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1 Introduction

S-duality domain walls are interesting extended objects in four dimensional supersymmetric

gauge theories. Such a domain wall is an interface that allows the gauge coupling to

vary in the vicinity of the wall from one constant value to another as one crosses the

wall. The theories on opposite sides of the wall are related by S-duality in the sense that

when S-duality is applied to one side of the wall, the gauge couplings of the two theories

become equal. The boundary condition can be chosen such that the duality wall is half-

BPS, i.e. preserving half of the amounts of supersymmetry of the four dimensional theory

in question.

The S-duality wall in the 4d N = 4 super-Yang-Mills (SYM) with gauge group SU(N)

has been studied in detail in [2–4]. The theory associated with the wall is a 3d supercon-

formal field theory with N = 4 supersymmetry known as T (SU(N)). The description of

such a theory can be determined when the gauge coupling of the 4d SYM approaches zero.

Let us briefly summarise how this works. Suppose that one takes the gauge coupling of the

4d theory on one side of the wall to be close to zero. On this side of the wall the degrees

of freedom decouple, and on the other side one has a Dirichlet boundary condition. The

latter can be realised in Type IIB string theory as N D3 branes, each ending on an NS5

brane. S-duality in 4d N = 4 SYM can be viewed as inherited from S-duality in Type IIB

string theory, which gives the dual configuration consisting of N D3 branes, each ending

on a D5 brane. The 4d theory on the worldvolume of D3 branes in the latter configuration

is weakly coupled, and one can decouple their degrees of freedom by ending the other side

of each D3 brane on a D5 branes. From this brane system, the quiver description can be

read off as follows

1 2 · · · N − 1 N (1.1)

where each circular node denotes an U(n) gauge group, each line denotes bifundamental

hypermultiplets and the square node denotes a flavour symmetry.

An interesting generalisation is to investigate 3d theories associated with duality walls

in other 4d theories, possibly with lower amounts of supersymmetry. One of the obvious

candidates is the 4d N = 2 SU(N) gauge theory with 2N flavours. This has an exactly

marginal gauge coupling, with an interesting S-duality group being SL(2,Z) for N = 2 [5]

and Γ0(2) ⊂ SL(2,Z) for N ≥ 3 [6, 7]. This theory can also be realised as a twisted

compactification of 6d (2, 0) theory of type AN−1 on a punctured Riemann surface [8].

The 3d theory associated with the duality wall in this 4d theory can be determined by

utilising the AGT correspondence [9, 10], which relates the partition function of the 4d

theory on the squashed four-sphere to an observable in the Liouville or Toda theory on

the Riemann surface [11, 12]. As pointed out in [13], the partition function of the 3d

theory associated with S-duality wall placed along the squashed three-sphere, which is

the equator of the aformentioned four-sphere, corresponds to a collection of the duality

transformation coefficients of conformal blocks of the Liouville or Toda theory. From such

a partition function, one may extract the gauge group and matter content of the 3d theory

– 2 –



J
H
E
P
1
1
(
2
0
1
9
)
0
5
3

in question [14–16]. In fact, this technique has been successfully applied to determine the

3d theory associated with the S-duality wall in the 4d N = 2∗ gauge theory [14]. For the

4d N = 2 SU(N) gauge theory with 2N flavours, this method was applied by the authors

of [15, 16] (see also [17] for the superconformal index). In [16], the theory associated

with the duality wall was then identified as the 3d N = 2 U(N − 1) gauge theory with 2N

flavours, with the R-charges of the chiral fields fixed to certain values. Later, it was pointed

out by the authors of [18] that the superpotential of such a theory should be W = V+ +V−,

where V± are the basic monopole operators of the U(N −1) gauge group. For convenience,

following [18], we refer to this 3d theory as TM and it will be discussed in more detail in

section 2 of this paper. It should be remarked that this approach that is used to identify

the 3d theory is different from that used by Gaiotto and Witten [4], mentioned in the

previous paragraph. Although the Type IIA brane configuration of the 4d theory [19] and

the Type IIB brane configuration of the 3d theory with the monopole superpotential [20–

24] are known, to the best of our knowledge, it is not clear how to identify the latter as

the theory associated with the duality wall in the former.

In this paper, we consider the 3d theory associated with one and higher number of

duality walls. We use Tm as a basic building block to construct the other theories. Such

a construction involves gluing the basic building block to each other in various possible

ways, described in section 3. We, in fact, adopt the gluing prescription from [1, 25, 26],

and discuss the motivation in doing so in section 3.3. The number of duality walls in

question is equal to the number of basic building block involved in the gluing procedure.

Moreover, we discuss the procedure of self-gluing, where by some or all of the flavour

symmetries are commonly gauged. Along the way, we find several of interesting dualities

relating a number of theories we construct. Supersymmetric index is used as a main tool

to study the operators at the superconformal fixed point, as well as to check the duality

proposed in this paper.

Another important motivation of this paper is to provide a generalisation of the 3d

S-fold theory, previously studied in [27–30] and [31–34], to the set-up with lower amounts

of supersymmetry. The S-fold theory is a 3d superconformal field theory associated with

duality walls, each of which gives rise to a local SL(2,Z) transformation, in the 4d N = 4

super-Yang-Mills theory. In the field theory description, the building block of the S-

fold theory is T (U(N)), which is the aforementioned T (SU(N)) theory along with the

mixed Chern-Simons (CS) coupling between two U(1) symmetries that gives rise to a

U(N)×U(N) global symmetry for the T (U(N)) theory. Such basic building blocks can then

be glued together (or self-glued) to obtain new 3d superconformal theories. As discussed

extensively in the above references, S-fold theories have many interesting features. For

example, from the naive field theory description, the S-fold theory generically has an N = 3

supersymmetry; however, in many cases, a more detailed study reveals that supersymmetry

can be enhanced to N = 4 or even to N = 5. In this paper, we study the analog of the

S-fold theories in the context of 4d N = 2 SU(N) gauge theory with 2N flavours. Although

we do not find any supersymmetry enhancement in this paper, the theories we discuss still

have many interesting properties.
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The paper is organised as follows. In section 2, we introduce the Tm theory as the basic

building block that will be used to construct the other theories. We mention how to couple

the 4d fields to Tm as well as examine various duality frames. In section 3, we present the

prescription for gluing many copies of the basic building blocks together as well as propose

the prescription for self-gluing. The concept of the “skeleton diagram”, which is the analog

of the Riemann surface with punctures (used extensively in [1] to construct a large class of

theories) and gives rise to a geometric interpretation of the gluing, is introduced in sections 2

and 3. In section 4, we discuss two classes of theories associated with a single wall, whose

skeleton diagram contains (1) two external legs and genus one and (2) zero external leg

and genus two. The quadralities between such theories are discussed. In sections 5 and 6,

theories associated with two duality walls, using two different types of the basic building

block, are constructed and discussed. We finally conclude the paper in section 7. In

appendix A, we briefly summarise some generalities about 3d supersymmetric index.

2 The 3d gauge theory with a monopole superpotential

The theory associated with the S-duality wall of the 4d N = 2 SU(N) gauge theory with

2N flavours is the 3d N = 2 U(N − 1) gauge theory with 2N flavours and superpotential

W = V+ +V−, where V± are the basic monopole operators of the latter theory [18]. For the

sake of brevity, following [18], we refer to the aforementioned 3d theory as TM, where M

stands for the monopole superpotential. The identification of the theory on the S-duality

wall of the 4d theory and the TM theory1 had been attempted by several authors, e.g. [15–

17]. The main technique was to study a collection of the duality transformation coefficients

of conformal blocks (also known as the kernel) of the Liouville or Toda theory, which are

in the AGT correspondence [9, 10] with the 4d theory. The kernel was then interpreted

as the partition function of the 3d theory associated with the duality wall [13]. Knowing

the former allows one to identify the matter content of the 3d theory associated with the

duality wall [15, 16]. In [16] it was observed that the R-charges of the chiral fields in the

3d theory were fixed to certain particular values. This was later interpreted in [18] as due

to the monopole superpotential.

The TM theory has a global symmetry SU(2N) × SU(2N). We represent this theory

by the following quiver diagram:

TM : N − 1 2N2N (2.1)

where we denoted the gauge node in yellow in order to indicate the monopole superpotential

W = V+ + V−. Due to the monopole superpotential, the topological and axial symmetries

are broken, and the R-charge r of the chiral fields is fixed to be r = 1/2 due to the relation

2N(1− r)− (N − 1− 1) = 2.

1On the other hand, the 3d theory associated with the S-duality wall of the 4d N = 2∗ SU(N) gauge

theory has been identified as the axial mass-deformed T (SU(N)) gauge theory by [14].
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In fact, as pointed out in [18],2 theory (2.1) is dual to another theory with the same

gauge group U(N − 1), also with 2N flavours and 4N2 singlets M

N − 1 2N2N
q q̃

M

(2.2)

and superpotential W = V+ + V− +Mqq̃. In other words, we have duality

(2.1) ←→ (2.2) (2.3)

2.1 Indices of theories (2.1) and (2.2)

Our main tool to study the theories in this paper is the supersymmetric index, which we

shall refer to as index for the sake of brevity. It can be computed as the partition function

on S2 × S1. We summarise the necessary detail in appendix A.

In order to write the supersymmetric index of a theory with monopole superpoten-

tial one has to take into account suitable contributions of BF couplings with the global

symmetries and the R-symmetry that make the monopole operators uncharged and ex-

actly marginal. In the case of theory (2.1) we are considering the monopole superpotential

breaks the topological as well as the axial symmetries. Hence, the index can be easily ob-

tained from that of the U(N − 1) gauge theory with 2N flavours and zero superpotential,

turning off the fugacities for the axial and the topological symmetries, as well as setting

the R-charge of the chiral fields to r = 1
2

I(2.1)(x; {µ,n}, {τ ,p})

=
∑

m∈ZN−1

1

(N − 1)!

∮ N−1∏
a=1

dua
2πi ua

Zvec(x; {u,m})Zchir(x; {u,m}, {µ,n}, {τ ,p}) ,

(2.4)

where the contribution of the N = 2 vector multiplet is

Zvec(x; {u,m}) =
N−1∏
a,b=1

x−|ma−mb|

(
1− (−1)ma−mbx|ma−mb|

(
za
zb

)±1
)
, (2.5)

while that of the chiral multiplets is

Zchir(x; {u,m}, {µ,n}, {τ ,p})

=
N−1∏
a=1

2N∏
i=1

(
uaµ

−1
i x1/2

) |ni−ma|
2

(
(−1)ni−mauaµ

−1
i x3/2+|ni−ma|;x2

)
∞(

(−1)ni−mau−1
a µix1/2+|ni−ma|;x2

)
∞

×
(
u−1
a τix

1/2
) |ma−pi|

2

(
(−1)ma−piu−1

a µix
3/2+|ma−pi|;x2

)
∞(

(−1)ma−piuaµ
−1
i x1/2+|ma−pi|;x2

)
∞

2More precisely, in [18], a more general duality relating the U(Nc) gauge theory with Nf flavors and

W = V+ + V− and the U(Nc −Nf ) gauge theory with Nf flavors, N2
f singlets M and W = V+ + V− +Mqq̃

was proposed.

– 5 –



J
H
E
P
1
1
(
2
0
1
9
)
0
5
3

In the above expressions we denoted by {u,m} the fugacities and the magnetic fluxes

respectively for the gauge symmetry and with {µ,n}, {τ ,p} those of the two SU(2N) global

symmetries, which have to satisfy the constraints
∏2N
i=1 µi =

∏2N
i=1 τi = 1 and

∑2N
i=1 ni =∑2N

i=1 pi = 0.

The index of the dual theory (2.2) is related to that of (2.1) by the following relation:

I(2.2)(x; {µ,n}, {τ ,p}) =

2N∏
i,j=1

(
µiτ
−1
j

)− |ni−pj |
2

(
(−1)ni−pjµ−1

i τjx
1+|ni−pj |;x2

)
∞(

(−1)ni−pjµiτ
−1
j x1+|ni−pj |;x2

)
∞

×

×I(2.1)(x; {µ−1,−n}, {τ−1,−p}) , (2.6)

where the right hand side of the first line is the contribution of the 4N2 gauge singlets

M . We point out that an analogous identity for the partition functions on S3
b was actually

derived in [18] as a limit of the identity for the 4d supersymmetric indices associated to

Intriligator-Pouliot duality [35], where the latter was proven in [36]. Although we shall not

provide an analytic proof3 of the relation (2.6) in this paper, it can be checked perturba-

tively by expanding both sides as power series in x and matching each order of the power

expansion. Moreover, as a further support of (2.6), one may take an appropriate 2d limit

of the index of each side in (2.6) to obtain certain complex integrals [38], which are related

to CFT free field correlators; the equality of such integrals was proposed in [39, 40].

2.2 Inclusion of the 4d fields

As a theory realised on the wall, one of the SU(2N) symmetries (say, the one associated

with the left square node) can be decomposed into a subgroup SU(N) × SU(N) × U(1),

where we shall refer to the latter U(1) as U(1)q. Each of these SU(N) can then be coupled

to the SU(N) gauge symmetry of the 4d theory on each side of the wall. Moreover, the 3d

chiral fields of the theory on the wall also couple non-trivially to the chiral fields coming

from the 4d theory. The appropriate quiver description for the 3d N = 2 theory on the

wall is

N − 1 2N

N

N

A

B

Q

φ

φ′

(2.7)

where φ is one of the chiral fields contained in the hypermultiplets of the 4d N = 2 SU(N)

gauge theory with 2N flavours on one side of the wall restricted to the interface. The same

is for φ′ on the other side of the wall. The superpotential of (2.7) is

W(2.7) = V+ + V− +QφA+Qφ′B . (2.8)

3Relation (2.6) could, in principle, be derived in a similar way to the one for the S3
b partition functions if

a generalization of Rains’ results for the lens space index [37], which is the partition function on S3/Zp×S1,

were known.
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We shall, from now on, denote as blue arrows the chiral fields coming from the 4d theory.

The arrows in the right diagram are consistent with the decomposition rule of the

fundamental representation of SU(2N) to SU(N)× SU(N)×U(1)q:

[1, 02N−2] −→ q[1, 0N−2; 0N−1] + q−1[0N−1; 1, 0N−2] , (2.9)

which correspond to chiral fields A and B respectively. Note that Q carries zero charge

under U(1)q, and so from the superpotential, φ and φ′ carry U(1)q charges −1 and +1

respectively.

Let us now explain the “skeleton” diagram on the left of (2.7). Each blue external leg

(or each end of the blue line) denotes an SU(N) global symmetry, and the wiggly red line

denotes a duality wall, which brings about an SU(2N)×U(1)q global symmetry. Note that

the latter is the symmetry of the 4d N = 2 SU(N) gauge theory with 2N flavours, where

U(1)q plays a role as the baryonic symmetry.

One may, in fact, apply the duality (2.3) to the yellow node in (2.7). As a result, φ

and φ′ disappear, and the arrows of A, B and Q are reversed. We denote the chiral fields

in the dual theory as Ã, B̃ and Q̃; they carry opposite U(1)q charges with respect to A, B

and Q respectively. The dual theory is therefore

N − 1 2N

N

N

Ã

B̃

Q̃ (2.10)

with the superpotential

W(2.10) = V+ + V− . (2.11)

Theory (2.7) will be used as as a basic building block to construct other theories in

the subsequent part of the paper. For the sake of readability, we shall suppress the number

N − 1 in the yellow node from now on.

2.3 Another representation of (2.7)

There is another equivalent way to represent theory (2.7). We further decompose the

SU(2N) flavour node in quiver (2.7) into SU(N)× SU(N)×U(1)p. The resulting quiver is

N

N

N

N

A

C

D

B

ϕAD

ϕAC

ϕBC

ϕBD (2.12)
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Here C and D are the chiral fields that come from the decomposition of Q in (2.7), and

ϕAD, ϕAC , ϕBC and ϕBD are the fields that come from the 4d theory. The superpotential is

W(2.12) = V+ + V− +AϕADD +AϕACC +BϕBCC +BϕBDD . (2.13)

The U(1)p and U(1)q charge assignment is depicted as follows.

N

N

N

N

p−1

q

q−1

p

pq

pq−1

p−1q−1

p−1q (2.14)

We use the “skeleton” diagram on the left of (2.12) to represent such a building block.

Each red and blue external leg (or each end of the red and blue lines) corresponds to a

flavour symmetry SU(N). The red colour indicates that the two SU(N) symmetries come

from the group decomposition SU(2N) due to the duality wall. The blue colour is the same

as that used in (2.7). Observe the directions of the arrows of the chiral fields A, B, C, D

that are transformed under each SU(N) flavour symmetry associated with each external

legs: it is ingoing for blue and outcoming for red.

Similar to the discussion around (2.10), we may get rid of the 4d chiral fields ϕAD,

ϕAC , ϕBC and ϕBD using the duality (2.3). This results in

N

N

N

N

(2.15)

with the monopole superpotential W = V+ + V−.

3 Gluing basic building blocks

Having discussed the basic building block, we now consider construction involving multiple

duality walls. The corresponding 3d theory can be obtained by gluing together the same

number of basic building blocks in certain ways along the 4d fields (denoted by blue arrows

in the quiver). In the following, we discuss the prescription for the gluing in detail. In fact,

such a prescription is heavily motivated by that adopted in [1, 25, 26] in the context of

compactifications of 6d theories on a Riemann surface with fluxes for the global symmetries.

We discuss the motivation and the similarity of our set-up and that of [1] in the last

subsection of this section.

3.1 Using basic building block (2.7)

We start by considering the cases in which we glue a number of copies of the basic

block (2.7). This corresponds to set-up involving the same number of duality walls.

– 8 –
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3.1.1 Prescription

Let us consider two copies of the basic building blocks (2.7). For the first copy, we assign the

U(1)q×SU(2N) fugacities ai = q ui to φ (and hence a′i = q−1 ui to φ′), where i = 1, 2, . . . , N

and ui are the parameters that have to satisfy
∏2N
i=1 ui = 1 being SU(2N) fugacities. For

the second copy, let us call the 4d fields φ̃ and φ̃′ and assign the U(1)q̃×SU(2N) fugacities

ãi = q̃ ũi to φ̃ (and hence ã′i = q̃−1 ũi to φ̃′), again with the constraint
∏2N
i=1 ũi = 1.

The prescription is that two building blocks can be glued along φ and φ̃′ (or along φ′

and φ̃) if and only if one of the following conditions is satisfied:

Φ-gluing: ai = ã′i, 1

S-gluing: ai =
1

ã′i
, ∀i = 1, · · · , 2N . (3.1)

Let us illustrate this using explicit examples. We can perform an S-gluing, but not a

Φ-gluing, for these two models along φ and φ̃′ (or along φ′ and φ̃):

2N

N

N

q−1

q

φ
qui

φ′

q−1ui

2N

N

N

q

q−1

φ̃′
q−1u−1

i

φ̃
qu−1
i

(3.2)

On the other hand, it is possible to perform a Φ-gluing, but not an S-gluing, for these two

model along φ and φ̃′ (or along φ′ and φ̃):

2N

N

N

q−1

q

φ
qui

φ′

q−1ui

2N

N

N

q−1

q

φ̃′
qui

φ̃
q−1ui

(3.3)

The next step is to turn on some superpotential terms to identify the 4d fields along

which we glue.

The Φ-gluing. To identify φ with φ̃′, we introduce an additional set of chiral fields Φ

that are coupled to the 4d fields via the superpotential term

δW = Φ(φ− φ̃′) , (3.4)

where the contraction of indices is understood. This is a mass term for the fields Φ, φ and

φ̃′ and integrating them out we are left with only one combination of φ and φ̃′. In the

process, the equations of motion of Φ precisely identify φ = φ̃′ as desired. Moreover, this

superpotential breaks the two SU(N) symmetries from each copy of the building blocks to

a diagonal combination, which we gauge with Chern-Simons (CS) level k. Similarly, the

two copies of the SU(2N) symmetry are also broken to a diagonal subgroup, which remains

– 9 –
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as a flavour symmetry in the resulting theory. In the quiver description, the Φ-gluing and

the resulting model are

2N

NN
q−1q

φ

qui

φ′

q−1ui

2N

N

Φq−1u−1
i

2N

NN
q−1 q

φ̃′

qui

φ̃

q−1ui

= 2N

Nk

N N
P

Aq−1

B

q

Cq−1

D

qQ

φ
q

φ′

q−1

φ̃

q−1

(3.5)

where the superpotential is

W = V
(1)

+ + V
(1)
− + V

(2)
+ + V

(2)
− +AφP + CφQ+Bφ′P +Dφ̃Q , (3.6)

and we drop the fugacity ui in the lower diagram (the transformation rule of each chiral

field under SU(2N) is clear from the arrow). Throughout the paper, we denote by Nk in

a dashed circle the SU(N) gauge group with CS level k. Notice that the charges and the

representations of all the chiral fields under the global symmetries implied by the Φ-gluing

condition are compatible with the cubic superpotential terms corresponding to each loop

in the quiver. We use the following skeleton diagram to denote the Φ-gluing (3.5):

Φ (3.7)

The two blue external legs correspond to the two SU(N) flavour nodes in the lower diagram

of (3.5). As discussed before, the two SU(2N) symmetries coming from each duality wall

(red wiggle line) are broken to a diagonal subgroup by the aforementioned superpotential,

and this is denoted by the square node labelled by 2N in the bottom quiver in (3.5).

The S-gluing. The S-gluing can be implemented by introducing the superpotential term

δW = φφ̃′ . (3.8)

This implies that both φ and φ̃′ are integrated out and we are left with no field. Again

the two SU(N) symmetries are broken to a diagonal combination, which we gauge with a

CS level k. The two SU(2N) symmetries are also broken to a diagonal subgroup. In the
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quiver description, the S-gluing and the resulting model are

2N

NN
q−1q

φ

qui

φ′

q−1ui

2N

NN
q q−1

φ̃′

q−1u−1
i

φ̃

qu−1
i

= 2N

Nk

N N
P

Aq−1

B

q

Cq

D

q−1Q

φ′

q−1

φ̃

q

(3.9)

The superpotential of the resulting theory is

W = V
(1)

+ + V
(1)
− + V

(2)
+ + V

(2)
− + CAPQ+Bφ′P +Dφ̃Q . (3.10)

Notice again that the charges and the representations of all the chiral fields under the

global symmetries implied by the S-gluing condition are compatible with the cubic and

quartic superpotential terms corresponding to each loop in the quiver. We use the following

skeleton diagram to denote the S-gluing (3.9):

S (3.11)

Note that we can also treat odd number of duality walls in a similar way as described

above. For example, in the case of three duality walls, we can perform S-gluing in the

following way:

S

S

(3.12)

The corresponding theory is

2N

NN
q−1q

φ̂

qui

φ̂′

q−1ui

2N

NN
q q−1

φ̃′

q−1u−1
i

φ̃

qu−1
i

2N

NN
q−1q

φ

qui

φ′

q−1ui

=

2N

Nk1Nk2

NN

φ̂′ φ

(3.13)
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3.1.2 Self-gluing: closing external legs

With the prescription for the Φ- and S-gluing one can construct several other models,

either adding more basic building blocks or gauging the remaining flavour symmetries.

The latter corresponds to closing external legs of the skeleton diagram. For example,

in (3.5) and (3.9) we can “self-glue” the theory along φ′ and φ̃ which results in gauging

together the two remaining SU(N) flavour symmetries.

In the model (3.5), obtained from the Φ-gluing of two basic building blocks, we can

only perform a further Φ-gluing along φ′ and φ̃. The latter is because both φ′ and φ̃ carry

the same U(1)q charge and transform the same way under SU(N) × SU(2N). This leads

to the model

Φ 2N

Nk1

Nk2

P

A

B

C

D

Q

φ

φ′

(3.14)

with superpotential

W = V
(1)

+ + V
(1)
− + V

(2)
+ + V

(2)
− +AφP +Bφ′P + CφQ+Dφ′Q . (3.15)

On the other hand, in the model (3.9), obtained from the S-gluing, we can only per-

form a further S-gluing along φ′ and φ̃′. This is because φ′ and φ̃ carry opposite U(1)q
charges and transform the opposite way under SU(N) × SU(2N). We thus arrive at the

following model

S 2N

Nk1

Nk2

P

A

B

C

D

Q (3.16)

with superpotential

W = V
(1)

+ + V
(1)
− + V

(2)
+ + V

(2)
− + PQCA+ PQDB . (3.17)

Notice that the two previous models have similar structures, apart from the fact that

in (3.16) the 4d fields φ and φ′ are absent, and the U(1) charges as well as the arrows of

the right half of the quiver are inverted with respect to (3.14). This is very similar to the

difference between the models (2.7) and (2.10). Indeed, by applying duality (2.3) locally on
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the right yellow node of (3.16), one obtains (3.14). Models (3.14) and (3.16) are actually

dual to each other for any N ≥ 2:

(3.14)
(2.3)←→ (3.16) . (3.18)

As a result there is no need to specify Φ or S when we draw the skeleton diagram with all

external legs being closed.

This result can be generalised for any even number of duality walls. We state a general

result as follows.

For given N and the Chern-Simons levels as well as a topology of the skeleton

diagram, if all external legs of the latter are closed, the theories associated with

the Φ-gluing and/or S-gluing of an even number of walls are dual to each other.

Let us provide an example for theories associated with four duality walls such that all

external legs are closed.

(3.19)

We have eight duality frames with an “octality” that relates them to each other.

2N

Nk1

Nk2 Nk4

Nk3

2N

Nk1

Nk2 Nk4

Nk3

2N

Nk1

Nk2 Nk4

Nk3

2N

Nk1

Nk2 Nk4

Nk3

2N

Nk1

Nk2 Nk4

Nk3

2N

Nk1

Nk2 Nk4

Nk3

2N

Nk1

Nk2 Nk4

Nk3

2N

Nk1

Nk2 Nk4

Nk3

(3.20)
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The superpotential of each theory contains the basic monopole operators from each yellow

node; the cubic terms coming from every closed triangular loop that contains one blue line

as an edge; and the quartic terms coming from every closed rectangular loop that does not

contain a blue line.

As a final remark, we point out that in the case of odd number of duality walls, it

is not possible to close all external legs in the skeleton diagram. For example, in (3.13),

φ̂′ and φ carry the fugacities q−1ui and qui respectively. These do not satisfy the gluing

condition (3.1) and so we cannot glue the theory along φ̂′ and φ and hence the external

legs cannot be closed. A way to evade this problem is to use (2.12) as a basic building

block instead of (2.7). We discuss this in further detail in section 3.2.2.

3.2 Using basic building block (2.12)

3.2.1 Rectangular gluing

Instead of using (2.7), we can perform a Φ gluing or an S-gluing for multiple copies of the

building block (2.12). For example, if we take two copies of (2.12) and perform a Φ-gluing

along ϕBD in both copies, the resulting theory is

N

N

Nk1

Nk2

N

N

A

C

D

B

D′

B′

A′

C′

ϕAD

ϕAC

ϕBC

ϕA′D′

ϕB′C′

ϕA′C′φ (3.21)

with superpotential containing the basic monopole operators from both yellow nodes and

the cubic terms coming from every closed triangular loop in the quiver that contains one

blue line. Upon gluing, we have gauged the upper and lower SU(N) symmetries with CS

levels k1 and k2 respectively. In the skeleton diagram, for the Φ-gluing, a blue (resp. red)

line joins with another blue (resp. red) line. Topologically, the skeleton diagram has genus

1, as well as 2 red and 2 blue external legs.

Let us now consider the S-gluing. We take two copies of (2.12) and glue them along

ϕBD of one copy and ϕAC of the other copy. As a result we obtain

N

N

Nk1

Nk2

N

N

A

C

D

B

D′

B′

A′

C′

ϕAD

ϕAC

ϕBC

ϕA′D′

ϕB′C′

ϕA′C′ (3.22)

The superpotential of the resulting theory contains the basic monopole operators from each

yellow node; the cubic terms coming from every closed triangular loop in the quiver that

contains one blue line; and the quartic term DD′B′B coming from the middle rectangular

loop. In the skeleton diagram, for the S-gluing, a blue (resp. red) line joins with another

red (resp. blue) line — this is opposite to the Φ-gluing.
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Observe that as a result of such gluing, which involves two pairs of external legs at

the same time, we end up with a rectangle in the skeleton diagram. We will refer to these

types of gluing as rectangular Φ-gluing and rectangular S-gluing respectively. There is also

another type of gluing which is not a rectangular gluing. For example, one may self-glue

the left part of the skeleton diagram of (2.12) to obtain

(3.23)

First of all, the “loop” on the left is not rectangular. Secondly, this type of gluing involves

only one pair of external legs, not two pairs as for the rectangular gluing. We postpone

the discussion of the non-rectangular gluing until later.

Theories (3.21) and (3.22) will be analysed in detail in section 6.

Gluing amusement. As a final remark, we can further perform a rectangular self-Φ-

gluing on (3.21) such that the blue (resp. red) external leg on the left is joined with the

blue (resp. red) external leg on the right. As a result, we obtain the skeleton diagram

(as well as the quiver diagram) whose topology is an “strip”, whose face containing two

rectangles. Similarly, we can further perform a rectangular self-S-gluing on (3.22) such

that the blue external legs are joined with the red ones. The topology of the diagram is

also a strip, but with half of the face “flipped” with respect to the former.

3.2.2 Odd number of basic building blocks

As we have discussed in the paragraph below (3.20), it is not possible to close all external

legs for odd number of duality walls, provided that we use (2.7) as a basic building block.

This can also be seen in the case of one duality wall. In particular, it is not possible to

perform the following self-gluing:

(3.24)

This is because none of the conditions in (3.1) is satisfied, since φ carries a fugacity q ui,

whereas φ′ carries a fugacity q−1 ui). However, if we instead use (2.12) as a basic building

block, we can perform a rectangular (self-)S-gluing along the opposite blue edges, namely

along (ϕAD, ϕBC) or along (ϕAC , ϕBD). For definiteness, let us consider the former option.

In terms of the skeleton diagram, we can identify the left (resp. right) blue external leg

with the left (resp. right) red external leg. As a result, we obtain

Nk2Nk1ϕAC

A

C

B

D

ϕBD

W = V+ + V− + CϕACA+BϕBDD

(3.25)

Note that the skeleton diagram is rectangular in the sense that it has four sides. Also,

since this gluing involves two pairs of external legs at the same time, it is qualified as a
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rectangular gluing. Moreover, the blue lines that connect SU(N)k1 and SU(N)k2 disappear

because we have performed an S-gluing. We can further apply duality (2.3) to the yellow

node of the quiver (3.25) and obtain the following dual theory:

(3.25)
(2.3)←→ Nk2Nk1 (3.26)

with the monopole superpotential and the two cubic terms coming from the upper and

lower triangular loops. We further explore these theories in section 4.2, where we find two

more dual theories. These four theories are then related to each other by a quadrality as

shown in (4.20).

3.2.3 Non-rectangular gluing

Let us now consider a closure of one pair of external legs. We propose the following

prescription:
N

N

NkϕAC

A

C

D

B
ϕBD

W = V+ + V− + CϕACA+DϕBDB

(3.27)

When a pair of external legs is glued together, the corresponding SU(N) flavour symmetries

associated to those legs are commonly gauged with a certain CS level k. The 4d fields that

was connecting the two SU(N) flavour symmetries becomes an adjoint field and a singlet

under the gauge group SU(N)k (this is ϕAC in the above example). We also remove the

4d fields connecting the SU(N)k gauge groups to other SU(N) flavour symmetries (hence

ϕAD and ϕBC are absent in the above example).

The reason we proposed such a prescription for the non-rectangular gluing is the consis-

tency with (3.25). Observe that when we also close the right pair of external legs in (3.27),

we obtain precisely (3.25).

Notice also that the above prescription for closing a pair of external legs commutes

with duality (2.3). In (3.26), we first closed all external legs and then applied duality (2.3)

to the yellow node to obtain the right quiver diagram. Now suppose that we first apply

duality (2.3) to the yellow node in (3.27) to obtain4

(3.27) ←→
N

N

Nk (3.28)

4We emphasise that, upon applying duality (2.3), all black arrows in (3.28) have to be reversed with

respect to those in (3.27). (The directions of the blue arrows are then fixed.) However, since the quiver has

a horizontal symmetry, we draw the quiver as it is in (3.28). One should keep in mind that the roles of the

upper and lower nodes in (3.28) are reversed with respect to those of (3.27).
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with the monopole superpotential and the two cubic terms coming from the upper and lower

triangular loops. Upon closing the right pair of external legs using the above prescription,

one obtain precisely the quiver in (3.26). In section 4.1, we analyse (3.27) and (3.28) in

more detail.

This prescription can, of course, be applied to a more complicated theory. For example,

we have

Nk3Nk3

Nk1

Nk2

Nk4Nk4

A

C

D

B

D′

B′

A′

C′

W = V
(1)
+ + V

(1)
− + V

(2)
+ + V

(2)
− +BDD′B′

(3.29)

3.3 Comparison with the gluing prescription in [1]

As mentioned earlier, the gluing prescription adopted in this paper is heavily motivated

by that used in [1]. The reason why we adopted the latter is due to the similarity of our

construction and [1].

Let us first briefly summarise the construction of [1]. In that reference, the basic build-

ing block arises from the 6d E-string theory compactified on a sphere with two punctures (a

tube) with a particular choice of flux that breaks the E8 symmetry of the E-string theory

to E7 × U(1)F . The latter was then realised from the 5d E-string theory with a duality

domain wall [41], which gives rise to a subgroup SU(8) × U(1)F of the former symmetry.

The U(1)F charge on one side of the domain wall flips its sign as we cross to the other side.

We now turn to our construction in this paper. We consider duality domain walls in

4d N = 2 SU(N) gauge theory with 2N flavours. In this case, the duality wall gives rise

to a symmetry SU(2N)×U(1)q, which is also the flavour symmetry of the 4d theory. The

analog of U(1)F in [1] is indeed U(1)q in this paper. As we explained around (2.7), each

of the two SU(N) flavour symmetries are coupled to the SU(N) gauge symmetry of the

4d theory on each side of the wall. Since A and B as well as φ and φ′ carry opposite

charges under U(1)q, we see that, indeed, the U(1)q charge on the left flips its sign on the

right of the duality wall. The cubic superpotential terms also appear in the same way as

described in [1].

Although we do not have a realisation of our theory as coming from a 5d theory on

a Riemann surface (analog of 6d E-string theory on a Riemann surface in [1]), we have a

very similar geometric analog of the Riemann surface, namely the skeleton diagram. The

genus and the external legs of the latter play the same roles as the genus and the puncture

of the Riemann surface in [1]. It would be nice to understand the theory studied in this

paper as coming from compactification of a higher dimensional theory. We postpone this

to future work.
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4 A single duality wall

In this section we consider the case of a single duality wall, whose skeleton diagram has

genus one. We first discuss theories with two external legs and then move on to those with

zero external legs and genus two. We study indices of such theories and discuss various

dualities among them.

4.1 Two external legs

We have already introduced two dual theories associated with the skeleton diagram with

genus one and two external legs, namely (3.27) and (3.28). In this subsection, we introduce

two more theories that are closely related to the former. The first one is

N

N

NkϕAC

A

C

D

B
ϕBD

ϕAD

ϕBC

W = V+ + V− + CϕACA+DϕBDB +DϕADA+ CϕBCB

(4.1)

To obtain the second theory, we apply duality (2.3) to the yellow node. We get rid of

ϕAD, ϕBC , ϕBD and ϕAC , and reverse all the black arrows. However, since the quiver has

a horizontal symmetry, we can draw the quiver for the dual theory as follows:

N

N

Nk

W = V+ + V−

(4.2)

where we emphasise that the roles of the upper and lower flavour nodes are reversed with

respect to that of (4.1).

Let us summarise the four closely related theories:

(4.1)
(2.3)←→ (4.2)

(3.27)
(2.3)←→ (3.28)

(4.3)

where each pair is related by the duality (2.3). We shall discuss in the next subsection

that, for N = 2, the four theories are, in fact, dual to each other. However, for N > 2, the

theories in the first line are not dual to those in the second line.

4.1.1 Quadrality for the case of N = 2

In the special case of N = 2, as we shall discuss below, the indices of the four models

in (4.3) are equal. We thus conjecture that the four models are related by a quadrality:

(4.1)
(2.3)←→ (4.2)

for N = 2←→ (3.28)
(2.3)←→ (3.27) (4.4)
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The indices for the theories in (4.4) with N = 2. Let us first fix the convention

in drawing the quivers in (4.4). All black lines in every model in (4.4) are drawn in the

following way and carry the following U(1)p ×U(1)q fugacities:

N

N

Nk

p−1

q

q−1

p

(4.5)

The U(1)p × U(1)q charges of the chiral fields corresponding to the blue line then follow

from the superpotential. For example, ϕBD in (4.1) carries the U(1)p×U(1)q fugacity p−1q.

We first examine theory (4.1). For N = 2 and the CS level k ≥ 2,5 the index reads

IN=2
(4.1) (x;y, z, p, q)

= 1 + C1(y, z, p, q)x+ C2(y, z, p, q)x2 + C3(y, z, p, q)x3 + . . . .
(4.6)

where the coefficients C1, C2 and C3 are as follows:

C1(y, z, p, q) = p−1q[1; 1] + pq−1

C2(y, z, p, q) = p−2q2[2; 2] + [1; 1] + p2q−2 − ([2; 0] + [0; 2] + 2[0; 0])

C3(y, z, p, q) = p−3q3[3; 3] + p−1q[2; 2] + 2pq−1[1; 1] + p−1q + p3q−3

− p−1q([1; 3] + [3; 1])− pq−1([2; 0] + [0; 2])− 2p−1q[1; 1]

− p−3q−1[2; 0]− 2pq−1 .

(4.7)

Here we use the shorthand notation [a; b] to denote the characters χ
SU(2)
[a] (y)χ

SU(2)
[b] (z) of

the representation [a; b] of the global symmetry SU(2)× SU(2), with the first slot a corre-

sponding to the upper node and second slot to the lower node.

We find that the indices of the other theories in (4.4) are related to that of (4.6) by

the following relation:

IN=2
(4.1) (x;y, z, p, q) = IN=2

(4.2) (x;y, z, p−1, q−1)

= IN=2
(3.27)(x; z,y, p, q) = IN=2

(3.28)(x; z,y, p−1, q−1) .
(4.8)

This serves as a non-trivial test for the quadrality proposed in (4.4).

Let us label the chiral fields in (4.2) and their U(1) charges as follows.

N

N

Nk

p−1

P

q

Q

q−1

R

p

S
(4.9)

5Throughout this paper, we take the CS level to be generic; unless specified otherwise, we take its

absolute value to be larger than or equal to 2. When the CS level is taken to be 0 or 1, for example, the

index may diverge depending on the cases we are considering.
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Recall that for this theory we need to invert p and q in (4.7). The terms in the coefficient

coefficient C1 correspond to the following gauge invariant quantities:

pq−1[1; 1] : Xi′
i := RiS

i′ ,

p−1q : Y := PαQα .
(4.10)

where i, j = 1, 2 and i′, j′ = 1, 2 are the flavour indices for the upper and lower square nodes

respectively, and α, β = 1, 2 are the SU(2)k gauge indices. These are relevant operators.

The positive terms in C2 correspond to

p2q−2[2; 2] : Xi′
i X

j′

j ,

[1; 1] : Xi′
i Y ,

p2q−2 : Y 2 .

(4.11)

These are marginal operators. The negative terms in C2 indicate that the global symmetry

is SU(2)2 ×U(1)2, as is manifest in the quiver diagram.

The indices for the case of N = 3. Let us take N = 3 and k ≥ 2. The indices of (4.1)

and (4.2) are given by

I (4.2)(y, z, p, q) = I(4.1)(y, z, p
−1, q−1)

= 1 + C1(y, z, p, q)x+ C2(y, z, p, q)x2 + . . . ,
(4.12)

where

C1(y, z, p, q) = pq−1[1, 0; 0, 1] + p−1q

C2(y, z, p, q) = p2q−2[2, 0; 0, 2] + 2p−2q2 + p2q−2[0, 1; 1, 0] + 2[1, 0; 0, 1]

− [1, 1; 0, 0]− [0, 0; 1, 1]− 2− p2q−2 .

(4.13)

Here the notation [R1; R2] denote a representation of the SU(3)×SU(3) flavour symmetry,

where the first slot corresponds to the lower node and the second slot corresponds to the

upper node of (4.2) (which becomes the upper and lower nodes of the dual theory (4.1)).

Let us use the notation as in (4.9) and take N = 3. Now the yellow node is U(2), whose

indices will be denoted by a, b = 1, 2. The terms in the coefficient C1 correspond to

pq−1[1, 0; 0, 1] : Xi′
i := Rai S

i′
a ,

p−1q : Y := Pαa Q
a
α .

(4.14)

These are the relevant operators. The positive terms in C2 correspond to

p2q−2[2, 0; 0, 2] : Xi′
i X

j′

j ,

2p−2q2 : Y 2 , Pαa Q
a
βP

β
b Q

b
α ,

p2q−2[0, 1; 1, 0] : εabε
cdRaiR

b
jS

i′
c S

j′

d ,

2[1, 0; 0, 1] : Xi′
i Y , Si

′
aQ

a
αP

α
b R

b
i .

(4.15)

These are the marginal operators.
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On the other hand, the indices of (3.27) and (3.28) are given by

I(3.28)(y, z, p, q) = I(3.27)(y, z, p
−1, q−1)

= 1 + c1(y, z, p, q)x+ c2(y, z, p, q)x2 + . . . ,
(4.16)

where

c1(y, z, p, q) = pq−1[1, 0; 0, 1] + p−1q

c2(y, z, p, q) = p2q−2[2, 0; 0, 2] + 2p−2q2 + [1, 0; 0, 1] + (1 + p2q−2)[0, 1; 1, 0]

− [1, 1; 0, 0]− [0, 0; 1, 1]− 2− p2q−2 .

(4.17)

Let us analyse theory (3.28). The relevant operators, corresponding to the terms in c1, are

pq−1[1, 0; 0, 1] : Xi′
i := Bi′

aD
a
i ,

p−1q : Y := AαaC
a
α .

(4.18)

The marginal operators, corresponding to the terms in c2, are

p2q−2[2, 0; 0, 2] : Xi′
i X

j′

j

2p−2q2 : Y 2 , AαaC
a
βA

β
bC

b
α

[1, 0; 0, 1] : Xi′
i Y

[0, 1; 1, 0] : (ϕAD)ia(ϕBC)ai′

p2q−2[0, 1; 1, 0] : εabε
cdDa

iD
b
jB

i′
c B

j′

d

(4.19)

Let us now compare the two sets of results. Observe that the operators in (4.14) are

in correspondence with (4.18), and so as the first two lines of (4.15) and (4.19). However,

the last two lines of (4.15) do not agree with (4.19). In particular, in the former the

representation [1, 0; 0, 1] appears with multiplicity 2, whereas it appears with multiplicity

1 in the latter. For this reason we conclude that for N > 2, the two sets of theories stated

in (4.3) are not dual to each other.

Superconformal fixed points. Let us focus on N = 3, and assume that theories (4.1),

(4.2), (3.27) and (3.28) flow to superconformal fixed points. Due to the dualities (4.3),

theory (4.1) flows to the same fixed point as theory (4.2), and theory (3.27) flows to the

same fixed point as theory (3.28). Due to the previous discussion, we expect that the two

fixed points are different for N = 3.

Under the assumption of the existence of the superconformal fixed point, the negative

terms in C2 of (4.13) and those in c2 of (4.17) correspond to the conserved current of

each set of theories. Both contain a term −p2q−2, which should correspond to a U(1)

conserved current and should appear in the index as 1 (since its character is 1). Therefore

our assumption on the conformality forces us to set p = q. The terms 2p−2q2 − 2− p2q−2

thus combine into −1, and we are left with the negative terms −[1, 1; 0, 0]− [0, 0; 1, 1]− 1

in both C2 and c2. These indicate that the global symmetries of both superconformal fixed

points are indeed SU(3) × SU(3) × U(1), where the fugacity of such a U(1) symmetry is

identified with p = q. Another possible interpretation of this phenomenon is as follows: if
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we deform theory (4.13) or theory (4.17) by two real mass deformations, one associated

with U(1)p and the other with U(1)q, then we reach the aftermentioned fixed point only

when the two real masses are set to be equal.

4.2 Zero external leg and quadrality

In this subsection, the two SU(N) global symmetry in each of the theories in (4.3) are

commonly gauged with CS level k2, and let us denote the CS level k for the former SU(N)

gauge group by k1. We have introduced actually two of the resulting theories in (3.25)

and (3.26), whose skeleton diagram has genus two and zero external leg. In this subsection

we discuss the relation between the four theories after such gauging.

We find that the indices of the following four theories are equal for any N ≥ 2 and for

k1, k2 ≥ 2:

Nk2Nk1 Nk2Nk1

Nk2Nk1 Nk2Nk1

(4.20)

where, for each quiver, there is a monopole superpotential due to the yellow node and

the cubic superpotential terms coming from every closed triangular loop that contains one

blue line as an edge. We thus claim that these four theories are related to each other by

a quadrality. Note that for the special case of N = 2, such a quadrality is an immediate

consequence of that discussed in (4.4).

Let us analyse such theories in more detail. For definiteness, we choose one of the

theories from the above list, say

Nk2Nk1

A1

Ã1

A2

Ã2

(4.21)

with the superpotential

W = V+ + V− . (4.22)

The case of N = 2. For k1 ≥ 1 and k2 ≥ 2 (or k2 ≥ 1 and k1 ≥ 2), the first few orders

of the power expansion of the index are6

I(4.21)(x;u) = 1 + C1(p, q)x+ C2(p, q)x2 + C3(p, q)x3 + C4(p, q)x4 + . . . , (4.23)

6We find that for k1 = k2 = 1, the index is equal to unity, and if either k1 or k2 is zero, the index

diverges.
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where

C1(p, q) = pq−1 + p−1q

C2(p, q) = (p2q−2 + 1 + p−2q2)− 2

C3(p, q) = p3q−3 + p−3q3

C4(p, q) = p4q−4 + p−4q4 + p2q2 + p−2q−2 + ck1,k2 ,

(4.24)

with ck1,k2 a positive interger that depends on the values of k1 and k2. For example,

c2,2 = 1, c2,k = 2 for k ≥ 3, and ck1,k2 = 3 for k1, k2 ≥ 3.

Using the assignment as in (2.14), we see that the relevant operators, corresponding

to the terms pq−1 and p−1q in C1(p, q), are

X1 := (A1)α(Ã1)α , X2 := (A2)α′(Ã2)α
′
, (4.25)

where α = 1, 2, . . . , N and α′ = 1, 2, . . . , N are the gauge indices for SU(N)k1 and SU(N)k2
respectively. The marginal operators, corresponding to the terms p2q−2, 1 and p−2q2 in

C2(p, q), are X2
1 , X1X2, X

2
2 . The term −2 in C2(p, q), corresponding to the conserved

current, confirms that the global symmetry of the theory is U(1)p ×U(1)q. Note that due

to terms in C4(p, q), it is not possible to rewrite the fugacities p, q in terms of characters

of SU(2) representations.

The case of N = 3. For N = 3 with k1 ≥ 2 and k2 ≥ 2, the first few coefficients of the

index (4.23) are

C1(p, q) = pq−1 + p−1q

C2(p, q) = (xk1p
2q−2 + 2 + xk2p

−2q2)− 2 ,
(4.26)

where

xk =

{
1 if k = 2

2 if k ≥ 3
. (4.27)

The term −2 in C2(p, q) in (4.26) indicates that the global symmetry of the theory is

U(1)×U(1), whose fugacities are denoted by p and q. Let us now explain the other terms

in C2(p, q), as well as those in C1(p, q).

Let us first consider the case of k1 = k2 = 2, so that xk1 = xk2 = 1. A crucial difference

between the coefficient C2(p, q) for N = 3 and that for N = 2 in (4.24) is that there is an

extra marginal operator that carry zero charges under both U(1)p and U(1)q in the former

case. For N ≥ 3, the relevant operators are similar to (4.25):

X1 = (A1)αa (Ã1)aα , X2 := (A2)aα′(Ã2)α
′
a , (4.28)

where a, b = 1, 2, . . . , N − 1 are the indices for the U(N − 1) gauge group denoted by the

yellow node. These correspond to the terms in the coefficient C1(p, q). In addition to

X2
1 , X1X2, X

2
2 , there is an extra marginal operator given by

Q = (A1)αa (A2)aα′(Ã2)α
′
b (Ã1)bα , (4.29)

– 23 –



J
H
E
P
1
1
(
2
0
1
9
)
0
5
3

which is different from X1X2, for N ≥ 3, and is neutral under both U(1)p and U(1)q. These

four marginal operators correspond to the terms in the bracket in the coefficient C2(p, q).

Now let us assume that one of k1 and k2 or both are strictly greater than 2. The left

or right gauge nodes can be regarded as SU(3)k with 2 flavours, where k is either k1 or k2.

To analyse this, we find that it is convenient to apply the duality (3.23) of [42]. The dual

theory is U(k−1)−k,−1 with 2 flavours q, q̃, the chiral field M in the adjoint representation

of the yellow U(2) node in (4.21), and the superpotential W = Mqq̃. Let us denote by M1

and M2 the adjoint fields of the yellow U(2) node that arise from dualising the SU(3)k1
and SU(3)k2 respectively. The gauge invariant quantities tr(M1) and tr(M2) in this dual

theory can be mapped to X1 and X2 in the original theory (4.28).

Let us consider the case of k = 2. The dual theory has the U(1)−1 gauge group.

The F -terms with respect to q and q̃ are Ma
b q

b = 0 and Ma
b q̃a = 0. Then, M can be

regarded as a two by two matrix of rank 1, since M maps a vector to zero and so the

dimension of its kernel is one. Since M has rank 1, it can be written as a product of two

vectors and it follows that tr(M2) = (trM)2. Therefore, in the case of k1 = k2 = 1, the

operators X2
1 , X1X2, X

2
2 , Q can be mapped to tr(M2

1 ), tr(M1) tr(M2), tr(M2
2 ), tr(M1M2),

where M1,2 satisfy tr(M2
1 ) = (trM1)2 and tr(M2

2 ) = (trM2)2.

However, when k > 2, the dual gauge group U(k−1)−k,1 has a higher rank. On the con-

trary to the case of k = 2, M has rank greater than 1. As a consequence, tr(M2) and (trM)2

are not identical and they correspond to two different operators. This explains the presence

of xk1 and xk2 in C2(p, q) in (4.26). In particular, if k1, k2 > 2, the marginal operators cor-

responding to the terms in the brackets in C2(p, q) are tr(M2
1 ), (trM1)2, tr(M2

2 ), (trM2)2,

corresponding to 2p2q−2 + 2q2p−2, and tr(M1) tr(M2), tr(M1M2), corresponding to 2.

5 Two duality walls: using (2.7) as a building block

Let us now consider the theories associated with two duality walls. As discussed in section 3,

if we use (2.7) as a basic building block, we obtain two theories (3.5) and (3.9) from Φ-

gluing and S-gluing respectively. One can perform further gauging to close the external

legs and obtain (3.14) and (3.16). We discuss in detail the four models in this section. One

the other hand, we discuss the case of two duality walls if we use (2.12) as a basic building

block in section 6.

5.1 Indices of models (3.5) and (3.9) for N = 2

We first analyse model (3.9).

2N

Nk

N N
P

Aq−1

B

q

Cq

D

q−1Q

φ′

q−1

φ̃

q

(5.1)
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For k ≥ 2, the index for N = 2 reads

IN=2
(3.9) (x; yL,y, yR) = 1 + C1x+ C2x

2 + . . . (5.2)

where

C1 = q−1[1; 1, 0, 0; 0] + q[0; 0, 0, 1; 1] ,

C2 = q−2[2; 2, 0, 0; 0] + q2[0; 0, 0, 2; 2] + {[1; 1, 0, 1; 1] + [1; 0, 0, 0; 1]}
− [2; 0, 0, 0; 0]− [0; 1, 0, 1; 0]− [0; 0, 0, 0; 2]− 1 .

(5.3)

The unrefined index for this model is

IN=2
(3.9) (x; yL = 1,y = 1, yR = 1) = 1 + 16x+ 102x2 + 288x3 + 396x4 + . . . . (5.4)

The terms in C1 in (5.3) correspond to φ′ and φ̃ respectively. The terms in the curly brackets

in C2 come from the tensor product of the two terms in C1. The second symmetric power

of the representation q−1[1; 1, 0, 0; 0] in C1 is q−2[2; 2, 0, 0; 0] + q−2[0; 0, 1, 0; 0]. However,

the gauge invariant combinations εαβM ij
αβ ,7 with M ij

αβ = (φ′)iα(φ′)jβ associated with the

latter representation vanish in the chiral ring, due to the quantum rank condition (in the

same way as in the Seiberg duality). This can be seen by applying duality (2.3) to the

left yellow node; we see that (φ′)iα is identified with B̃αP̃
i, where B̃ and P̃ are the chiral

fields (whose arrows are in the opposite direction to B and P ) in the dual theory, and

so εαβM ij
αβ = εαβB̃αB̃βP̃

iP̃ j = 0. This is the reason why only q−2[2; 2, 0, 0; 0] survives

in the index. The similar argument can be applied to the second symmetric power of

q[0; 0, 0, 1; 1]. The negative terms in C2 tell us that the global symmetry of the theory is

SU(2)2 × SU(4)×U(1).

Now let us analyse model (3.5).

2N

Nk

N N
P

Aq−1

B

q

Cq−1

D

qQ

φ
q

φ′

q−1

φ̃

q−1

(5.5)

The index for N = 2 and for k ≥ 2 reads

IN=2
(3.5) (x; yL,y, yR) = 1 + c1x+ c2x

2 + . . . (5.6)

where

c1 = q−1[1; 1, 0, 0; 0] + q−1[0; 1, 0, 0; 1] ,

c2 = q−2[2; 2, 0, 0; 0] + q−2[0; 2, 0, 0; 2] + {q−2[1; 0, 1, 0; 1] + q−2[1; 2, 0, 0; 1]}
+q−2[0; 0, 1, 0; 0]− q2[0; 0, 1, 0; 0]− [2; 0, 0, 0; 0]− [0; 1, 0, 1; 0]

− [0; 0, 0, 0; 2]− 1 .

(5.7)

7Recall that we take N = 2. Here i, j = 1, . . . , 4 are the SU(4) flavour indices, and α, β = 1, 2 are

the indices for the left SU(2) flavour node. Note also that, due to the definition of M , M
[ij]
αβ , with an

antisymmetrisation on i and j, can be written as εαβM ij
αβ .
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The unrefined index of this theory turns out to be equal to that of (3.5), which is given

by (5.4):

IN=2
(3.5) (x; yL = 1,y = 1, yR = 1) = IN=2

(3.9) (x; yL = 1,y = 1, yR = 1) . (5.8)

The interpretation for (5.7) is very similar to the above. The terms in c1 correspond to

φ′ and φ̃. The terms in the curly brackets in c2 come from the tensor product of the

two terms in c1. The term +q−2[0; 0, 1, 0; 0] can be conveniently explained using another

duality frame. If we dualise both left and right yellow nodes using duality (2.3), the chiral

fields φ′ and φ̃ disappear and we replace φ by a chiral field χ, whose arrow is in the opposite

direction of φ and carrying the U(1)q fugacity q−1. (The arrows for A, B, P , C, Q, D also

reverse their directions.) We can construct the gauge invariant quantity εabχ
a
i χ

b
j , where

a, b = 1, 2 is the SU(2)k gauge indices and i, j = 1, . . . , 4 are the SU(4) flavour indices, in

the representation q−2[0; 0, 1, 0; 0], as required.

It is interesting to point out that even though the unrefined indices of the two models

are equal, their refined indices are different. In particular, the representation [1; 1, 0, 1; 1]+

[1; 0, 0, 0; 1] that appears in the former but not the latter, and the representation [1; 0,1,0;

1] +[1; 0,0,2; 1] that appears in the latter but not in the former. Although their dimensions

are equal and they both come from the tensor products of the two terms of the coefficient

of x, their characters are different.

Another important point is the negative term −q−2[0; 0, 1, 0; 0] that appears in c2

in (5.7). Since this is not the adjoint representation, it cannot correspond to a conserved

current. If we assume that theory (3.5) flows to a fixed point, this negative term cannot

be there by itself. Indeed, if we set q = 1, such a term cancels with another positive term

(both are indicated in blue). After the cancellation, the negative terms indicate that the

global symmetry of the theory is SU(2)2 × SU(4)×U(1). Since the fugacity q has already

been set to 1, the index no longer has a manifest U(1) fugacity, and we interpret such a

U(1) global symmetry as emergent in the infrared.

5.2 Various dualities for any N ≥ 2

Given models (3.5) and (3.9), we can generate a number of dualities that hold for any

N ≥ 2 by applying duality (2.3) to each yellow node. For (3.5), we have a triality between

the following theories:

2N

Nk1

N N

2N

Nk1

N N 2N

Nk1

N N

(5.9)

where the top and bottom left theories are related by dualising the left yellow node, and

the bottom left and bottom right theories are related by dualising the right yellow node.
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For each quiver, there is a monopole superpotential due to the yellow node, the cubic

superpotential terms coming from every closed triangular loop that contains one blue line

as an edge, and there is also a quartic term for the bottom left quiver coming from the

middle triangle.

For (3.9), we have a triality between the following theories:

2N

Nk1

N N

2N

Nk1

N N 2N

Nk1

N N

(5.10)

The superpotential for each quiver is in the same way as described above.

If we commonly gauge the two SU(N) flavour symmetry corresponding to the left and

right square nodes, we obtain models (3.14) and (3.16) and their duality. We discuss this

in detail below.

5.2.1 Duality between models (3.14) and (3.16)

Applying duality (2.3) to either of the yellow nodes, we find that models (3.14) and (3.16)

are dual to each other for any N ≥ 2. Indeed, we find that the indices for (3.14) and (3.16)

are equal.

In particular, for N = 2 and k1, k2 ≥ 2, their indices are

IN=2
(3.14)(x; q,y) = IN=2

(3.16)(x; q,y) = 1 + 0x+ 0x2 + 0x3 + C4(q,y)x4 + . . . , (5.11)

where the coefficients of x, x2, x3 vanish, and

C4(q) = χ
SU(4)
[1,0,1](y) + χ

SU(4)
[0,2,0](y) + 2(q2 + q−2)χ

SU(4)
[0,1,0](y) + q4 + 1 + q−4 , (5.12)

where y = (y1, y2, y3) are fugacities of the SU(4) flavour symmetry and q is a fugacity of

the U(1) global symmetry.

The vanishing coefficient of x2 in (5.11) deserves some explanations. Models (3.14)

and (3.16) in fact have the global symmetry SU(4)×U(1). The contribution −χSU(4)
[1,0,1](y)−1

at order x2 of the conserved current is cancelled by the contribution χ
SU(4)
[1,0,1](y) + 1 of the

marginal operators. For model (3.16), such marginal operators are AαCαQ
iPj , correspond-

ing to the close path in the upper triangle. Note that these are equal to −Bα′Dα′Q
iPj ,

corresponding to the close path in the lower triangle, due to the F -terms that are the

derivatives with respect to Pj of the superpotential (3.17).

6 Two duality walls: using (2.12) as a building block

In this section, we consider the theories associated with two duality walls, using (2.12) as

a basic building block. We consider the theories arising from Φ-gluing and S-gluing and

their dual theories. We finally compute their indices and discuss the duality for the case

of N = 2.
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Φ-gluing. The theory associated with the Φ-gluing of two building blocks has already

been introduced in (3.21). We present such a theory, with the fugacities for U(1)p×U(1)q×
U(1)p′ ×U(1)q′ for each chiral fields, along with its duals below.

N

N

Nk1

Nk2

N

N

p−1

q

q−1

p

q′−1

p′

p′−1

q′

pq

pq−1

p−1q−1

p′q′

p′−1q′−1

p′q′−1p−1q

N

N

Nk1

Nk2

N

N

p

q−1

q

p−1

q′−1

p′

p′−1

q′

p′q′

p′−1q′−1

p′q′−1

N

N

Nk1

Nk2

N

N

p

q−1

q

p−1

q′

p′−1

p′

q′−1

pq−1

(6.1)

where the bottom left and right quivers come from applying (2.3) to the left yellow node and

to both yellow nodes of the top diagram, respectively. There are monopole superpotential

terms, the cubic superpotential terms coming from each triangular loop in the quiver that

contains one blue line as an edge, and the quartic superpotential term for the bottom left

quiver coming from rectangular loop in the middle. Such a superpotential imposes the

following condition on the U(1) fugacities:

p−1qp′q′−1 = 1 . (6.2)

S-gluing. The theory associated with the S-gluing of two building blocks has already

been introduced in (3.22). We present such a theory, with the fugacities for U(1)p×U(1)q×
U(1)p′ ×U(1)q′ for each chiral fields, along with its duals below.

N

N

Nk1

Nk2

N

N

p−1

q

q−1

p

p′−1

q′

q′−1

p′

pq

pq−1

p−1q−1

p′q′

p′−1q′−1

p′−1q′

N

N

Nk1

Nk2

N

N

p

q−1

q

p−1

p′−1

q′

q′−1

p′

p′q′

p′−1q′−1

p′−1q′pq−1

N

N

Nk1

Nk2

N

N

p

q−1

q

p−1

p′

q′−1

q′

p′−1

(6.3)

where the bottom left and right quivers come from applying (2.3) to the left yellow node and

to both yellow nodes of the top diagram, respectively. There are monopole superpotential

terms, the cubic superpotential terms coming from each triangular loop in the quiver

that contains one blue line as an edge, and the quartic superpotential term for the top and

bottom right quivers coming from the rectangular loop in the middle. Such a superpotential

imposes the following condition on the U(1) fugacities:

pq−1p′−1q′ = 1 . (6.4)
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6.1 The indices of (6.1) and (6.3) for N = 2

We focus only on the case of N = 2 and k1, k2 ≥ 2.

Theory (6.3). The index of this theory is

IN=2
(6.3) (x; p, q, p′, q′, y1, . . . , y4) = 1 + C1x+ C2x

2 + . . . , (6.5)

where the coefficients Ci are functions of p, q, p′, q′, y1, . . . , y4. Here we report only the two

coefficients C1 and C2 in full:

C1 =
p

q

[
1 0

1 0

]
+
q′

p′

[
0 1

0 1

]
(6.4)
=

p

q

[
1 0

1 0

]
+
q

p

[
0 1

0 1

]
,

C2 =
p2

q2

[
2 0

2 0

]
+
q′2

p′2

[
0 2

0 2

]
+
pq′

qp′

[
1 1

1 1

]
+ pqp′q′

[
1 1

0 0

]
+

1

pqp′q′

[
0 0

1 1

]

−

[
2 0

0 0

]
−

[
0 2

0 0

]
−

[
0 0

2 0

]
−

[
0 0

0 2

]
− 4 +

qp′

pq′︸︷︷︸
(6.4)
= 1

.

(6.6)

We have used the notation
[
a b
c d

]
to denote the representation [a; b; c; d] of the flavour sym-

metry SU(2)4 associated with each corner of the quiver. Upon setting p, q, p′, q′, y1, . . . , y4

to 1, the unrefined index for (k1, k2) = (2, 2) is

1 + 8x+ 27x2 + 24x3 − 14x4 + . . . . (6.7)

We now focus on gauge invariant combinations of chiral fields corresponding to various

terms in the index. For convenience, we consider the bottom right quiver in (6.3) and label

the chiral fields as follows:

N

N

Nk1

Nk2

N

N

A

B

C

D

D′

C′

B′

A′

(6.8)

Explicitly, the superpotential of the above quiver is W = V+ + V− + V ′+ + V ′− + CDC ′D′.

Let us use the indices
[ i,j m,n
i′,j′ m′,n′

]
, each of which takes values 1, 2, for the flavour symmetry

SU(2)4 associated with each corner of the quiver. We use a, b = 1, 2 and a′, b′ = 1, 2 to

denote the SU(2)k1 and SU(2)k2 gauge indices respectively.

The terms in the coefficient C1 corresponds to the following gauge invariant combina-

tions:

Xi′
i = AiB

i′ , (X ′)mm′ = A′m′B
′m . (6.9)

Indeed, X and X ′ are the relevant operators. The positive terms of the coefficient C2

correspond to the following gauge invariant combinations:

Xi′
i X

j′

j , (X ′)mm′(X
′)nn′ , X i′

i (X ′)mm′ ,

Y m
i := AiC

aD′aB
′m , Y ′i

′
m′ := Bi′DaC

′aB′i
′

(6.10)
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These are the marginal operators. From the negative terms in the coefficient C2, we see

that the global symmetry of the theory is SU(2)4 × U(1)3. Indeed, the SU(2)4 symmetry

is manifest as the four square nodes in the quiver, and the three copies of U(1) correspond

to the fugacities p, q, p′, q′ subject to (6.4).

Theory (6.1). The index of this theory is

IN=2
(6.1) (x; p, q, p′, q′, y1, . . . , y4) = 1 + c1x+ c2x

2 + . . . , (6.11)

where the coefficients ci are functions of p, q, p′, q′, y1, . . . , y4. We report only c1 and c2

in full:

c1 =
p

q

[
1 0

1 0

]
+
p′

q′

[
0 1

0 1

]
(6.2)
=

p

q

[
1 0

1 0

]
+
p

q

[
0 1

0 1

]
,

c2 =
p2

q2

[
2 0

2 0

]
+
p′2

q′2

[
0 2

0 2

]
+
pp′

qq′

[
1 1

1 1

]
+ pqp′q′

[
1 1

0 0

]
+

1

pqp′q′

[
0 0

1 1

]

−

[
2 0

0 0

]
−

[
0 2

0 0

]
−

[
0 0

2 0

]
−

[
0 0

0 2

]
+
p2

q2
− q2

p2
− 4 +

pq′

qp′︸︷︷︸
(6.2)
= 1

.

(6.12)

Upon setting p, q, p′, q′, y1, . . . , y4 to 1, the unrefined index of this theory for (k1, k2) =

(2, 2) is

1 + 8x+ 27x2 + 24x3 − 14x4 + . . . . (6.13)

From (6.7) and (6.13), we see the unrefined indices of theory (6.1) and theory (6.3) are

equal to each other.

Let us consider (6.12) in more detail. Notice that the coefficient c2 contains a negative

term− q2

p2
. If we assume that theory (6.1) flows to a superconformal fixed point, the negative

terms in c2 must correspond to a conserved current. Let us proceed with this assumption.

The − q2

p2
term should correspond to a U(1) conserved current and should appear in the

index as 1 (since its character is 1). Therefore our assumption on the conformality forces

us to set p = q. It follows from (6.2) that p′ = q′. Therefore (6.12) can be rewritten as

c1 =

[
1 0

1 0

]
+

[
0 1

0 1

]
,

c2 =

[
2 0

2 0

]
+

[
0 2

0 2

]
+

[
1 1

1 1

]
+ p2p′2

[
1 1

0 0

]
+

1

p2p′2

[
0 0

1 1

]

−

[
2 0

0 0

]
−

[
0 2

0 0

]
−

[
0 0

2 0

]
−

[
0 0

0 2

]
− 3 .

(6.14)

For the coefficient c3, we report the result only for y1 = y2 = y3 = y4 = 1:

c3 = 8 + 16

(
p2p′2 +

1

p2p′2

)
− 8

(
p2

p′2
+
p′2

p2

)
. (6.15)
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It can be see from the negative terms in c2 that the theory has a global symmetry

SU(2)4 × U(1)3. Although SU(2)4 is manifest in the quiver, not all three U(1) symme-

tries is manifest. Since we have two fugacities p and p′ appearing in the index, only two

U(1) symmetries is manifest. We conjecture that the other U(1) global symmetry emerges

at the superconformal fixed point in the infrared.

In fact, it is important to emphasise that the indices of (6.3) and (6.1) are equal if we

set p = q and p′ = q′:

IN=2
(6.1) (x; p = q, p′ = q′, y1, . . . , y4) = IN=2

(6.3) (x; p = q, p′ = q′, y1, . . . , y4) . (6.16)

We have checked this relation up to order x6 for various (k1, k2). We conjecture that

theories (6.1) and (6.3) are dual to each other, in the sense that they flow to the same fixed

point in the infrared. For (6.3), the global symmetry SU(2)4 × U(1)3 is manifest in the

quiver description, and it is therefore possible to refine all of the corresponding fugacities

in the index. For (6.1), the global symmetry is also SU(2)4 × U(1)3, but among all global

fugacities, it is possible to refine only two U(1) fugacities in the index, since the other U(1)

is emergent in the infrared. This interpretation is consistent with the relation (6.16). An

immediate consequence of this conjecture is that we have six dual descriptions, namely

(6.1)
for N = 2←→ (6.3) . (6.17)

Let us end this subsection by briefly discussing the case of N = 3. We find that the

indices of models (6.3) and (6.1) are not equal, and so the two theories are not dual. In

particular, for N = 3 and (k1, k2) = (2, 2), their unrefined indices are

(6.1) : 1 + 18x+ 136x2 + 562x3 + . . .

(6.3) : 1 + 18x+ 154x2 + 832x3 + . . . .
(6.18)

7 Conclusion and perspectives

We study 3d N = 2 gauge theories associated with S-duality walls in the 4d N = 2 SU(N)

gauge theory with 2N flavours. Motivated by [1], we propose a prescription in gluing

theories associated with multiple duality walls as well as self-gluing for arbitrary number

of walls. The analog of the geometric view point of [1], involving Riemann surfaces, is

presented using the skeleton diagram. Using supersymmetric indices, we find a number

of dualities between different theories, some of them hold only for N = 2 and many of

them are true for all N ≥ 2. In particular, we find that for an even number of walls, if

all external legs of the skeleton diagrams are closed, the theories associated with the same

topology of the skeleton diagram (for given rank and CS levels of the gauge groups) are

dual to each other, independent of the way we glue the basic building block (2.7).

The gluing performed in this paper can also be viewed as a generalisation of the S-fold

theory [27–31] associated with duality walls in the 4d N = 4 super-Yang-Mills to a theory

with lower amounts of supersymmetry, which is the 4d N = 2 gauge theory in our case.

This work has led to a number of open problems that deserve a further investigation

in the future. First of all, it would be interesting to understand the geometric origin, such
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as compactification of a higher dimensional theory, for our theories and, in particular, the

skeleton diagrams. Secondly, in certain theories presented in this paper, we assume that

they flow to superconformal fixed points and deduce some properties from the indices, such

as an emergent U(1) symmetry. It would be nice to better understand such an assumption

and, if it is true, the property of such conformal fixed points. Another important future

work is to understand the holographic dual of the theories discussed in this paper along

the line of [31, 43]. Finally, we would like to understand properties of the moduli space of

vacua of the 3d N = 2 theories in this paper along the line of [32], as well as to generalise

our result to 4d N = 2 gauge theory with orthogonal, symplectic and exceptional gauge

groups in analogy to those studied in [33].
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A 3d supersymmetric index

In this appendix, we briefly review some basic facts about the 3d supersymmetric index and

and explain the conventions used in the paper, which follow those adopted in our previous

paper [34] and as in [42, 44]. The index is defined as a trace over states on S2×R [45–50]:

I(x,µ) = Tr

[
(−1)2J3x∆+J3

∏
i

µTii

]
, (A.1)

where ∆ is the energy in units of the S2 radius (for superconformal field theories, ∆ is

related to the conformal dimension), J3 is the Cartan generator of the Lorentz SO(3)

isometry of S2, and Ti are charges under non-R global symmetries. The index only receives

contributions from the states that satisfy:

∆−R− J3 = 0 , (A.2)

where R is the R-charge.
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The 3d supersymmetric index can also be computed as the supersymmetric partition

function on S2×S1 using localization, provided that the superconformal R-charge is chosen

for all the matter fields

I(x; {µ,n}) =
∑
m

1

|Wm|

∮
dz

2πiz
Zcl Zvec Zmat , (A.3)

where we denoted by z the fugacities parameterising the maximal torus of the gauge group,

and by m the corresponding GNO magnetic fluxes on S2. The integration contour is taken

to be the unit circle T for each integration variable and the prefactor |Wm| is the dimension

of the Weyl group of the residual gauge symmetry in the monopole background labelled by

the configuration of magnetic fluxesm. We also use {µ,n} to denote possible fugacities and

fluxes for the background vector multiplets associated with global symmetries, respectively.

The different contributions to the integrand of (A.3) are:

• the contribution from the classical action of CS and BF interactions

Zcl =
rkG∏
i=1

ωmizkmi+n
i , (A.4)

where rkG is the rank of the gauge group G and we denoted with k the CS level and

with ω and n the fugacity and the background flux for the global symmetry;

• the contribution of the N = 2 vector multiplet

Zvec =
∏
α∈g

x−
|α(m)|

2 (1− (−1)α(m)zαx|α(m)|) (A.5)

where α are roots in the gauge algebra g;

• the contribution of an N = 2 chiral field transforming in some representation R and

RF of the gauge and the flavour symmetry respectively and with R-charge r

Zmat =
∏
ρ∈R

∏
ρ̃∈RF

(
zρ µρ̃ xr−1

)− |ρ(m)+ρ̃(n)|
2

×((−1)ρ(m)+ρ̃(n) z−ρ µ−ρ̃ x2−r+|ρ(m)+ρ̃(n)|;x2)∞

((−1)ρ(m)+ρ̃(n) zρ µρ̃ xr+|ρ(m)+ρ̃(n)|;x2)∞
, (A.6)

where ρ and ρ̃ are the weights of R and RF respectively.

Let us now apply the index to 3d superconformal field theories. In which case, the

index keeps track of the short multiplets of the theory, up to recombination. It proves

useful to compute the index perturbatively by expanding the integrand in the fugacity x

and taking the gauge projection
∮

dz
2πiz at each order. Turning off the background fluxes

for the global symmetries, we obtain a result which is a power series in x

I(x, {µ,n = 0}) =

∞∑
p=0

χp(µ)xp (A.7)
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where χp(µ) is the character of some representation of the global symmetry of the theory.

As demonstrated in [51] (see also [52, 53]), one can study the contribution of superconformal

multiplets to each order of x in the power series. Since the classification of the shortening

conditions for 3d superconformal algebras is known [54, 55], it is possible to obtain useful

information about the superconformal theory in question using the power series of the

index. In this paper, we mainly focus on the coefficient of x and x2. The coefficients of x

correspond to the N = 2 relevant operators, contributing with only a positive sign. The

coefficient of x2 receives a contribution from the N = 2 marginal operators, contributing

with a positive sign, and the conserved currents, contributing with a negative sign.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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