontaneous generation of contingency representations. A cluster analysis on self-initiated 

patterns of information-search revealed the existence of two groups of participants that 

expressed different representation-building behaviors. Sophisticated participants searched for 

higher-order relational information in order to construct a comprehensive model of the 

environment that connected each state with every potential consequence of its occurrence. 

Conversely, unsophisticated participants encoded binary rules without searching for the higher-

order relational properties underlying them. The emergence of these two distinct processes of 

representation generation led to marked differences in task performance, especially in 
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relational sets where the intrinsic structure of the relational environment was misaligned with 

the order of presentations of conditional rules. 

Results from cognitive assessments analyses revealed that cognitive reflection is the only 

measure explaining the emergence of the two strategies. Conversely, fluid intelligence and 

working memory modulated intra-group performance levels but did not differ across groups. 

However, these results are only correlational and provide indirect evidence about the cognitive 

factors underlying sophisticated and unsophisticated behavior. For this reason, we ran 

Experiment 2 to investigate whether the emergence of the unsophisticated strategy was due to 

either the inability to implement the sophisticated strategy or to mechanisms of spontaneous 

strategy generation.  

 

Experiment 2 

In order to better understand the cognitive mechanisms underlying the emergence of 

sophisticated and unsophisticated representation processes, in Experiment 2 we ran two 

additional sessions of the Relational-inference task with a new pool of 56 participants. In 

session 1 (pre-treatment), participants completed the task with the same modalities of 

Experiment 1. In Session 2 (post-treatment), participants received additional information about 

the existence of the two strategies and their respective average performance rates. Then they 

were asked to repeat the Relational-inference task in the way they preferred. We compared pre- 

and post- treatment visual analyses to identify potential strategy switches that would indicate 

that unsophisticated representation behavior does not depend on cognitive ability or 

motivation, but rather on processes related to the spontaneous generation of sophisticated 

representation strategies. 

Although we report Experiment 2 right after Experiment 1 for continuity in terms of research 

question, we acknowledge that Experiment 2 and Experiment 3 were run on the same 
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participants and Experiment 2 was run after Experiment 3, to avoid any interference by the 

manipulation included in Experiment 2 on behavior in Experiment 3. 

 

Method 

Participants and procedure 

Participants were 56 students from the University of Trento, Italy (43 females, mean age 24.16, 

SD 4.75). The study was approved by the local ethics committee and all participants gave 

informed consent. Every participant took part in two experimental sessions (pre- and post- 

treatment) on consecutive days, performing the experimental tasks in fixed order. In the pre-

treatment session, participants completed a shortened-version of the Relational-inference task 

while their eye movements were registered.6 They were reimbursed according to their 

proportion of correct responses (minimum 0, maximum 9 euros). Instructions and control 

questions were the same as in Experiment 1. At the end of session 1, participants performed 

some of the cognitive tests we used in Experiment 1. In particular, we chose those tests that 

have been observed to impact on behavior in the Relational-inference task: APM, CRT and 

backward digit span. The modalities of administration of APM and backward digit span were 

identical to Experiment 1. Concerning the CRT, we used a recent multi-item version of the 

CRT (Primi et al., 2016) composed of six new items. Multi-item CRTs have been recently 

recommended to overcome limitations coming from familiarity and range restrictions, by 

                                                           
6 The new version consisted of 51 trials instead of the original 80 trials. Most of the items of the shortened-version 

were taken from the original one, but some new items were created to maintain the same ratio between linear and 

non-linear relational sets and balance the occurrence of the different symbols and source states. Participants were 

provided with two 1-minute breaks (one every 17 trials). All the other characteristics of the task remained 

unaltered.   
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decreasing the probability of previous exposure to the CRT’s items and floor or ceiling effects 

(see Bialek & Pennycook, 2017; Stieger & Reips, 2016; Toplak et al., 2014). 

In the second experimental session (Post-treatment), additional instructions were read to 

participants before repeating the Relational-inference task. We informed participants about the 

existence of the two strategies observed in the task (sophisticated and unsophisticated) and 

explained in details each of them, independently of the strategy used by the participant in the 

pre-treatment session (see Online Supplementary Material for full transcription of the 

instructions administered to participants). Moreover, participants were informed about the 

average performance and respective gain of participants using either the sophisticated or the 

unsophisticated strategy, calculated on data of Experiment 1.7 After the administration of 

additional information, participants were asked to perform (for the second time) the task in the 

way they preferred, even implementing a strategy different from the two we reported. For the 

second session, 51 new items were created to avoid any potential confound due to the repetition 

of items of Session 1. Each new item consisted in a perfect copy of the correspondent item of 

session 1 in terms of relational structure of symbols, but the identity of symbols in each logical 

position was changed. As in session 1, participants were paid based on their proportion of 

correct responses (minimum 0, maximum 9 euros).  

Using this manipulation, we ensured that all the participants could have access to the 

sophisticated strategy in the post-treatment session. Moreover, informing them about the 

difference in average gain between the two strategies served as a motivation for switching 

strategy. We aimed to analyze differences in representation behavior across sessions, to explore 

                                                           
7 Gain magnitudes of Experiment 1 were re-calibrated based on the minimum and maximum range of 

Experiment 2. Unsophisticated participants: 62% of correct responses, 5.58 euros on average. Sophisticated 

participants: 84 % of correct responses, 7.56 euros on average. 
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whether unsophisticated participants were prone and able to implement the sophisticated 

strategy. 

 

Eye-tracking analysis 

In the pre-treatment session, we replicated the analysis pipeline of Experiment 1. We first 

performed single-trial and single-subject cluster analyses on eye fixation data (fixation length 

and time point as dimensions) to distinguish between Representation-building and 

Representation-consolidation intervals. Then we considered data in the Representation-

building interval to isolate three attentional indices: Relational Search (RS), Attentional Bias 

(AB) and Relational Bias (RB). These three indices served as variables in a between-subject 

cluster analysis to identify sophisticated and unsophisticated participants. We then compared 

the two groups to explore differences in performance in the Relational-inference task and in 

cognitive assessments such as CRT, APM and backward digit span. 

In the post-treatment session, we recalculated our three attentional indices and performed a 

between-subject cluster analysis on these new indices, in order to investigate a potential change 

in the proportion of agents implementing the sophisticated or the unsophisticated strategy. 

 

Hypotheses 

We believe that the emergence of sophisticated representation behavior in Experiment 1 is 

driven by preferential access to deliberative processes of acquisition, binding and 

representation of relational information (as suggested by the high average CRT score). 

Coherently, we do not believe unsophisticated participants to be unable to implement the 

sophisticated strategy, but rather to express a minor disposition towards spontaneously 

generating it. For this reason, after repeating the task and having received additional 

instructions about the existence of the sophisticated strategy, we expect a large proportion of 
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the participants classified as “unsophisticated” in the pre-treatment session to switch strategy 

in favor of a more sophisticated one in the post-treatment session. 

 

Results and discussion 

Session 1: pre-treatment 

In session 1 we replicated results of Experiment 1. We separated Representation-building and 

Representation-consolidation intervals in the Representation phase by running single-trial 

independent k-means cluster analyses using fixation length and time point of fixation as 

variables. The mean time boundary between the two intervals was 4.43 seconds (SD = 0.65). 

Fixation duration was shorter on average in the Representation-building interval than in the 

Representation-consolidation interval (Representation-building, mean = 254.59 ms, SD = 

59.22; Representation-consolidation, mean = 292.95 ms, SD = 64.43; Wilcoxon matched-pairs 

signed-rank test, z = -5.490, effect size (r) = 0.73, p < .001), confirming a difference in 

cognitive processing across the two intervals. 

A cluster analysis of our three attentional indices (calculated using data from the 

Representation-building interval) returned two groups showing the same patterns we had found 

in Experiment 1. Participants in cluster-1 (N = 36) showed high RS, low AB, and low RB, 

while cluster-2 (N = 20) exhibited low RS, high AB, and high RB, as expected by sophisticated 

and unsophisticated agents, respectively. We will refer to cluster-1 as the sophisticated group 

and to cluster-2 as the unsophisticated group. As expected, indices were significantly different 

across groups (Multivariate Anova, dependent variables: RS; AB; RB; independent factor: 

group. Effect of group: F (3, 52) = 29.51, p < 0.001). 

A mixed-design Anova corroborated results of Experiment 1 in terms of relationships between 

group, relational set type and performance: we found significant main effects of group (F (1, 

54) = 13.29, p < .001) and relational set type (F (1. 54) = 33.022, p < .001), and interaction 
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effect (F (1, 54) = 15.28, p = .025). Specifically, unsophisticated participants exhibited lower 

performance than sophisticated ones, especially in non-linear trials (Sophisticated, Linear: M 

= 0.84; Sophisticated, Non-linear: M = 0.78; Unsophisticated, Linear: M = 0.68; 

Unsophisticated, Non-linear: M = 0.55). Then we tested between-group differences in terms of 

cognitive reflection, fluid intelligence and working memory. Sophisticated participants showed 

a higher CRT score than the unsophisticated group (one-tailed Mann Whitney U test, z = 2.59, 

effect size (r) = 0.35, p = .005, significant at Bonferroni corrected threshold p = .017 (.05/3)), 

confirming that cognitive reflection has an effect on sophisticated representation behavior. We 

found a between-group effect of Backward digit span (z = 2.08, p = .019), but this effect did 

not survive Bonferroni correction (Bonferroni corrected threshold p = .017). APM score did 

not have any impact on the emergence of either sophisticated or unsophisticated behavior (z = 

1.25, p = .106). The effect of cognitive reflection on representation strategy was corroborated 

by a stepwise backward logistic regression analysis with group as dependent variable and the 

three cognitive measures as independent variables, showing the CRT score was the only 

cognitive measure significantly predicting representation strategy (CRT, B = 0.77, p = .012. 

Variables excluded from the model: APM, p = .531; Backward digit span, p=.396). 

We also replicated results indicating that fluid intelligence and working memory modulate 

intra-group performance (Stepwise backward regression. Sophisticated, APM: B = 0.45, p = 

.001; Backward digit span: B = 0.32, p = .013. Unsophisticated, APM: B = 0.55, p = .001; 

Backward digit span: B = 0.32, p = .058). Furthermore, representation strategy completely 

mediated the relationship between cognitive reflection and performance (Linear regression of 

average accuracy with CRT, APM and backward digit span as predictors. CRT effect without 

representation strategy included in the model: B = 0.24, p = .044. CRT effect with 

representation strategy included in the model: B = 0.17, p = .144. See table 2.A1 and 2.A2 in 

Section 2.B, Appendices). 
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In sum, results of Session 1 of Experiment 2 replicated the ones of Experiment 1, highlighting 

the existence of two groups of participants differing in terms of representation behavior. The 

emergence of these behaviors led to higher performance in the sophisticated group and was 

predicted by cognitive reflection level. In contrast, fluid intelligence and working memory did 

not predict the representation strategy implemented, but rather modulated performance by 

sustaining information maintenance and manipulation mechanisms. 

 

Session2: post-treatment 

After additional instructions about the existence of sophisticated and unsophisticated strategies, 

participants performed a second instance of the Relational-inference task. We performed the 

same analysis of Session 1 based on the new eye data, and we investigated how agents were 

classified after the manipulation. Interestingly, the new cluster analysis returned a large group 

of 49 (out of 56) participants showing attentional index levels expressing sophisticated 

representation behavior. Only 7 participants were classified as unsophisticated agents. 

Comparing the classifications pre- and post-manipulation, we can observe that 35 participants 

were classified as sophisticated in both session 1 and session 2 (S-S group). 14 participants 

were classified as unsophisticated in session 1 and as sophisticated in session 2 (U-S group). 

Finally, 6 participants were classified as unsophisticated in both session 1 and session 2 (U-U 

group). Only 1 participant was classified as sophisticated in Session 1 and as unsophisticated 

in Session 2. We did not include this participant in subsequent analyses. 

We are particularly interested in the U-S group, since it includes participants who shifted their 

strategy from unsophisticated to sophisticated in the post-treatment session. Comparing indices 

from these participants in session 1 and session 2, we can observe a significant difference in 

the direction of the sophisticated strategy for all three attentional indices (Wilcoxon matched-

pairs signed-ranks test, RS:  z = -2.98, effect size (r) = -0.80, p = .003; AB:  z = 2.42, effect 
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size = 0.65, p = .016; RB, z = 3.30, effect size = 0.88, p = .001. All p values were significantly 

at the Bonferroni corrected threshold, p = 0.017). Moreover, the overall index shift was 

significantly higher in the U-S group than in the S-S group (One-way Multivariate Anova with 

RS, AB and RB as dependent variables and group (two levels: S-S and U-S groups) as an 

independent factor, F (3, 46) = 5.93, p = .002). We did not include the U-U group in any 

statistical analysis due to the low number of subjects (n = 6). Nevertheless, comparing 

descriptive statistics of the three attentional indices pre- and post- manipulation in this group, 

we can see that index levels are very similar across sessions, and maintain the typical profile 

of unsophisticated agents (Relational search: M(S1) = -1.76, M(S2) = -1.78; Attentional Bias: 

M(S1) = 1.07, M(S2) = 1.40; Relational Bias: M(S1) = 1.47, M(S2) = 0.90).  

These results confirm that a high percentage (70%) of unsophisticated participants switched 

towards the sophisticated representation strategy in the post-treatment session, suggesting that 

these agents are indeed capable of implementing it. Interestingly, the attentional shift in the U-

S group predicted the increase in performance in the post-treatment session (Linear regression 

with increase in accuracy as dependent variable and average index shift (average of (post – pre) 

differences of RS, AB and RB indices) as the independent variable, B = 0.71, p = .043). 

However, despite the observed increase in performance, participants in the U-S group did not 

reach the average level of performance of the S-S group in the post-treatment session (U-S: M 

= 0.78; S-S: M = 0.90). This can be explained by the fact that participants in the S-S group had 

the possibility to repeat the task using and refining the same strategy, while U-S group 

implemented the sophisticated strategy for the first time in the post-treatment session. In line 

with this hypothesis, we can see that the average accuracy level of U-S participants in the post-

treatment session (78%) was comparable to the one of S-S participants (80%) in the pre-

treatment session (Table 4). 
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################ 

Insert Table 4 here 

################ 

 

Summary 

In session 1 (Pre-treatment) we replicated results of Experiment 1 showing the existence of two 

distinct strategies in the process of generation of internal models of contingencies. Results of 

session 2 (Post-treatment) show that the majority of participants classified as unsophisticated 

in session 1 shifted strategy towards the sophisticated one, suggesting that unsophisticated 

agents can implement the sophisticated strategy. This suggests emergence of unsophisticated 

behavior is not primarily related to cognitive capacity, but is linked to a preferential access to 

it. Furthermore, it indicates that the implementation of the unsophisticated strategy in session 

1 is not due to motivational aspects, at least for the majority of the agents in the unsophisticated 

group. If scarce motivation were the main driver of heterogeneity in Session 1, we would expect 

similar behavior in Session 2, given that incentives are identical in the two sessions. 

 

Experiment 3 

In Experiment 3, we investigated whether sophisticated and unsophisticated strategies can be 

generalized to more ecological contexts, where verbal premises express the conditional 

occurrence of hypothetical events in real life scenarios (Verbal-inference task). Specifically, 

participants had to judge the validity of verbal arguments consisting in conditional sequences 

of hypothetical states (see, for example, Byrne, 1989). 

In contrast to the Relational-inference task, in the Verbal-inference task we did not impose any 

time constraint in the process of relation encoding. Moreover, participants were not required to 

rely on short-term memory mechanisms to perform the task. Despite the remarkable differences 
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between the two tasks, we wanted to test whether agents classified as sophisticated in the 

Relational-inference task would express more sophisticated representation behavior when 

building the representation of real-life hypothetical states in the Verbal-inference task. This 

would suggest the existence of general and context-independent strategies in the process of 

encoding and representation of contingencies. 

 

Method 

Verbal-inference task  

Participants of Experiment 2 (n = 56) performed an additional Verbal-inference task while their 

eye movements were monitored. The Verbal-Inference task was performed in a different 

experimental session preceding both session 1 and 2 of Experiment 2. As in the previous 

experiments, participants were paid based on their proportion of correct responses (minimum 

0, maximum 9 euros). The task consisted of 66 conditional sequences divided in three blocks. 

Each trial was composed of a sequence of two hypothetical conditional premises, followed by 

an assertion revealing the actual occurrence (or non-occurrence) of one of the previous states 

and a conclusion to be evaluated as valid or not valid. The two conditional premises were 

connected by a shared proposition, whose characteristics could return either transitive or 

nontransitive sequences. In transitive sequences, the shared proposition contained two identical 

terms; in nontransitive sequences, one of the terms of the shared proposition consisted in the 

negation of the other (Table 5). As in the Relational-inference task, in both transitive and 

nontransitive sequences, the presentation of the two statements could follow the temporal order 

of events (linear sets) or be misaligned with it (non-linear sets).  

 

################ 

Insert Table 5 here 

################ 
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Possible inferences consisted in modus ponens (MP), modus tollens (MT), affirmation of the 

consequent (AC) and denial of the antecedent (DA). In some transitive sequences, participants 

were required to perform two inferences of the same type to judge the validity of the argument 

(e.g.  MP ∴ MP). Nonetheless, in some of the nontransitive sequences, participants had to make 

two different inferences to express the validity of the argument (MP&DA; MT&AC).8 

Therefore, sequences differed among each other along four dimensions: linearity (linear or 

non-linear), transitivity (transitive or nontransitive), number of inferences to perform (one or 

two) and type of inference (MP, MT, AC and DA). 

Feedback about performance in the Verbal-inference task was provided at the end of the entire 

experiment (Session 2 of Experiment 2). 

 

Eye-tracking analysis 

In order to investigate whether the sophisticated and the unsophisticated strategy would also 

emerge in the construction of internal models of real life hypothetical states, we explored visual 

patterns of information acquisition in different temporal intervals of the Verbal-inference task. 

First, we defined an interval in which participants encoded and integrated the conditional 

statements (i.e. constructing an internal model of the premises) before knowing anything about 

the actual occurrence of states (as in the Representation Phase of the Relational-inference task). 

This temporal interval, which will be referred to as Integration interval, reflected mechanisms 

of encoding and integration of the premises without including any inferential process 

                                                           
8 MP&DA and MT&AC trials were treated independently of the order of the two inferences. Therefore, in 

MP&DA trials both MP ∴ DA and DA ∴ MP are included, while MT&AC trials consist in either MT ∴ AC or AC 

∴ MT sequences.  We also included some fillers with obvious solutions to balance valid and invalid responses in 

participants. Fillers were solved with very high accuracy (97 %) and were not included in subsequent analyses. 
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dependent on the actual occurrence of states. To this aim, we defined six rectangular ROIs (647 

x 167 pixels) around the six propositions of each argument (Figure 9). In each trial, we defined 

as belonging to the Integration interval every fixation data falling in one of the premise ROIs 

(R1-R4) before participants looked at the assertion (R5) or the conclusion (R6).  

 

################## 

Insert Figure 9 here 

################## 

 

Using data from this interval, we investigated whether sophisticated participants tended to 

focus more on the integration of the two conditional statements to form an exhaustive and 

explicit model of the relational structures underlying the premises. Specifically, we analyzed 

transitions connecting the two states of the shared proposition following the temporal order of 

events (i.e. independently of their spatial order). These transitions could indeed indicate an 

attempt at integrating the two conditional statements in a unitary and ordered model of the 

premises. We will refer to these transitions as Integrative transitions (henceforth, integrative-

Ts). Integrative-Ts could be either linear or non-linear, depending on the current type of 

relational set (linear or non-linear). Since linear sets could not contain any non-linear transitive 

relation and therefore participants did not need to perform non-linear integrative-Ts, our eye-

tracking analysis focused on non-linear sets. 

Then we considered as “Judgment interval” every fixation following the first attendance of 

either the assertion or the conclusion, until the response was made. The Judgment interval 

reflected the inferential processing sustaining the judgment of the validity of the argument 

given the information about the actual occurrence (or non-occurrence) of one of the states and 

the conclusion to be evaluated. In this interval, we investigated allocation of attention and 

cognitive resources to specific propositional elements in sophisticated and unsophisticated 
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agents. In particular, we focused on those hypothetical states of the premises whose relationship 

had to be judged: the state (of the premises) whose occurrence has been revealed in the assertion 

and the state (of the premises) corresponding to the conclusion to be evaluated as valid or 

invalid. In the Judgment interval, we will refer to these two ROIs as Judgment states (Figure 

10).  

 

################## 

Insert Figure 10 here 

################## 

 

We believe Judgment states to be the key pieces of information in the reasoning process in the 

Judgment interval, since the validity of the argument had to be derived from the evaluation of 

the hypothesized relationship between the Judgment states. Therefore, in the Judgment interval, 

we extracted attentional patterns that could indicate deeper information processing on these 

propositional elements. Specifically, we tested 1) distribution of attention between the 

Judgment states and the other ROIs and 2) differences in depth of information processing 

between the Judgment states and the other ROIs. The former parameter has been 

operationalized by calculating the proportion of time spent in the Judgment states compared to 

the other four ROIs in the Judgment interval. The latter index has been calculated as the 

increase in fixation duration (increase in allocation of cognitive resources, see Graffeo et al., 

2015; Velichkovsky et al., 1999, 2002) in the Judgment states in respect to the other four ROIs. 

 

Hypotheses 

We expect participants classified as sophisticated in the Relational-inference task (Experiment 

2, pre-treatment session) to devote greater attention to the generation of an exhaustive and 

explicit representation of the hypothetical chain of events when compared to unsophisticated 
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participants. In the Integration interval, before obtaining any information about the occurrence 

of states, we expect them to show a higher rate of non-linear integrative-Ts in non-linear 

relational sets than unsophisticated participants, who in turn should move to the assertion with 

a less comprehensive representation of the relationship underlying the premises. 

In the Judgment interval, sophisticated participants should allocate more cognitive resources 

to the states whose relationship has to be evaluated (i.e. Judgment states), and devote less 

attention to other contextual pieces of information, since they should have already built an 

explicit representation of the underlying relational structure. This would translate into a higher 

proportion of time spent on the Judgment states, as well as an increase in fixation duration in 

these two ROIs. On the contrary, we believe unsophisticated participants’ relational 

representation not to explicitly express the relationship between Judgment states. Therefore, 

once they have encoded the information expressed by the assertion, they should sequentially 

attend all the pieces of information in the set in order to concatenate conditional and transitive 

inferences. Consequently, we predict unsophisticated participants to allocate resources more 

homogeneously between Judgment states and other ROIs in respect to sophisticated ones. 

We also predict “sophisticated” attentional indices to modulate the ability to judge the validity 

of conditional arguments, since they reflect a deeper understanding of the underlying relational 

structure. 

 

Results and discussion 

Behavioral results 

First, we tested whether linearity (linear or non-linear), transitivity (transitive or nontransitive), 

and number of inferences (1 or 2) modulated performance in the Verbal-inference task. A 

Mixed-effect logistic model (subject as random effect on all regressors) did not show any effect 

of linearity (B = 0.01, p = 0.939), transitivity (B = -0.12, p = 0.102) or number of inferences 
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(B = 0.04, p = 0.567). Given these results, we will treat performance only in terms of type of 

inference. Table 6 reports average performance for each type of inference (MP, AC, DA, MT, 

MP & DA, MT & AC). 

 

################## 

Insert Table 6 here 

################## 

 

Representation behavior in the Verbal-inference task 

In the Integration interval, we tested whether sophisticated agents (as classified in the 

Relational-inference task) exhibited a higher tendency to integrate premises in a unitary model 

of the relational environment. We indeed observed that sophisticated agents showed a higher 

ratio of non-linear integrative-Ts in the Integration interval of non-linear sets when compared 

to unsophisticated ones (one-tailed Mann-Whitney U test: z = 1.76, effect size (r) = 0.79, r = 

0.24, p = .039), suggesting that they focused more on the integration of conditional statements 

in a relationally explicit model before moving to the assertion. In order to describe this effect, 

in Figure 11 we plotted the temporal evolution of the proportion of non-linear integrative-Ts 

in the Integration interval of non-linear trials for sophisticated and unsophisticated participants. 

Sophisticated and unsophisticated agents showed similar proportions of non-linear integrative-

Ts in the first seconds of information accumulation, due to an initial reading of the premises. 

However, after a few seconds of accumulation of evidence about the relational structure of the 

environment, sophisticated agents significantly increased their rate of non-linear integrative-

Ts. In sum, sophisticated participants detected the non-linearity in the relational structure and 

focused on the integration of the two conditional statements to build a comprehensive model 

of the hypothetical scenario.  
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################### 

Insert Figure 11 here 

################### 

 

Afterwards, we compared attentional indices in the Judgment interval across groups. Results 

show that sophisticated agents spent more time on the Judgment states (one-tailed Mann-

Whitney U test: z = 1.91, effect size (r) = 0.26, p = .027) and showed a higher increase in 

fixation duration in the Judgments states (one-tailed Mann-Whitney U test: z = 2.05, effect size 

(r) = 0.27, p = .021) than unsophisticated ones. Interestingly, the attentional index in the 

Integration interval predicted the level of indices in the Judgment interval (Table 7), suggesting 

that the tendency to integrate premises in a unitary relational model during integration was 

associated with an enhanced attentional focus on key pieces of information during the validity 

judgment. 

 

################### 

Insert Table 7 here 

################### 

 

Representation behavior and performance in the Verbal-inference task 

Although the proportion of non-linear integrative-Ts in the Integration interval predicted the 

level of the attentional indices in the Judgment interval, it did not have a direct impact on 

performance (Table 3.A1 in section 3.A, Appendices). We therefore tested the hypothesis that 

patterns of information acquisition in the Judgment interval predicted performance in the task.  

Since proportion of time spent on the Judgment states and increase in fixation duration in these 

ROIs were highly correlated (Spearman’s rank correlation, r = 0.64, p < .001), we ran a 

stepwise backward regression with the two indices as independent variables and mean overall 

accuracy in the Verbal-inference task as the dependent variable to select the best predictor 
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among the two. Results show that increase in fixation duration was excluded from the model 

(p = .343), while the proportion of time spent in the Judgment states had an impact on 

performance (B = 0.43, p = .001). Therefore, we used the latter variable as an indicator of 

behavior in the Judgment interval to explore its effect on performance. We ran a multivariate 

regression with the six inference categories as dependent variables and proportion of time spent 

in the Judgment states as the independent variable, and we found that the attentional index 

predicted higher performance in AC, DA, MT&AC and MP&DA inference categories (Table 

8).  

 

################### 

Insert Table 8 here 

################### 

 

Finally, we tested whether cognitive measures such as cognitive reflection, working memory 

and fluid intelligence modulated performance in the Verbal-inference task. We ran a stepwise 

backward regression with mean overall accuracy in the Verbal-inference task as the dependent 

variable and APM score, CRT score and backward digit span as independent factors. Results 

indicated that working memory, as reflected by the backward span, predicted performance in 

the task (B = 0.38, p = .005, see also Table 3.A2 in section 3.A, Appendices for individual 

inference type analysis), while cognitive reflection and fluid intelligence levels were unrelated 

to mean accuracy (APM, p = 0.86; CRT, p = 0.16). This result is consistent with several studies 

showing correlations between working memory capacity and reasoning, for instance in the 

evaluation of syllogistic arguments (Capon et al., 2003; Copeland & Radvansky, 2004; 

Gilhooly et al., 1993, 1999; Kyllonen & Christal, 1990). Nonetheless, the association between 

working memory abilities and validity judgments in syllogistic arguments is in line with several 



42 
 

theories of syllogistic reasoning (Fisher, 1981; Johnson-Laird, 1983; Johnson-Laird & Byrne, 

1991; Sternberg & Turner, 1981). 

 

Summary 

Results of Experiment 3 indicate that heterogeneity of performance in the Verbal-inference 

task is linked to the amount of cognitive resources allocated to the Judgment states in the 

Judgment interval, which is in turn predicted by the tendency to integrate premises in a unitary 

and explicit representation of the hypothetical scenario in the Integration interval. All these 

indices are associated with the emergence of either sophisticated or unsophisticated behavior 

in the Relational-inference task, suggesting the existence of general, context-independent 

strategies in building relational representations of contingencies.  

 

General discussion 

In three eye-tracking experiments, we investigated individual differences in the generation of 

internal representations of interrelated contingencies. In Experiment 1 and 2 we introduced a 

novel Relational-inference task with symbolic content, while in Experiment 3 participants had 

to judge the validity of arguments in verbal conditional sequences expressing real life 

hypothetical situations. Taken together, results of the three experiments revealed the existence 

of two strategies for building relational models of contingencies. Sophisticated participants 

spontaneously tended to construct a sequential ordered model of interrelated events, generating 

a mental representation that explicitly expressed the relational structure of the environment.  

Conversely, unsophisticated agents encoded binary conditional relations among states without 

grasping the underlying relational complexity. 
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Several insights from the three experiments unravel the cognitive nature of this heterogeneity. 

Results from analyses of cognitive measures across our two groups in the Relational-inference 

task suggest that cognitive abilities such as fluid intelligence and working memory do not have 

a crucial role in the process of representation strategy generation. These results are in line with 

recent studies investigating the emergence of different strategies in categorical learning (Little 

& McDaniel, 2015; Goldwater et al. 2018). These studies underlined the existence of agents 

either memorizing simple feature-based rules or encoding higher order relations between 

elements. In both studies, fluid intelligence did not predict learning strategy, even though it 

modulated learning rates. Moreover, evidence about the existence of a relationship between 

learning strategy generation and working memory capacity is inconsistent across studies (see 

McDaniel et al., 2014; Little & McDaniel, 2015). 

Importantly, unlike fluid intelligence and working memory, cognitive reflection robustly 

predicted the type of representation process applied. Cognitive reflection traditionally 

expresses the tendency to implement either deliberative or reflexive processes (Frederick et al., 

2005, Travers et al., 2016). Moreover, it has been recently associated with accuracy in 

processes of information search (Cokely et al., 2009; Cokely and Kelley, 2009) and 

representation of task-relevant information (Mata et al., 2014; Sirota et al., 2014). In line with 

these findings, high cognitive reflection levels may reflect a preferential access to more 

deliberative representation processes (Osman, 2004), which leads to the generation of more 

sophisticated strategies in task resolution. Moreover, it may suggest that the emergence of 

either sophisticated or unsophisticated behavior in representation-building processes represents 

a more malleable thinking disposition, rather than an unmodifiable cognitive ability (for 

discussions on these issues, see Campitelli & Labollita, 2010, Toplak & Stanovich, 2002).  

This interpretation is supported by the results of Experiment 2, which show that the majority 

of participants classified as unsophisticated in the pre-treatment session switched towards 



44 
 

sophisticated behavior in a repetition of the task (post-treatment session), after having received 

additional information about the existence of sophisticated and unsophisticated strategies and 

their respective efficacy rates in the task. These findings confirmed that most of our participants 

were cognitively able to build ordered representations of sequential events, but only reflective 

agents had a spontaneous and direct access to sophisticated representation processing when 

receiving relational information about conditional occurrence of hypothetical states. However, 

feedback, additional instructions or simple practice can trigger analytical and deliberative 

processing that overcomes initial intuitive strategies (Ball, 2013), in line with two-stage 

reasoning process theories (e.g. Evans, 1984, 2006). 

Nevertheless, Experiment 3 revealed that heterogeneity in representation behavior emerges 

spontaneously when agents reason about real life conditional sequences of events (Verbal-

inference task). In particular, participants classified as sophisticated in the Relational-inference 

task (Experiment 2, pre-treatment) showed a higher tendency to integrate between-state 

relations in an exhaustive model of contingencies before searching for information about the 

actual occurrence events in the Verbal-inference task. On the contrary, unsophisticated agents 

were more prone to encode minimal units of relational information and start the inferential 

process without having built a model explicitly expressing direct and indirect consequences of 

states. This result is extremely important because, in the Verbal-inference task, the encoding 

of hypothetical states was not constrained by time or short-term memory limitations, indicating 

the existence of a spontaneous tendency to integrate relational information about contingencies 

in a coherent and exhaustive model of the relational space. This tendency also predicted 

behavior during the validity judgment, once information about the occurrence of a state and 

the conclusion to be evaluated had been attended. Specifically, participants who had already 

integrated premises in a comprehensive model (i.e. sophisticated participants) selectively 

allocated cognitive resources on the hypothetical states whose relationship had to be evaluated 
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(assertion and conclusion). This is consistent with reasoning with mental models (Johnson-

Laird, 1983; Johnson-Laird, 2010), which predicts the generation of counterexamples to the 

hypothesized relationship between the states whose relationship has to be evaluated as valid or 

invalid. On the contrary, unsophisticated participants allocated resources more homogenously 

across ROIs after attending the assertion and the conclusion, suggesting that they had a less 

comprehensive representation of the underlying relational structure when starting inferential 

processing. This difference in resources allocation explained part of the heterogeneity in 

performance in the Verbal-inference task, showing preliminary evidence about the role of 

attention and representation processes in reasoning with conditional sequences.  

We believe that the results of this study provide novel insights about the way agents encode 

and represent relational information about contingencies. Since these processes are crucial in 

several areas of investigations, including learning, decision-making and reasoning, we hope 

that our results would fuel further research into the role of representation-building functions in 

explaining the heterogeneity underlying higher cognition. 
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Figures  

Experiment 1 

 

 

 

 

 

 

 

 

 

Figure 1. Relational-inference task. In the Representation phase (left panel), participants observed 

for 9 seconds three conditional statements (C1, C2, C3) connecting abstract symbols (states). In the 

Response phase (right panel), they had to select all the states that necessarily followed the occurrence 

of one of the symbols presented in the Representation phase (source state, highlighted by a (red) 

square and a (red) selection mark). In the current example, participants should have chosen all three 

remaining symbols (circle, triangle and cross) given “square” as source state. 

 

Figure 2. Types of symbol configuration in the Relational-inference task. In linear trials (left panel), 

the spatial order of conditionals (from up to down) matched the underlying relational structure 

(triangle  square  cross  circle). In non-linear trials (right panel), this was not the case: in 

fact, the up-down spatial order of conditionals did not match the current relational structure 

(triangle  square  cross , circle). 
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Figure 3. Depiction of the six possible transitive-Ts (arrows), grouped in linear and non-linear transitive-Ts. 

Figure 4. Example of cluster analysis on eye-tracking data from one trial of a single participant. 

Points represent fixations, performed in precise time points within the trial (x-axis) and 

characterized by specific lengths (y-axis). Colors of the points express the results of the cluster 

analysis: an early cluster of short fixations (orange (light gray) dots), Representation-building 

interval) and a later set of longer fixations (blue (dark gray) dots), Representation-consolidation 

interval).  
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Figure 5. Bar graph of standardized indices of visual analysis in the two clusters of participants. 

Figure 6. Examples of visual analysis of sophisticated and unsophisticated participants in the 

Representation-building interval. The sophisticated participant (left panel) performed a high 

number of transitions (red arrows), distributed her fixations rather homogeneously across ROIs (red 

circles) and performed both linear and non-linear transitive-Ts (as visible from the direction of 

arrows). The unsophisticated participant (right panel) exhibited a lower number of transitions, her 

attention was more focused on the top-left ROIs and did not perform any non-linear transitive-Ts. 
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Figure 7. Time course of proportion of non-linear transitive-Ts by trial category. We considered 

time windows of 1 second. The first time window (0-1s) was discarded from the plot because of the 

extremely low number of transitive-Ts in this time interval (0.004% of the total number of transitive-

Ts). Filled areas around lines represent standard error of the mean.   
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Experiment 3 

 

Figure 8. Boxplots of mean accuracy for the two groups in the two types of relational set. 

 

Figure 9. Example of trial with ROIs (square boxes around propositions, not shown to the 

participants) used for eye-tracking analysis. R1-R4 constitute the premises of the argument, and 

fixation falling in these ROIS before any fixation occur in R5-R6 are included in the Integration 

interval. In this example, dotted (red) ROIs represent the shared proposition. 
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Figure 10. Eye-tracking analysis in the Integration interval and in the Judgment Interval. In the 

Integration interval (upper panel), before participants have acquired information about the 

occurrence of states and inference to evaluate, we focused on non-linear integrative-Ts (red (dark 

gray) arrow) in non-linear relational sets, reflecting the attempt to individuate a non-linear 

transitive relation between the states of the premises (square ROIs). 

In the judgment interval (lower panel), once participants have looked at the assertion or the 

conclusion, we focused on distribution of attention and depth of information processing in the 

Judgment states (dotted (red) ROIs) in comparison to the other four ROIs (solid (blue) ROIs). 
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Figure 11. Time course of proportion of non-linear transitive-Ts (over the total number of between-

ROI) transitions by group in the Integration interval of non-linear trials. Fixation distribution was 

normalized across trial time by assigning fixations to five homogeneous intervals based on total 

number of fixations in the Integration interval of that specific trial. In this way, each trial was 

characterized by five temporal intervals containing equivalent numbers of fixations. Trial-by-trial 

proportions of transitions were averaged for each participant and then individual time courses were 

averaged across participants. Filled areas around lines represent between-subject standard error 

of the mean.  
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Tables 

Experiment 1 

Group N. obs. CRT APM 
Forward 

digit span 

Backward 

digit span 
2-back 3-back 

Sophisticated 25 
1.84 

(1.07) 

21.24 

(3.71) 

6.64 

(1.08) 

5.4 

(1.15) 

0.85 

(0.09) 

0.72 

(0.09) 

Unsophisticated 25 
1.04 

(1.06) 

20.88 

(4.36) 

6 

(1.12) 

5.24 

(1.13) 

0.86 

(0.06) 

0.72 

(0.08) 

TOTAL 50 
1.44 

(1.13) 

21.06 

(4.01) 

6.32 

(1.13) 

5.32 

(1.13) 

0.85 

(0.08) 

0.72 

(0.09) 

 

 

Overall accuracy B SE t p 95 % CI 

Sophisticated group       

APM 0.32 0.12 2.79 .011 0.08 0.56 

Backward span 0.19 0.11 1.79 .087 - 0.03 0.41 

3-back 0.20 0.10 1.94 .066 - 0.01 0.41 

N. obs. 25      

Unsophisticated group       

APM 0.41 0.13 3.15 .005 0.14 0.69 

Backward span 0.50 0.14 3.50 .002 0.20 0.80 

N. obs. 25      

 

 

 

 

Table 1. Summary statistics (average and standard deviation, in brackets) of the six cognitive tests 

administered to participants divided by group (row 1 and 2) and collapsed (row 3). 

 

 

 

 

d to participants divided by representation group (row 1 and 2) and collapsed (row 3).  

Table 2. Stepwise backward regression analyses of overall accuracy for sophisticated and 

unsophisticated groups. Only cognitive measures surviving the limit for inclusion in the model (p < 

.1) are reported. 2-back and 3-back measures were jointly considered for evaluation of inclusion in 

the model. Variables excluded from the model (sophisticated group): CRT, p=.29; digit span 

forward, p=.39; 2-back, p=.78. Variables excluded from the model (unsophisticated group): CRT, 

p=.29; digit span forward, p=.19; 2-back, p=.87. & 3-back, p=.40. 
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Effect 
Estimated 

coefficient 

95% CI  

lower bound 

95% CI  

upper bound 
p 

Average causal mediation effect (ACME) 0.23 0.04 0.38 .02 

Average direct effect (ADE) 0.11 -0.13 0.37 .37 

Total effect 0.33 -0.02 0.61 .05 

Proportion mediated 0.68 0.38 7.13 .05 

 

 

 

Experiment 2 

Group N Pre-treatment Post-treatment 

S-S 35 0.80 (0.19) 0.90  (0.13) 

U-S 14 0.60 (0.21) 0.78  (0.19) 

U-U 6 0.57 (0.29) 0.64 (0.33) 

 

 

Experiment 3 

 LINEAR NON-LINEAR 

TRANSITIVE 

If she goes out for dinner, she will eat sushi 

If she eats sushi, she will be happy 

She went out for dinner 

She will be happy 

If she eats sushi, she will be happy 

If she goes out for dinner, she will eat sushi 

She went out for dinner 

She will be happy 

NON 

TRANSITIVE 

If she works, she will go home late 

If she doesn’t go home late, she will go out 

She worked 

She will go out 

If she doesn’t go home late, she will go out 

If she works, she will go home late 

She worked 

She will go out 

 

 

Table 3. Results of Causal Mediation Analysis with Representation Index as a mediator, CRT score 

as independent variable and overall accuracy as dependent variable. 

 

Table 4. Average performance by group in Pre- and Post-treatment. Standard deviations in brackets. 

 

Table 5. Examples of items in the Verbal Conditional Sequence task 
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MP AC DA MT MP & DA MT & AC 

0.97 0.38 0.37 0.70 0.45 0.45 

 

 

 

 

Attentional indices Judgment interval B SE t p 95 % CI 

Prop. time on Judgment states       

Proportion of non-linear integrative-Ts 0.38 0.13 3.02 .004 0.13 0.63 

Increase fix. duration in Judgment states       

Proportion of non-linear integrative-Ts 0.30 0.13 2.29 .026 0.04 0.56 

N. obs. 56      

 

 

 

Mean Accuracy B SE t p 95 % CI 

MP       

Prop. time on Judgment states 0.20 0.13 1.48 .144 - 0.07 0.47 

AC       

Prop. time on Judgment states 0.44 0.12 3.61 .001 0.20 0.69 

DA       

Prop. time on Judgment states 0.35 0.13 2.72 .009 0.09 0.60 

MT       

Prop. time on Judgment states - 0.25 0.13 - 1.89 .064 -0.51 0.15 

MP&DA       

Prop. time on Judgment states 0.40 0.12 3.18 .002 0.15 0.65 

MT&AC       

Prop. time on Judgment states 0.34 0.13 2.62 .011 0.08 0.59 

N. obs. 56      

 Table 8. Multivariate regression with accuracy in each type of inference as dependent variables and 

proportion of time spent on the Judgment states as independent variable. 

Table 7. Multivariate regression with attentional indices in the Judgment interval as dependent 

variables and proportion of non-linear integrative-Ts as independent variable. 

Table 6. Average accuracy by type of inference. MP, AC, DA and MT inferences include transitive 

(1 or 2 inferences) and nontransitive (1 inference) sequences. MP&DA and MT&AC consist of only 

nontransitive sequences (2 inferences). All six categories include linear and non-linear sets. 
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Appendices 

1. Experiment 1 

1.A Additional methods 

1. A.1 Relational-inference task 

1.A.1.1 Eye-tracking procedure 

In the Relational-inference task, participants were seated in a chair with a soft head restraint to 

ensure a viewing distance of 55 cm from a monitor with 1920 x 1980 resolution. Presentation 

of the stimuli was performed using a custom-made program implemented using Matlab 

Psychtoolbox. Eye movements were monitored and recorded using a tower mounted Eyelink 

2000 system (SR. Research Ontario Canada) with a sampling rate of 2000 Hz. A fixation was 

defined as an interval in which gaze was focused within 1 degree of visual angle for at least 

100 ms (Manor and Gordon, 2003). Calibration of the eye-tracking was repeated at the 

beginning of each block (4 times in total). The calibration phase was repeated until the 

difference between the positions of the points on the screen and the corresponding eye locations 

was less than 1°. We used a 13-points custom calibration: points were placed at the center of 

each of the six symbols, at the center of the arrows expressing conditional relations and in place 

of the four possible positions of the fixation point.  

After the calibration phase, a validation phase was executed to make sure that the calibration 

had been accurate. The position of each point in the validation phase was identical to the one 

in the calibration phase. Re-calibrations and re-validation were performed if these had been 

unsuccessful. Moreover, before the beginning of each trial, a drift correction procedure was 

introduced to force participants to look at the current location of the fixation point. More 

precisely, stimuli were presented after the fixation point was fixated for 300 milliseconds. The 

first fixation on each trial was discarded from analysis because its length and spatial location 
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could be biased by the previous fixation point. Stimuli were placed at optimal distance between 

each other in order to precisely distinguish goal-directed saccades and fixations.  

 

1.A.1.2 Eye movements data analysis 

In order to analyze eye movements of participants, we defined 6 Regions of Interest (ROIs) 

centered in each of the six symbols. ROIs had a squared shape with a size of 200 pixels. We 

discarded every fixation that was not located inside any ROIs. Although a large part of the 

screen was not included in any ROI, the vast majority of fixations (92.1 %) fell inside the ROIs. 

 

1.A.2 Visual search control task: experimental design 

In this task, participants had to detect as fast as possible a target among several distractors. The 

target element was a letter T and was actually present in the array in half of the total 120 trials. 

Distractors (letter L) as well as Target letter were randomly located in the full screen space 

(Figure 1.A3); the number of stimuli in each trial could be either 16, 20, or 24. In each trial, 

participants were asked to judge whether the Target letter was present or not, pressing the 

respective keys on the keyboard (P = present; Q = absent). They were instructed to be as 

accurate and fast as possible and the task was made incentive-compatible by paying participants 

based on both accuracy and reaction times. In particular, participants received 0.07 euros for 

each correct trial, from which we subtracted 0.01 euro for each second used to respond. For 

example, if a participant gave a correct response in 2.37 seconds, she obtained 0.0463 euros in 

that trial. In case of an incorrect response, the participant received 0 euros. The final outcome 

of each participant was the sum of the trial-by-trial earnings. Participants were provided with 

a break (up to 2 minutes) every 40 trials (two breaks in total). 
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1.B Additional results 

1.B.1 Relational-inference task 

 

Overall accuracy B SE z p 95 % CI 

Source state .044 .035 1.25 .212 -.025 .113 

N. obs. 4000      

N. independent obs. 50      

 

 

 

 

Number of clusters (k) 

 1 2 3 4 5 

Gap statistics 0.224 0.258 0.174 0.158 0.120 

 

 

 

 

 

Table 1.B1. Mixed effect logistic model with trial accuracy as dependent variable, trial source state 

as independent variable and participant as random effect. We did not find any effect of source state 

on accuracy. 

 

 

Figure 1.A1. Example of the visual search task (target (T) present).  

 

Table 1.B2. Gap statistics for different number of clusters (k: 1-5) based on 10000 Monte Carlo 

bootstrap samples. The value of gap that best explained data is 2. 
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Cognitive measure CRT APM 
Forward 

digit-span 

Backward 

digit-span 
2-back 3-back 

CRT 1.00      

APM 0.34 1.00     

Forward digit-span 0.39 0.22 1.00    

Backward digit-span 0.40 0.11 0.49 1.00   

2-back 0.21 0.30 0.25 0.20 1.00  

3-back 0.12 0.20 0.13 0.07 0.58 1.00 

 

 

Group B SE z p 95 % CI 

CRT 0.78 0.32 2.44 .015 0.15 1.41 

N. obs. 50      

 

 

 

 

 

 

Causal mediation analysis 

Sophistication Index B SE t p 95 % CI 

CRT 0.40 0.15 2.70 .010 0.10 0.70 

APM 0.03 0.14 0.20 .839 -0.25 0.31 

Forward digit-span 0.24 0.15 1.60 .116 -0.62 0.54 

Backward digit-span 0.05 0.15 0.33 .746 -0.26 0.36 

2-back -0.25 0.15 -1.66 .105 -0.55 0.05 

3-back 0.05 0.15 0.31 .759 -0.25 0.34 

N. obs. 50      

 

 

Table 1.B5. Linear model of Representation index with our six cognitive measures as independent 

variables. This regression will serve as mediator model for causal mediation analysis. 

Table 1.B3. Correlation table of our six cognitive measures. 

Table 1.B4. Stepwise backward regression analysis of group (sophisticated or unsophisticated). 

Only cognitive measures surviving the limit for inclusion in the model (p < .1) are reported. 

Measures excluded from the model: APM, p=0.56; digit span forward, p=0.22; digit span 

backward, p=0.24; 2-back, p=0.16; 3-back, p=0.59. 
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Overall accuracy B SE t p 95 % CI 

Sophistication Index 0.56 0.10 5.47 < .001 0.36 0.77 

CRT 0.11 0.11 1.00 .324 -0.11 0.33 

APM 0.29 0.08 3.02 .004 0.09 0.48 

Forward digit-span -0.17 0.10 -1.65 .106 -0.38 0.04 

Backward digit-span 0.26 0.10 2.55 .015 0.05 0.47 

2-back 0.08 0.10 0.76 .452 -0.13 0.29 

3-back 0.15 0.10 1.47 .149 -0.05 0.35 

N. obs. 50      

 

 

 

 

Overall accuracy B SE t p 95 % CI 

CRT 0.33 0.13 2.57 .014 0.07 0.59 

APM 0.30 0.12 2.47 .018 0.06 0.55 

Forward digit-span -0.04 0.13 -0.28 .780 -0.30 0.23 

Backward digit-span 0.29 0.13 2.18 .035 0.02 0.56 

2-back -0.06 0.13 -0.46 .645 -0.32 0.20 

3-back 0.17 0.13 1.34 .188 -0.09 0.43 

N. obs. 50      

 

 

 

 

1.B.2 Visual search control task 

We collected several measures of performance: average accuracy, average reaction times and 

total earnings (Table 1.B8). We tested between-group differences performing a two-tailed 

Table 1.B6. Linear model of overall accuracy with Representation Index and our six cognitive 

measures as independent variables. This regression will serve as outcome model for causal 

mediation analysis. 

Table 1.B7. Linear model of overall accuracy with our six cognitive measures as independent 

variables. The presence of a significant effect of CRT, absent when controlling for Representation 

index (Table 1.B5), indicates complete mediation of Representation Index on the relation between 

CRT and overall accuracy. 
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Mann-Whitney U test for each measure of interest. Results did not show any differences in 

performance across groups (accuracy, p = .83; reaction times, p = .88; earnings, p = .53). 

 

Group N. obs. Accuracy RT RT (correct yes) Earnings (€) 

Sophisticated 25 
0.91 

(0.06) 

2.02 

(0.48) 

1.43 

(0.26) 

5.44 

(0.39) 

Unsophisticated 25 
0.90 

(0.07) 

2.00 

(0.45) 

1.42 

(0.24) 

5.39 

(0.38) 

TOTAL 50 
0.91 

(0.07) 

2.01 

(0.46) 

1.43 

(0.25) 

5.42 

(0.38) 

 

 

 

In order to investigate whether task difficulty influenced visual scan efficiency in our two 

groups, we looked at the magnitude of earnings across set sizes in sophisticated and 

unsophisticated groups. As shown in Figure 1.B4, both groups decreased their earnings as the 

difficulty of the task increased. We calculated individual indices of difficulty sensitivity by 

subtracting earnings in trials with set size = 24 to earnings in trials with set size = 16. No 

difference in terms of difficulty sensitivity was found across groups (two-tailed Mann Whitney 

test, p = .41). 

 

Table 1.B8. Summary statistics (mean and standard deviation) of measures of performance in the 

visual search task. None of these measures was significantly different across groups 

 

 

Figure 1.B1. Average earnings of sophisticated and unsophisticated groups by set size. 
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2. Experiment 2 

2.A Additional results 

 

Overall accuracy B SE t p 95 % CI 

CRT 0.24 0.12 2.07 .044 .001 0.48 

APM 0.39 0.11 3.48 .001 .017 0.62 

Backward digit-span 0.31 0.10 3.01 .004 .010 0.52 

N. obs. 55      

 

 

 

 

Overall accuracy B SE t p 95 % CI 

Group -0.46 0.17 -2.66 .011 -0.80 -0.11 

CRT 0.17 0.11 1.48 .144 -0.06 0.40 

APM 0.41 0.11 3.88 < .001 0.20 0.63 

Backward digit-span 0.28 0.10 2.81 .007 0.08 0.48 

N. obs. 55      

 

 

 

 

 

3. Experiment 3 

3.A Additional results 

 

Table 2.A2. Linear model of overall accuracy with Representation strategy (group) and our three 

cognitive measures as independent variables. When Representation strategy is included in the 

model, CRT score is no more significant, indicating full mediation of representation strategy on the 

relationship between cognitive reflection and performance. One observation missing in the 

backward digit span (measure not collected). 

Table 2.A1. Linear model of overall accuracy with CRT, APM and backward digit span as 

predictors. All the measures, including CRT, predict performance in the task. One observation 

missing in the backward digit span (measure not collected). 
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Mean Accuracy B SE t p 95 % CI 

MP       

Prop. non-linear integrative-Ts 0.12 0.14 0.88 .381 -0.15 0.39 

AC       

Prop. non-linear integrative-Ts 0.18 0.13 1.32 .191 -0.09 0.45 

DA       

Prop. non-linear integrative-Ts 0.05 0.14 0.40 .689 -0.22 0.33 

MT       

Prop. non-linear integrative-Ts - 0.01 0.14 - 0.09 .932 -0.28 0.26 

MP&DA       

Prop. non-linear integrative-Ts 0.04 0.14 0.27 .788 -0.24 0.31 

MT&AC       

Prop. non-linear integrative-Ts 0.05 0.14 0.39 .695 -0.22 0.33 

N. obs. 56      

 

 

 

Mean Accuracy B SE t p 95 % CI 

MP       

Backward digit-span 0.34 0.13 2.65 .011 0.08 0.60 

AC       

Backward digit-span 0.26 0.13 1.98 .053 -0.00 0.53 

DA       

Backward digit-span 0.35 0.13 2.66 .010 0.09 0.61 

MT       

Backward digit-span - 0.12 0.14 - 0.86 .395 -0.05 0.49 

MP&DA       

Backward digit-span 0.22 0.13 1.66 .102 -0.25 0.34 

MT&AC       

Backward digit-span 0.24 0.13 1.81 .076 -0.03 0.51 

N. obs. 55      

 Table 3.A2. Multivariate regression with accuracy in each inference type as dependent variables 

and Backward span as independent variable. One subject excluded from analysis (backward digit 

span score not collected). 

Table 3.A1. Multivariate regression with accuracy in each type of inference as dependent variables 

and proportion of non-linear integrative-Ts in non-linear trials as independent variable.  


