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Our work is aimed to study the volatile organic compounds (VOCs) abate-
ment produced by photocatalysts working in different light spectrum, in-
vestigating the best catalyst able to treat propane in air mixtures at high
concentrations of the order of thousands ppm. The experimental data were
analyzed in order to extract the relevant parameters and to compare the cat-
alytic activities of three different photocatalysts, TiO2, WO3 and mixtures of
them. In a reactor box of 1.5 L, a photocatalysis processing with TiO2 cat-
alyst gave the best propane depletion of the order of 10% for initial propane
concentrations up to 5000 ppm after 22 minutes and UV-A lamps with an
intensity of 0.4 mW/cm2. While the TiO2 and WO3 catalysts produced an
abatement of of about 5% after 22 minutes, using UV-C light at the intensity
of 5 102 mW/cm2.
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I. INTRODUCTION

Several methods have been proposed for VOCs depletion, including adsorption1,
absorption2, thermal decomposition3, catalytic oxidation4, bio-filtration5, membrane
separation6.

Photocatalytic oxidation (PCO) of VOCs is a very attractive and promising al-
ternative technology for air purification7.

It has been demonstrated that organics can be oxidized to carbon dioxide, water
and simple mineral acids at low temperatures on metal oxides catalysts using, for
example, TiO2 catalyst. Several parameters affect the VOC conversion processes:
the specific surface area of catalyst and the VOC concentrations. However the time
conversion takes hours and is effective for low VOC concentrations of the order of
tens of ppm. In addition is critical also the choice of the substrate to be degraded,
its concentration and its significance in actual use, and the type of irradiation source
and its irradiance at the sample surface.

For VOC degradation at relatively higher concentrations, of the order of hun-
dreds and thousands ppm new studies have oriented to thermal plasmas like spark
discharges8–10 and Non-Thermal Plasmas NTP11,12. While thermal plasmas are too
expensive, non-thermal plasma (NTP) has recently attracted more attention as a
convenient and clean alternative.

In the non-thermal plasma chemical reactions charged species and radicals are
produced in steady-state conditions. The primary electrons collide with background
molecules producing secondary electrons, photons, ions and radicals13. This pro-
cess is highly non-selective and creates a chemical reactive environment able to
treat materials as well as gases at room temperature14–16. Previous studies on NTP
demonstrated they are very effective in material applications by employing different
gas precursors, because of its ability to highly dissociate molecules in gas phase,
producing very reactive chemical groups at room temperature: materials are not
damaged and can be easily functionalized17–20. When generated at atmospheric
pressure plasma produces chemical species able to also dissociate VOC molecules at
higher concentrations up to thousand ppm21–24 but the processes are non selective.

Despite the success of NTP in VOC dissociation, the production of by-products
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such as ozone, aerosol particle and incompletely oxidized compounds requires fur-
ther research including chemical simulations in order to understand the process
phenomenology25–27. A combination of NTP and catalysis were attempted in order
to increase the depletion efficiency. Addition of catalyst bed near the plasma zone
seems to enhance the decomposition rate of pollutants, reducing the undesirable
by-products, due to the increase of retention time28.

In fact NTPs can contain a diverse mix of highly reactive species, they are difficult
to operate in such a way as to produce single products in high yield and at high
selectivity29,30. Integration of plasma and catalysts together promises to combine
the advantages of the two, to effect transformations that are currently difficult or
impossible to achieve31,32.

In our recent studies we were employing NTP surface discharges in which dis-
charge is performed on the surface of the dielectric layer where also an electrode is
located33–35 In this plasma configuration, the catalysis can be integrated near the
plasma source, directly near the electrodes.

In order to increase the abatement efficiency and to understand which mechanisms
underlying the depletion processes some more research would be focused on the
kinetics of the reaction products from an experimental point of view.

A better insight into the underlying physical and chemical processes is crucial
and can be obtained by experiments applying diagnostics, studying both the chem-
ical processes occurring at the catalyst surface and the dependence of the catalysis
processes on the VOC concentration36,37.

Our work is aimed to the study of the abatement produced by photocatalysts
working in different light spectrum, investigating the best catalyst able to treat
propane in air mixtures at high concentrations. These studies represent the starting
point for the next research in which catalyst and NTP will be combined in an hybrid
reactor system38.

We performed an experimental reactor in order to study the VOC abatement
by catalytic processes using TiO2 , WO3 and their mixtures and UV-A, UV-C and
visible light. We study the reaction kinetics in different propane gas air mixtures,
evaluating the propane abatement as a function of time. The experimental data
were analyzed in order to extract the relevant parameters and to compare the three
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TABLE I: Intensity emission of our lamps at different distances39.

0.5 cm 11 cm

Distance (lamp inside (lamp outside

the box) the box)

UV-A 30 mW/cm2 0.4 mW/cm2

UV-C 4 W/cm2 35 mW/cm2

Visible 0.5 W/cm2 0.9 mW/cm2

photocatalytic activities.

We worked at high propane concentrations between 1200 and 5000 ppm, in view of
further applications in which photocatalysis will be combine with plasma processing.
In literature there are few experiments carried out by photocatalysis at these high
concentrations. This work therefore intends to explore these conditions in order to
broaden the effects of photocatalysis in this new application field.

II. EXPERIMENTAL SETUP

In our experiment we used a vacuum cross chamber (20 cm length and 10 cm
diameter) with a volume of about 1.5 l. The catalytic support are placed in a
chamber and the lamps are placed faced to the catalytic support inside the chamber
or outside the chamber in front of a quartz window. Three of the four opening
are closed by vacuum gauges, the last one is closed by a quartz window to let the
emission light from the lamp activate the catalyst (Figure 1).

The lamp characterization has been previously explained in our article39. The
intensity emission of our lamps are reported in Table I.

We employed two different catalysts TiO2 and WO3, in different mixtures de-
posited on plane rectangular tile surfaces. In this paper we refer to the following
three depositions:

• A: 34.5 mg/cm2 of TiO2 deposited over 7.6x7.3 cm2 tile;

• B: 40.9 mg/cm2 of 50% TiO2 + 50% WO3 deposited over 7.7x7.5 cm2 tile;
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• C: 38.2 mg/cm2 of WO3 deposited over 7.4x7.3 cm2 tile.

The setup is shown in Figure 2. The black bold lines represent the tube connec-
tions through the whole system. In the diagram, pure air represents a gas cylinder
containing approximately 80% of N2 and 20% of O2, meaning that the concentration
of CO2, CO, hydrocarbons and other pollutants is negligible. The red crosses are
the symbol of open-close valves. The VOC gas (propane) is placed in a cylinder and
its flow is regulated by the flow meter 1, while the pure air cylinder flow is regulated
by the flow meter 2. We used two gas flow meters by Bronkhorst factory.

For the gas chromatographic analysis we used a Micro GC Agilent 3000 instru-
ment.

III. MEASUREMENT RESULTS

A. Gas chromatograph calibration

The gas chromatograph (GC) output reports a signal composed of peaks of in-
tensity proportional to the concentration of specific species. The area of each peak
is strongly dependent on the setting parameters during the sampling conditions. For
a precise evaluation of concentration, it is necessary to perform first a specific cali-
bration. Usually, the calibration is carried out using a cylinder containing a known
concentration of the desired gas (one point calibration). However, we decided for a
multipoint calibration.

As discussed in Sec. II, we deliver propane by means of a flow meter system
(Figure 2). The propane flow relative to the total (air-pentane) input flow, denoted
as c, typically expressed in ppm, is given by

c = ΦC3H8

Φair + ΦC3H8

, (1)

where Φair is the pure air flow and ΦC3H8 is the propane flow, given in liters/sec.
The values of air and propane flows are measured by the gas flow meters (Figure
2). These two values determine the initial conditions of the experiment before the
treatment. The relative propane flow, Eq. (1), can be used to determine the actual
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propane concentration (in ppm), present in the air-propane mix system, with the
help of a GC, connected to the reactor chamber as indicated in Figure 2.

A typical propane chromatogram trace is shown in Figure 3(a), as a function of
tracing time. The quantity of interest to us is the total counts measured by the GC
(red line in Figure 3(a)), which is given by the integral of the excess counts with
respect to the reference line without the presence of propane (dashed line in Figure
3(a)).

A set of 16 measurements of the GC area, AGC , versus the corresponding relative
propane flow c is displayed in Figure 3(b). The results suggest a linear regression,

AGC = 801 c (ppm) + 8.65
104 , (2)

where AGC is express in counts and c in ppm. Assuming now that for arbitrary
flow conditions we can determine AGC , we can then estimate the actual propane
concentration by inverting Eq. (2), yielding,

c (ppm) = 104AGC − 8.65
801 . (3)

B. Experimental results

The experimental campaign consists in placing the catalyst and the lamp in the
desired position; opening the in-let and out-let valves in order to flow the desired
concentration of propane through the reactor for three minutes then closing the
valves. A first chromatographic sampling is performed in order to measure the initial
propane concentration. When switching on the lamp catalyst starts to act on the
propane gas. We analyzed the gas concentrations repeating the sampling at different
treatment times. In the reactor box a vent is switched on during the chromatographic
sampling in order to flow uniformly the gases towards the chromatograph.

The experimental concentrations are plotted as a function of time in Figures 4-8.

We fit the experimental curves by estimating the propane decomposition simply
as

ρ(t) = ρ(0) exp
(

− t

τ

)
, (4)
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where ρ(0) is the initial concentration and τ represents the half time depletion. In
terms of normalized concentration c(t) = ρ(t)/ρ(0), the equation becomes

c(t) = exp
(

− t

τ

)
. (5)

We started our experiments using the catalyst A. During this campaign we used
different UV-A, UV-C and visible lamps39, varying the working conditions such as
the propane concentrations and the catalyst-lamp distances.

With the UV-C and visible lamps no propane depletion occurred, while about
7-9% of propane dissociation was detected using UV-A lamp, after 16 minutes of
treatment (Figure 4). These results are in agreement with well known photocatalytic
activity of TiO2 in the range of UV-A spectrum.

Tests with UV-A lamp in different positions with respect the catalyst and placing
the lamp outside and inside of the reactor box were also performed. The light
intensity on the catalyst, when the lamp is outside the box at a distance of 11 cm,
is about 0.4 mW/cm2, while when located inside the box at the distance of 0.5 cm,
is of about 30 mW/cm2. As we can see in Figure 5 propane depletions are similar
for the two light intensities and this means that a low intensity is sufficient to ignite
the photocatalytic processes.

We performed measurements for different starting propane concentration and
we found that the photocatalysis does not depend on the initial concentrations as
depicted in Figure 6. Contrary to what happens at low VOC concentrations, where
the photocatalytic depletion strongly depends on the concentration itself40, at our
high initial concentrations, between 1200 and 5000 ppm, the dissociation occurs at
similar time rates.

Then we compared the depletion of propane using the three different catalysts
A, B and C, and different UV-A, UV-C and visible lamps, at a concentration of
about 1200 ppm. Using the UV-A lamp with intensity of 0.4 mW/cm2, a propane
depletion of 12% occurred with catalyst A, while a dissociation of a few percentages
with catalyst B and C was measured (Figure 7). Using UV-C at the intensity of
4 W/cm2, only for catalyst B a depletion occurred, of about 5% after 22 minutes.
Although the VOC depletion is quite low, this result outlines the photocatalytic
activity of the mixture of WO3 and TiO2 already reported in literature with UV-C
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light41,42.
To evaluate the ageing of the catalytic support due to exposure to air, we mea-

sured the abatement using the catalyst A deposited on the tile support since two
months. In this experiment a lower depletion trend was observed, as reported in
Figure 8. This result permits to estimate the time life of our catalytic support.

IV. CONCLUSIONS

In this paper we demonstrated the ability of TiO2 catalysts to abate high propane
concentrations using relatively low intensity UVA lamp, of about 0.4 mW/cm2.

We performed an experimental reactor in order to study the propane abatement
at high concentrations by catalytic processes using TiO2, WO3 and their mixtures
deposited on a tile which surface is about 55 cm2, and UV-A, UV-C and visible
lights. The highest abatement has been obtained using TiO2 catalyst and UV-A
light. The abatement rate for initial propane concentration between 1200 and 5000
ppm is of the order of 10% after 22 minutes and the time scale of depletion is of the
order of hours. We found that the TiO2 photocatalytic activity does not depend on
the initial concentration contrary to what happens at low VOC concentrations, as
reported in literature40.

The TiO2 catalyst suffers of ageing effects, since after two months its depletion
action is greatly reduced. A relatively lower abatement is detected by UV-C lamp
when TiO2 and WO3 mixture is used, of about 5% in 22 minutes. Null abatement
was measured when using visible lamps for all the catalysts, and when using WO3.

This analysis demonstrates the efficacy of the photocatalysis for high VOC con-
centrations, and also represent a starting point for our further studies on the hybrid
plasma-catalysis were TiO2 catalyst will be deposited in vicinity of the plasma elec-
trodes.
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(b)

Air inlet
(open/close)

Outlet air
(open/close)

Gaschromatograph inlet

Catalyst

FIG. 1: Reactor setup (a) scheme and (b) photo. The lamp can be placed both
inside or outside the reactor box. The reactor is equipped with a quartz window to
let the lamp light from the outside activate the catalyst, a vent to recirculate the

air, a catalyst, a gas chromatograph inlet and air inlet and outlet valves.
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FIG. 2: Equipment setup. The VOC gas (propane) is placed in a cylinder and its
flow is regulated by the flow meter 1, while the pure air cylinder flow is regulated
by the flow meter 2. The analyses are made using a Micro GC Agilent 3000 gas

chromatograph.
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FIG. 3: (a) Example of propane chromatogram peak and (b) the calibration plot of
propane reporting 16 couples of data (AreaGC and c) measured varying the

propane in-let in the reactor box.
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FIG. 4: Propane depletion using UV-A at the intensity of 30 mW/cm2. About 10%
of pentane was abated. Both graphs are in y-log scale, (a) in the y range [0.6-1.02],

while (b) in [0.88-1.02].
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(b)
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