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Abstract

This editorial aims to contribute to the current debate about the quality of
studies that apply machine learning (ML) methodologies to medical data to
extract value from them and provide clinicians with viable and useful tools
supporting everyday care practices. We propose a practical checklist to help
authors to self assess the quality of their contribution and to help reviewers to
recognize and appreciate high-quality medical ML studies by distinguishing
them from the mere application of ML techniques to medical data.

Keywords: Medical Artificial Intelligence, Machine Learning, Checklist,
Quality auditing

As widely known, machine learning (ML) models are beginning to demon-
strate early successes in clinical applications [1, 2, 3] . Studies that compare
the performance of these models and human physicians found that models
allegedly perform equally well in many diagnostic and prognostic tasks [4, 5].
However, relatively few studies present externally validated results [6, 7, 8],
and most of them failed to adhere to minimal reporting standards [9, 10] . In
this respect, poor reporting is one of the main factors preventing studies from
being replicated in other settings [11], which undermines the interpretation
of the scores that authors report to estimate the diagnostic accuracy of the
model on unseen data.

The “reproducibility crisis”, which some observers report affecting biomed-
ical science [12] at an increasing extent, also affects also medical informatics
[13], artificial intelligence [14] and its application to medicine [15]. To quote
a oft-cited work by Ioannidis [16], which could be seen as a precursor to
the current debate on reproducibility in science and medicine, we know that
“most published accuracy scores are false” or, more prosaically, “most pub-
lished studies applying ML techniques to medicine are simply not valid”.
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This assertion looks like the notorious elephant in the room [17, 18] of med-
ical informatics that few people want to escort out of the room.

The sheer truth is that practicing “Medical ML” is different from merely
applying ML to medical data. Applying ML to medical data is relatively
easy, once medical data are available. And they are: an increasing number
of medical datasets have been made available to researchers and shared in
public repositories in recent times: for example, HealthData1 is a U.S. site
that collects data from agencies from the U.S. Department of Health and
Human Services as well as other centers and counts to date more than 4,500
datasets that can be used to train ML models on disparate medical tasks;
MIMIC-III [19] is a freely accessible database with more than 60,000 intensive
care unit admissions, that has been mentioned in more than 1,400 articles
indexed in Scopus; OpenfMRI [20] includes 95 datasets of magnetic resonance
imaging (MRI) from more than 3,000 subjects, while Deep Lesion [21] is a
U.S. National Institutes of Health initiative to make more than 32,000 lesions
in CT images, from 4000 unique patients, available to foster research, better
diagnostics and training. Moreover, on Kaggle and Healthcare.ai, which are
popular sites visited by thousands of data science practitioners every day,
ML researchers can find countless datasets that make training a ML model
to predict some target variable a child’s play. However, few of these datasets
would be considered high quality from a clinical point of view [6, 22] and
very seldom can we know how these data were produced (e.g., by involving
how many experts, what their certification is, the conditions in which they
performed their ratings), as a guarantee of their reliability at face level [18].

Thus, mere data availability cannot be a sufficient condition to perform
valid research in the field of medical ML: being at the intersection between
data science, computer science and medicine, this subfield differs from the
mere application of ML techniques to medical data. Medical ML is program-
matically aimed at developing tools that medical doctors, nurses and other
healthcare practitioners can use in their daily practice to improve the ap-
propriateness, safety and effectiveness of their decisions, and ultimately the
health outcomes of their patients [23]: thus, actual use and assessment are
part and parcel of medical ML. This ambitious objective justifies efforts for
which data scientists, who are increasingly focused on developing methods
and techniques that apply to “big data” (which are impossible to vet for

1http://www.healthdata.org/
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actual reliability in order to gain marginal, if statistically significant at all,
improvements over the state of the art [24]), are not usually interested in
devoting themselves to.

Conversely, practicing medical ML often means dealing with relatively
small datasets [25] (much smaller than what would be required to pro-
duce generalizable models using deep learning, or other equally complex
approaches [26]), which are collected from real-world practice by vetting
them for clinical meaning, and pose challenges [27] that are hardly, if ever,
addressed in computer science laboratories: observer variability [28]; pre-
analytical, analytical [29] and biological variability [30]; class imbalance [31];
small cardinality [32] (hence the consequent risk of overfitting); relatively
high missing rate [33]; feature collinearity [34]; and any heterogeneity that
may break the assumption of independence and identical distribution of data
[35] or affect the variability of results [36].

Under the pressure of funding policies and assessment exercises that foster
the “publish or perish” environment, medical informatics journals, and the
IJMEDI is no exception, are flooded with contributions that do not address
any of the problems that were previously mentioned, and that mechanically
apply procedures which, by their nature, lend themselves to the growing
trend toward automation (cf. autoML [37]). The same situation occurs
in more technology- and application-oriented journals, which face similar
difficulties in curbing a vast amount of articles that communities of peers
find increasingly difficult to filter out, contributing to unintentionally creating
precedents in the literature, which inspire works of similar superficiality [38].

As public opinion and many practitioners seem to be dazzled by dis-
courses regarding the quality of instruments that do not extend beyond re-
ports on their theoretical error rate (often not considering class imbalance or
separating training data from validation data) [38], some scientific societies
have recently suggested more sensible guidelines for assessing the quality,
validity and usefulness of certain instruments in the medical field, and re-
port on them. Recent collaborative efforts for the definition of guidelines on
the development and reporting of Medical AI systems, see also [39], include
the SPIRIT-AI [40] and CONSORT-AI [41] for the design and reporting of
clinical trials involving AI and ML systems, the MI-CLAIM [42] checklist
for Medical AI, the WHO/ITU ML4H auditing framework [43, 44] for arti-
ficial intelligence in healthcare, the PROBAST tool [45] to assess the bias
and applicability of prediction models, or the TRIPOD statement [46] for
reporting their main characteristics. To some extent, the availability of mul-
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tiple guidelines, as well as their long production time (as of the writing of
this manuscript the TRIPOD-AI extension, which was announced in 2019
[11, 47], as well as the STARD-AI reporting guidelines [48], have not yet
been officially published), indicate the difficulty of convening on a minimum
set of data that must be reported to make ML studies reproducible and their
results reliable.

In the light of the above partly overlapping and competing standards, we
at the IJMEDI have considered the progress made by the recent proposals by
the Journal of the Medical Informatics Association (JAMIA) [49], and by the
BMJ Health & Care Informatics [25], a huge step forward, especially for their
practical value. We consider these contributions powerful tools to improve
the quality of ML studies, as a positive side effect of improving the report-
ing practices of their authors, and a way to disseminate good development
practices. For this reason, we took inspiration from these relevant contri-
butions to propose an even more assessment-oriented checklist: the IJMEDI
checklist for assessment of medical artificial intelligence based on machine
learning; in this tool some aspects are made even more explicit and detailed
than in similar proposals, the aspects that we deem more relevant to allow
our associate editors and reviewers to discriminate between high-quality con-
tributions and manuscripts that should be rejected because of failing to meet
the high standards of a journal that is so committed to the sound evaluation
of computational systems in healthcare settings.

The following 30-item checklist, organized in 6 phases according to the
CRISP-DM methodology [50], can be considered a practical guideline, for
both reviewers and authors, to qualitatively assess the methodological sound-
ness of a medical ML contribution and the reproducibility of its results. In
the following list, each item represents a requirement and is associated with
three possible options, for both authors (Not Applicable, Not Addressed –
No, Addressed – Yes); and reviewers (Adequately addressed – OK, sufficient
but improvable, minor revision needed – mR), inadequately addressed, major
revision needed – MR). Items for which mR has been proposed can be inter-
preted as opportunities for due improvement; by contrast, items for which
a MR has been proposed should be mandatorily addressed or considered as
good reasons for rejecting the manuscript, and particularly so in the case the
involved item is considered high priority (in bold) or if many of the require-
ments were considered inadequately addressed. Authors can help editors and
reviewers by attaching the checklist to their manuscript and indicating which
items have been addressed and which items are missing (and why).
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The IJMEDI checklist for assessment of medical AI

Requirement
Authors Reviewers

NA No Yes OK mR MR

Problem Understanding

1. Is the study population described, also in terms of
inclusion/exclusion criteria (e.g., patients older than 18 tested for
COVID-19; all inpatients hospitalized for 24 or more hours)? §

© © © © © ©

2. Is the study design described? (e.g., retrospective, prospective,
cross-sectional [51], observational, randomized control trial [52]) §

© © © © © ©

3. Is the study setting described? (e.g., teaching tertiary hospital; primary
care ambulatory, nursing home, medical laboratory, R&D laboratory) §

© © © © © ©

4. Is the source of data described? (e.g., electronic specialty
registry; laboratory information system; electronic health record;
picture archiving and communication system) §

© © © © © ©

5. Is the medical task reported? (e.g., diagnostic detection,
diagnostic characterization, diagnostic staging, prognosis (on
which endpoint), event prediction, risk stratification, anatomical
structure segmentation, treatment selection and planning,
monitoring) §

© © © © © ©

6. Is the data collection process described, also in terms of setting-specific
data collection strategies (e.g. whether body temperatures are measured
only in the morning; whether some blood tests are performed only in light
of a specific diagnostic hypothesis)? Any consideration about data quality
is appreciated, e.g., in regard to completeness, plausibility, and robustness
with respect to upcoding or downcoding practices

© © © © © ©

Data Understanding

7. Are the subject demographics described in terms of

1. average age (mean or median);

2. age variability (standard deviation (SD) or inter-quartile
range (IQR));

3. gender breakdown (e.g., 55% female, 44% male, 1% not
reported); §

4. main comorbidities;

5. ethnic group (e.g., Native American, Asian, South East
Asian, African, African American, Hispanic, Native
Hawaiian or Other Pacific Islander, European or
American White);

6. socioeconomic status?

© © © © © ©

8. If the task is supervised, is the gold standard described? (e.g.,
“100 manually annotated clinical notes and pain scores recorded
in EHR, Death, re-admission and International Classification of
Disease (ICD) codes in discharge letters”). In particular, the
authors should describe the process of ground truthing described
in terms of:

1. Number of annotators (raters) producing the labels;

2. Their profession and expertise (e.g., years from
specialization or graduation);

3. Particular instructions given to annotators for quality
control (e.g., which data were discarded and why);

4. Inter-rater agreement score (e.g., Alpha [53], Kappa [54],
Rho [17]);

5. Labelling technique (e.g., majority voting, Delphi method
[55], consensus iteration).

© © © © © ©
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Requirement
Authors Reviewers

NA No Yes OK mR MR

9. In the case of tabular data, are the features described (also in
regard to how they were used in the model in terms of categories
or transformation)? This description should be done for all, or, in
the case that the features exceed 20, for a significant subset of the
most predictive features in the following terms: name, short
description, type (nominal, ordinal, continuous), and

1. If continuous: unit of measure, range (min, max), mean
and standard deviation (or median and IQR). Violin plots
of some relevant continuous features are appreciated. If
data are hematochemical parameters, also mention the
brand and model of the analyzer equipment.

2. If nominal, all codes/values and their distribution.
Feature transformation (e.g. one-hot encoding) should be
reported if applied. Any terminology standard should be
explicitly mentioned (e.g., LOINC [56], ICD-11 [57],
SNOMED [58]) if applied.

© © © © © ©

Data Preparation

10. Is outlier detection and analysis performed and reported? If
the answer is yes, the definition of an outlier should be given and
the techniques applied to manage outliers should be described
(e.g., removal through application of an Isolation Forest model).

© © © © © ©

11. Is missing-value management described? This description
should be reported in the following terms:

1. The missing rate for each feature should be reported;

2. The technique of imputation, if any, should be described,
and reasons for its choice should be given. If the missing
rate is higher than 10%, a reflection about the impact on
the performance of a technique with respect to others
would be appreciable [59].

© © © © © ©

12. Is feature pre-processing performed and described? This
description should be reported in terms of scaling transformations
(e.g. normalization, standardization, log-transformation) or
discretization procedures applied to continuous features, and
encoding of categorical or ordinal variables (e.g., one-hot
encoding, ordinal encoding).

© © © © © ©

13. Is data imbalance analysis and adjustment performed and
reported? The authors should describe any imbalance in the data
distribution, both in regard to the target (e.g. only 10% of the
patients were affected by a given disease); and in regard to
important predictive features (e.g. female patients accounted for
less than 10% of the total cases). The authors should also report
about any technique (if any) applied to adjust the above
mentioned imbalances (e.g. under- or over-sampling, SMOTE).

© © © © © ©

Modeling

14. Is the model task reported? (e.g., binary classification,
multi-class classification, multi-label classification, ordinal
regression, continuous regression, clustering, dimensionality
reduction, segmentation) §

© © © © © ©

15. Is the model output specified? (e.g., disease positivity
probability score, probability of infection within 5 days,
postoperative 3-month pain scores) §

© © © © © ©

16. Is the model architecture or type described? (e.g., SVM,
Random Forest, Boosting, Logistic Regression, Nearest
Neighbors, Convolutional Neural Network)

© © © © © ©

Validation

17. Is the data splitting [60] described (e.g., no data splitting;,
k-fold cross-validation (CV); nested k-fold CV; repeated CV;
bootstrap validation; leave-one-out CV; 80%/10%10%
train/validation/test)? In the case of data splitting, the authors
must explicitly state that splitting was performed before any
pre-processing steps (e.g. normalization, standardization, missing
value imputation, feature selection) or model construction steps
(training, hyper-parameter optimization), so to avoid data leakage
[61] and overfitting.

© © © © © ©
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Requirement
Authors Reviewers

NA No Yes OK mR MR

18. Is the model training and selection described? In particular,
the training procedure, hyper-parameter optimization or model
selection should be described in terms of

1. Range of hyper-parameters [62];

2. Method used to select the best hyper-parameter
configuration (e.g., Hyper-parameter selection was
performed through nested k-fold CV based grid search);

3. Full specification of the hyper-parameters used to
generate results [62];

4. Procedure (if any) to limit over-fitting, in particular as
related to the sample size [25].

© © © © © ©

19. (classification models) Is the model calibration described? If
the answer is yes, the Brier score should be reported, and a
calibration plot should be presented [63]

© © © © © ©

20. Is the internal/internal-external model validation procedure
described [60, 64] (e.g., internal 10-fold CV, time-based
cross-validation)? The authors should explicitly specify that the
sets have been splitted before normalization, standardization and
imputation, to avoid data leakage [61] (also refer to item 17 of
this guideline). If possible, the authors should also comment on
the adequacy of the available sample size for model training and
validation [65, 25]. Moreover, the authors should try to choose
the test set so that it is the most diverse with respect to the
remainder of the sample [66] (w.r.t. some multivariate similarity
function) and how this choice relates to conservative (and
lower-bound) estimates of the model’s accuracy (and
performance)

© © © © © ©

21. Has the model been externally validated [67]? If the answer is yes, the
characteristics of the external validation set(s) should be described. For
instance, the authors could comment about the heterogeneity of the data
with respect to the training set (e.g., degree of correspondence Ψ [66],
Data Representativeness Criterion [68]) and the cardinality of the external
sample [69]. If the performance on external datasets is found to be
comparable with (or better than) that on training and internal datasets,
the authors should provide some explanatory conjectures for why this
happened (e.g., high heterogeneity of the training set, high homogeneity of
the external dataset)

© © © © © ©
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Requirement
Authors Reviewers

NA No Yes OK mR MR

22. Are the main error-based metrics used?

1. a. Classification performance should be reported in terms
of: Accuracy, Balanced accuracy, Specificity, Sensitivity
(recall), Area Under the Curve (if the positive condition
is extremely rare - as in case of stroke events - authors
could consider the “Area under the Precision-Recall
Curve” [70]). Optionally also in terms of: positive and
negative predictive value, F1 score, Matthew coefficient
[71], F score of sensitivity and specificity, the full
confusion matrix, Hamming Loss (for multi-label
classification), Jaccard Index (for multi-label
classification).

2. Regression performance should be reported in terms of:
R2; Mean Absolute Error (MAE); Root Mean Square
Error (RMSE); Mean Absolute Percentage Error (MAPE)
or the Ratio between MAE (or RMSE) and SD (of the
target);

3. Clustering performance should be reported in terms of:
External validation metrics (e.g. mutual information,
purity, Rand index), when ground truth labels are
available, and Internal validation metrics (e.g.
Davies-Bouldin index, Silhouette index, Homogeneity).
The reported results of internal validation metrics should
be discussed [72]

4. Image segmentation performance, depending on the
specific task, should be reported in terms of metrics like
[73]: accuracy-based metrics (e.g. Pixel accuracy, Jaccard
Index, Dice Coefficient), distance-based metrics (e.g.
mean absolute, or maximum difference), or area-based
metrics (e.g. true positive fraction, true negative fraction,
false positive fraction, false negative fraction).

5. Reinforcement learning performance, depending on the
specific task, should be reported in terms of metrics like
[74]: Fixed-Policy Regret, Dispersion across Time,
Dispersion across Runs, Risk across Time, Risk across
Runs, Dispersion across Fixed-Policy Rollouts, Risk
across Fixed-Policy Rollouts.

The above estimates should be expressed, whenever possible, with
their 95% (or 90%) confidence intervals (CI), or with other
indicators of variability [36], with respect to the evaluation
metrics reported. In this case, the authors should report which
methods were applied for the computation of the confidence
intervals (e.g. whether k-fold CV or bootstrap was applied,
normal approximation). When comparing multiple models, the
authors should discuss the statistical significance of the observed
differences [75] (e.g. through CI comparisons, or hypothesis
testing). When comparing multiple regression models, a Taylor
diagram [76] could be reported and discussed.

© © © © © ©

23. Are some relevant errors described? The authors should describe the
characteristic of some noteworthy classification errors or cases for which
the regression prediction was much higher (> 2x) than the MAE. If these
cases represent statistical outliers for some covariates, the authors should
comment on that. To detect relevant cases, the authors could focus on
those cases on which the inter-rater agreement (either re ground truth or
by comparing human vs. model’s performance) is lowest.

© © © © © ©

Deployment

24. Is the target user indicated? (e.g., clinician, radiologist, hospital
management team, insurance company, patients) §

© © © © © ©

25. (classification models) Is the utility of the model discussed? The
authors should report the performance of a baseline model (e.g., logistic
regression, Naive Bayes). Additionally, the authors could report the Net
Benefit [77] or similar metrics and present utility curves [78]. In
particular, the authors are encouraged to discuss the selection of
appropriate risk thresholds [79]; the relative value of benefits (true
positives/negatives) and harms (false positives/negatives); and the clinical
utility of the proposed models [25].

© © © © © ©
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Requirement
Authors Reviewers

NA No Yes OK mR MR

26. Is information regarding model interpretability and explainability
available [80] (e.g. feature importance, interpretable surrogate models,
information about the model parameters)? Claims of “high” or “adequate”
model interpretability (e.g., by means of visual aids like decision trees,
Variable Importance Plots or Shapley Additive Exlanations Plots (SHAP)
[81]) or model causability [82] should always be supported by some user
study, even qualitative or questionnaire-based [83]. In the case surrogate
models were applied, the authors should report about their fidelity [84, 85]

© © © © © ©

27. Is there any discussion regarding model fairness, ethical concerns or
risks of bias [25, 86] (for a list of clinically relevant biases, refer to [87] )?
If possible, the authors should report the model performance stratified for
particularly relevant population strata [88] (e.g. model performance on
male vs female subjects, or on minority groups)

© © © © © ©

28. Is any point made about the environmental sustainability of the
model, or about the carbon footprint [89], of either the training phase or
inference phase (use) of the model? If the answer is yes, then such a
footprint should be expressed in terms of carbon dioxide equivalent
(CO2eq) and details about the estimation method should be given. Any
efforts to this end will be appreciated, including those based on tools
available online2, as well as any attempts to popularise this concept, e.g.
through equivalences with the consumption of everyday devices such as
smartphones or kilometres travelled by a fossil-fuelled car3

© © © © © ©

29. Is code and data shared with the community [62, 90]? § If
not, are reasons given? If code and data are shared, institutional
repositories such as Zenodo should be preferred to private-owned
repositories (arxiv, GitHub). If code is shared, specification of
dependencies should be reported and a clear distinction between
training code and evaluation code should be made. The authors
should also state whether the developed system, either as a
sand-box or as fully-operating system, has been made freely
accessible on the Web.

© © © © © ©

30. Is the system already adopted in daily practice? If the answer is yes,
the authors should report on where (setting name) and since when.
Moreover, appreciated additions would regard: the description on the
digitized workflow integrating the system; any comment about the level of
use [25]; a qualitative assessment of the level of efficacy of the system’s
contribution to the clinical process (e.g., [91, 92]); any comment about the
technical and staff training effort actually required [25]. If the answer is
no, the authors should be explicit in regard to the point in the clinical
workflow where the ML model should be applied, possibly using standard
notation (e.g., BPMN). Moreover, the authors should also propose an
assessment of the technology readiness of the described system, with
explicit reference to the Technology Readiness Level framework4 or to any
adaptation of this framework to the AI/ML domain [93]. In either above
cases (yes/no), the authors should report about the procedures (if any) for
performance monitoring, model maintenance and updating [94].

© © © © © ©

Table 1: Checklist for assessment of requirements and recommendations for sound medi-
cal ML contributions to the existing literature. NA: not applicable; mR: minor revisions
needed; MR: major revisions needed. Items in bold indicate priority aspects to be con-
sidered. Items denoted with a § symbol are directly inspired by the MINIMAR guideline
[49]. The section names for the checklist items are directly inspired by the CRISP-DM
framework [50].

To download a copy of the above checklist, see:
https://zenodo.org/record/4835800#.YLDlaaGxVPY

2https://mlco2.github.io/impact/
3https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator
4Technology readiness levels (TRL) - Extract from Part 19 - Commission Decision C

(2014) 4995
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What was already known
• Recent studies reported on common pitfalls and challenges in the development of
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address these challenges and improve the quality of ML studies aimed at supporting
clinical practice;

What does this study adds to our knowledge
• We propose a comprehensive checklist for the self-assessment and evaluation of

medical ML papers, encompassing a set of 30 requirements;

• The proposed checklist encompasses requirements and recommendations taken from
previous proposals, and it further describes quality criteria related to the perfor-
mance, reliability, reproducibility, and reporting standards of medical ML studies,
by also providing relevant references to the literature of interest.
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