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Abstract: We review a Dynamap European Life project whose main scope was the design, commis-
sioning, and actual implementation of “real-time” acoustic maps in a district of the city of Milan
(District 9, or Z9, composed of about 2000 road stretches), by employing a small number of noise
monitoring stations within the urban zone. Dynamap is based on the idea of finding suitable sets of
roads displaying similar daily traffic noise behavior, so that one can group them together into single
dynamical noise maps. The Dynamap sensor network has been built upon twenty-four monitoring
stations, which have been permanently installed in appropriate locations within the pilot zone Z9,
by associating four sensors to each one of the six group of roads considered. In order to decide
which road stretches belong to a group, a non-acoustic parameter is used, which is obtained from
a traffic flow model of the city, developed and tested over the years by the “Enviroment, Mobility
and Territory Agency” of Milan (EMTA). The fundamental predictive equation of Dynamap, for
the local equivalent noise level at a given site, can be built by using real-time data provided by the
monitoring sensors. In addition, the corresponding contributions of six static traffic noise maps,
associated with the six group of roads, are required. The static noise maps can be calculated from
the Cadna noise model, based on EMTA road traffic data referred to the ‘rush-hour” (8:00-9:00 a.m.),
when the road traffic flow is maximum and the model most accurate. A further analysis of road
traffic noise measurements, performed over the whole city of Milan, has provided a more accurate
description of road traffic noise behavior by using a clustering approach. It is found that essentially
just two mean cluster hourly noise profiles are sufficient to represent the noise profile at any site
location within the zone. In order words, one can use the 24 monitoring stations data to estimate
the local noise variations at a single site in real time. The different steps in the construction of the
network are described in detail, and several validation tests are presented in support of the Dynamap
performance, leading to an overall error of about 3 dB. The present work ends with a discussion of
how to improve the design of the network further, based on the calculation of the cross-correlations
between monitoring stations’” noise data.

Keywords: noise sensors networks; noise mapping; Dynamap project; sound environment;
noise pollution

1. Introduction

Noise mapping is becoming a necessary tool for evaluating the noise exposure of citi-
zens in large cities, as it has been recognized by the strict dose-harmful effect relationships
reported both in the European Directive 2002/49/EC (Environmental Noise Directive,
END) [1] and the 2018 WHO Environmental noise guidelines [2]. Strategic noise maps have
been implemented to enable effective diagnostics of the acoustic environment, providing
useful information for local intervention measures and policy-making decisions [3]. They
evaluate the overall exposure to noise in a given area due to different sources and, together
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with Action Plans, provide a framework to manage environmental noise and its effects.
Thus, they represent the standard approach for noise prevention and control. The deploy-
ment of distributed acoustic monitoring stations in urban and suburban areas started about
a decade ago, in concomitance with the lowering costs of electronic components and the
availability of efficient hardware for data transfer. Such extended monitoring technique
has continuously grown in popularity since the publication of the END by the recognition
that acoustic maps represent a powerful tool for determining the exposure of population to
environmental noise.

Until recently, noise maps were normally obtained by using mean vehicle flows, av-
eraged over a period of one year, but this simple approach clearly lacks accuracy when
dealing with varying noise on a daily basis. As a result, noise maps had been evolving
towards a multi-source predictive approach [4-8]. It then became clear that instead ‘dy-
namical’ (i.e., time dependent) noise maps should be developed for obtaining realistic and
accurate noise predictions over shorter time scales. In other words, the introduction of
dynamic noise maps constitutes a further evolution in the direction of better representing
the actual noise exposure.

The Dynamap project, dubbed ‘Dynamic Acoustic Mapping: Development of low
cost sensors networks for real-time noise mapping’ [9-12], is a LIFE project (ref. LIFE13
ENV/IT/001254), aimed at developing a dynamic noise mapping system, enabling to
detect and represent the acoustic impact of road infrastructures in real time. Since the
update of noise maps using a standard approach requires the collection and processing of a
huge amount of data, such a procedure would be very time consuming and costly, having
a significant impact on the financial statements of the authorities responsible for providing
noise maps. Therefore, more elaborated solutions are required in order to reduce the cost
of noise mapping activities.

To meet such requirements, and the growing demand of information about noise
pollution, the Dynamap project foresees the development of an automated noise mapping
system delivering real-time (short-term) noise maps, as well as long-term noise assessments.
Despite real-time noise maps not being explicitly required by END (see Appendix A), their
automated generation is estimated to lower the cost of noise mapping conspicuously (see
DYNAMAP—Development of low cost sensor networks for real time noise mapping, LIFE
Projects 2013, Environment Policy, and Governace—July 2014: Publications [12]), with
added significant benefits for noise managers and receivers. As a result, the Dynamap
system is expected to lead to a significant reduction in the resources needed to update
the noise maps (time, costs, and dedicated personnel), and to improve and facilitate
the dissemination of information to the public through appropriate web tools and/or
the opportunity to abate noise with alternative measures based on traffic control and
management. The system is aimed at providing easy and handy information, which can
be complemented with additional information regarding multiple environmental data
dynamically, such as air quality, meteorological conditions, etc. [12].

The paper is organized as follows. In Section 2, we present a brief review of the state
of the art on noise mapping relevant to Dynamap. Section 3 is devoted to the Dynamap
approach, describing the theory and its fundamental equations: The Dynamap traffic noise
sensors network is discussed in Section 3.1, the group traffic noise variations of each dynam-
ical map are defined in Sections 3.2 and 3.3, the implementation, location of the Dynamap
sensor network, and its operation are reported. The results are presented in Section 4,
including additional measurement sites to assess the group components in Section 4.1,
the validation of Dynamap in Section 4.2, the correlations between sensor locations and
how to optimize the network in Section 4.3, and the correlations of Dynamap predictions
with measurements in Section 4.4. Finally, Section 5 is devoted to the Conclusions.

2. State of the Art

In Section 2.1, we present a brief summary of the state of the art on road traffic noise
mapping, referring to some of the relevant works to our review published within the last
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two decades. In Section 2.2, we discuss the generalities of the Dynamap system with a
particular emphasis on its innovative characteristics, and in Section 2.3, the spatial and
temporal structure of road traffic noise in large urban zones.

2.1. Related Works Relevant to the Dynamap Project

The classification of streets plays an important role for Dynamap. Different attempts
are known, and we refer to a few of them. A street categorization has been developed for
the city of Valladolid (Spain) [13], and an urban noise functional stratification has been
studied for estimating average annual sound level [14]. Closely related to this issue is
the problem of identifying the type of vehicle producing the noise, e.g., vehicle sound
signature recognition by frequency vector principal component analysis [15], a dimen-
sionality reduction approach for detection of moving vehicles [16], techniques of acoustic
feature extraction for detection and classification of ground vehicles [17], noise source
identification with Beamforming in the pass-by of a car [18], a scaling model for a speed-
dependent vehicle noise spectrum [19], and a vehicle speed recognition from noise spectral
patterns [20].

Health related issues due to traffic and environmental noise has attracted a great deal
of attention over the years. Annoyance issues due to the transportation and their relation-
ships with exposure metrics have been studied [21]. A study of some effects of aircraft
noise on cognitive performance in schoolchildren has been reported [22], as well as the
relation between ambient noise and cognitive processes among primary schoolchildren [23].
Noise and mental performance quantified by personality attributes and noise sensitivity
have been considered [24], in addition to the important issue of traffic noise and risk of
myocardial infarction [25]. Of prime importance is also the relation between environmental
noise, sleep, and health, as discussed in [26]. Long-term road traffic noise exposure is also
associated with an increase in morning tiredness [27]; in addition, transportation noise
resulted in increased blood pressure in adults [28]. Further work includes the exposure
modifiers of the relationships of transportation noise with high blood pressure and noise
annoyance [29], the quantitative relationship between road traffic noise and hypertension
from the point of view of meta-analysis [30]. A recent, updated study on health-related
issues of noise has been published by the WHO [2].

From a larger geographical perspective, there is interest in the environmental burden
of disease in Europe by assessing risk factors in some countries [31], also yielding an
international scale implementation of the CNOSSOS-EU road traffic noise prediction model
for epidemiological studies [32]. This can be extended to a global noise score indicator for
classroom evaluation of acoustic performances in the LIFE GIOCONDA project, allowing a
comparison between different classrooms or schools, based on their acoustic performances,
and a homogeneous evaluation of the priority for planning noise mitigation actions in
Italian schools [33]. Research has been performed to suggest a selection of suitable alterna-
tives to reduce the environmental impact of road traffic noise using a fuzzy multi-criteria
decision model [34]. Annoyance evaluation has been performed due to overall railway
noise and vibration in Pisa (Italy) urban areas, showing the limitations of traditional noise
mapping for railway epidemiological studies based exclusively on ordinary transits, thus
confirming the role of vibrations as enhancing factor for disturbance [35]. A laboratory
study has been reported on noise annoyance assessment of various urban road vehicle
pass-by noises in isolation and combined with industrial noise [36]. A survey on exposure—
response relationships for road, rail, and aircraft noise annoyance, and the differences
between continuous and intermittent noise have been considered [37]. The application
of the intermittency ratio (IR) metric for the classification of urban sites based on road
traffic noise events has been studied and proved to be a useful supplementary metric to
the equivalent level, which measures only the energy content of the noise exposure [38].
Finally, a classification of urban road traffic noise based on sound energy and eventfulness
indicators, such as the IR, have been considered recently by taking into account measured
sound fluctuations in a large urban zone [39].
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The important issue of the assessment of transportation noise due to railways, airports,
and high-noise plants have been discussed extensively. Examples include an assessment of
railway noise in an urban setting, pointing to the problems the nearby living population
experiences due to the railway noise pollution [40], the ADS-B (Automatic Dependent
Surveillance-Broadcast) system, which has proved to be a useful tool for testing and
redrawing noise management strategies at Pisa airport, producing cost-effective solutions
for the airport noise management in urban areas, particularly when the radar tracks are not
available [41], and a novel method to determine multiexposure priority indices tested for
the Pisa action plan has been developed, called Multi Annoyance Building Prioritisation
Score (MABPS), which takes into account the annoyance due to the exposure from different
sources (multiexposure), showing significant differences with standard methods [42].
Of related interest is the transportation planning for quiet natural areas preservation
based on aircraft overflights” noise assessment in a National Park [43]. This is connected to
the more technical issue of wind turbine noise, for which a technical procedure has been
suggested to simultaneously estimate the emmission and the residual noise components
measured nearby a wind farm when the residual noise is mainly generated by wind, thus
allowing the evaluation of the noise impact produced by operational wind farms, without
requiring the farm shut down [44]. In addition, the exposure to wind turbine noise has been
evaluated by means of perceptual responses and reported health effects [45]. In addition,
a metric reflecting short-term temporal variations of transportation noise exposure has been
discussed [46]. As a way to restore some mitigation to the environment, the so-called green
wall has been studied as a sustainable tool in Mediterranean cities, such as of Limassol
(Cyprus) [47]. A case study in Malaysia residential streets has been reported [48], while the
impact of the ring road conclusion to the city of Guimaraes (Portugal) has been analyzed
from the point of view of traffic flow variations and accessibilities [49].

Noise mapping has a long history, and we report some related recent works. In [50],
the authors consider a context sensitive noise impact mapping, while, in [51], the spatial
sampling for night levels estimation in urban environments is studied. The development
of a practical framework for strategic noise mapping is considered in [52], while, in [4],
a noise mapping in the EU is studied using models and procedures. An analysis of road
traffic noise propagation is reported in [5], and strategic noise maps and action plans in
Navarre (Spain) are presented in [6]. Advances in the development of common noise
assessment methods in Europe, within the CNOSSOS-EU framework for strategic envi-
ronmental noise mapping, is discussed in [53]. A measurement network for urban noise
assessment, reporting a comparison of mobile measurements and spatial interpolation
approaches, is discussed in [54]. Questions on the soundscapes of a built environment are
considered in [7]. A Probabilistic modeling framework for multisource sound mapping
is studied in [8]. Strategic noise maps and action plans for the reduction of population
exposure in a Mediterranean port city are discussed in [55]. Kriging-based spatial inter-
polation from measurements for sound level mapping in urban areas is studied in [56],
and dynamic traffic noise maps based on noise monitoring and traffic speed data are
presented in [57]. An interesting approach regards the construction of density kernel maps
on geo-crowdsourced sound level data in support of community facilities” planning [58],
and the application of machine learning techniques to include honking effects in vehicular
traffic noise prediction [59].

Finally, there are several studies on the statistical analysis of noise which we briefly
refer to. A basic reference is the book by Cohen [60] discussing statistical power analysis
for the behavioral sciences. A model for the perception of environmental sound based on
notice-events is discussed in [61], while, in [62], an analysis of nocturnal noise stratification
is presented. In [63], Licitra et al. review ways of prioritizing process in action plans, while
a statistical analysis of noise levels in urban areas is discussed in [64].
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2.2. Innovative Characteristics of the Dynamap System

The usual approach to real-time noise mapping consists of implementing a network
of fixed sensors that collect noise data continuously, transmitting them to a data center for
the analysis. The latter is performed by using a traffic noise model software (Cadna) which
rescales some pre-computed partial noise maps according to the measured data. Each
monitoring station can, in principle, identify each relevant single noise source such as road,
railway, etc. Then, the new rescaled partial maps are summed up together in order to build
a new noise map of the whole area, which is periodically updated on a web site. Thanks
to this approach, it is possible to achieve a clear and understandable real-time graphic
picture of the noise distribution in the monitored area, thus building up a kind of acoustic
‘consciousness’ in the citizens.

Unfortunately, the application of such real-time noise mapping is limited to small areas
because of the high cost of both: the monitoring stations (implementing expensive features
not needed for the main scope of the network) and noise model software (which should
run continuously to obtain real-time maps). Moreover, the available systems compute
and publicly update only noise maps, but no other environmental parameters such as
vibrations, temperature, humidity, UV, CO, NOx, PM10, etc., with no possibility to drive
any real-time action to control unhealthy situations in the form of variable road message
panels, dynamic speed limits, etc.

In view of this situation, the Dynamap real-time mapping approach [65-67], which
uses purposely developed low cost monitoring stations and does not require a continu-
ously running complex software, can be considered as the missing link between a well
consolidated technology and the need for a cheaper and scalable system to map noise and
other environmental pollution parameters.

Specifically, the Dynamap network is built on a reduced number (few dozens) of
noise stations, distributed appropriately within the monitored urban zone, continuously
recording noise data at 1s resolution [68-70]. The system has a recognition algorithm for
the removal of spurious noise and easy to read updated noise maps on a website endowed
with a geographic information system (GIS). Therefore, the project confirms its compliance
with END requirements for both noise map production and information to citizens.

Moreover, anomalous sound events have to be detected and eliminated from the
recording signals in order to build up a robust system where the measured levels used for
maps scaling are not affected by occasionally or external events that could lead to unre-
liable results. The intrinsic complexity of the environmental sound recognition problem
has been approached with novel techniques and tested successfully in many different
circumstances. Indeed, environmental sounds present a structure and characteristics very
different from those of, say, speech and music to name the two types of sound sources
for which recognition techniques have been mostly developed. For this reason, trying to
recognize environmental sounds by just adapting well-established approaches to music or
speech recognition is a suboptimal way to proceed. On the contrary, it becomes necessary
to devise specific recognition strategies to tackle this kind of problem [71-76].

2.3. The Spatial and Temporal Structure of Road Traffic Noise in Large Urban Zones

Monitoring road traffic noise has become a widespread technique to assess the impact
of noise on public health in large cities, drawing a great deal of attention to researchers in
this field. For example, the temporal and spatial variability of road traffic noise in the city
of Toronto (Canada) has been studied in quite a lot of detail [77]. Real-time measurements
of road traffic noise at about 600 locations across the city have been collected over a period
of six months. It was observed that noise variability was predominantly spatial in nature,
rather than temporal, accounting for 60% of the total observed variations in traffic noise.
Traffic volume, length of road stretch, and industrial area were identified as the three most
important factors explaining such spatial variability of noise. This suggests that there is a
well defined spatial structure of noise associated with different types of roads.
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An efficient noise control approach has been discussed, leading to a classification of
given locations, in particular in sensitive areas, according to the different prevailing traffic
conditions. An expert system, based on machine learning type of algorithms, is developed
aimed at classifying urban locations based on their traffic composition. The procedure was
tested on a full database from the city of Granada (Spain) [78], including urban locations
with road traffic as the dominant noise source, suggesting useful tools for addressing
problems related to traffic noise, and also how to mitigate them.

It has been also shown that categorization is a powerful method for describing urban
sound environments within a district of the city of Marseille (France) [79]. The method
is based on a statistical clustering analysis selecting relevant noise indicators for a better
classification of sound environments. The clustering analysis shows that a limited number
of indicators is sufficient to discriminate between sound environments. Such theoretical
studies, relying on noise monitoring data, have been used to construct urban noise maps
as an attempt to estimate the actual population exposure to environmental noise, and,
eventually, being able to identify the most appropriate mitigation actions. Furthermore,
automatic sound recognition (ASR) techniques have been reviewed [80], showing that,
similarly to speech recognition systems, the robustness of ASR largely depends on the
choice of feature(s) and classifier(s). The review provides an overview of its past and
recent applications such as sound event recognition, audio surveillance, and environmental
sound recognition.

A model-based interpolation method to calculate dynamic noise maps, for medium-
density noise monitoring networks, has been proposed [81]. The model is able to track
varying sound powers over time, and can also account for temporal variations in the
sound propagation conditions. Both equivalent levels and percentile noise levels are
considered, and the basic assumption is that there is a reasonably good model for predicting
sound indicators in the area under study. The model is, however, not very accurate for
instantaneous level prediction, as inaccuracies may occur in the emission of the source but
also in the calculated propagation path. The interpolation tunes the source and propagation
properties on the basis of measurements, and in that way one may improve the predictions
at locations where no measurements are available.

2.3.1. Classification of Roads in Large Urban Zones by Their Road Traffic Noise

It is well known that on a given road stretch traffic noise is strongly dependent on the
type of traffic flow along it. The relationship between noise and flow is rather complex,
and several models have been employed to understand it. In particular, the dependence of
noise on the speed of vehicles is an issue (see, e.g., [19,20]), and the classification of roads
can be more complex than official records based on just standard considerations. Indeed,
a careful study shows that, in the case of the official Italian roads classification, a more
fundamental approach is required [65-67].

Based on these studies, and on those mentioned in the introductory discussion of
Section 2.3, we develop a spatio-temporal method for road traffic noise based on the
fact that vehicular flow forms a rather robust network, in the sense that its structure,
and thereby the local road traffic flow, does not change significantly from day to day for
working days. This allows us to classify the road stretches according to their mean daily
traffic flows, while treating the traffic variations as a kind of perturbation from the mean
values. In particular, we consider as noise sources just the road traffic noise in the form of
both light and heavy vehicles, discarding all non-traffic-related noises (see the procedure
described in Section 3.3.1).

In order to build the method, we rely on measurements of both traffic noise and flow
within a large urban zone, in our case the city of Milan [68]. The measurement locations,
chosen more or less at random, cover the whole city quite uniformly (see Figure 1). Later,
we will describe an optimized procedure to find suitable locations for the measurements,
but a random choice is a good one to start with. The type of noise monitoring stations used
are illustrated in Figure 2.
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Figure 1. The nine urban zones in the city of Milan (numbered within circles). The zone of interest in
this work that is our pilot zone is the 9th Zone (Z9). The red and blue full circles indicate the locations
of traffic noise measurements performed during two different measurement campaigns [68].

Figure 2. The monitoring stations used during the noise measurement campaigns (red circles).
(A) Fixed monitoring stations; (B,C) Semi-permanent monitoring stations; (D,E) Monitoring stations
placed on cart or on mobile laboratory. All monitoring stations must be equipped with at least a
class 2 sound level meter, which is able to produce the main noise indexes and the spectral trends in
third-octave bands with a temporal resolution of 1 s. The monitoring activity is sized on a minimum
measurement time of 24 h, starting at 6:00 a.m. and possibly extended on several days [68].

The measured signals at 1 s resolution [68] were integrated to obtain the equivalent lev-

els L.(gg) (t,s;), where T is the temporal interval of interest, t = nT (n > 1) is the time within
the day at resolution 7, and s; (with i = 1, Ny,) is the ith measurement site. In our case,
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we have a total of N;;; = 93 measurement sites. Regarding the time intervals, we consider
T = (5, 15, 60) min for most of our analysis.

Since different sites s; have different traffic noise environments, yielding different
absolute ng) (t,s;) values, it is convenient to consider the deviations, § (1) (t,s;), of the latter

with respect to some reference value, ng(’) (tref, Si), typical of the site location s;, given by

8 (t,s;) = Lgl)(t,si) - ng(])(trefzsi)' 1

In this way, we can study traffic noise behavior at different sites by studying the
associated deviations along the whole day, which we denote as a normalized noise profile.
In our preliminary studies, we take the reference time interval to be Tp = 1h. As a reference
level, we considered for each site s; the daily equivalent level calculated over the period
(6:00-10:00 p.m.) [68].

Once the noise profiles have been obtained, a visual analysis shows that strong
similarities among profiles occur, suggesting an underlying organization into groups of
sites. This organization is different from the standard legislative categorization of roads,
as analyzed in some studies [13,14]. For this reason, an unsupervised clustering algorithm
was applied to disclose the internal structure of the measurement sites in terms of their
normalized noise profiles. The clustering analysis is described in detail in [65,68], where a
description in terms of only two clusters is found to be satisfactory. The clusters are labeled
with the index k = 1,2, and the mean hourly cluster profiles denoted as & (/). The results
are shown in Figure 3.

e
m
L)
Mt
i
=
S
~
o %
W Cluster1
w | M Cluster2

é . 8 1.0 . 15 16 19 2.2 1 3 ‘ 5
Time [hour]
Figure 3. Mean normalized hourly cluster profiles, (57k(h) [dB], vs. day hour £, for the two clusters of
index k = 1,2, obtained from the 93 preliminary measurements over the whole city of Milan (see

e.g., [68]). The standard deviations of the profiles are indicated by the colored bands. (With permission
from Elsevier).

Although both clusters display similar mean profiles, they are statistically differ-
ent [65,68]. Roughly speaking, they differ during the night, as manifested by the larger
drop in &1 (h) with respect to 5,(h) in Figure 3. Qualitatively, this is due to the fact that
traffic flow on road stretches belonging to cluster 1 diminishes much more than on road
stretches in cluster 2 during night hours. In other words, cluster 1 roads are lower traffic
stretches whose flows decrease more prominently during night periods. On the contrary,
road stretches in cluster 2 possess a relatively large traffic flow even during the night.
The former represent secondary streets in predominantly residential areas, while the latter
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main city arteries. In order to characterize the traffic flow of roads, we need to address the
issue of vehicles flow within the urban zone. This will require us to define a non-acoustic
parameter associated with each road stretch.

2.3.2. Classification of Roads in Large Urban Zones by Their Traffic Flow

Mean hourly values of traffic flow in a given road stretch within the city of Milan
are available thanks to the data provided by the EMTA, which is in charge of the traffic
mobility management of the city (see [11,65] for further details). The simulation model
provides the traffic flow rate, or mean number of vehicles per hour, F(!(t,s), at hour ¢
of the day and road stretch location s. We have found that it most convenient to take the
mean daily total traffic flow, Tr, as our candidate to classify traffic flow on road stretches.
Specifically, we define our non-acoustic parameter, denoted simply as x, according to

x = log,o(Tr). (2)

It is interesting to observe that one can also apply a clustering method, as we did
for the noise in Section 2.3.1, to the traffic flow using the mean daily hourly flow rates
produced by the Cadna-EMTA model. We will not discuss this possibility here, but, for
details, we refer to [65]. In addition, other issues related to this model can be found in the
literature [69,70,82].

The knowledge of the non-acoustic parameter for each road stretch within the urban
zone allows us, in particular, to associate a value of x with each road within the two clusters,
denoted as C; and Cy, found from the analysis of traffic noise in Section 2.3.1. Therefore,
we are in the position of obtaining the distribution functions, P; (x) and P;(x), within each
cluster. The results are shown in Figure 4.

144 . e ;
| Cluster 1
] Cluster 2
1.2 o —P{n)
> b=ttt | |
= 104
c
a |
> s -
e
8 06
]
o0 ]
2
a 044
0.2+
0.0

0

Figure 4. Distribution functions P;(x) and P,(x) vs. x, for Clusters 1 and 2 [83-86]. Here,
x =logy(Tr) is the non-acoustic index, with Tr representing the mean daily traffic flow of the
given road stretch. The clusters C; and C; correspond to those obtained from the analysis of traffic
noise displayed in Figure 3.

Since the distribution functions are strongly overlapping, it is more appropriate to
consider the probability that a given x value belongs to either C; or Cy, denoted as 1 and
B2, respectively, i.e.,

P P
b= nmanm PO hm ke ©)

The idea behind this representation is that one can ‘interpolate” between the normal-
ized mean cluster profiles, J(t), t = nt, in order to estimate the profile, (¢, x), on a road
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stretch at site s characterized by a non-acoustic parameter x = x(s), which is given by
the relation,

8(t,x) = B1(x)1 (1) + Ba(x) (1), )
2.3.3. Groups of Roads Defined by Their Daily Total Traffic Flow Tt

For building the Dynamap network upon a finite number of dynamical maps, and
in particular within the pilot zone 9, it is convenient to define groups of road stretches,
denoted as g;, according to their x values, Equation (2). We consider six groups (i = 1, 6)
for Z9, which are defined in such a way to contain approximately the same number of
road stretches in each group. They are reported in Table 1 [83]. Thus, Dynamap [83,86]
generalizes the standard categorization of roads discussed in Section 2.3.

Table 1. Definition of the six groups of roads, g; (i = 1,6), in terms of the non-acoustic param-
eter, x = log,,(Tr). Each group has x values within the range indicated in the second row (cf.
Figure 4). The corresponding mean values: B1(g;) = Pi(%[g;]) and Ba(gi) = P2(%[gi]) = 1 — B1(g:)
are indicated in the 3rd and 4th rows, respectively.

Group 81 4 83 84 85 86
[x] 0.0-3.0 3.0-35 3.5-3.9 3.9-42 42-4.5 45-52
B1 0.99 0.81 0.63 0.50 0.41 0.16
B2 0.01 0.19 0.37 0.50 0.59 0.84

Using the values of traffic noise calculated from the modeled traffic flows (see [86] for
details), we display the equivalent noise levels at each road stretch s in zone 9 of the city of
Milan, L&}f‘) (tref, s), Obtained at the ‘rush hour’ f,f € (8:00-9:00) a.m., for each one of the
six groups g; (i = 1,6), denoted as the basic traffic noise maps (see Figure 5).
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Figure 5. Calculated noise levels within Z9, Lg}]h) (tret,5), for all road stretches s belonging to each group g; (i = 1,6),
yielding the basic traffic noise maps (BTNM) [86]. Here, to¢ € (8:00-9:00) a.m. The colors indicate the Leq values on a scale
from 40 db (blue) to 75 dB (red). The length scale of 2 km is indicated on the map.
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3. Dynamap Approach

The ultimate goal for deploying a network of noise sensors inside an urban zone is
the prediction of traffic noise at time f at any road stretch s within the zone. As an attempt
to fulfill this goal, we discuss the Dynamap approach, which is illustrated for the pilot
zone of the city of Milan, Z9. Therefore, we will assume to have sorted the whole road
stretches within Z9 into six groups, as discussed in Section 2.3.3. Each group has associated
a dynamical map which can be updated in real time, as illustrated in what follows.

The absolute level Lgl) (t,s) at time t = nt, for the time interval 7, at an arbitrary
location s within Z9, can formally be written using the relation [86]

6 T
L8 (1,5) = 10- logy, ) 1013 (<6110, (5)
i=1

1

where Le(,a) (t,5(gi)) represents the contribution of the traffic noise sources on site s from
all the road arches within group g; (not to be confused with the BTNM shown in Figure 5,
although we may also refer to these contributions as BINMs). For our purposes, it is
convenient to specify the above relation in the particular case t = t,of and T = 1 h, where

tref € (8:00-9:00) a.m., yielding the reference acoustic equivalent levels,

(1h) 6 L(lh)(t 5(31))/10
Leq (tref/ S) =10- loglo Z 10%eq refS\&i , (6)
i=1
for each site s in Z9, in terms of the reference equivalent noise levels contributions from the

groups g; at position s, L,S}f) (tref,5(gi))- These quantities can be used back in Equation (5),
which now takes the form,

() S 0 (155 L (trps(5)]/10
Leg (t,s) =10 -logyo Y 101 (4381 Fheq  (hrers(gi))I/10, @)
i=1
where .
80 (t,5(g) = L& (t,5(81)) — LG (trer 5(81))- ®)

Thus, Equation (8) provides the dynamic counterpart to the stationary map repre-
sented by Equation (6).

3.1. The Dynamap Traffic Noise Sensors Network

The main issue of Dynamap is to accurately estimate the variations 4 (T (t,s( Qi)
(Equation (8)) in real time, by relying on the assumption that they do not depend, in a first
approximation, on the location s but only on the group g;, i.e., 6™ (t,5(g;)) = (T (t, g;).
This is based on the empirical fact that the variations (™) (t,5(g;)) do not change appreciably
from site to site inside a given group. This means that the group variations 6(¥) (, g;) can
be estimated from a mean value taken over a ‘reduced’ number of sites s;(g;) within g;, i.e.,

1 N(gi)
) = gy L 0 i) ©)
i) j=1

where N(g;) is the number of road stretches in group g; considered. In practical circum-
stances, N(g;) can be taken to be much smaller than the total number of sites in g;, allowing
us to employ a rather small number of noise sensors to directly measure the noise level
variations in real time, where now the sites s;(g;) represent the locations of the Dynamap
noise sensors. Finally, the Dynamap prediction for the local equivalent noise level becomes

6
Lga)(t/5> =10-log;y )~ 10[5“)(t,gi)%éllh)(tref,S(g[))]/lo_ (10)
i=1
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For simplicity, we take the same number of sensors within each group, i.e., N(g;) = Ng,
so that the whole Dynamap network is built upon Np = 6N, noise sensors. In our case,
we use Ny = 4 so that our Dynamap network has just Np = 24 fixed stations, which
amounts to about 1.2% of the total number of road stretches in Z9 [69,70,82,83]. The problem
that arises is how to find a suitable set of locations so that the network can work more
efficiently. This question will be considered later below.

3.2. The Group Traffic Noise Variations: 5(7)(t, ;)
3.2.1. Standard Method

This case corresponds to the straightforward use of Equation (9), that is,

1 M
6 (t, i) = N Y6 (t,5i(5:)), (11)
j=1

where Ng = 4 in our case. This simple approach has proved useful to start the Dynamap
operations, and it has been found to be accurate in most of the cases studied [69,70,82-86].

3.2.2. The Two Cluster Method: The g-Model

A little more involved method for estimating 6(7) (¢, g;) consists of the use of all Np
noise stations in the network, instead of only those belonging to group g; [83,86]. Following
the approach discussed in Section 2.3.1, one can classify the measured traffic noise profiles
of the noise stations into two clusters, C; and C,. For both clusters, k = (1, 2), one obtains
the mean variations 5(7) (t, Cy), defined as

5O, ¢c) = Z(s (t,5i(Ch)), (12)

where Ny is the number of stations belonging to cluster Cy. Based on Equation (12), one can
calculate the mean variations, 6(7)(t, g;), associated with group g;, as follows:

8 (t,gi) = B1(8:)3 T (t,C1) + Ba(g1)8 T (1, Ca). (13)

The values of Bi(g;) can be obtained from Table 1. The actual implementation of the
noise variations, 6(Y) (¢, s ;(Ck)), measured by the sensors s;(Cy) in cluster k, is specified in
the next Section 3.3.

3.3. The Dynamap Network for Z9: Implementation, Location, and Operation

We specify next how to implement the noise sensors data acquisition (Section 3.3.1),
location (Section 3.3.2), and operation (Section 3.3.3).

3.3.1. The Sensors Implementation and ANED

The basic equation for predicting the traffic noise level at a site s is given by Equation (10),
where the group noise variations, 6(7)(t, g;), are a function of the single sensors acquired
data, 5(7)(t, sj(8i)), as discussed in Section 3.2. In the realm of Dynamap, we define the
latter as follows:

5 (t,51(81)) = L& (£,51(8) )meas — LG (tret, 51(8))cales (14)

where L(SQ (t,5/(81) )meas are the measured acoustic levels by the sensor at the location s;(g;),

and LSP (tref, S(8i))calc the calculated reference acoustic levels obtained at the rush hour
tref € (8:00-9:00) a.m. (see Figure 5 for details). These variations, which are of the same form
as in Equation (8), can be used then either in Equation (11), or in Equations (12) and (13),
to obtain the group variations 6(7) (¢, g;).
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Due to the complexity of the urban noise scenario, both in space and time, an au-
tomated update of the noise maps is required. This is essentially the whole idea of the
Dynamap system. One of the issues of the automated system is the content of the detected
noise level that can include, in addition to the main noise source, i.e., the road traffic,
the contribution of additional noise sources present in the mapping area. If these additional
sources of noise are not filtered out, the resulting maps would not constitute a faithful
reflection of the acoustic impact of road infrastructures. For this reason, it is necessary to
endow the Dynamap system with the ability to discern between road traffic noise and other
types of acoustic events (e.g., aircrafts, industries, works on the road, people talking, etc.),
to exclude the latter from the noise level computation. To this end, an anomalous noise
event detection (ANED) algorithm was developed [71,76,84,85]. This algorithm operates
on the audio stream captured by the acoustic sensors and identifies the presence of acoustic
events unrelated to road traffic, activating an alert signal to exclude the corresponding
audio passages from the computation of noise levels.

The design of the ANED algorithm follows a “detection-by-classification” approach,
consisting of the binary classification of sequential audio segments as either “road traffic
noise” or “anomalous noise event”. The algorithm is able to discern three main signal
categories: road traffic noise, background city noise, and anomalous events. This latter
class is further divided into 18 subtypes of events, such as people talking, music in car or
in the street, or noise caused by tramways or trains, etc. The ANED algorithm is trained,
validated, and tested using a data set containing samples of both road traffic and anomalous
noise events taken from real environmental contexts [71-76,85].

3.3.2. The Sensor Locations in Z9

As mentioned in Section 3.1, we have at our disposal 24 sensor stations which need
to be distributed within Z9 in an optimized fashion. The natural choice is to get an equal
number of sensors per group that is Ng = 4, and somehow well separated from each other.
To this end, we have first plotted all road groups, g; (shown separately in Figure 5), together
in Figure 6, so that one can get a full picture on the spatial distribution of equivalent levels,
L%m (tref, 5), in the pilot zone Z9 [86-90]. The selection of sensor locations is shown in
Figure 6 by the full black triangles, and the corresponding addresses are reported in Table 2,
while the yellow circles correspond to the sites where additional measurements have been
performed for validation purposes (see Section 4.1).

Table 2. Location of the 24 Dynamap noise monitoring stations (cf. Figure 6). For each sensor, the code
number, group index g; (within parenthesis), and name of the street are reported [91].

Code (g)) Address Code (g;) Address
135 (1) Via Lambruschini 121 4) Via Piero e Alberto Pirelli
137 (1) Via Maestri del Lavoro 127 (4) Via Quadrio
139 (1) Via Bruni 129 (4) Via Crespi
144 (1) Via D’Intignano 138 (4) Via Novaro
108 (2) Via Piero e Alberto Pirell i 106 (5) Via Litta Modignani
124 (2) Via Grivola 123 (5) Via Galvani
125 (2) Via Abba 136 (5) Via Comasina
145 (2) Via Fratelli Grimm 151 (5) Via Veglia
115 (3) Via Fara 109 (6) Viale Stelvio
116 (3) Via Moncalieri 114 (6) Via Melchiorre Gioia
120 (3) Via Baldinucci 117 (6) Viale Fermi
133 (3) Via Maffucci 140 (6) Viale Jenner
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Figure 6. Calculated static map (basic noise map) for all roads belonging to Milan urban Zone 9 [86]
(see Figure 5). The colors represent the Leg values, according to the scale indicated in the inset,
obtained during the ‘rush hour” hour (8:00-9:00) a.m. The latter is the hour with the highest traffic
flow in the day, where the basic noise map is most accurate. The black triangles give the position of
the 24 Dynamap noise sensors (numbered in the range 106-151, see Tables 2 and 3), and the yellow
circles the locations of the test measurements for validation (numbered 1-21, see Table 4).

Table 3. Monitoring sensors information: Code, group membership, non-acoustic parameter
x = log(Tr), and cluster membership. The cluster compositions are: (Cluster 1) 12 sensors; (Cluster 2)
12 sensors [91]. Note that sensors in groups: g2, g3, g4, are shared among the two clusters.

Sensor Code Groupg; x  Cluster Sensor Code Groupg; x  Cluster

135 1 2.89 1 108 2 3.06 2
137 1 1.90 1 120 3 3.74 2
139 1 1.13 1 121 4 4.06 2
144 1 294 1 129 4 3.94 2
124 2 3.50 1 106 5 3.90 2
125 2 2.69 1 123 5 4.30 2
145 2 3.42 1 136 5 421 2
115 3 3.58 1 151 5 4.40 2
116 3 3.60 1 109 6 475 2
133 3 3.75 1 114 6 4.58 2
127 4 3.90 1 117 6 4.85 2
138 4 4.19 1 140 6 470 2

3.3.3. The Network Operation: Standard Method and the g-Model

The Dynamap network is expected to work continuously [12], yielding integrated
equivalent noise levels at intervals T = (5, 15, 60) min. Extensive hourly data have been
downloaded and the 24 time series analyzed according to the clustering procedure dis-
cussed in Section 2.3.1. The corresponding mean normalized hourly cluster profiles, & (h),
k = 1,2 (see Equation (12)), are displayed in Figure 7.
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Table 4. Location of the measurement sites (cf. Figure 6). The group index g; is indicated in
parentheses [91].

Site Address Site Address Site Address
1(5) ViaSuzzani 8(3) Via Chiese 15(4)  Via Gregorovius
2(2) ViaBernina 9(5) ViaMoro 16 (4)  Via Catone
3((3) ViaCiaia 10 (1)  ViaMarchionni 17 (6)  Vle Sarca
4((3) Via Cosenz 11 (1)  Via Gabbro 18 (1)  Via Boschi Di Stefano
5(5) ViaMajorana 12(2) Via Pastro 19 (6)  Via Murat
6 (3) Via Maffucci 13 (4)  Via Bauer 20 (1)  Via Sarzana
7(2) Vialppocrate 14(2) Via Polvani 21(3) ViaCosenz
ln it

6y (h) [dB]
9

=

| B Cluster 1

0 B Cluster 2
6I2I\4\-\6I\8\I I1\1I I1\4\ \1I7I \2I0I I2\3

Time [hour]

Figure 7. Mean normalized hourly cluster profiles, Fk(h) [dB], vs. day hour £, from the 24 Dynamap
sensors (see Equation (12)). Here, k = 1, 2 indicates the cluster index. The corresponding =+ standard
deviations are indicated by the colored bands [91]. Notice the shift of the time axis with respect to
Figure 3.

The cluster compositions are reported in Table 3, together with the sensor codes,
groups g;, and values of the local non-acoustic parameter x. As one can see from these
results, Cluster 1 is built predominantly upon groups 1, 2, and 3, while Cluster 2 on groups
5 and 6. Stations located within group 4 are present with equal numbers in both clusters.
This is a consequence of the partial overlap of the two main clusters, as we already found
in Figure 4. The strong similarity of both results is noteworthy, Figures 3 and 7, suggesting
that the 24 sensors yield an accurate representation of the two mean noise cluster behaviors.
Once these mean variations are known, one can apply Equation (13) in order to obtain the
mean group noise variations, & (M (t,g;). In principle, one can run the network based on
the standard approach using Equation (11), which is also useful in the preliminary stages
of operation.

4. Results

In Section 4.1, we discuss additional measurements for the assessment of the group
components. The validation of Dynamap predictions is discussed in Section 4.2, followed
by the issue of cross-correlations between sensors noise data in Section 4.3. The latter is
an attempt to provide a guideline for optimizing the choice of sensor locations within the
urban zone. Finally, in Section 4.4, results of correlations of Dynamap predictions with
measurements are presented.

4.1. Additional Measurements Sites: Assessment of the Group Components

Measurements of both traffic noise and vehicle flow have been performed in randomly
chosen locations within Z9 in order to validate the Dynamap predictions. The analysis
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is also aimed at determining absolute values of the errors involved in the predictions,

and from the detail comparison with the measurements being able to evaluate the limita-

tions of the method. The locations and the corresponding groups are reported in Table 4.
In Table 5, we report calculations of the contributions from different groups,

Lé}]h) (tref,5(gi)), to the local equivalent level, Lglh)(tref,s), at selected locations s corre-
sponding to some of the measurements sites listed in Table 4. These results have been
obtained by setting 6(7)(t,¢;) = 0 in Equation (10), since we are dealing with the static
maps (BTNMs) at the reference time f = .

Table 5. The calculated total reference levels (BTNM), Lé}lh) (tref, s), at 13 arbitrarily chosen sites s of

pilot Zone 9 (cf. Table 4). The level contributions from each group, Lég’) (tret,5(gi)), are reported in
columns (4th-9th) [86]. All levels are expressed in dB. The underscored values correspond to the
largest contribution to each reference level. Here, the number 0.0 stands for vanishingly small values.

site g L&Y s(g)  s(g)  s(gs)  s(g)  s(gs)  s(ge)
1 5 64.0 21.7 449 54.3 55.0 62.7 37.7
2 2 65.8 12.0 64.6 15.0 15.0 15.0 59.6
3 3 63.6 0.0 56.1 62.7 0.0 0.0 0.0
4 3 60.8 17.3 254 59.9 49.2 51.5 0.0
5 5 68.0 29.7 25.9 323 29.4 68.0 33.8
6 3 64.3 38.8 454 64.2 34.2 26.9 28.0
7 2 59.2 24.1 58.1 514 17.8 42.2 45.6
8 3 55.4 21.8 22.0 54.1 49.6 30.4 30.1
9 5 62.6 8.5 32.0 347 43.0 62.5 0.0
10 1 45.2 38.1 43.6 26.6 25.6 33.0 28.3
11 1 55.5 55.1 20.8 32.0 37.8 43.0 0.0
12 2 62.1 42.3 61.8 24.1 20.4 48.3 41.0
13 4 68.2 41.2 53.0 38.2 68.0 41.2 38.5

As one can see from Table 5, the major contribution to the local site level comes from
the group g; which the site belongs to. This can be clearly seen by comparing the values of

Lé}lh) (tref, 5(gi)) for different groups. For example, for Site 1, which belongs to group gs, the

most significant contribution comes from Lé}lh) (tref, 5(g5)). However, each local site level is
subject to the influence of nearby streets through other groups, as it is apparent from Table 5.

In particular, for Site 10, the maximum contribution is due to Lé}{l) (tref,5(g2)), although the
site belongs to group g1. This is the result of the complex noise environment around Site
10, and it may be expected to have further consequences regarding the model predictions.

4.2. Validation of Dynamap: Sites 10 and 12

For the validation of Dynamap predictions, we have studied all the 21 measurement
sites reported in Table 4. As an illustration, we discuss here only the cases of Sites 10 and 12.
The former belongs to group g1 and the latter to gp. Before discussing traffic noise results,
we present a comparison between traffic flow measurements, at these two locations, and
the predictions from the traffic flow model (see [86] for more details on the EMTA traffic
flow model). The reason for testing the traffic flow model is because it plays a prominent
role in the Dynamap approach through the BTNMs, as one can see from Equation (10).
The two chosen sites (10 and 12) provide examples of the difficulties that one finds in this
approach (see Figure 8), and also suggest ways of improving Dynamap predictions.

In Figure 8, we see the two possible behaviors typically found from our validation
analysis. In Site 10 (Figure 8a), one can see that the traffic model drastically underestimates
the actual traffic flow. This is because Site 10 belongs to the lowest flow group in Z9, where
the model is less accurate. The latter is indeed ‘tuned’ to work better for high traffic flow
road stretches. The model predictions for Site 12 (Figure 8b) are, in contrast, in very good
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agreement with the measurements. We will see below the consequences these outcomes
have on the local traffic noise predictions.

2.5+ | —— Site 10 Measurement 3.0 | —— Site 12 Measurement
. — Site 10 AMAT Model Site 12 AMAT Model

2.0
1.5

1.0

X\/\\f \/ﬁ

Log(F)
Log(F)

Figure 8. Comparison of traffic flow measurements (black lines) with the model predictions (red
lines) for: (a) Site 10 (g1), (b) Site 12 (g2) [86]. (With permission from Elsevier).

In Figure 9a (upper and lower parts), we compare the Dynamap predictions,

Equation (10), for Sites 10 and 12 with the actual measurements. We find in both cases

that the absolute noise levels, Lglh) (t,s), as a function of hour of day, depart from the

measured ones essentially by a constant amount. For Site 10, the prediction underesti-
mates the experimental values, while, for Site 12, Dynamap overestimates it. For both
sites, the discrepancies are higher during the day time than during night hours. Notice
also the wild variation in the statistical errors (shown as the color bands in Figure 9), as a
function of hour of the day. In particular, during the day time (7:00-9:00 p.m.), the statistical
error is rather small, i.e., ~1dB, after averaging over all sites in the group, whereas in the
evening-night time (9:00 p.m.—7:00 a.m.), the error bands are much larger, i.e., ~(2—4) dB on
average, due to the high variability of traffic flow and associated noise during night hours.

These considerations led us to study the presence of systematic errors inherent in the
Dynamap approach. For instance, it is clear from our basic definition of the variations in

Equation (14), 0 (7) (t,s), that a small error in the reference level, L((e(llh) (tref, ), may result in
a shift of the total equivalent level prediction by quite an amount. This discrepancy can
have two origins: one may be a poor estimation of the traffic flow at site s at time ¢,¢ by the
traffic model, and a second, an inaccurate determination of the noise contributions from
the different groups at site s.

In order to elucidate these issues further, one can calculate the deviations of the pre-

dictions from the measured ones, for both the equivalent hourly noise levels, L&lh) (trets S),

and the logarithm of hourly traffic flows, log F (1) (tref, S), at time t¢ at different sites s.
These are defined, respectively, as,

1h 1h
L((eq )(treffs)calc - Le(zq )(trefl $ ) meas
‘SLeq(tref/ S) = (1h) ’ (15)
Leq (trefr s)meas

log F(lh) (trefr S)calc - log F(lh) (tref/ S)meas
IOg F(lh) (tref/ S)meas .

SFlw(trefIS) (16)

The above values for eLeq’FIW(tref, s) can be averaged over all sites s belonging to the
same group g;, and, in addition, an average can be performed over different hours of the
day. In the latter case, we will denote the resulting mean values as (€Leq)y, Where the
subscript X indicates the type of average employed. A preliminary analysis of correlations
between values of 1 ¢q(t,5) and epyy, (£, 5) have been performed [86], from which empirical

‘corrections’, denoted with the subscript C, have been obtained in order to improve the

performance of Dynamap. The results are shown in Figure 9b, for both Sites 10 and 12,
suggesting that some improvement can be obtained in this way.
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Figure 9. Comparison of equivalent noise levels Leah) (t,s) vs hour t of the day for: (a) Traffic noise
measurements and ‘non-corrected” Dynamap predictions for Site 10 (upper panel), and Site 12
(lower panel). The bands correspond to the statistical errors. (b) Traffic noise measurements and
‘corrected” Dynamap predictions for the same sites. The bands correspond to the total errors [86].
(With permission from Elsevier).

Despite the presence of significant deviations from the measured values still observed
in Figure 9, the analysis extended to other available sites, belonging to groups (g1 — g6),
yields a more optimistic picture. This can be appreciated from the results reported in Table 6.
Quite illustrative are the mean group values reported in Table 7, yielding mean deviations
below 3 dB in most cases. Again, the largest discrepancies occur for g1, as expected.

4.3. Correlations between Sensor Locations: How to Optimize the Network

Thus far, we have discussed how the Dynamap network can be constructed, presenting
detailed discussions of its design, and how its predictions can be assessed by reporting
a number of tests for its validation. The general question arises, a posteriori, of how the
design of the network can be optimized further. The way to do it is closely related to the
concept of correlations among the noise station measurements. The idea is rather simple:
one wishes to reduce to a minimum the amount of redundant information registered by
the different stations. In other words, their locations should be identified such that they
can collect as much distinct information as possible about the traffic noise within the
urban zone.

To this end, we study the sensor variations, 5(7)(t, sj(gi)) (Equation (14)), at different
time intervals T = (5,10, 15,30, 60) min, over a period of five consecutive working days,
thus creating 24 contemporary times series for each value of 7. To determine the degree of
correlation between, say, sensors s i and Sjr, we calculate the Pearson’s correlation coefficient
(see, e.g., [60]), given by

N cov(j,j')
e(j.j') = el (17)

where cov(j, ') is the covariance between times series j and j’, defined in the standard
fashion as the mean value of the product of the deviations from their mean values, and 0; ;
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are the corresponding standard deviations of the time series. In this way, we can study both
intragroup correlations (same sensor group indexes g;) or intergroup ones (different g;’s).

Table 6. Mean local deviations (in dB) of Dynamap predictions from measurements at different sites.
The codes of the measurement sites (first column) are indicated by single numbers (see Table 4).
The group index g; is given for each site (second column). The remaining three columns report
the mean deviations: (€[eq), Obtained without systematic error corrections, (€[ eq) obtained after
systematic error corrections have been applied, and (ereq ), corresponding to the median average of
the corrected predictions [91].

Site i (€Leq)n (€Leq) ¢ (€Leq)
10 1 5.0 5.2 5.2
11 1 4.5 4.0 4.1
18 1 6.4 6.1 6.1
20 1 5.3 55 5.6

7 2 1.9 4.0 2.9
12 2 7.8 2.5 3.8
14 2 2.8 3.1 1.6
3 3 1.8 2.3 2.5
4 3 2.1 1.5 2.0
6 3 4.2 4.5 5.9
21 3 1.8 1.5 0.7
13 4 4.1 2.0 0.8
15 4 3.3 2.6 1.3
16 4 84 2.6 4.2
1 5 4.5 3.0 4.4
5 5 1.9 24 1.2
9 5 1.4 1.9 1.0
19 6 34 1.3 1.3

Table 7. Mean group deviations (in dB) of Dynamap predictions from measurements, for groups
(g1 — g6)- Here, <€Leq>N are the deviations obtained without systematic error corrections, <€Leq> c
those obtained with systematic error corrections, and <€Leq>M the median of the corrected group
predictions [91].

8i <€Leq>N <€Leq>c <€Leq>M
1 53 5.1 5.2

2 4.2 3.2 2.8

3 2.5 2.5 2.8

4 53 2.4 2.1

5 2.6 24 2.2

6 34 1.3 1.3

To study the noise correlations among the 24 sensors using Equation (17), we employ
two normalization procedures:

e (P1) From each time series, we remove the hourly median value. In this way, we obtain
what we called a de-trended time series.

e (P2) From each time series, we remove the mean level, <L£}lh) (t,9) >, calculated between
6:00-10:00 p.m. This normalization procedure retains both high and low frequency
fluctuations.

An illustrative example of each procedure is shown in Figure 10, for the noise station
5136 at time interval T = 5 min. To be noted is that, for P1, the resulting profile is quite flat
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over the day, while, for P2, it clearly retains the typical shape observed in the original noise
profiles (see, e.g., Figure 7).
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Figure 10. Normalized Lé}f’) (t,s) profiles for the monitoring station s136 on a typical day, for the
integration time T = 5 min [92,93]: (a) P1 procedure; (b) P2 procedure.

The median correlation coefficients obtained for P1 and P2 are shown in Figure 11,
as a function of time interval 7. The reported ‘error’ bands correspond to the median
absolute deviation, MAD =| x; — X |, where X = median(X) and X = (xq,...,x,) is a
generic time series.
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Figure 11. Median correlation coefficients among all stations (upper panels) and within groups
(lower panels), for the two normalization procedures: P1 and P2. Upper panels: The reported bands
correspond to the median absolute deviation (MAD). Lower panel: The dashed lines are the median
correlations among all stations (taken from the corresponding upper panels) and are included for
comparison [92,93].

As one can see from Figure 11 in the case of P1, the median correlation coefficients
over all stations s; are quite small (~0.1-0.2). This is because procedure P1 removes all
long period fluctuations, thus only high frequency fluctuations remain (see [92,93], where
a power-spectrum analysis in the frequency domain has been performed). These results
suggest that, on average, short time (high frequency) correlations among stations are low,
as we expect from a ‘well-designed’ network. The situation changes a bit if one looks in
more detail to intra-group correlations separately. They can be seen in the lower panel of
Figure 11 (P1). Now, all groups behave similarly as the global mean, except for group gs.
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This is an indication that one or more stations inside g5 need to be moved to other more
suitable locations. Such analysis remains to be performed.

The situation for procedure P2 is quite different (see Figure 11 (P2)), providing useful
information on Dynamap performance. Since P2 retains long-time fluctuations, we can
actually observe that sensors remain quite correlated on long-times, a feature that is at
the basis of the good performance of Dynamap. In particular, the upper panel shows that
the median correlation coefficient grows to 0.8 for T = 60 min, suggesting that all noise
sensors respond similarly to fluctuations around the mean hourly noise profiles. This result
supports a posteriori our approach based on the two-cluster mean profiles discussed in
previous sections. The lower panel of Figure 11 (P2) confirms that all groups behave the
same at all time intervals 7.

4.4. Correlations of Dynamap Predictions with Measurements

In the following, we discuss the tests performed to evaluate Dynamap predictions
based on Equation (10). The locations of the measurement sites are reported in Table 4,
and have been shown by the filled yellow circles within Z9 in Figure 6. The measurement
sites have been selected in order to test the system in complex scenarios where the noise
from roads belonging to different groups may contribute to the local noise level. We have
used the updating times: T = (5,10, 15, 30,60) min, and all time series have been normal-
ized according to procedure P2. The validation of Dynamap predictions are based on the
calculation of the associated correlation coefficients, Equation (17), between predictions
and measurements. The calculations have been performed between

e Case 1: A single measurement at site s; with the corresponding Dynamap prediction.

e Case 2: The mean group values, <L£a) (t,5(8i))), for the measurements and the mean
Dynamap predictions, for all groups g;.

The results are shown in Figure 12.
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Figure 12. Correlation coefficients between Dynamap predictions and some field measurements vs. update time 7 [min],

obtained within the six groups (g1 — g¢), according to normalization procedure P2 (see Figure 10). The black lines illustrate

the cross-correlations between the mean group equivalent noise level measurements and respective mean Dynamap

predictions, <ng> (t,5(gi))) [93]. The location of the site measurements, (s1-s21) is displayed in Figure 6 (see also Table 4).
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As one can see, the correlation coefficients systematically increase with the integration
time T, but, at low times, such as for T = 5 min and T = 10 min in Case 1, the correlations
are quite low. However, as it is apparent from Figure 12, Dynamap predictions present good
correlation results with measurements, especially at higher integration times (7 > 10 min).
This result can be expected since high updating times T reduce high frequency fluctua-
tions letting low frequency periodicities emerge. Furthermore, correlation performance
is enhanced at all integration times when, within each group, one computes the corre-
lation coefficient between mean Dynamap predictions and corresponding mean values
of measurements. This is consistent with the fact that Dynamap noise description has a
statistically-based approach and, therefore, its performance is enhanced when averaging
over a sufficient number of observations.

The results shown in Figure 12 are quite illustrative as they indicate a typical range
of variability of Dynamap predictions from the real measurements. It can be used as a
starting point also for the search of better site locations of the fixed noise stations within
79. An attempt can also be made to connect these correlation results with the mean noise
level deviations reported in Tables 6 and 7. This remains to be investigated.

5. Conclusions

Dynamap is the first automatic monitoring system, based on customized low cost sen-
sors and a software tool implemented on a general purpose GIS platform, performing the
update of noise maps in real time (dynamic noise maps) on a large urban area. The update
of noise maps is accomplished by scaling pre-calculated basic noise maps. The latter are
selected and scaled using the information retrieved from low cost sensors continuously
measuring the sound pressure levels of the primary noise sources present in the mapping
area. A complete basic noise map covering the entire survey area is calculated and saved
for each source. Scaled basic noise maps of each primary source are then energetically
summed up to provide the overall noise map of the area. In this way, the need for several
and expensive software license is extremely reduced and limited only to the preparation of
the basic noise maps.

The proposed method of noise mapping is essentially a statistically-based approach,
whose predictive power over the entire road network relies on the assignment of a non-
acoustic parameter to each road stretch. This is an essential requirement that must be
complied to generalize Dynamap project to other cities. The non-acoustic parameter must
show a high degree of correlation with the road traffic noise level. In the case of the
District 9 (29) of the city of Milan, the correlation was about (60-65)%. In terms of accuracy,
the predictive capability of the Dynamap scheme is mainly associated with the related
accuracy of the chosen non-acoustic parameter. For this reason, a poor accuracy in the
latter is directly reflected on the noise prediction error. For example, in the case in which
the non-acoustic parameter is provided by a road traffic flow model (here taken as the total
daily traffic flow), eventual errors in the traffic noise predictions can be traced back to a
discrepancy between the measured and the model predicted hourly traffic flows. As a
by-product of Dynamap, the use of the non-acoustic parameter generalizes the standard
concept of road categorization, which has been used so far in most applications.

The overall mean prediction error of Dynamap for Z9 is estimated to be about 3 dB,
which can be seen as a very promising result for most practical applications. Specifically,
Dynamap predicts real-time traffic noise at any site within the pilot zone, by relying
on the noise measurements of 24 monitoring stations properly located within the zone.
For practical purposes, the whole set of roads has been divided into six groups, within
which the constituting roads display similar traffic noise dynamics. Therefore, the process
generates six dynamic acoustic maps. The predicted noise level at a generic location is given
by a combination of the six dynamically updated maps. The error associated with such
prediction can be assessed by performing local road traffic noise and flow measurements.

In a complex system such as an urban zone, traffic noise can extend well beyond the
local region where it is generated. In other words, the recorded data at a noise station not
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only represent the local noise but also the noise from a broader area. Therefore, as a general
rule in statistically-based noise maps, like Dynamap, each sensor should be positioned in
a site which is mostly uncorrelated with other sensors at short-time scales (few minutes),
especially inside its own group. This should be done in order to minimize spurious sensors
cross-correlations due to local perturbations. On the contrary, we expect highly correlated
behavior between sensors over long-time scales to maintain the similarities within the
groups. Indeed, Dynamap predictions are well correlated with the corresponding noise
measurements, even at short integration times, when averages over both measurements
and predictions inside each group are performed.

Regarding the operation of single noise stations, it has become clear that particular
attention is needed to take into account the effects of unpredictable situations like accidents
or temporary works in progress on the roads. The latter can heavily affect measured
data and lead to mistakes in the Dynamap resulting maps scaling and their contributions,
especially inside agglomerations, where one single measuring point is used to update many
roads belonging to the same group of roads. To reduce such mistakes, it seems advisable to
provide the system with an algorithm able to eliminate or at least dramatically reduce the
influence of anomalous events, which can be done using Equation (13). The sensitivity of
the system to spurious events can also be attenuated by widening the integrating temporal
window to a reasonable time span.

We suggest that the Dynamap scheme [94-97] can be applied to large urban conglom-
erates in general, thus becoming a useful tool for monitoring road traffic noise accurately
and efficiently in large cities.
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ADS-B Automatic Dependent Surveillance-Broadcast
ANED Anomalous Noise Event Detection

ASR Automatic Sound Recognition

BTNM Basic Traffic Noise Maps

C1 Noise Cluster 1

C2 Noise Cluster 2

CNOSSOS-EU  Common Noise Assessment Methods in Europe
DYNAMAP DYNamic Acoustic MAPping

EMTA Environment, Mobility and Territory Agency, Milan
(AMAT) (Agenzia Mobilita, Ambiente e Territorio, Milano)
END Environmental Noise Directive

Qi Group g; of road stretches
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GIS
IR
LIFE

Geographic Information System
Intermittency Ratio
https:/ /ec.europa.eu (accessed on 8 September 2021)

MAD  Median Absolute Deviation

P1
P2

Procedure 1
Procedure 2

WHO  World Health Organization

Z9

Urban Zone 9 of the city of Milan

Appendix A. Reference Legislation

The Environmental Noise Directive concerns the assessment and management of

environmental noise, requiring the Member States to provide and update noise maps
every five years in order to report about changes in environmental conditions (mainly
traffic, mobility, and urban development) that may have occurred over the reference period.
Specifically, END is the main EU instrument concerning the assessment and management
of the environmental noise. The aim is to identify noise pollution levels and to set the
necessary actions both at the Member State as well as at the EU level.

END focuses on three action areas:

The determination of exposure to environmental noise;

Ensuring that information on environmental noise and its effects are made available
to the public;

Preventing and reducing environmental noise where necessary, and preserving envi-
ronmental noise quality where it is satisfactory.

The Directive requires Member States to prepare and publish, every five years, noise

maps and noise management action plans in the cases of:
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