
fermentation

Article

Mathematical Analysis and Update of ADM1 Model for
Biomethane Production by Anaerobic Digestion

Stefano Bertacchi 1 , Mika Ruusunen 2 , Aki Sorsa 2 , Anu Sirviö 2 and Paola Branduardi 1,*

����������
�������

Citation: Bertacchi, S.; Ruusunen, M.;

Sorsa, A.; Sirviö, A.; Branduardi, P.

Mathematical Analysis and Update of

ADM1 Model for Biomethane

Production by Anaerobic Digestion.

Fermentation 2021, 7, 237. https://

doi.org/10.3390/fermentation7040237

Academic Editors: Eldon R. Rene,

Maria Carmen Veiga and

Christian Kennes

Received: 13 September 2021

Accepted: 18 October 2021

Published: 21 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2,
20126 Milano, Italy; stefano.bertacchi@unimib.it

2 Faculty of Technology, University of Oulu, Pentti Kaiteran katu 1 Linnanmaa, 90570 Oulu, Finland;
mika.ruusunen@oulu.fi (M.R.); aki.sorsa@oulu.fi (A.S.); anu.sirvio@oulu.fi (A.S.)

* Correspondence: paola.branduardi@unimib.it

Abstract: Biomethane is a renewable product that can directly substitute its fossil counterpart,
although its synthesis from residual biomasses has some hurdles. Because of the complex nature of
both biomasses and the microbial consortia involved, innovative approaches such as mathematical
modeling can be deployed to support possible improvements. The goal of this study is two-fold, as
we aimed to modify a part of the Anaerobic Digestion Model No. 1 (ADM1), describing biomethane
production from activated sludge, matching with its actual microbial nature, and to use the model
for identifying relevant parameters to improve biomethane production. Firstly, thermodynamic
analysis was performed, highlighting the direct route from glucose to biomethane as the most
favorable. Then, by using MATLAB® and Simulink Toolbox, we discovered that the model fails
to predict the microbiological behavior of the system. The structure of the ADM1 model was then
modified by adding substrate consumption yields in equations describing microbial growth, to better
reflect the consortium behavior. The updated model was tested by modifying several parameters:
the coefficient of decomposition was identified to increase biomethane production. Approaching
mathematical models from a microbiological point of view can lead to further improvement of the
models themselves. Furthermore, this work represents additional evidence of the importance of
informatics tools, such as bioprocess simulations to foster biomethane role in bioeconomy.

Keywords: biomethane; anaerobic digestion; biorefinery; mathematical modeling; differential equa-
tions; bioeconomy

1. Introduction

At the end of the first decade of 21st century, the European Union (EU) Renewable
Energy Directive 2009/28/EC required that by 2020, each member state had to rely on
renewable energy for 20% of the total needs and 10% for transport alone [1]. Unfortunately,
only Sweden and Austria have reached that target [2]; consequently, there is an urgent
and binding need to push forward the use of alternatives to common fossil resources.
Natural gas, namely methane (CH4), is a prominent target to be substituted with renewable
alternatives, as it is still widely used in the EU for industrial, domestic, and transport
sectors. Its direct replacement is biomethane, which is the final product of anaerobic
fermentation of organic matter, as part of the gaseous mixture called biogas. Biogas is in
fact a blend of mainly CH4 and CO2: it can be deployed directly as a source of energy, but
the presence of the already fully oxidized CO2 reduces the overall calorific value. For this
reason, several “upgrading” processes exist, aimed at purifying biomethane from biogas,
to expand its use also to domestic and transport sectors via injection into the conventional
pipelines [3,4].

Among the various residual biomasses used to match the low market value of
biomethane [2,5], sewage sludges from wastewater treatments play a prominent role.
They are side streams with a high environmental impact that can be reduced by further
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manipulations, with a huge potential in terms of worldwide production of biogas, together
with other biomasses, such as manure, organic fraction of municipal solid waste, and
agricultural residues [6]. Since there has been increased growth of the European market
of biomethane, led by Germany, several countries from both northern (e.g., Finland) and
southern (e.g., Italy) Europe are interested in developing this sector, in order to fulfill
the aforementioned goals of the EU over the coming years [2,7]. To make the production
profitable, considering the reduced margin between cost and price, is essential but not
trivial. For these reasons, a quantitative description of the microbiological system sus-
taining the process is pivotal: the development of mathematical models can support this
description and predict possible improvements, which can be crucial for the viability of the
biomethane sector.

Biogas production in anaerobic digestors generally follows four sequential phases
carried out by the metabolism of the microbial consortium therein. Biopolymers such as
carbohydrates are initially hydrolyzed into simple or simpler monomers and oligomers
(e.g., sugars, stage I—hydrolysis), then fermented into alcohols, CO2, volatile fatty acids
(VFAs, e.g., propionate, butyrate, acetate), and H2 (stage II—acidogenesis) [8]. These
molecules are then converted into acetic acid (stage III—acetogenesis) and sequentially
transformed into biomethane (CH4) (stage IV—methanogenesis) (Figure 1) [8]. These reac-
tions are carried out by different species of microbes, whose symbiosis and syntropy in the
consortium are the key for the anaerobic digestor to function. In a simplified model of these
reactions, described in Figure 1, stage I is carried out by glucose-fermenting acidogens, able
to both hydrolyze the fibers and carbohydrates contained in the substrate and transform
glucose into VFAs. Propionate and butyrate-degrading acetogens accumulate acetic acid
from corresponding VFAs, whereas acetoclastic methanogens complete the reaction to
biomethane [9–11].
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Figure 1. Simplified biochemical model of anaerobic digestion of biomass by the consortium of
glucose-fermenting acidogens (X1), propionate-degrading acetogens (X2), butyrate-degrading aceto-
gens (X3), and acetoclastic methanogens (X4).

From the process of the waste-derived biomethane, it is possible to create a mathemati-
cal model that is able to predict the behavior of the process itself in case specific parameters
are modified, as for example in [10,11], where a simplified version of the Anaerobic Diges-
tion Model No. 1 (ADM1) is described: this model focuses on the exploitation of activated
sludges for wastewater treatments for biomethane production [9]. ADM1 has been also
adjusted to stress the relevance of specific microbes, molecules, or operative steps [12–15],
and applied to the use other residual biomasses, especially of lignocellulosic origin, such
as olive mill solid wastes, maize silage, and vegetable crop residues [16–19].

The goal of the present work is to update this model with observations from the
microbiological nature of the process, and to evaluate which industrially relevant pa-
rameters could impact the most on the final production of biomethane by the simulated
microbial consortium.
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2. Materials and Methods
2.1. Mathematical Model of Anaerobic Digestion

The model structure presented in [11] was chosen because it is a relatively new model-
ing approach and this model has been built with experimental data. The starting point of
the work was the Anaerobic Digestion Model No. 1 (ADM1) developed by the International
Water Association (IWA) for the use of activated sludge from the municipal wastewater
treatment plants [9]. The ADM1 model has been successfully proposed for the production
of biomethane from different residual sources [20,21]. Here, we use a simplified version of
the ADM1 model, were hydrogenotrophic methanogens were omitted considering their
lower impact on biomethane production if compared to acetoclastic methanogens [10].
In addition, only glucose was considered as carbon source, despite proteins are the most
abundant nutrient in activated sludges [11]; indeed, the original ADM1 model describes
glucose as the model monomer for acidogenesis in anaerobic digestion [9], as the aim was
to use it for modeling biomethane production from biomasses enriched in carbohydrates,
such as lignocellulosic ones. The equations taken into consideration modified from [11]
were the following (the symbols used are explained in the next subsection):

dS0

dt
= −β

S0X1

S2 + S3 + S4 + Ki,o
+ DYeSoi + λ(

6

∑
i=1

biXi)− DS0 (1)

dX1

dt
= (µ1 − b1)X1 − DX1 (2)

dS1

dt
= −Yglu/X1µ1X1 + β

S0X1

S2 + S3 + S4 + Ki,o
− DS1 + S1i (3)

dX2

dt
= (µ2 − b2)X2 − DX2 (4)

dS2

dt
= Yprop/X1µ1X1 − Yprop/X2µ2X2 − DS2 + S2i (5)

dX3

dt
= (µ3 − b3)X3 − DX3 (6)

dS3

dt
= Ybut/X1µ1X1 − Ybut/X3µ3X3 − DS3 + S3i (7)

dX4

dt
= (µ4 − b4)X4 − DX4 (8)

dS4

dt
= Yacet/X1µ1X1 + Yacet/X2µ2X2 + Yacet/X3µ3X3 − Yacet/X4µ4X4 − DS4 + S4i (9)

Q = YCH4/X4µ4X4 (10)

2.2. Variables and Constant Description

The variables and constants considered in this work were obtained from [11], which
described anaerobic digestion in a continuously stirred tank reactor.

2.2.1. Variables

Q (L/d) is the biogas yield over time, S0 (g/L) is the concentration of soluble organic
compounds, measured as volatile solids, SNH4

+ is the concentration of ammonia, S1 (g/L)
is the concentration of glucose, S2 (g/L) is the concentration of propionate, S3 (g/L)
is the concentration of butyrate, S4 (g/L) is the concentration of acetate, X1 (g/L) is
concentration of glucose-fermenting acidogens, X2 (g/L) is concentration of propionate-
degrading acetogens, X3 (g/L) is concentration of butyrate-degrading acetogens, X4 (g/L)
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is concentration of acetoclastic methanogens, and µ1, µ2, µ3, and µ4 (d−1) refer to specific
growth rates, described as follows:

µ1 =
µmax1S1

KS1 + S1
(11)

µ2 =
µmax2

(1 + KS2/S2)(1 + S4/Ki,acet/prop)
(12)

µ3 =
µmax3

(1 + KS3/S3)(1 + S4/Ki,acet/but)
(13)

µ4 =
µmax4Ki,NH4+S4

(KmX4 + S4)(Ki,NH4+ + SNH4+)
(14)

2.2.2. Constants

There are several constants in the equations and their values are as follows:
D (d−1) = 0.1072—dilution rate; β (d−1) = 0.31—hydrolytic rate; Ki,o (g/L) = 0.23—inhibition
constant, reflecting the decrease of hydrolytic rate due to VFAs accumulation; Ki,NH4+ (g/L) = 0.5
—inhibition constant reflecting the decrease of acetoclastic methanogenesis rate due to am-
monia accumulation; Ki,acet/prop (g/L) = 0.96—product inhibition constant, reflecting the de-
crease of propionate degradation rate due to acetate accumulation; Ki,acet/but (g/L) = 0.72—
product inhibition constant, reflecting the decrease of butyrate degradation rate due to
acetate accumulation; Ye = 0.55—coefficient of decomposition, counting what part of
insoluble organic compounds are transformed to soluble compounds; Soi = 30.6 g/L—
concentration of insoluble organic compounds, measured as total solids; Si1, Si2, Si3, and
Si4 (g/L) are the concentrations of the corresponding substrates in the influent; Si1 = 5.1,
Si2 = 1.6, Si3 = 0.1, and Si4 = 3.1.

Km = 1.3—coefficient in the Contois growth rate model for µ4, reflecting the decrease of
acetoclastic methanogenesis rate due to biomass accumulation; KS1 (g/L) = 4.8—saturation
constant for glucose-fermenting acidogens; KS2 (g/L) = 0.93—saturation constant for
propionate-degrading acetogens; KS3 (g/L) = 0.176—saturation constant for butyrate-
degrading acetogens

µmax1 (d−1) = 0.7—maximum specific growth rate of glucose-fermenting acidogens at
34 ◦C; µmax2 (d−1) = 0.54—maximum specific growth rate of propionate-degrading aceto-
gens at 34 ◦C; µmax3 (d−1) = 0.68—maximum specific growth rate of butyrate-degrading
acetogens at 34 ◦C; µmax4 (d−1) = 0.45—maximum specific growth rate of acetoclastic
methanogens at 34 ◦C; bi (i = 1, . . . , 4)—mortality rates for each of the four microbial
populations (it was supposed that bi = 0.05µmaxi). It was assumed that a part of the dead
cells is transformed into soluble organics with recycling conversion factor λ (λ > 0 and
λ < bi).

Yield coefficients of production or consumption: Yglu/X1 = 12.9 g/g biomass,
Yacet/X1 = 20 g/g biomass, Yprop/X1 = 2.94 g/g biomass, Yprop/X2 = 10.2 g/g biomass,
Ybut/X1 = 3.08 g/g biomass, Ybut/X3 = 11.9 g/g biomass, Yacet/X2 = 8 g/g biomass,
Yacet/X3 = 1.54 g/g biomass, Yacet/X4 = 16 g/g biomass, and YCH4/X4 = 4 L/g biomass.

2.3. Balancing the Reaction Equations of Anaerobic Digestion Mathematical Model

The biochemical reactions from glucose to biomethane described in the model were
stoichiometrically balanced and analyzed by using the biochemical thermodynamics cal-
culator eQuilibrator [22]. For each equation, the estimated Gibbs free energy (∆rG’◦) and
equilibrium constant (K’eq) were calculated. The values of pH, pMg, and ionic strength
were kept as the default ones (7.5, 3.0, and 0.25 M, respectively).

2.4. Simulation Studies

The mathematical model was recreated on Simulink (Academic use version, Math-
Works, Natick, MA, USA) and run via data uploaded on MATLAB® (R2019b version,



Fermentation 2021, 7, 237 5 of 11

MathWorks, Natick, MA, USA). To improve the model, different simulation scenarios were
run to validate model behavior. Based on our observations, the differential equations of
the model were modified on Simulink. Simulations were then run again to verify appropri-
ate behavior. To identify significant process parameters, the values for some parameters
were modified. Thus, we can foresee the effect of such modifications on the production
of biomethane. Excel (Office 365, Microsoft, Albuquerque, NM, USA) was then used to
calculate equations of the relationship between single parameters (D, Yacet/X1, S1i, S0i, Ye)
and biomethane production (Q), described in Section 3.4.

3. Results and Discussion
3.1. Biochemical Description of the Model

Microbial metabolism reflects microbial biodiversity: different species often display
different abilities in utilizing the same carbon source. Because of the heterogeneous
nature of microbial consortia, understanding the main reactions occurring within is of
utmost industrial interest [8]. As mentioned, the production of biomethane from biogas
is composed of four main phases that, although they are sequential to each other, follow
different metabolic branches. In fact, as shown in Figure 1, different routes can lead to
the accumulation of acetate, which are then transformed into biomethane by acetoclastic
methanogens. A direct metabolism from glucose to acetate is in fact combined by the
alternative production of butyrate or propionate, later converted into acetate as well.
Despite the presence of other carbon sources rather than glucose, it is indicated in the
ADM1 as the model monomer for acidogenesis in anaerobic digestion [9]. The three
metabolisms could be described stoichiometrically with the chemical equations enlisted in
Table 1.

Table 1. Stoichiometric description of the reactions occurring during anaerobic digestion from glucose
to acetate, via propionate (1) or butyrate (2) production, or direct fermentation to acetate (3), with
kinetic parameters of such reactions.

Reaction Estimated ∆rG’◦

(KJ/Mol) K’eq

(1) Glucose + 2 H2O <=> 4 CO2 + 2 CH4 + 4 H2 −148.6 ± 35.0 1.1 × 1026

(2) Glucose + 2 NAD+ + 2 H2O <=> 4 CO2 + 2
CH4 + 2 H2 + 2 NADH −217.7 ± 28.6 1.5 × 1038

(3) Glucose + 4 NAD+ + 2 H2O <=> 4 CO2 + 2
CH4 + 4 NADH −286.9 ± 26.3 1.9 × 1050

The analysis of these equations makes clear that with the direct fermentation of glucose
into acetate, NAD+ becomes the electron sink of the reaction (Reaction 3, Table 1), whereas
H2 is the receiver of the four electrons (Reaction 1, Table 1) when propionate-degrading
acetogens are involved. Accordingly, butyrate as mid-step involves the use of both H2
and NAD+ as electron sinks of the fermentation (Reaction 2, Table 1). Considering kinetic
parameters such as the estimated Gibbs free energy (∆rG’◦) and equilibrium constant
(K’eq), it was clear that the direct fermentation of glucose into acetate is thermodynamically
the most favorable, suggesting that the microorganisms involved in such metabolism
are pivotal for the accumulation of biomethane. In agreement with this observation,
bioaugmentation of acetate-type fermentation species have been proposed to ameliorate
anaerobic digestion of residual biomasses into biomethane [23].

3.2. Microbiological Analysis of ADM1 Model

The differential equations describing the anaerobic digestion into biomethane from [11],
developed for the use of activated sludge from the municipal wastewater treatment
plants, were recreated on Simulink in a simplified version, by omitting hydrogenotrophic
methanogens, since their yield of methane was calculated to be inferior to acetoclastic
methanogens (0.8 and 4 g/g biomass, respectively [11]). In fact, acetoclastic methanogens
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are responsible for most of the biomethane produced during anaerobic digestion (up to
70% of the total) [10]. Given the considerations arising from the thermodynamical analysis
of the reactions leading to biomethane, we decided to use the model to quantify the influ-
ence of the metabolism of the fermenting microbes (X1, X2, and X3) on the production of
biomethane. We singularly simulated the nullification of acetate production yields by X1,
X2, and X3 (Yacet/X1, Yacet/X2, and Yacet/X3, respectively) to assess their impact on the final
biomethane yield over time (Q): the lower this value when a single parameter is set to zero,
the higher the importance of such element in the system. When Yacet/X2 and Yacet/X3 were
set to zero, Q did not decrease significantly from the original one (Q = 0.45 L/d, Figure 2A),
whereas Yacet/X1 = 0 resulted in Q = 0.18 L/d, witnessing the importance of the metabolism
of X1 on the overall process over X2 and X3 (in accordance with the thermodynamical
analysis). We then expanded the simulation by setting to zero the yield of glucose con-
sumption by X1 (Yglu/X1 = 0) to completely eliminate the action of this species earlier in
the process, expecting a strong reduction of Q. Surprisingly, the simulation resulted in an
infinite production of biomethane in the first days of fermentation (Figure 2B), underlying
some inaccuracy in the model itself. In the model X1, both hydrolyzed fibers and fer-
mented glucose into VFAs; therefore, the subsequent production of biomethane is strongly
dependent on its activity. Since Yglu/X1 represents the ability of X1 to consume glucose
and, therefore, to grow and produce VFAs, the fact that its simulated nullification was so
beneficial for the production of biomethane was at least suspicious from a microbiological
point of view. Therefore, we analyzed the description of the equations to understand
the reasons of this unexpected finding and how to solve it, for better representing the
microbiological reality of anaerobic digestion and for further improving the model itself.
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3.3. Update to ADM1 Model Structure

Analyzing the equations of the model indicated the mathematical reason for such
behavior. Yglu/X1 appears in Equation (3) as a negative contributor to the titer of glucose in
the digestor. The nullification of Yglu/X1, therefore, increased the amount of glucose, which
in turn increased µ1 (Equation (11)) and the titer of X1 (Equation (1)), and subsequently,
the titer of the microbial species as well. The paradox laid on the fact that although X1
was simulated of not being able to consume glucose, it was still growing and producing
VFAs, while microbiologically the opposite should occur. In order to meet this fundamental
requirement, we modified the equations describing microbial growth (Equations (2), (4),
(6) and (8)) by adding the corresponding yields of substrate consumption (Yglu/X1, Yprop/X2,
Ybut/X3, Yacet/X4) as follows:

dX1

dt
= Yglu/X1(µ1 − b1)X1 − DX1 (15)

dX2

dt
= Yprop/X2(µ2 − b2)X2 − DX2 (16)
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dX3

dt
= Ybut/X3(µ3 − b3)X3 − DX3 (17)

dX4

dt
= Yacet/X4(µ4 − b4)X4 − DX4 (18)

With the updated equations, the original parameter values permitted a simulation with
Q = 0.9698 L/d, whereas the nullification of Yglu/X1 reduced the value to Q = 0.1104 L/d,
in accordance with the modifications proposed for the model (Figure 3). The value of Q
was not zero because of the acetate present in the influent (Si4), transformed by X4 into
biomethane according to Equations (9) and (10). Furthermore, the value of Q obtained
with this new version of the model was higher compared to the original [11], although
it should be noticed that the constant values for updated model need to be validated
experimentally. Nevertheless, the goal of this work was to provide an updated version of
the model that could be a closer description of the microbial consortium responsible for
the anaerobic digestion. Indeed, despite that the model analyzed here does not involve
hydrogenotrophic methanogens, since their minor contribution in biomethane production
compared to acetoclastic methanogens [10], the proposed modifications can be considered
valid for the original ADM1 model as well.

Fermentation 2021, 7, x FOR PEER REVIEW 7 of 11 
 

 

𝑑𝑋ଷ𝑑𝑡 = 𝑌௨௧ ଷ⁄ (𝜇ଷ − 𝑏ଷ)𝑋ଷ − 𝐷𝑋ଷ (17)𝑑𝑋ସ𝑑𝑡 = 𝑌௧ ସ⁄ (𝜇ସ − 𝑏ସ)𝑋ସ − 𝐷𝑋ସ (18)

With the updated equations, the original parameter values permitted a simulation 
with Q = 0.9698 L/d, whereas the nullification of Yglu/X1 reduced the value to Q = 0.1104 L/d, 
in accordance with the modifications proposed for the model (Figure 3). The value of Q 
was not zero because of the acetate present in the influent (Si4), transformed by X4 into 
biomethane according to Equations (9) and (10). Furthermore, the value of Q obtained 
with this new version of the model was higher compared to the original [11], although it 
should be noticed that the constant values for updated model need to be validated exper-
imentally. Nevertheless, the goal of this work was to provide an updated version of the 
model that could be a closer description of the microbial consortium responsible for the 
anaerobic digestion. Indeed, despite that the model analyzed here does not involve hy-
drogenotrophic methanogens, since their minor contribution in biomethane production 
compared to acetoclastic methanogens [10], the proposed modifications can be considered 
valid for the original ADM1 model as well.  

 
Figure 3. Simulation of biomethane yield (Q) over time with updated equations using parameters from [11] (panel A) and 
with Yglu/X1 = 0 (panel B). 

3.4. Identifying Significant Process Parameters 
After updating the model by introducing the yields of substrate consumption in the 

equations, it was possible to simulate the growth of the various microbial species present 
in the model (X1, X2, X3, X4). As a starting point, the dilution rate (D) was modified accord-
ing to the maximum value available at the plant of an industrial partner of the project (D 
= 0.14 d−1), with 5000 L as the operative volume. The updated set of values resulted in Q = 
1.198 L/d, displayed in Figure 4 together with other parameters, such as substrate, glucose 
and VFAs titer, microbial titer, and specific growth rate. The stoppage time was set to 60 
d, since the maximum Q was already reached.  

Figure 3. Simulation of biomethane yield (Q) over time with updated equations using parameters from [11] (panel A) and
with Yglu/X1 = 0 (panel B).

3.4. Identifying Significant Process Parameters

After updating the model by introducing the yields of substrate consumption in
the equations, it was possible to simulate the growth of the various microbial species
present in the model (X1, X2, X3, X4). As a starting point, the dilution rate (D) was modified
according to the maximum value available at the plant of an industrial partner of the project
(D = 0.14 d−1), with 5000 L as the operative volume. The updated set of values resulted
in Q = 1.198 L/d, displayed in Figure 4 together with other parameters, such as substrate,
glucose and VFAs titer, microbial titer, and specific growth rate. The stoppage time was set
to 60 d, since the maximum Q was already reached.

The production of biomethane (Q) as a function of different parameters in the model
was identified based on the simulation results. The interaction between the dilution rate
(D) and Q can be described by a second-order polynomial (Q = −9.9166D2 + 8.8125D +
0.124, R2 = 0.99), underlying the limit of the dilution that can cause wash out. With the
polynomial above, it was also possible to calculate the dilution rate that provided the
highest production of biomethane (D = 0.4458 d−1, Q = 2.062 L/d). The ability to foresee
this value is clearly an advantage of the use of mathematical modeling.
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Q was found to be a linear function of some parameters of the model (listed in Table 2),
since their mathematical relationships could be described with a first-order polynomial.
Nevertheless, the slope was not sufficient for comparisons, since the parameters have
different orders of magnitudes among themselves. Therefore, we decided to calculate ratios
between the predicted biomethane yields over time and the studied parameter values as
denominator. Table 2 shows the simulation results and illustrates the calculations of the
ratios. The last column in Table 2 shows the ratio that is used to understand how much an
increase in the parameter value affects the increase of biomethane production.

Table 2. Effect of the increment of the value of some parameters of the anaerobic digestion model on
the value of biomethane production (Q).

Parameter Value Ratio Q Value Q Ratio Q Ratio/Parameter Value Ratio

Yacet/X1

20 1.198
40 2 1.933 1.62 0.81
60 3 2.548 2.13 0.71

S1i (g/L)
5.1 1.198
10.2 2 1.504 1.26 0.63
15.3 3 1.807 1.51 0.50

S0i (g/L)
30.6 1.198
61.2 2 2.001 1.67 0.84
91.8 3 2.796 2.33 0.78

Ye

0.55 1.198
1.1 2 2.001 1.67 0.84
1.65 3 2.796 2.33 0.78

Giving the importance of X1 metabolism in anaerobic digestion, in particular for the
production of acetate, Yacet/X1 was modified to assess its impact on Q. Similarly, values
for the initial concentration of glucose in the influent (S1i) were considered, to simulate
the effect of the addition of another residual biomass containing glucose. Finally, the
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concentration of insoluble organic compounds (Soi), and the coefficient of decomposition
(Ye), counting which part of the insoluble organic compounds are transformed to soluble
compounds, were considered as well. Table 2 shows that none of the modified parameters
caused the same increase in Q and that the more the value was increased the lower was
the effect on the corresponding ratio. In addition, implementation of S1i had only minor
effects, showing that additional glucose would not greatly impact Q. On the other hand,
Soi and Ye showed to be crucial for a relevant implementation of Q; unsurprisingly, the
same increment of Soi and Ye produced the same values of Q, since they are both factors of
Equation (1).

Nevertheless, increasing the initial concentration of insoluble organic compounds
could be problematic from a technical point of view; furthermore, organic loading rates
exceeding the decomposition or the hydrolysis rates can determine a decline in methane
production [5,20,24]. On the other hand, the coefficient of decomposition is a parameter
that could be targeted more easily, as it can be modified by pretreating the biomass with en-
zymes. Although the possibility to exploit enzymatic hydrolysis in increasing biomethane
potential in residual biomasses was already explored in [25–27], this work fosters the
importance to predict the impact of such a component by computational analysis. This
concept is relevant in a scientific and industrial context where the biochemical methane
potential (BMP) tests, widely applied to analyze anaerobic digestion processes, still lack
standardization [28]. Since the use of enzymes remains a potential threat to the economic
sustainability of the process considering the cascading principles [29], a techno-economic
analysis would be needed for any single case: computational modeling is, therefore, useful,
as it can project the impact of different enzyme loading on the improvement of methane
production. It is worth mentioning here that an available alternative is the in situ pro-
duction of such enzymes: in a recent example, the organic fraction of municipal solid
waste was used for triggering the secretion of enzymes by Aspergillus niger and promoting
the subsequent anaerobic digestion by microbial consortia, whose biomethane potential
increased [30].

Furthermore, when Q was considered as a function of the hydrolytic rate (β), a log-
arithmic equation was obtained (Q = 0.1609ln(β) + 1.3021, R2 = 0.91), showing that an
improvement in the ability of the microbial consortium to hydrolyze fibers is not propor-
tionally beneficial in the production of biomethane (Figure S1). These observations from the
simulation of anaerobic digestion of sludge may pave the way for further implementation
of the real industrial process, and in turn, to the validation of the modified equations from
the original ADM1.

4. Practical Applications of This Work and Future Research

In this work, the ADM1 model was updated to comprise substrate consumption yields
in the equations, describing more logically microbial growth during anaerobic digestion.
The production of biomethane is a direct consequence of primary metabolism and, there-
fore, of biomass growth, which can occur only if substrate is consumed. Furthermore,
we identified the relationships between the production of biomethane and some specific
process parameters, pinpointing and predicting that organic loading can be decisive to
improve the final production: we are aware that the practical implementation of this pre-
diction is not trivial. Since the coefficient of decomposition impacts biomethane production
as well, the use of enzymes can be envisaged as a direct approach of improvement, to
be further evaluated from an economical point of view. Future analysis will involve the
validation of the new model equations with the values obtained by real experiments in an
industrial plant.

5. Conclusions

The quest for more sustainable energy sources is intertwined with the development of
technologies able to valorize renewable biomasses, with increased appeal if residual ones
are used. Among those, sludge from wastewater treatment and lignocellulosic material are
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among the most promising, because of their abundance, low cost, and intrinsic potential
to be fermented into biogas. Since the complex nature of a process also depends on
heterogenous microbial consortia, the deployment of mathematical modeling of anaerobic
digestion can be a concrete help to direct possible manipulations. In this work, we showed
that the thermodynamical and microbiological analysis of ADM1 model can lead to its
improvement in simulating the anaerobic digestion process to obtain biomethane.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/fermentation7040237/s1, Figure S1: Biomethane production (Q) as function of hydrolytic
rate (β).
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