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Abstract: Logic-based knowledge representation is one of the main building blocks of (logic-1

based) artificial intelligence. While most successful knowledge representation languages are based2

on classical logic, realistic intelligent applications need to handle uncertainty in an adequate3

manner. Throughout the years, many different languages for representing uncertain knowledge—4

often extensions of classical knowledge representation languages—have been proposed. We5

briefly present some of the defining properties of these languages as they pertain to the family6

of probabilistic description logics. This limited view is intended as a way to help the interested7

researcher find the most adequate language for their needs, and potentially identify the gaps8

remaining.9
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1. Introduction11

Logic-based knowledge representation [1] is one of the fundamental building blocks12

for (logic-based) artificial intelligence. In fact, any intelligent application has, as an un-13

avoidable requirement, the need to represent and handle the knowledge about the14

domain that it works in [2]. This need has led to a plethora of knowledge represen-15

tation languages targeting diverse properties and applications of the knowledge and16

its management. In their classical version, these languages are designed to deal with17

perfect knowledge, in the sense that knowledge is assumed to be precise, certain, and18

correct. In general, however, knowledge is not perfect, and knowledge representation19

and reasoning systems should be able to handle these cases as well, if they are ever to be20

used in practice.21

One prominent case of imperfect knowledge, which arises in many natural applica-22

tions including medicine and biology, but also economics and sociology is the presence23

of uncertainty. This refers to facts or situations which may hold or not, but we simply24

cannot know a-priori (without an intervention or an observation) which is the case. To25

deal with the uncertainty of these domains, many uncertain knowledge representation26

languages have been developed as well.1 Just as in the classical case, several uncertain27

knowledge representation languages can be developed, depending on the desired logical,28

computational, and practical properties that they should have. Importantly, uncertainty29

adds a new dimension over which further variants can be constructed: starting from the30

chosen uncertainty representation, up until the source of uncertainty, passing through31

several additional considerations which impact not only the semantics, but also their32

applicability, underlying assumptions, and reasoning efficiency.33

Given this large landscape of uncertain knowledge representation formalisms, it is34

easy for a newcomer to get lost in an attempt to understand the area, or simply to grasp35

the most adequate language for their needs. As a consequence, the entry cost for dealing36

with uncertain knowledge representation is unreasonably high, specially for users who37

may only be interested in using the formalisms, as opposed to developing or extending38

1 Importantly, uncertain knowledge representation refers to the representation of uncertain knowledge, not to uncertainty in the representation.
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them. This is one of the largest hurdles for the adoption of uncertain representation39

formalisms, and draws the risk of choosing a wrong paradigm for a given application40

with potentially catastrophic consequences.41

This paper is an attempt to decrease that entry cost, by providing a very brief42

roadmap into knowledge representation formalisms dealing with uncertainty. The43

roadmap is limited in many aspects: it focuses primarily on probabilities as uncertainty44

representation, and uses a well-known but by no means all-encompassing family of (clas-45

sical) knowledge representation formalisms as the basis for constructing probabilistic46

extensions. Still, the discussion on the ideas behind the formalisms and their properties47

and limitations will hopefully provide enough of a background for an interested reader48

to understand other variants and explore the rest of the forest by themself. In particular,49

the pattern for extending logical formalisms with probabilities repeats almost unchanged50

throughout languages. What this roadmap does not provide are the tools to deal with51

other kinds of uncertainty representations [3,4] such as possibility theory [5,6] or evi-52

dence theory [7,8]; nor any other kinds of imperfect knowledge like vagueness [9–11], or53

inconsistency [12–14].54

The structure of the paper is as straightforward as it can be. We first discuss the55

fact that uncertainty is a multi-faceted issue, and the need to understand which face56

is relevant for each specific application. In that section we also restrict our attention57

to probabilities, justifying our choice. Afterwards, we introduce a class of uncertain58

knowledge representation formalisms built as extensions of the well-known family of59

description logics. Although this choice limits the class of languages studied, it gives a60

general overview of the issues encountered, and the kinds of uncertain representation61

and reasoning available.62

2. The Many Faces of Uncertainty63

Since our goal is to formally handle uncertain knowledge, we should start to64

clarify what uncertainty is, and how it can be quantified, combined, and more generally,65

manipulated. Skimming over the many, and deeply interesting philosophical discussions66

on the topic, we consider the most etymological version of the term: uncertainty as67

a lack of certainty. In this respect, uncertain knowledge is not a lack of knowledge68

(which classical knowledge representation languages handle effectively by means of the69

so-called open world semantics) nor imprecise knowledge, which is the scope of fuzzy70

logic [11]. Instead, uncertainty refers to properties or events which either hold or not, but71

we cannot certainly know which is the case beforehand. Consider the typical example of72

a coin toss. Before the toss, we know that it will either land on heads or on tails, but we73

have no way of knowing a-priori which is the case; thus we are uncertain of the result,74

up until the point when the coin is tossed. Note that uncertainty of a property may be an75

indirect consequence of other certain or uncertain properties, some of which may not be76

obviously stated. For instance, if one makes a bet on the coin toss, then it is known with77

certainty that if the coin lands on heads, then they win $1, and they loose $1 otherwise.78

However, it is still uncertain which will be the actual case until the toss is made.79

The obvious next question is how can one represent and manage such uncertainty.80

When first encountering this question, most people turn immediately to the notion of81

probability. Indeed, probabilities and their close friends the percentages are taught to82

most of us from a relatively early stage, and we encounter them almost daily in all83

aspects of our life; we in fact use probabilistic terminology in our daily-life interactions.84

This familiarity with the theory of probabilities is both a blessing and a curse. On the85

one hand, it greatly reduces the entry cost of dealing with uncertainty in a formal setting,86

removing the wall of introducing a new theory along with its nomenclature and notation.87

On the other, the heavy baggage of probabilities includes many misunderstanding and88

erroneous intuitions that we have grown used to accept as true. In part for this reason and89

in part for other issues that we will point to later on, other uncertainty representations90
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have been proposed; most notably, possibility theory [5] and evidence theory [7,8].2 For91

the scope of this paper, as in most of the literature in uncertain knowledge representation,92

we give more weight to the advantages of the easiness of presentation over the likelihood93

of misunderstandings. Thus, we consider probability theory as the basis for representing94

and managing uncertainty in the context of knowledge representation. However, we95

still need to take into account the different interpretations of probability as uncertainty.96

Despite its unified name, and the use of probabilities for handling it, not all un-97

certainty is equal. Halpern [15] already hinted at it when describing its different types98

of logics of probability. Broadly speaking, Halpern’s classification considers two kinds99

of views on uncertainty: a statistical one referring to a proportion of the population100

satisfying a property of interest, and a subjective one dealing with beliefs about possible101

worlds. The difference lies in how the uncertainty is used within a derivation or reason-102

ing process, but mirrors existing differences from real-life use of probabilities. However,103

it is important to note that Halpern’s classification is orthogonal to the usual distinction104

between frequentist and Bayesian probabilities, about which we refrain from mentioning105

anything further in this text.106

Statistical probabilities come into play when speaking about proportionality, and107

a random selection of elements. Hence, when we say that a medical test has a 95%108

diagnostic specificity—in lay terms, that if the test is positive, then there is a 95% chance109

that the individual is in fact positive for the disorder under scrutiny—what we are saying110

is that 95 out of every 100 positive tests are correct (and the remaining 5 are wrong).111

Hence, if we randomly take one of these tests, it has a 95% chance of being a correct one.112

Note that one can only be so specific about the probability if the whole population is113

known.114

In contrast, subjective probabilities consider unique instances which are charac-115

terised by different possibilities. The prototypical example in this direction is the weather116

forecast. When a meteorological model predicts a 40% chance of rain tomorrow, it cannot117

be read as a statistical statement saying that in 40 out of 100 tomorrows rain will be present.118

Instead, it studies different scenarios based on possible parameters like wind speed and119

direction, temperature, humidity, and others, to verify in which of those scenarios rain is120

present.3121

Halpern’s classification, however, is not fully satisfying in the context of knowledge122

representation, and in particular in the context of incomplete domain knowledge and123

expert knowledge. We use these two cases to exemplify the limitations of each of the124

two types of probabilities.125

As mentioned already, statistical probabilities are derived as proportional obser-126

vations of an event within a given population. The term statistical hence refers to a127

very basic analysis of data. The name is unfortunate, as it also evokes the use of more128

advanced statistical analyses, which are not foreseen in these logics. The most basic129

example is the presence of incomplete knowledge. While it is pretty straightforward130

to find out the exact proportion of students in a given classroom who are left-handed,131

the same cannot be said about e.g., COVID-19 patients who have pulmonary scars. To132

know this latter proportion, it is necessary to identify precisely who has been infected133

with the disease, and make a pulmonary plaque on all those subjects. Both of these tasks134

induce high economic, social, and human costs which one might not be willing to cover.135

Instead, it is possible to approximate this knowledge using a statistical analysis on the136

available data of publicly known infected individuals, and results from hospital analyses137

from people suspect of having lung issues arising from it. Alternatively, one can also138

sample the population to estimate these proportions. Both ideas are intended to fill the139

gap left by the incomplete knowledge of exactly how many people fall into each of the140

2 Often referred to also as Dempster-Shafer theory.
3 In reality, the values provided by actual weather forecasts are more complex, as they also take into account the area of the region under considera-

tion [16]. For the sake of the example, we do not delve deeper into these details.
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categories of interest. The cost, however, is that there are (uncertain) margins of error141

that one needs to deal with.142

Let us consider now subjective probabilities, which aim to represent beliefs about the143

likelihood of specific events. A common use of subjective probabilities is for modelling144

expert knowledge, where a (human) expert may—perhaps based on past observations—145

assign a probability to an event. In these cases, the numerical values underlying proba-146

bilities (and their algebraic manipulations) become more a hindrance than an advantage.147

Indeed, there is no-one capable of discerning a probability of 95% from one of 95.5%148

nor, for that matter, 60% from 70%. Importantly, even subtle differences may cause149

huge mismatches over a derivation process; they could even lead to inconsistency in the150

collected knowledge. In these cases, it is perhaps more useful to represent comparative151

statements, of the form X is more likely than Y. However, this requires the development152

of new reasoning techniques, specially in the presence of mixed statements. Moreover,153

it comes at the price of losing precision. On the other hand, these statements are more154

easily understandable by the lay person, and describable by the experts.4155

As it can be seen from this section, representing and managing uncertain knowledge156

is far from trivial, even from the point of view of choosing the measure of uncertainty.157

The landscape of probabilistic interpretations is vast, and different applications have158

diverse needs for expressivity. If we attach other practical considerations like complexity159

of reasoning, availability of resources, or historic knowledge to use, the panorama160

gets even more diverse. It is important to keep this diversity in mind when studying161

uncertain knowledge representation languages to avoid getting lost among the variants162

that they induce. This is, in fact, one of the biggest obstacles faced by researchers trying163

to get started in the area: not knowing the differences in the probabilistic interpretations,164

exploring the state of the art seems a Sisyphean task.165

The following section is an attempt to draw a map of the uncertain knowledge166

representation landscape and highlight active work and potential gaps.167

3. Representing Uncertain Knowledge168

Representing uncertain knowledge has a prerequisite representing knowledge, full169

stop. Knowledge representation, by itself, has a very long history, during which a170

plethora of variations, limitations, and features have been considered. A natural first171

step is to consider a known logic for representing knowledge; hence, one cannot avoid172

mentioning propositional and (first-order) predicate logic as the foundations of logic-173

based knowledge representation languages. However, from a practical point of view,174

propositional logic tends to be too inexpressive, and even the elements which can be175

expressed sometimes require a complex and difficult to grasp construction to handle176

correctly. On the other spectrum, in full predicate logic it is known that verifying the177

satisfiability of a formula (which in terms of knowledge representation translates to178

deciding whether a knowledge base is consistent) is an undecidable problem; that is,179

there is no algorithm which can provide a correct answer in finite time for any possible180

formula.181

For this paper, we focus on a family of formalisms which lies mainly within these182

two formalisms. More specifically, most languages within this family—the family183

of Description Logics (DLs) [17]—are more expressive than propositional logic (thus,184

able to formalise more complex knowledge in a simpler manner) and at the same185

time less expressive than predicate logic guaranteeing decidable reasoning tasks (with186

consistency among them). There are a few exceptions to this statement, which only help187

in increasing the relevance of the family as knowledge representation formalisms. The188

very inexpressive DLs EL [18] and DL-Lite [19], which are specially targeted for tractable189

reasoning, do not contain the full power of propositional logic although they allow190

4 This is one of the settings where possibility theory becomes relevant: under some specific interpretations, the exact numerical values are cast aside
in favour of their ordering.
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for additional constructors. At the other end of the spectrum, expressive description191

logics like SROIQ [20] include constructors (like transitive closure) which cannot be192

directly expressed in first-order logic. These are handled in a manner that prevents193

undecidability of reasoning.194

The semantics of description logics, which is based on interpretations akin to195

first-order logic—that is, with a domain representing all the relevant objects, and an196

interpretation function which expresses the properties of those individuals in relation to197

each other—is specially useful for dealing with the various interpretations of uncertainty.198

We will see this in detail later, but in a nutshell and using Halpern’s classification,199

statistical probabilities are handled by adding uncertainty over the elements of the200

domain (i.e., the population) while subjective probabilities are dealt with through several201

potential interpretations (possible worlds). As mentioned before, the differences may be202

important.203

For all these reasons, we consider description logics as a basic formalism for rep-204

resenting uncertain knowledge. This is meant mainly as a prototypical representation:205

most of the ideas that we describe apply similarly to other formalisms without major206

modifications. We emphasise, however, that the classical family of description logics207

has some limitations which we will not consider further. Most notably, it cannot handle208

non-monotonic [21], nor temporal knowledge [22,23] natively. Importantly, combin-209

ing uncertainty with non-monotonicity and with temporal constructors is known to210

be specially problematic [24], both in terms of conceptual understanding and in the211

computational complexity of reasoning.212

Without going into too many details, the basic building blocks in a description logic213

are concepts (that is, sets of individuals) and roles, which represent relationships between214

individuals; slightly more formally, concepts are unary predicates, and roles are binary215

predicates of first-order logic. Hence, Student is a concept that refers to all the students216

in the world of interest, while supervises expresses the relationship between a supervisor217

and their student. These symbols receive an interpretation by setting a (potentially218

infinite) domain, which contains all the objects of interest, and an interpretation function219

expressing which objects belong to which concepts, and which pairs are related via220

roles. What differentiates one description logic from another is the class of constructors221

used to build more complex concepts—e.g., conjunction, negation, number constraints,222

etc.—and how they are interpreted.223

The goal of description logics is not only to express different kinds of concepts, but224

to actually represent the knowledge of a domain. This is achieved through a knowledge225

base which is a finite set of axioms that serve as constraints for the interpretations. That226

is, each axiom excludes some potential interpretations as not representing the domain227

knowledge. For example, an axiom could express that “every student must have at least228

one supervisor.” In this case, any interpretation including a supervisor-free student will229

be excluded as a violation of the constraint. In general, given a knowledge base, there230

are still many different (actually, infinitely many) interpretations which satisfy all the231

constraints imposed. These so-called models are the only interpretations of interest in the232

context of the knowledge base.233

When we use the term reasoning, we refer to the task of extracting consequences234

which logically follow from the knowledge expressed in the knowledge base. Recall-235

ing that the axioms within the knowledge base are simply constraints in the possible236

interpretations, reasoning then refers to finding other pieces of knowledge which are237

guaranteed by these constraints. In other words, the logical consequences of a knowl-238

edge base are those which follow in all possible models of this set of axioms. We usually239

say that reasoning is the task of making knowledge which is implicitly encoded by the240

knowledge base explicit. The motivation behind using several models for reasoning is241

that we consider that a knowledge base is always (necessarily) incomplete. That is, we242

believe that a knowledge base will always exclude some information, either because it243

is irrelevant, or because it is not yet known. In those cases, we want to leave open the244
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possibility of such an assertion being true or false, until it is known. This approach is245

commonly known as the open world assumption in the literature.246

Once again, a knowledge base defines a class of interpretations, each of which247

introduces a set of individuals. When knowledge is uncertain, we thus have two248

natural choices to introduce a probability distribution: it can be defined over the class of249

interpretations, expressing the likelihood that each of them represents the actual state250

of the world, or it can be defined over the individuals of the interpretation domain,251

differentiating the characteristics of the individuals. These two choices transfer easily to252

the two kinds of probabilistic logics in the classification by Halpern. This correspondence253

has given rise to several probabilistic description logics.254

3.1. Subjective Probabilities255

Consider first the case of subjective probabilities. These refer to the situation where256

the uncertainty is about the state of the world, and hence about the specific model257

under consideration. Thus, the semantics of these kinds of logics introduce a probability258

distribution over the class of relevant models, expressing which of them are more likely.259

From a syntactic point of view, it is necessary to express the likelihood of the knowledge260

appearing in the knowledge base. The typical approach is to associate to each axiom (that261

is, each constraint) a probability degree. This probability expresses the (subjective) belief262

that the constraint expressed by the axiom actually holds in the world [25,26]. Intuitively,263

if this probability is p, then the probability distribution should assign probability p to264

the set of all the interpretations which satisfy p and probability 1− p to its complement.265

Unfortunately, things as not as easy as they seem at first sight, and there are many266

aspects to take into account.267

One issue is how to relate the probabilities of different axioms with each other for268

the construction of the probability distribution. That is, if an axiom α has probability p269

and another axiom β as probability q, which probability should one assign to the class of270

interpretations satisfying both axioms α, β? In most cases, to simplify the language and271

the probability computations, it is common to assume that axioms are probabilistically272

independent—that is, that the truth value of one does not affect the likelihood of the273

other. Under this assumption, the probability of satisfying both axioms becomes pq. This274

assumption, however, is not always realistic in a knowledge representation application.275

For one, as knowledge bases tend to be big, knowledge engineers often rely on modelling276

guidelines, which specify how some specific kinds of knowledge should be represented277

in a given scenario. These guidelines commonly require simple axioms, which can278

only specify complex knowledge when combined with other axioms. If this complex279

knowledge is uncertain, it is unreasonable to assume that all the small pieces building it280

are probabilistically independent. The other side of the same coin are the normalisation281

steps often performed implicitly to aid reasoning. Again, in this case many simple axioms282

are generated from one complex one, but clearly they are all dependent on each other.283

Formally, to solve this issue one would need to specify the full probability distribution284

of the axioms or at the very least the joint probabilities for all relevant combinations285

of axioms. Unfortunately, this solution requires a complex representation and slows286

reasoning. Some approaches have been proposed to use only partial independence287

assumptions [27–29]. Another approach is to consider all possible coherent assignments288

of probabilities in what is known as Nilsson’s semantics [30]. However, this semantics289

does not satisfy the axioms of probability in general, and knowledge manipulation290

always increases imprecision.291

A second issue arises from the presence of the open world assumption. Recall that292

we previously said that if an axiom holds with probability p, then the interpretations293

that do not satisfy this axiom should have probability 1− p. The issue, however, is with294

guaranteeing that the remaining interpretations indeed do not satisfy an axiom, and295

deciding what precisely that (i.e., violating an axioms) means in practice. From the open296

world assumption, we note that knowledge which is not explicitly stated could be true297
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or false. When dealing with uncertain axioms, we will have some interpretations where298

the axiom explicitly holds, and some—due to the open world assumption—where it may299

hold, but is not required to do so. This means that in reality the probability stated by the300

axiom is only a lower bound: the likelihood of making it true may in fact be higher. Once301

again: although one may conceivably construct a logic where the probabilistic value is302

precise, by explicitly violating the axiom in all remaining interpretations via some kind303

of closed-world interpretation, this can have unexpected consequences. This happens,304

in fact, in [28]. In this logic, the semantics guarantee a closed-world interepretation.305

However, this has been shown to produce some counter-intuitive behaviour, and in306

particular to lead to inconsistency even in simple cases.307

A third issue is also closely related to the open world assumption, but arises mainly308

from the fact that knowledge is assumed to be incomplete within a knowledge base.309

Combined with the existence of implicit knowledge which may be extracted through310

reasoning, the probabilities of different axioms, and of their consequences may be in311

evident conflict. As a very simple example, consider a setting where knowledge is312

redundant, in the sense that different sets of axioms state the same knowledge. It may313

very well happen, due to the nature of knowledge base engineering, that the probabilities314

associated to these classes differ, yielding two different (conflicting) probability degrees315

to the same piece of knowledge. Deciding how to solve these conflicts—by computing the316

maximum, following a full probabilistic approach, or simply declaring inconsistency—is317

a design choice which impacts the accuracy, practicality, and complexity of the language318

and its reasoning tasks.319

At this point it is perhaps worth mentioning also an approach which avoids fully320

specifying probabilistic degrees, but instead gives more importance to their ordering;321

that is, uncertainty values are specified relative to each other, rather than absolutely as322

probability degrees. In log-linear logics [31,32], each axiom is assigned a weight, which is323

real number not necessarily in the interval [0, 1]. At the very basis of the interpretation324

of these values is an ordering of the probabilities of the axioms in the knowledge base:325

axioms with the same weight will have the same probability, and the larger the weight,326

the larger the probability that will be assigned to the axiom. Hence, there is also a327

level of proportionality in the sense that one can express that an axiom is much more328

likely than another simply by assigning a much larger weight. One should, however,329

be very careful when modelling uncertain knowledge through this formalism, as the330

relationship between weights and probabilities is not linear; in simple terms, duplicating331

the weight does not necessarily imply duplicating the probability. In fact, this almost332

never happens. The issue is further complicated by the possibility of assigning negative333

weights to axioms (which, however, still yield positive probabilities). For more details,334

see [31,33].335

3.2. Statistical Logic336

The second class in Halpern’s classification is statistical logic, where the uncertainty337

is distributed over the objects of the domain, but only one “possible world” is considered338

at a time. That is, rather than the situation of the world, the unknown refers to the339

properties of specific individuals [34,35].340

Syntactically, probabilistic description logics based on the statistical logic semantics341

often look very similar to those with subjective probabilities: each axiom is associated342

with a probability degree. The difference becomes apparent only in the semantics. In this343

case, the semantics assign a probability distribution for each property (or combination344

thereof) within the elements of the domain. For example, an axiom stating that a property345

A is a subproperty of the property B with probability p is interpreted as a conditional346

probability expressing that the probability of observing B given that A was observed is p.347

This in general complicates reasoning as it requires the development of new techniques348

for dealing with the individuals and transferring the properties among them [36].349
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The additional difficulties on dealing with statistical probabilistic logics become350

obvious from exploring the literature. Indeed, while probabilistic description logics351

based on subjective probabilities abound, and their properties have been deeply studied,352

the variants based on statistical probabilities are extremely limited. Moreover, their353

reasoning complexity tends to grow as well [37]. Hence, despite being very useful in354

many situations—indeed, providing the adequate form of uncertainty in many practical355

scenarios—these logics are largely unexplored.356

In knowledge representation one is often interested in the practical and compu-357

tational properties of the languages as a way to guarantee adequate answers within358

reasonable time bounds, and minimise the effort of implementing, optimising, and359

updating the systems. Still, the choice of the semantics is fundamental to obtain the360

right answers. One way to summarise the difference between subjective and statistical361

probabilities is that in the former, an axiom holds in all the individuals or not, depending362

on the world under consideration, while in the latter the properties of the axiom hold363

in some individuals and not in others. Consider for example the statement “a person364

is female with probability 0.5.” Under subjective probabilities, this statement is inter-365

preted as the knowledge that in half of all possible worlds, every person is female. Under366

statistical probabilities, instead, it is interpreted as stating that half of all persons are367

female. Although the difference may look very subtle at first sight, a simple reasoning368

question may highlight the deep differences between both: if one takes two random369

individuals and ask what is the probability that one is female and the other is male370

(assuming that there is additional knowledge about gender in the knowledge base), a371

statistical probabilistic approach would yield the (intuitive) answer that this probability372

is 0.5; a subjective probabilistic approach would instead set this probability to 0, because373

in its semantics either all individuals are male, or all are female (and thus, there cannot374

be one of one gender and one of another). This simple example can be used as a general375

test to understand which kind of semantics is adequate in a given application.376

3.3. Other Approaches377

As mentioned before, Halpern’s classification does not cover the whole spectrum of378

uncertainty which can arise in practical applications. Indeed, one of the best known and379

most commonly used cases for uncertainty is not covered by this classification. In many380

situations with unknown relationships between properties, we gather partial information381

about the world through different statistical models. It is important not to confuse382

statistical models with statistical probabilities—the latter is the unfortunate name given383

to the case considered earlier in this section. One of the most common statistical models384

is the use of sampling to approximate the incidence of a property. In a nutshell, one takes385

a small part of the population (a sample) and queries for the property of interest. Under386

some reasonable assumptions (about the quality and covering of the sampling method)387

the proportion of the sample that satisfies the property is approximately the proportion388

of the full population with the same property. The quality of the approximation improves389

as the sample size grows, but obtaining a larger sample may be expensive and in many390

cases (like in the medical domain) even impossible.391

Importantly, as a part of the population has not been observed, the actual incidence392

of the property studied is itself uncertain: it can still move in any direction although393

with decreasing probability as it moves farther away from the computed estimate.394

Dealing with the uncertainty of these approximations alongside logical properties is395

not an easy task. Some approaches have tried to handle it through uncertain [38,39]396

or imprecise probabilities [40,41]. The issue is that these approaches (despite their397

names) still require a precise knowledge of the probabilistic bounds, in opposition to398

the knowledge provided by the statistical analysis, which can provide different bounds399

with different degrees of certainty, even propagate the uncertainty through different400

reasoning steps. A preliminary approach trying to handle this information formally was401

presented in [42], where so-called confidence intervals appear as first-class citizens to be402
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manipulated. However, as it is clear from that preliminary study, there remain many403

open gaps before these ideas can be developed into a fully-fletched uncertain knowledge404

representation language.405

A final approach that is worth mentioning is based on the principle of maximum406

entropy. In this approach, the probabilities of the axioms define a unique probability407

distribution which is considered the least informative, thus preserving the idea of408

open-world assumption, but simplifying the reasoning process once that this so-called409

maximum entropy distribution has been computed. For details on how this principle is410

applied in description logics, see [43,44].411

4. Conclusions412

We have provided a very brief roadmap to the representation, managing, and413

handling of uncertainty in knowledge representation languages. As warned in the414

introduction, the roadmap is extremely limited in its scope: it considers only probabilities415

as uncertainty representation, and focuses on formalisms extending the well-known416

family of description logics. The choice of these limits necessarily leaves out a huge part417

of the literature on uncertain knowledge representation, and still it was a quintessential418

choice. On the one hand, covering the whole area would require a much larger space419

(see e.g., an outdated survey at [45]). On the other hand, the main features of this class420

of languages are already represented in the formalisms covered.421

While it is true that changing the base formalism requires an additional analysis of422

the technical details and may deeply affect the computational properties of the resulting423

language, it is also the case that the main issues that should be considered, specially424

when trying to decide which language is best suited for a given application, are already425

covered in this roadmap.426

It is our hope that this brief paper will be useful to newcomers trying to identify427

gaps in the field to work in, and to knowledge engineers trying to assess the right428

formalism for their needs when modelling uncertainty.429
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