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Abstract: Lung cancer (LC) is currently one of the main causes of cancer-related deaths worldwide.
Low-dose computed tomography (LDCT) of the chest has been proven effective in secondary prevention
(i.e., early detection) of LC by several trials. In this work, we investigated the potential impact of
radiomics on indeterminate prevalent pulmonary nodule (PN) characterization and risk stratification
in subjects undergoing LDCT-based LC screening. As a proof-of-concept for radiomic analyses, the
first aim of our study was to assess whether indeterminate PNs could be automatically classified by an
LDCT radiomic classifier as solid or sub-solid (first-level classification), and in particular for sub-solid
lesions, as non-solid versus part-solid (second-level classification). The second aim of the study was to
assess whether an LCDT radiomic classifier could automatically predict PN risk of malignancy, and thus
optimize LDCT recall timing in screening programs. Model performance was evaluated using the area
under the receiver operating characteristic curve (AUC), accuracy, positive predictive value, negative
predictive value, sensitivity, and specificity. The experimental results showed that an LDCT radiomic
machine learning classifier can achieve excellent performance for characterization of screen-detected
PNs (mean AUC of 0.89 ± 0.02 and 0.80 ± 0.18 on the blinded test dataset for the first-level and second-
level classifiers, respectively), providing quantitative information to support clinical management. Our
study showed that a radiomic classifier could be used to optimize LDCT recall for indeterminate PNs.
According to the performance of such a classifier on the blinded test dataset, within the first 6 months,
46% of the malignant PNs and 38% of the benign ones were identified, improving early detection of
LC by doubling the current detection rate of malignant nodules from 23% to 46% at a low cost of false
positives. In conclusion, we showed the high potential of LDCT-based radiomics for improving the
characterization and optimizing screening recall intervals of indeterminate PNs.

Keywords: pulmonary nodules; lung cancer screening; low-dose computed tomography; lung cancer
risk stratification; radiomics; machine learning
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1. Introduction

Lung cancer (LC) accounts for up to 18.4% of all cancer-related deaths worldwide [1,2].
Up to 70% of patients suffer from advanced disease—either locally advanced (stage IIIC) or
metastatic (stage IV)—at the time of diagnosis, limiting curative options [3,4]. LC secondary
prevention (i.e., early detection) by means of low-dose computed tomography (LDCT) has
been proven effective by several LC screening (LCS) trials, showing a 20–30% mortality
reduction in high-risk subjects [1,5–7].

Pulmonary nodule (PN) is the most common imaging presentation of LC and the
most frequent LDCT finding in LCS (detected in up to 70% of cases) [8,9]. Currently, their
management mostly relies on size and density, with the former being the key parameter
for predicting LC risk and assigning LDCT-based outcome categories [10] and for which
volumetry is the current recommended metric [11–13]. Based on density, PNs are classified
into solid and sub-solid (SN and SSN, respectively), with SSN further differentiated into
two subcategories: pure non-solid (or ground-glass) nodules (NSNs) and part-solid nodules
(PSNs), which contain both non-solid and solid components [14,15]. The measurement
of solid components, typically the largest diameter of the solid component, is currently
used by radiologists to support the discrimination of negative from positive PN at LDCT.
The vast majority of screen-detected PN, however, are benign or malignancies that would
have not affected subjects’ life expectancy due to low tumor aggressiveness or concurrent
diseases [16–18]. Despite the efforts to improve the accuracy of LC risk stratification, the
rate of such indeterminate PNs, which carry a 5 to 65% probability of being malignant,
remains high in LCS, requiring additional investigations with a subsequent increase of both
economic and human costs (i.e., psychological burden) [19]. Moreover, there are currently
no adequate strategies to recall patients with indeterminate PN to carry out LDCT controls
based on personalized risks. This means that, for some of them, if not recalled within the
first six months from the baseline LDCT, the diagnosis may occur after one year from the
indeterminate PN finding.

Radiomics is an emerging translational field of research aiming at converting medical
images into mineable data by extracting a large number of quantitative features that would
be either overlooked or undetectable with the naked eye [20]. Radiomics has been proven
useful in risk stratification, screening, diagnosis, and prognosis of several diseases, mostly
in oncology [21–24], including the early diagnosis of small PNs [25].

In this work, we aimed at investigating the potential impact of radiomics on the
management of patients with indeterminate PN in a National LCS trial, called bioMILD.
The first aim of our study was to assess whether indeterminate prevalent PNs could be
automatically classified as SN or SSN based on a LDCT radiomic classifier, allowing for
a more objective and reproducible PN characterization in LCS. The second aim was to
assess whether a radiomic classifier could predict the risk of malignancy of indeterminate
prevalent PN, and, thus, improve risk stratification.

2. Materials and Methods
2.1. The bioMILD Trial

The bioMILD trial (clinicaltrials.gov ID: NCT02247453), a single-center LCS trial per-
formed at the “Istituto Nazionale dei Tumori di Milano”, Milan, Italy, prospectively enrolled
between January 2013 and March 2016, 4119 subjects with a median age of 60 years, median
cigarette pack-years of 42, current smokers 79% and females 39%. At the end of March
2019, a total of 11,012 LDCTs were performed, with an overall compliance at the 3-year
LDCT of 93% and a median follow-up of 4.2 years. This study was approved by the local
Institutional Review Board “Comitato Etico Indipendente—Fondazione IRCCS Istituto
Nazionale dei Tumori di Milano” (Prot. INT 21/11) approved on 28 April 2011.

2.1.1. Imaging Acquisition and Interpretation

For each subject of the bioMILD trial, LDCT scans were performed on a second-
generation dual-source CT scanner (Somatom Definition Flash; Siemens Medical Solutions;
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Forchheim, Germany). LDCT images were acquired with the subject in the supine position
during end inspiration breath-hold. CT acquisition parameters were as follows: tube
voltage 120 kVp, tube current 30 mAs, collimation 0.625 mm, pitch 1.2, rotation time
0.5 s. Images were reconstructed with the following parameters: slice thickness 1 mm;
increment 0.7 mm; medium-sharp kernel (B50f); lung window setting (window width
1600 Hounsfield Units, HU, window level −600 HU).

Images were visually assessed by two radiologists—the first reader used a computer-
aided detection (CAD) system (MM.Oncology, Syngo.via; Siemens Healthcare; Erlangen,
Germany), whereas the second reader adopted Maximum Intensity Projection (MIP) tools.
The first reader was responsible for the creation of the report, which was evaluated—after
image analysis—by the second reader. In case of disagreement (e.g., identification of
nodules not included in the report by the first reader), the second radiologist was allowed
to edit the report. These edits were then discussed by the two readers to reach a final
decision, in consensus, on the LDCT outcome. The integration of tools for the detection of
pulmonary nodules (e.g., CAD) within the workflow strengthened the opinions in a highly
reproducible manner.

The LDCT outcome was assigned based on a visually-assessed type of nodule (i.e.,
SN, PSN, or NSN) and size—assessed by volumetric measurements performed by the CAD
software and checked for correctness by the reading radiologist for SNs and PSNs, while size
for NSN was assessed by measuring the diameters by electronic calipers, thus resulting in:

• Negative LDCT (LDCT-): no PN detected, nodule with fat or benign pattern of
calcifications, SN < 113 mm3 or NSN < 5 mm;

• Indeterminate LDCT (LDCT Ind): SN 113–260 mm3, PSN with solid component
< 5 mm or NSN > 5 mm;

• Positive LDCT (LDCT+): SN > 260 mm3, PSN with solid component > 5 mm.

2.1.2. Quantitative Analysis and Radiomic Feature Measurement

Baseline LDCT Ind were retrieved from the local Picture Archiving and Commu-
nication System (PACS) and, following data anonymization, uploaded into a dedicated
open-source software (3D Slicer 4.10.0, www.slicer.org (accessed on 1 September 2021)).

PNs were semi-automatically delineated every two slices through manually drawn
regions of interest (ROIs) by a radiologist with one year experience in thoracic imaging,
and the remaining slices were interpolated accordingly. A dedicated algorithmic tool was
then used to calculate a volume of interest (VOI), including the whole lesions. In case of
inaccurate segmentation, the operator was allowed to modify VOI boundaries.

Radiomic features were extracted using a segmentation software built-in function,
named SlicerRadiomics, which integrates the tool PyRadiomics (v2.2.0) [26] that is aimed
at measuring standardized radiomic features [27,28]. Six classes of features were obtained:
(1) first-order intensity histogram statistics, (2) Gray Level Co-occurrence Matrix features
(GLCM) [29–31], (3) Gray Level Run Length Matrix (GLRLM) [32], (4) Gray Level Size Zone
Matrix (GLSZM) [33], (5) Gray Level Dependence Matrix (GLDM) [34], and (6) Neighboring
Gray Tone Difference Matrix (NGTDM) [35]. A fixed bin width of 25 was used and no
resampling was applied. All the radiomic features are listed in Table S5.

2.1.3. Dataset Composition

The whole dataset included 703 PNs. Such a dataset was divided into 2 datasets: a
discovery and a blinded data set, through a 66–34% split hold-out approach.

The discovery dataset included two datasets:

1. 544 PNs (dataset I), classified into SNs (324, 59.6%) and SSNs (220, 40.4%), of which
55 (25%) were PSNs and 165 (75%) NSNs—based on LDCT density measured by the
readers as previously described (see Section 2.1.1) and used as reference standard I [36];

2. 326 PNs (dataset II), sent to biopsy and then classified into malignant (32, 9.8%) and
benign (294, 90.2%), based on histopathological features (reference standard II).

www.slicer.org
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The blinded test dataset included two datasets:

1. 159 PNs (dataset III), classified into SNs (81, 50.9%) and SSNs (78, 49.1%)—further
classified into PSNs (29, 37.2%) and NSNs (49, 62.8%);

2. 104 PNs (dataset IV), sent to biopsy and then classified as malignant (13, 12.5%) and
benign (91, 87.5%).

Datasets I and II were used to train and validate radiomic automatic classifiers super-
vised by the respective reference standards, as described in the following sections, while
datasets III and IV were used to test such classifiers in a blinded way, that is, without
knowing the reference standard, thus mimicking the real-world clinical condition. For this
purpose, the research group of “Istituto Nazionale dei Tumori di Milano” sent the reference
standards of datasets III and IV to the research group of the University of Milan-Bicocca,
only at the end of the model development, after classification of PNs from this blinded test
dataset has been provided.

2.2. Radiomic Analyses

The analyses were aimed at:

• Aim 1 (PN characterization): developing a SN vs. SSN radiomic automatic classifier.
For this purpose, datasets I and III were used. Moreover, a sub-classification of SSN
into NSN vs. PSN was performed by a second-level radiomic classifier.

• Aim 2 (PN risk): developing a malignant vs. benign nodule radiomic automatic
classifier. For this purpose, datasets II and IV were used.

For both aims, the overall data analysis workflow is shown in Figure 1 and includes
the measurement of LDCT radiomic features from PNs, a data pre-processing procedure,
the development of the predictive model for binary classification (according to the two
aforementioned aims) based on selected radiomic features, and a post-processing procedure.
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Figure 1. Overall workflow for the development of LDCT radiomic automatic classifiers for PNs.

All data analyses were performed using the MatLab® R2019b (64-bit version) environ-
ment (MathWorks, Natick, MA, USA). The evaluation metrics used were the area under the
receiver operating characteristic curve (AUC) and classification accuracy, along with positive
predictive value (PPV) and negative predictive value (NPV), sensitivity, and specificity.

The characteristics of the proposed radiomics study according to the reporting guide-
lines provided by the Image Biomarker Standardization Initiative (IBSI) [28] are provided
in Supplementary Table S6.

2.2.1. Pre-Processing of Radiomic Features

Two pre-processing operations were applied on the extracted radiomic features [37].



Diagnostics 2021, 11, 1610 5 of 19

Near-Zero Variance Analysis

Near-zero variance analysis was aimed at removing the radiomic features that did
not convey information content. This operation considers a cutoff for the ratio of the most
common value to the second most common value and a cutoff for the percentage of distinct
values out of the number of total samples. We used the default values 95/5 and 10 for the
respective cutoffs.

Redundant Feature Analysis

The goal of this step was to remove highly correlated radiomic features for reducing
the redundancy among the features. We used the Spearman correlation coefficient ρS for
pairwise feature comparison. In the case of |ρS| ≥ 0.90, the feature with the highest pre-
dictive power was selected. This choice was performed by a univariate logistic regression
for predicting the binary lesion characterization and removing the feature that achieved
the lowest AUC.

2.2.2. Cross-Validation of Radiomic Classifiers on Discovery Datasets

The two radiomic classifiers were implemented using the Elastic Net regularization
for logistic regression. Output (response) variables were, for Aim 1 (PN characterization),
the binary nodule density (PN into SN vs. SSN, and SSN into PSN vs. NSN based on
solid component diameter, SN and PSN being the positive and SSN and NSN being the
negative classes, respectively), and for Aim 2 (PN risk), the histological nodule diagnosis
(malignant vs. benign, malignant being the positive and benign being the negative class,
respectively) [38].

Elastic Net uses a mixture between `1 and `2 regularization. The `1 regularization—
also known as Least Absolute Shrinkage and Selection Operator (LASSO) [39,40]—reduces
the coefficients of certain features to zero, thus reducing the number of variables in a sparse
model. The `2 penalty term—also called ridge regression [41]—constrains the magnitude
of the feature coefficients so that a model is not dominated by any single feature. As a
hyper-parameter tuning, we considered α ∈ {0.10, 0.25, 0.50, 0.75, 0.90, 1.0}, α being the
weight for `1 and `2 penalties, also known as the mixing parameter.

The radiomic classifiers were fitted on the respective discovery cohorts using nested
5-fold cross-validation (CV). Specifically, the classifier for Aim 1 (PN characterization at
the two levels) was trained in the inner CV loop with dataset I, whereas the classifier
for Aim 2 (PN risk) was trained in the inner CV loop with dataset III. A nested 5-fold
CV was chosen since it allows for model training when model hyper-parameters need
to be optimized [42]. The hyper-parameter selection (λ in the case of the Elastic Net
regularization) by means of non-nested CV could indeed yield a biased model, leading to
over-optimistic performance [43].

The best performing models were selected according to the maximum classification
accuracy in terms of AUC. To estimate the performance of the models, the fitting was
repeated 50 times with different random permutations of the discovery dataset. We
averaged the performance of the models across such independent repetitions.

During the inner CV loop, the optimal operating point of the ROC curve was estimated
by using the slope s according to Equation (1):

s =
Cost(P|N)−Cost(N|N)

Cost(N|P)−Cost(P|P) ×
N
P

, (1)

where Cost(N|P) and Cost(P|N) are the costs of misclassifying a positive class as a
negative class and a negative class as a positive class, respectively; P and N denote the total
numbers in the positive and negative class, respectively. Therefore, the optimal operating
point was defined by the intersection of the straight line with slope s from the upper left
corner of the ROC axes (False Positive Ratio = 0, True Positive Ratio = 1) and the ROC
curve [44].
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The majority voting of the ensemble based on the single classifier prediction was used
to employ the optimized decision thresholds.

2.2.3. Post-Processing of Radiomic Features: Radiomic Predictors

Relying upon the achieved radiomic classifier results, we selected the most relevant
radiomic features in terms of their occurrences, that is, choosing the features most frequently
found as predictors by the classifiers. Therefore, Elastic Net was re-fitted on this reduced
subset of radiomic features using the same nested k-fold CV scheme and settings. Elastic
Net was then applied to the discovery datasets (also in terms of data partitioning) as
previously done for all the radiomic features.

2.2.4. Integration and Comparisons of Radiomic Predictors with Clinical Features and
Semantic LDCT Features

Along with the most relevant radiomic features (best radiomic predictors), the follow-
ing features were considered and integrated to re-train and test Elastic Net on the discovery
datasets (as described in Section 3):

• Best solidity radiomic features: best radiomic predictors of Aim 1, as an objective
measure of solidity of each PN;

• Clinical features: body mass index (BMI), forced expiratory volume in 1 second (FEV1),
and C-reactive protein (CRP);

• Semantic LDCT features: emphysema extent, type (centrilobular, paraseptal, or panlobu-
lar) and location (lobes involved); anterior descending, circumflex and right coronary
artery calcifications (categorical values); and bronchial wall thickening (dichotomous
variable).

2.2.5. Testing Radiomic Classifiers on Blinded Test Dataset

The radiomic classifiers (Aim 1: PN characterization and Aim 2: PN risk) fitted
in 5-fold cross-validation on the discovery dataset (dataset I and III, for Aims 1 and 2,
respectively) were tested on the blinded held-out datasets (dataset II and IV, for Aims 1
and 2, respectively). As previously stated, in such a way, we assessed the performance
on unseen data that was kept blinded until the final evaluation and independent from
the design choices during the discovery phase, simulating a real-world clinical use of the
developed radiomic classifiers.

2.2.6. Re-Training Classifier with Feature Class Imbalance Correction

In order to manage the problem of imbalanced classes during the training of the
radiomic classifier for Aim 2 (~0.1:0.9 for malignant vs. benign PNs), we exploited different
strategies to over-sample the minority class (malignant PNs) and to under-sample the
majority class (benign PNs).

Minority Class Over-Sampling

Minority class over-sampling aims to properly manage the class imbalance in the original
datasets by artificially generating synthetic samples according to the actual data distributions.

The Synthetic Minority Over-Sampling Technique (SMOTE) algorithm [45] generates
an arbitrary number of synthetic minority examples to shift the classifier learning bias
towards the minority class. The minority class is over-sampled by taking each minority
class sample and introducing synthetic examples along the line segments joining any/all
of the kNN minority class nearest neighbors. Among SMOTE modifications, the Borderline-
SMOTE algorithm [46] uses the same over-sampling technique, but it over-samples only the
borderline instances of a minority class rather than considering all the instances of the class.
The Safe-Level-SMOTE algorithm [47] assigns, for each positive instance, its safe-level
prior to generating synthetic instances. Each synthetic instance is positioned closer to the
largest safe-level so that all synthetic instances are generated only in safe regions. An
alternative method is the Adaptive Synthetic (ADASYN) sampling approach [48] which
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is based on the idea of adaptively generating minority data samples according to their
distributions: more synthetic data are generated for minority class samples that are harder
to learn compared to those minority samples that are easier to learn.

We applied all these synthetic over-sampling methods to the minority class during
the re-training of the radiomic classifier for Aim 2 (PN risk).

To assess the data distribution of the real and synthetic samples, we exploited the Prin-
cipal Component Analysis (PCA) [49] and t-Distributed Stochastic Neighbor Embedding
(t-SNE) methods [50] to obtain a 2D representation. PCA is the most-used dimensionality
reduction method, which reduces the dimensions of the input feature space by finding
linear combinations of the original variables that show the highest standard deviation.
PCA can highly reduce the dimensions of the data without losing relevant information
when the linear correlations of the data are dominant. t-SNE is a method for non-linear
dimensionality reduction: it is typically used for data visualization, but can also be used to
reduce the feature space, as well as for clustering. Compared to PCA, t-SNE is not a linear
algebra technique, but it is based on a probabilistic framework. With more details, the
divergence between two distributions is minimized: a distribution that measures pairwise
similarities of the input objects and a distribution that measures pairwise similarities of the
corresponding low-dimensional points in the embedding.

Majority Class Under-Sampling

Stratified sampling for the majority class was obtained by using different under-
sampling factors (i.e., multiples of the minority class size). In particular, we sub-sampled
the majority class by obtaining 32, 62, 128, 256 samples.

To deal with the dependence on the initial sub-sampling from the whole majority class
samples, 30 different random sub-sampling configurations were considered. Then, the
re-training procedure was performed during the 5-fold cross-validation process, randomly
for 30 times. For each sub-sampling configuration, the training procedure during the 5-fold
cross-validation was repeated 50 times and the performance metrics were consequently
averaged. Then, the sampling configuration with the highest mean AUC was selected to be
consistent with the other tests.

2.2.7. Impact of Radiomic Classifiers on PN Characterization and Screening
Recall Intervals

The impact of the first LDCT radiomic classifier developed for Aim 1 (PN charac-
terization) was assessed by comparing the classifier performance against its reference
standard, the LDCT nodule density (in terms of HU) on both discovery and blinded test
datasets, considering the clinical needs for an objective and reproducible density lesion
characterization. This comparison allowed for the demonstration of the proof-of-concept
at the basis of the radiomic hypothesis assumption in our classifiers, that is, that radiomic
features are able to capture the intra- and inter- lesion heterogeneity in an effective way.

The impact of the second LCDT radiomic classifier developed for Aim 2 (PN risk) was
assessed by measuring the rates of subjects of both discovery and blinded test datasets
recalled for a second LDCT scan, that is, the procedure recommended for monitoring
indeterminate PNs in a screening program. More specifically, according to the bioMILD
screening protocol, subjects with indeterminate PNs are recalled to a second LCDT scan in
three classes of follow-up groups temporally distributed as follows: (i) within 0–6 months,
(ii) within 12–24 months, and (iii) within 24–36 months. We computed the rates of subjects
recalled in the three groups without the use of our radiomic classifier developed for PN
risk. We compared these rates with the respective diagnosis of malignant or benign PNs,
performed at biopsy before the recall. Then, we computed the same rates, simulating the
use of our radiomic classifier as decision support to recall subjects at risk of malignancy
for their second LDCT scan within the first 6 months, whereas the others (at a lower risk
according to our radiomic model) were within 12 months. We finally compared the two
recall rates obtained without or with the support of our radiomic model and derived the
value of our classifier for all the subjects both in the discovery and blinded test datasets.
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3. Results
3.1. Pre-Processing of Radiomic Features on Discovery Datasets

The near-zero variance analyses, applied to the initial set of 107 radiomic features
characterizing each indeterminate prevalent PN on the discovery dataset, led to 96 and
103 informative features for the classifiers developed for Aim 1 (first-level/second-level
PN characterization, respectively), while 104 informative features were found for the
classification task of Aim 2 (PN risk). Univariate logistic regression for removing redundant
features led to 31 and 23 informative, non-redundant features in classifiers for Aim 1
(first-level/second-level PN characterization, respectively), whereas 32 informative, non-
redundant features were identified for Aim 2 (PN risk), respectively.

3.2. Cross-Validation of Radiomic Classifiers on Discovery Datasets

The results of the hyper-parameter optimization process in the Elastic Net for the
mixing parameter α are shown in Figure S1; even though the performance was generally
robust against the hyper-parameter variations, the best configuration was provided by
α = 0.75.

Figure 2a shows the results achieved by the two radiomic classifiers (Aim 1 and Aim 2)
using the informative, non-redundant radiomic features on the discovery set.
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Figure 2. Classification results achieved by the radiomic classifiers for Aim 1 (PN characterization)
and Aim 2 (PN risk) based on the Elastic Net on the discovery dataset by using (a) informative, non-
redundant radiomic features, and (b) only the most frequently selected radiomic features. The bar
graph and error bars denote the average value and the variability across 50 repetitions, respectively.

The radiomic classifier built on 31 informative, non-redundant features for the first-
level classification of Aim 1 (PN characterization in terms of SN vs. SSN) achieved a
mean AUC, Accuracy, PPV, and NPV of 0.986 ± 0.001, 0.947 ± 0.005, 0.953 ± 0.006, and
0.939 ± 0.008, respectively. For the second-level classification of Aim 1 (SSN characteriza-
tion in terms of NSN vs. PSN) using 23 informative, non-redundant features, the achieved
mean AUC, Accuracy, PPV, and NPV were 0.963 ± 0.004, 0.913 ± 0.010, 0.848 ± 0.026,
and 0.939 ± 0.010, respectively. These results showed the excellent ability of our radiomic
system in the fine-gained automatic characterization of the density of indeterminate PNs.

The radiomic classifier developed using 32 informative and non-redundant radiomic
features for Aim 2 (PN risk) achieved a mean AUC, Accuracy, PPV, and NPV of 0.727 ± 0.017,
0.904 ± 0.006, 0.515 ± 0.141, and 0.916 ± 0.003, respectively, for SN vs. SSN. These results
showed the excellent ability of our radiomic system in predicting the negative class but a
limitation in predicting the PNs, as expected due to the imbalanced ratio between positive
and negative samples (~0.1:0.9 for malignant vs. benign PNs).

3.3. Post-Processing of Radiomic Features: Radiomic Predictors

Considering the 250 trained model instances, we analyzed the most frequently se-
lected radiomic features in the discovery cohort for both Aim 1 (PN characterization) and
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Aim 2 (PN risk), with the purpose to select a limited number of radiomic predictors (see
Figure S2a,b for Aim 1 and Aim 2, respectively).

For Aim 1 (first-level classifier), the most frequently selected features (more than
100 times) were:

• Shape: Sphericity;
• NGTDM: Contrast;
• GLSZM: Small Area High Gray Level Emphasis;
• GLRLM: Gray Level Variance.

For Aim 2, the most frequently selected features (more than 150 times) were:

• Shape: Maximum 2D Diameter Slice, Least Axis Length;
• GLCM: Correlation, Cluster Shade;
• GLSZM: Size Zone Non-Uniformity Normalized, Size Zone Non-Uniformity.

For an intuitive interpretation, such radiomic features were graphically represented
by the boxplots in Figures S3 and S4 for Aim 1 and Aim 2, respectively. According to the
occurrences shown in these histograms, the cutoff values (100 and 150 times, respectively)
were experimentally selected to define the corresponding radiomic signatures. In particular,
this process resulted in two distinct signatures composed of four and six features for Aim 1
(PN characterization) and Aim 2 (PN risk), respectively.

For statistical validation, a non-parametric Wilcoxon sum test (Mann–Whitney U
test) was performed for each feature by subdividing the samples into the two classes
(significance level set to 0.05). The p-values were adjusted using the Bonferroni–Holm
method for multiple comparison tests.

Figure S3 revealed that the features appear to be significantly different, between the
two sub-distributions, for all the four features (p < 0.0001). The distributions of the features
appear visibly different in SN and SSN. From Figure S4, only one feature (GLSZM Size
Zone Non-Uniformity Normalized) was found not statistically significant, while GLSZM
Size Zone Non-Uniformity Normalized achieved a p < 0.001 and the other three features
showed a p < 0.01. The feature distributions appear to be different in the malignant and
benign nodules; however, the ranges explored in the different cases appear to overlap, at
least in part.

Figure 2a shows the results achieved on the most frequently selected radiomic features.
While the Aim 1 results on the most frequently selected features (Figure 2b) were

slightly lower—yet excellent for the first-level (second-level) classification in terms of
AUC, accuracy, PPV, and NPV 0.956 ± 0.001 (0.967 ± 0.004), 0.902 ± 0.004 (0.915 ± 0.010),
0.913 ± 0.003 (0.866 ± 0.025), and 0.888 ± 0.007 (0.935 ± 0.008), respectively—than those
on the larger informative, non-redundant features subset (Figure 2a), only a slight increase
in both AUC (0.747 ± 0.015) and PPV (0.527 ± 0.147) can be observed on Aim 2, due to the
problem of imbalanced classes. However, the NPV for this task is excellent (0.916 ± 0.003).

3.4. Integration of Radiomic Predictors with Semantic LDCT Features and Clinical Features
and Comparison

Table 1 shows the performance of the radiomic classifier for Aim 2 (PN risk) obtained
using the best radiomic predictors of such a classifier alone (see the previous section)
compared with the performance of the same classifier re-trained on the best radiomic
predictors of Aim 2 in combination with the best radiomic predictors of Aim 1 (solidity),
clinical and semantic LDCT features. The performance of a classifier trained only on clinical
features are also reported in Table 1, for comparison. All analyses were performed on the
discovery dataset (dataset III).
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Table 1. Results on Aim 2 were achieved by incrementally integrating the best radiomic predictors of Aim 2 with the best
radiomic predictors of Aim 1 (solidity), available clinical and semantic LDCT radiological features. Values in boldface
denote the best configuration.

Features AUC Accuracy PPV NPV

Radiomic 0.747 ± 0.015 0.906 ± 0.005 0.527 ± 0.147 0.916 ± 0.003

Best radiomic predictors of Aim 2 + best radiomic
predictors of Aim 1 (solidity) 0.739 ± 0.014 0.905 ± 0.005 0.522 ± 0.137 0.915 ± 0.003

Best radiomic predictors of Aim 2 + best radiomic
predictors of Aim 1 (solidity)
+ clinical + semantic LDCT

0.742 ± 0.021 0.898 ± 0.006 0.423 ± 0.120 0.913 ± 0.003

Clinical + semantic LDCT 0.521 ± 0.036 0.893 ± 0.006 0.039 ± 0.076 0.902 ± 0.002

As shown in Table 1, the best classifier for Aim 2 is the one based on the best ra-
diomic predictors (AUC = 0.747 ± 0.015, Accuracy = 0.906 ± 0.005, PPV = 0.527 ± 0.147,
NPV = 0.916 ± 0.003), while no additional benefits emerge from the combination with the
other factors—i.e., the best radiomic predictors of Aim 1 (solidity), clinical, and semantic
LDCT features.

3.5. Testing Radiomic Classifiers on Blinded Test Dataset

Table 2 shows the performance achieved by testing the radiomic classifiers on the
blinded cohort for Aim 1 (PN characterization, dataset III), at the two levels, and Aim 2
(PN risk, dataset IV).

Table 2. Performance achieved by the radiomic classifiers fitted (nested 5-fold CV) on the blinded test set for Aim 1 (PN
characterization) and Aim 2 (PN risk). Metrics are expressed as average ± standard deviation.

AUC Accuracy PPV NPV Sensitivity Specificity

Aim 1 first-level:
SN vs. SSN 0.887 ± 0.006 0.870 ± 0.010 0.830 ± 0.014 0.926 ± 0.002 0.938 ± 0.001 0.800 ± 0.020

Aim 1 second-level:
NSN vs. PSN 0.800 ± 0.178 0.844 ± 0.005 0.988 ± 0.002 0.801 ± 0.005 0.580 ± 0.0134 0.991 ± 0.001

Aim 2:
benign vs. malignant 0.564 ± 0.007 0.869 ± 0.005 0.367 ± 0.079 0.886 ± 0.004 0.102 ± 0.036 0.978 ± 0.001

While Aim 1 showed excellent results in the blinded test dataset in all the evalu-
ation metrics and at both levels (the mean values for the first and second levels were:
AUC = 0.887 and 0.800, accuracy = 0.870 and 0.844, PPV = 0.830 and 0.988, NPV = 0.926
and 0.801, sensitivity = 0.938 and 0.580, specificity = 0.800 and 0.991, respectively), Aim 2
showed relatively lower sensitivity and PPV, resulting in a lower overall AUC (0.564).
As already found during the discovery phase, this result is expected due to the highly
imbalanced data distribution (~0.1:0.9 for malignant vs. benign PNs) and needs to be ame-
liorated.

3.6. Re-Training Classifier with Feature Class Imbalance Correction
3.6.1. Minority Class Over-Sampling

Table S1 shows the classification results achieved on the discovery set by the classifier
for Aim 2 with the various minority class over-sampling configurations. According to
Table S1, Borderline-SMOTE generally achieved the best performance among the investi-
gated approaches.

Table 3 shows, for the discovery dataset of Aim 2 (dataset II), that the best configuration
is Borderline-SMOTE with 256 generated synthetic samples, since it achieved the highest
sensitivity and PPV (0.67 and 0.83, respectively). Accuracy, specificity, and NPV values
exhibited a similar trend for all four approaches, and tend to degrade as the number of
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generated synthetic samples increases. In all methods, KNN = 5 has been used for the
evaluation of the nearest neighbors [51].

Table 3. Results for the benign vs. malignant primary nodule classification (Aim 2) achieved by the nested 5-fold CV on the
discovery set for the Borderline-SMOTE over-sampling method. The metrics are expressed as average ± standard deviation.
The rows in boldface denote the best performing configuration according to sensitivity and PPV.

# Samples AUC Accuracy PPV NPV Sensitivity Specificity

32 0.768 ± 0.008 0.826 ± 0.007 0.568 ± 0.061 0.857 ± 0.007 0.292 ± 0.043 0.946 ± 0.009
64 0.788 ± 0.004 0.809 ± 0.008 0.669 ± 0.033 0.839 ± 0.008 0.432 ± 0.038 0.928 ± 0.012

128 0.826 ± 0.004 0.794 ± 0.007 0.741 ± 0.013 0.820 ± 0.008 0.644 ± 0.021 0.875 ± 0.009
192 0.795 ± 0.002 0.783 ± 0.006 0.806 ± 0.010 0.772 ± 0.005 0.657 ± 0.009 0.878 ± 0.009
256 0.817 ± 0.003 0.766 ± 0.006 0.830 ± 0.009 0.726 ± 0.004 0.670 ± 0.006 0.862 ± 0.009
295 0.802 ± 0.003 0.749 ± 0.005 0.840 ± 0.009 0.688 ± 0.004 0.648 ± 0.006 0.861 ± 0.010

3.6.2. Majority Class under-Sampling

Table S2 shows the classification results achieved on the discovery set by the classifier
for Aim 2 with the various majority class under-sampling configurations. The best config-
uration was obtained by a sub-sampling with 96 samples; however, sensitivity and PPV
were lower than those obtained with Borderline-SMOTE with 256 samples.

Table 4 shows, for the blinded test dataset of Aim 2 (dataset II), the classifier perfor-
mance for the various minority class over-sampling methods, confirming that the best
configuration is Borderline-SMOTE with 256 generated synthetic samples since, also in this
case, it achieved the highest sensitivity and PPV (0.46 and 0.15, respectively). Comparing
these results with the sensitivity and PPV of the same classifier without minority class
over-sampling, we should note an improvement of a factor of ~5× at cost of an increase of
false positive of a factor of ~2×.

Table 4. Results for the benign vs. malignant primary nodule classification (Aim 2) achieved by the classifiers fitted (in
nested 5-fold CV) on the blinded test set for the Borderline-SMOTE method. The metrics are expressed as average ±
standard deviation. The rows in boldface denote the best performing configuration according to sensitivity and PPV.

# Samples AUC Accuracy PPV NPV Sensitivity Specificity
32 0.602 ± 0.012 0.838 ± 0.019 0.317 ± 0.067 0.894 ± 0.002 0.229 ± 0.011 0.925 ± 0.021
64 0.591 ± 0.016 0.805 ± 0.018 0.229 ± 0.028 0.890 ± 0.002 0.231 ± 2.24 × 10−16 0.887 ± 0.021

128 0.571 ± 0.009 0.697 ± 0.018 0.163 ± 0.011 0.889 ± 0.004 0.346 ± 0.039 0.747 ± 0.024
192 0.574 ± 0.008 0.643 ± 0.008 0.165 ± 0.006 0.896 ± 0.003 0.457 ± 0.019 0.670 ± 0.010
256 0.556 ± 0.007 0.603 ± 0.010 0.149 ± 0.004 0.890 ± 0.002 0.462 ± 4.49 × 10−16 0.623 ± 0.011
295 0.548 ± 0.009 0.584 ± 0.009 0.142 ± 0.003 0.887 ± 0.002 0.462 ± 4.49 × 10−16 0.601 ± 0.011

Table S4 reveals that all the majority class under-sampling configurations did not
boost the obtained sensitivity consistently with results obtained for the discovery cohort.

3.7. Impact of Radiomic Classifiers on PN Characterization and Screening Recall Intervals

As shown in Section 3.2, the performance of the classifier developed for Aim 1 (first-
level classification for PN characterization) on the discovery cohort (dataset I), was 0.96
and 0.90 in terms of AUC and accuracy, respectively, with a predictive value of 0.91 and
0.89 for SNs and SSNs, respectively. Similarly, the classifier developed for Aim 1 (second-
level classification for PN characterization) on the discovery cohort (dataset I), was 0.97
and 0.92 in terms of AUC and accuracy, respectively, with a predictive value of 0.87 and
0.94 for NSNs and PSNs, respectively. As shown in Section 3.4, on the blinded cohort
(dataset III), the first-level classifier obtained 0.89 AUC and 0.87 accuracy, with a predictive
value of 0.83 and 0.93 for SNs and SSNs, respectively. The second-level classifier obtained
0.80 AUC and 0.84 accuracy, with a predictive value of 0.99 and 0.80 for NSNs and PSNs,
respectively. These results demonstrate that radiomic features can easily capture the tissue
density heterogeneity of indeterminate PNs at LDCT. More impactful for the subjects, such
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a classifier could be effectively used in clinical settings for automatically classifying the
density of indeterminate PNs, thus providing an automatic objective lesion characterization
to radiologists. This task is quite simple for experienced radiologists for characterization
of PN into SN vs. SSN when based on the diameter measure of the solid component in
the PN, but it is complex for classification of SSN into NSN and PSN, this last information
being the most important added value of our first radiomic classifier developed for Aim 1
at the second-level.

We discuss, here, the result on the potential clinical impact of using our second
radiomic classifier developed for Aim 2 (PN risk) in predicting malignant vs. benign PNs,
thus supporting physicians in selecting the right recall interval for subjects for a second
LDCT study.

Figure 3 shows the rates of subjects of the discovery cohort (dataset II) recalled during
the bioMILD screening program by physicians, without the support of our radiomic
classifier, to be studied by a second LDCT scan (LCDT recall) with the purpose to monitor
the subjects’ PN. The rates are shown temporally distributed into the three classes of
follow-up: (i) 0–6 months, (ii) 12–24 months, and (iii) 24–36 months. The diagnosis of
malignant or benign PN, performed at biopsy before the recall, is also shown in Figure 3 in
order to discuss the accuracy of the recall plan.
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Figure 3. Percentage of LDCT second scan recalls for subjects with malignant and benign PN on
the (a) discovery and (b) blinded test datasets, according to the reference standard (biopsy). Time
interval for the second LDCT examination after LDCT baseline: (i) 0–6 months, (ii) 12–24 months,
(iii) 24–36 months.

As we can observe from Figure 3a, only 34% of subjects from the total with malignant
nodules were recalled in the bioMILD screening trial within 6 months from the LDCT
baseline study, while 26% of subjects with benign nodules entered in this first recall window.
Instead, using our second radiomic classifier (Figure 4a), most of the malignant nodules
(67%) and only 14% benign ones would have been recalled within 6 months, whereas the
remaining ones would have been recalled within a year (33% malignant, 86% benign), thus
improving early detection of LC (improving of a factor of ~2× the portion of malignant
nodules from 34% to 67%) and also reducing the number of false positives.
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Figure 4. Percentage of LDCT second scan recalls for subjects with malignant and benign PN on
the (a) discovery and (b) blinded test datasets, according to the radiomics-based classifier. Time
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For the blinded cohort (dataset IV), as shown in Figure 3b, only 23% of malignant
nodules were recalled in the bioMILD screening trial within 6 months from the LDCT
baseline study. Instead, with the support of our radiomic classifier developed for Aim
2 (PN risk) (Figure 4b), according to the tested performance in the blinded test dataset,
46% of malignant cases and 38% benign cases would have been recalled within 6 months
from the baseline LDCT round, thus improving the early detection of LC by doubling the
portion of malignant nodules from 23% to 46% at a low cost of false positives.

Importantly, such a radiomic classifier could allow screenees with LC to be recalled
significantly earlier than the current screening interval (p = 0.0079). Table 5 shows, indeed,
the months between the baseline LDCT scan and LC diagnosis for both the subjects recalled
at either 0–6 months or 12–24 months during the bioMILD screening program (without
the use of our classifier) (18 ± 23.00 and 17 ± 23.25 in the discovery and blinded cohort,
respectively) and months of the diagnosis for the subjects that would be recalled according
to our radiomic classifier (44 ± 22.00 and 27 ± 18.00 in the discovery and blinded cohort,
respectively). As a matter of fact, we might have identified LC patients earlier in both
discovery and blinded test sets and this could have a great impact on the clinical outcome
of these patients, considering the rapid progression of LC.

Table 5. Months of LC diagnosis from baseline LDCT scan in subjects recalled at 0–6 months. Month distributions
for the LDCT recalls, as well as for the LC predictions, yielded by the proposed radiomic classifier, are expressed as
median ± interquartile range values. Month distributions of the detection of LC with the proposed radiomic classifier are
compared against the month distributions of the reference standard LDCT recalls after 0–6 months using the Wilcoxon rank
sum test (with a significance level of 0.05). The p-values were adjusted using the Bonferroni–Holm method for multiple
comparison tests.

Dataset
Months of LC Diagnosis from Baseline LDCT in
Subjects Recalled at 0–6 Months without the Use

of the Radiomic Classifier for Aim 2 (PN Risk)

Months of LC Diagnosis from Baseline LDCT in
Subjects to Be Recalled at 0–6 Months with the Use

of the Radiomic Classifier for Aim 2 (PN Risk)

Discovery 18 ± 23.00 44 ± 22.00; p = 0.0079
Blinded test 17 ± 23.25 27 ± 18.00; p = 0.5000
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4. Discussion

During a screening program of LC, risk category assignment and subsequent man-
agement of screen-detected PN currently rely on size and density of PNs at baseline
LDCT [10], with shape being also taken into account to assess the risk of malignancy.
There is, however, a substantial need to improve risk stratification for indeterminate PNs,
which represent the most challenging diagnostic category, requiring further evaluation and
thus, leading to anxiety, increased healthcare costs, and potentially unnecessary invasive
procedures [52,53].

Our study is the first one, to the best of our knowledge, in which radiomics and
machine learning are applied for providing a tool that can potentially improve the manage-
ment of prevalent indeterminate PNs in a lung cancer screening trial.

Huang et al. in [54] defined a radiomic signature as an independent biomarker for
the estimation of disease-free survival in patients with early-stage non-small cell lung
cancer. Authors demonstrated well that the combination of the radiomic signature with a
traditional staging system and other clinical-pathologic risk factors performed better in
estimating disease-free survival in such patients, as compared to the traditional staging
system and clinical-pathologic factors. The radiomic signature was generated by using
the LASSO method, combined to a Cox regression model. Further validation of the
radiomic signature as an independent biomarker was performed by using a multivariate
Cox regression. This approach is similar to that used in our study, which was based on
LASSO with Elastic Net.

In [55], a radiomic model was developed to improve LDCT-based classification of PNs.
The prediction model was constructed by using a support vector machine (SVM) classifier
coupled with LASSO. A 10-fold CV was used to evaluate the accuracy of a hybrid SVM-
LASSO model. The best model achieved an accuracy of 84.6%, which was 12.4% higher than
that for Lung-RADS, and the AUC was 0.89. Choi et al., however, did not consider only
indeterminate PNs, as in our study; thus, the reported performance could be masked by a
simpler classification task obtained, including determined positive and negative PNs that
have clearly different size and solid component. Specifically, negative LDCT are: no nodule
detected, nodule with fat or benign pattern of calcifications, SN < 113 mm3 or NSN < 5 mm;
positive LDCT are: SN > 260 mm3, PSN with solid component > 5 mm.

Recently in [56], by using the publicly available data and LDCT images from the
National Lung Screening Trial (NLST), authors evaluated radiomic features describing size,
shape, volume, and textural characteristics from both the intratumoral and the peritumoral
region. After the first process of feature extraction, stable and reproducible radiomic fea-
tures were significantly associated with overall survival (OS), achieving an AUC of 0.88 at
2-year OS. The work in [57] aimed at evaluating radiomic classifiers for early identification
of malignant PNs. A first model was based on artificial neural networks, while a second
one was based on a SVM classifier coupled with LASSO. The AUC performance of the
models was >0.89 in the training set and >0.82 in the external validation set for all the
investigated scenarios, outperforming the clinical standard (AUC of 0.76). Results showed
a good accuracy of the investigated models in distinguishing benign from malignant PNs
but, also in this case, no selection on prevalent indeterminate PN was performed and no
specific results on the classifier performance were provided.

As proof-of-concept for radiomic analyses, we showed that radiomics can accurately
discriminate solid and subsolid lesions detected as prevalent indeterminate PNs, not
only in discriminating solid vs. sub-solid lesions (AUC > 98%) but, more importantly,
in the more complex task of characterizing a sub-solid lesion into either part-solid or
non-solid (AUC > 89%). Our first classification systems developed for these purposes
(PN characterization at two levels) could thus potentially assist radiologists, providing an
objective assessment of screen-detected indeterminate PNs.

Regarding our second radiomic classifiers developed to predict malignancy of inde-
terminate PNs, the main achievements of our model would not be a saving in terms of
number of LDCT scans to be performed (since its sensitivity and specificity performance is
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not sufficiently adequate to avoid the recall of PN-detected subjects within 24 months from
the baseline round), but to allow for a personalized recall system. Indeed, from the analysis
of the study cohorts of the considered screening trails, it was observed that the majority
of malignant PNs were not recalled within 6 months from the baseline LDCT (only 34%
and 23% of the malignant PNs for the discovery and blinded test datasets, respectively),
but within 12 months. Based on our predictive radiomic model, a higher proportion of
malignant PNs, namely 67% for the discovery dataset and 38% for the blinded one, would
have been recalled within 6 months from the baseline LDCT, potentially avoiding late
treatment, with a positive impact on both human health and economic costs.

Furthermore, a significant proportion of subjects recalled within 6 months could have
been recalled within 12 or even 24 to 36 months, with substantial advantages for screening
programs, for whom the psychological burden would have been more bearable, and for
the health system economic costs [58]. Interestingly, with such a radiomic model, we
might have identified LC patients earlier, recalling them for a second LDCT around after
0–6 months rather than after 12–24 months.

This study, however, has a few limitations. First, the retrospective design might be
prone to some confounding factors, including the selection of some patients. Indeed, the
deployment of radiomics to “real-world” scenarios, where imaging data are not controlled
by specific trial protocols but retrieved from the current clinical practice, is still challenging
to implement [59]. In particular, in compliance with this very recent study, a nested cross-
validation was adopted, along with hyper-parameter tuning, to avoid over-optimistic
results despite our single-center study. However, we exploited the homogeneity intrinsic in
our dataset (collected in a clinical trial) that enabled careful processing and assessment of
the extracted radiomic features; this experimental procedure increases the result reliability,
as well as the model generalization on a fully blinded test cohort. Second, the proposed
classifiers have not been validated on an external independent cohort yet since a second
LDCT screening dataset with indeterminate PNs is not currently available from an external
center or in public databases. However, external test cohorts would be required to assess
the generalization abilities of the developed radiomic classifiers.

To conclude, we showed the high potential of LDCT-based radiomics classifiers for
optimizing the image characterization and screening intervals of second LDCT tests in
subjects with indeterminate PNs detected at baseline LDCT. Future work will be aimed at
integrating multiple data streams, such as microRNA signatures or other genetic features,
to better characterize the screened subjects from a geno-phenotype profiling [60], along
with the use of molecular imaging [61,62].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/diagnostics11091610/s1, Figure S1: Hyper-parameter optimisation of the radiomic models
in terms of the mixing parameter α (Elastic Net `1/`2 regularization parameter), Figure S2: Most
frequently selected radiomic feature analysis of the Elastic Net models, Figure S3: Boxplots of the
four most frequently selected radiomic features for Aim 1 solid vs. sub-solid nodule classification
on the discovery dataset, Figure S4: Boxplots of the six most frequently selected radiomic features
for Aim 2 malignant vs. benign primary nodule classification on the discovery dataset, Figure S5.
Dimensionality reduction to assess the data distribution for the synthetic samples generated by
Borderline-SMOTE on the discovery set of primary malignant nodules (Aim 1) for all the 107 radiomic
features, as well as for the most frequently selected ones, Figure S6. Distributions of the synthetic
samples generated by Borderline-SMOTE compared against the actual minority class samples (i.e.
malignant primary nodules) included in the discovery set, Table S1. Results for the benign vs.
malignant primary nodule classification (Aim 2) achieved by the nested 5-fold CV on the discovery
set for each minority class over-sampling method under consideration, Table S2. Results for the
benign vs. malignant primary nodule classification (Aim 2) achieved by the nested 5-fold CV on the
discovery set for each majority class under-sampling method under consideration. The metrics are
expressed as average ± standard deviation, Table S3. Results for the benign vs. malignant primary
nodule classification (Aim 2) achieved by the fitted models (in nested 5-fold CV) on the blinded test
set for each minority class over-sampling method under consideration, Table S4. Results for the
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benign vs. malignant primary nodule classification (Aim 2) achieved by the fitted models (in nested
5-fold CV) on the blinded test set for each minority class under-sampling method under consideration,
Table S5. Radiomic features extracted from the VOIs in this study, Table S6. Characteristics of the
proposed radiomics study according to the reporting guidelines provided by the Image Biomarker
Standardization Initiative (IBSI) [Chapter 4].
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