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SUMMARY

We describe the procedures to perform the following: (1) the de novo discovery
of mutational signatures from raw sequencing data of viral samples and (2) the
association of existing viral mutational signatures to the samples of a given data-
set. The goal is to identify and characterize the nucleotide substitution patterns
related to the mutational processes that underlie the origination of variants in
viral genomes. The VirMutSig protocol is available at this link: https://github.
com/BIMIB-DISCo/VirMutSig.
For complete information on the theoretical aspects of this protocol, please refer
to Graudenzi et al. (2021).

BEFORE YOU BEGIN

Problem description

The VirMutSig protocol aims at identifying mutational signatures from raw sequencing data of viral

samples, as originally proposed in the context of cancer evolution in (Alexandrov et al., 2013) and in

the analysis of SARS-CoV-2 in (Graudenzi et al., 2021). Mutational signatures represent the decom-

position of the categorical distribution of nucleotide substitutions that are observed in the samples

of a given dataset, and which might be due to distinct mutational processes. Such processes could

be endogenous (e.g., APOBEC deaminase activity causes mainly C to T substitutions) or exogenous

(e.g., tobacco smoke causes mainly C to A substitutions).

We formulated the problem of de novo signature discovery and assignment as a Non-negative Ma-

trix Factorization (NMF) problem (Lal et al., 2021; Graudenzi et al., 2021).

In brief, the counts of nucleotide substitutions observed in all viral samples of a given dataset, after

preprocessing and variant calling, result in an input data matrix D, composed by n samples (rows) X

m nucleotide substitution categories (e.g., the C to T category will include the count of all variants

with such substitution in any given sample) (columns).

Formally, D is factorized in the following matrices:
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Signature matrix (B): this matrix specifies the composition of every detected signature in terms of the

selected substitution categories.

Exposure matrix (A): it represents the coefficients of the linear combination of signatures present

in a sample. This matrix evaluates the activity of the various signatures in each sample of the

dataset.

As we are dealing with noisy data, we propose a stochastic optimization performed via a Monte

Carlo Markov Chain (MCMC) to find the best A and B matrices such that AxB � D (see the graph-

ical abstract). The method computes A and B for a number of signatures in a user-defined range

(e.g., from 2 to 10) and allows one to select the optimal number by assessing different metrics (see

below).

Specifically, we release two R scripts named respectively: denovo.R and assignment.R.

1. denovo.R allows one to perform the inference of both A and B. In particular:

a. B is randomly initialized.

b. A is inferred given B via non-negative least squares (NNLS).

c. B is then inferred given A via NNLS.

Tasks ‘‘b’’ and ‘‘c’’ are repeated until convergence. The whole procedure is repeated from task

‘‘a’’ for a sufficient number of times (e.g., at least 100), by testing the rank of B (i.e., the number

of signatures) within a user specified range.

The output of this procedure is:

B, obtained as the consensus from all the proposed matrices; plots regarding different metrics, so to

estimate the optimal number of signatures present in the dataset (see below).

2. The assignment.R script employs as input a B matrix that could be provided by the user or ob-

tained with the script denovo.R. Then, it infers A similarly as done in the task ‘‘b’’ of the denovo.R

script (see above).

Finally, a bootstrap procedure is performed to assess the statistical significance of the signature ac-

tivities. To do this, we consider each sample as a categorical distribution over the given contexts,

and we extract, with resampling, from such distributions the same number of mutations as observed

in the sample. Then, given the bootstrapped dataset, we fit again A.

We repeat this process multiple times (e.g., 100) to obtain a distribution for each entry of A.

So, a p-value of the significance of the activity of each signature in a given sample can be

returned.

Overall structure of the VirMutSig protocol

The protocol is subdivided into 4 distinct parts:

Part 1) INSTALLATION

Part 2) DATA PREPROCESSING PIPELINE (via Nextflow)

Part 3) DE NOVO DISCOVERY OF MUTATIONAL SIGNATURES (denovo.R)

Part 4) ASSIGNMENT OF EXISTING MUTATIONAL SIGNATURES (assignment.R)

The protocol is publicly available at this link: https://github.com/BIMIB-DISCo/VirMutSig.
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KEY RESOURCES TABLE

MATERIALS AND EQUIPMENT

Computational requirements

To execute the VirMutSig protocol, the user requires a computer with the following software

specifications:

Software

� Unix/OS operating system (for details on the usage of the protocol onWindowsOS, please refer to

the troubleshooting problem 5).

� Nextflow (version = 21) (https://www.nextflow.io/)

� Docker (version = 20) (https://www.docker.com/get-started)

� R (version = 4) with the installed packages listed below (https://www.r-project.org)

� The Docker image of VirMutSig (https://hub.docker.com/r/dcblab/virmutsig_img)

� A working internet connection (for installation only).

All the other required tools and libraries will already be installed in the provided Docker image.

Reagent or RESOURCE Source Identifier

Deposited data

Public database analyzed [example]: RNA-seq NCBI [example] PRJNA610428 (https://www.ncbi.nlm.nih.gov/
bioproject/?term=PRJNA610428)

Public database analyzed [example]: Amplicon NCBI [example] PRJNA645906 (https://www.ncbi.nlm.nih.gov/
bioproject/?term=PRJNA645906)

Software and algorithms

VirMutSig Graudenzi et al. (2021) https://github.com/BIMIB-DISCo/VirMutSig

Unix/MacOS operating system Canonical Ltd.
Apple Inc.

Ubuntu 20.04 Focal macOS 10.15 Catalina

Docker Merkel, (2014). https://www.docker.com/get-started (v. 20)

Docker Image Docker Hub dcblab/virmutsig_img:latest (https://hub.docker.com/r/
dcblab/virmutsig_img)

Nextflow Di Tommaso et al. (2017) https://www.nextflow.io/ (v. 21)

R The R Foundation https://www.r-project.org (v. 4)

Software and R packages

Part Package Version

1–2) INSTALLATION and DATA PREPROCESSING PIPELINE Nextflow (Di Tommaso et al., 2017) version = 21

Docker (Merkel 2014)
Docker image: dcblab/virmutsig_img

version = 20.10.8
version = latest

R version = 4.0.1

3) DE NOVODISCOVERY OFMUTATIONAL SIGNATURES (denovo.R) BiocManager (Morgan 2021)
Biobase (Huber et al., 2015)

version = 1.30.16
version = 2.46

data.table (Dowle and Srinivasan, 2021) version = 1.14.0

ggplot2 (Wickham 2016) version = 3.3.5

gridExtra (Auguie 2017) version = 2.3

NMF (Gaujoux and Seoighe, 2020) version = 0.23.0

nnls (Mullen and van Stokkum, 2012) version = 1.4

Optparse (Davis, 2020) version = 1.6.6

Stringi (Gagolewski 2021) version = 1.7.4

Yaml (Stephens, 2020) version = 2.2.1

(Continued on next page)
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Hardware

� Parts 1–2

The resources required for processing a single sample are limited, but we suggest running Part 2 in

parallel, if possible. Memory: 8Gb required, processors: 1 required, 8 recommended.

� Parts 3–4

Memory: 4GB required, processors: 1 required, 4 recommended.

Input data

The VirMutSig protocol requires as input either: (i) RNA-seq, or (ii) Amplicon Illumina raw data,

generated from sequencing experiments of viral samples (obtained, e.g., from primary isolates),

and typically available as FASTQ files.

Generally, one will have a FASTQ file for each sample of the dataset.

Notice that the protocol works with both (i) single- and (ii) paired-end sequencing library preparation

layout.

FASTQ files

FASTQ files can be collected in different ways.

If one is interested in the analysis of public datasets, e.g., those available on NCBI SRA database

(https://www.ncbi.nlm.nih.gov/sra), one can create a file with a list of SRR accession number (one

per line) to use as input data.

The VirMutSig will automatically download the proper FASTQ files; see Part 2.

Instead, if one has produced her/his own FASTQ files, or if they are available in other databases, one

must aggregate them in one directory and specify its path as input; see Part 2.

Reference genome file

A reference genome is required to perform variant calling. In (Ramazzotti et al., 2021) we proposed

the SARS-CoV-2-ANC as reference genome. Such genome is already available in the VirMutSig

GitHub repository and is used as default.

However, any viral genome can be used as reference. To do so, the chosen genome must be pro-

vided as a FASTA file; see Part 2.

Continued

Software and R packages

Part Package Version

4) ASSIGNMENT OF EXISTING MUTATIONAL SIGNATURES
(assignment.R)

All the above denovo packages

Glmnet (Friedman et al., 2010) version = 4.1–2

Lsa (Wild, 2020) version = 0.73.2

Matrix (Bates and Maechler, 2021) version = 1.3.4
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STEP-BY-STEP METHOD DETAILS

Part 1. Installation

Timing: 15 min

1. Downloading VirMutSig

The installation of VirMutSig is done by downloading the GitHub repository in a local directory,

which includes the VirMutSig scripts and the example files.

After the installation, a new folder named VirMutSig will be generated.

Please install VirMutSig by moving to your local directory and using GitHub with the following

command in the terminal:

VirMutSig includes 4 directories with the following names:

a. ‘‘preprocessing’’

This directory contains all the files and directories required to perform Part 2, such as:

i. SRR_to_SNVlist.nf: the Nextflow pipeline file

ii. nextflow.config: the config file with the preprocessing settings and parameters

iii. reference: a directory with the SARS-CoV-2-ANC reference file

iv. bin: a directory with an R script used to create the SNVs list for Parts 3–4.

b. ‘‘denovo’’

This directory contains the corresponding R script to perform the de novo discovery of muta-

tional signatures (Part 3). The files included are:

i. denovo.R

This script performs the discovery of viral mutational signatures from the list of selected

SNVs taken as input, by employing a NMF approach described in the above section or

in (Lal et al., 2021). The user must also specify the number of contexts, i.e., the flanking ba-

ses to the genome positions. Theymay either be 6 or 96, please refer to (Lal et al., 2021) for

further details.

ii. denovo_config.yaml

This file contains the parameters explained above. It could be modified using any

text editor.

iii. denovo_utils.R

This R file contains some functions used by the main denovo.R scripts.

Note: please do not modify this file.

c. ‘‘assignment’’

This directory contains the corresponding R script to perform the assignment of the activity of

mutational signatures to each sample (Part 4). The files included are:

i. assignment.R

This script takes as input the signatures.txt file generated by the denovo.R script or pro-

vided by the user, and the list of SNVs to perform the assignment of the signatures to

each sample. Bootstrap can be employed to assess the statistical confidence of the signa-

ture assignments.

ii. assignment_config.yaml

This file contains the parameters explained above. It could be modified using any

text editor.

iii. assignment_utils.R

This R file contains some functions used by the main assignment.R scripts.

>git clone https://github.com/BIMIB-DISCo/VirMutSig.git
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Note: please do not modify this file.

d. ‘‘example’’

This directory includes an example of the VirMutSig analysis performed on 150 FASTQ files

obtained from samples of SARS-CoV-2 via RNA sequencing experiments.

2. Download docker image

The preprocessing pipeline executes all the steps using a Docker image in which all the requested

software is already installed to avoid compatibility issues.

Docker can be obtained following the instruction at this link: (https://www.docker.com/get-started).

Once the installation is completed, please get the protocol image called ‘dcblab/virmutsig_img’ by

digiting the following command in a terminal:

3. Verify docker image installation

To test if the image is correctly installed in your system, please execute the following code:

which should display the following lines:

Note: in this case, it is possible to proceed to the next steps.

Part 2. Data preprocessing pipeline

Timing: 10 min download + 70 min pipeline execution for each sample (can be parallelized)

The data preprocessing pipeline included in the VirMutSig protocol is provided as a Nextflow pipe-

line file, named ‘‘SRR_to_SNVlist.nf’’ and included in the ‘‘preprocessing’’ folder of the GitHub re-

pository: https://github.com/BIMIB-DISCo/VirMutSig.

The folder also includes a file named: ‘‘nextflow.config’’, which must be opportunely modified ac-

cording to the specific experimental settings (see below for the parameter description).

The preprocessing pipeline includes the following processes (detailed in the following): data acqui-

sition, trimming, alignment, remove duplicated reads (optional), get depth information, variant call-

ing, and variant filtering.

As output, the preprocessing pipeline returns a file named: ‘‘SNV_list.txt’’ in which:

>docker pull dcblab/virmutsig_img:latest

>docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE

dcblab/virmutsig_img latest 223f27c12b45 4 hours ago 1.56GB
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rows correspond to all the single nucleotide variants (SNVs) detected in all the samples of the

dataset

columns correspond to: sample ID, variant ID, genome position, reference allele, alternative allele,

reference three nucleotides (flanking bases), supporting reads, coverage, variant frequency (VF),

and p-value (returned by the variant caller).

To run the preprocessing processes of the protocol, simply move to the ‘‘preprocessing’’ folder and

execute the following command from the terminal:

In the following, we describe the preprocessing processes and the related settings in detail.

4. Data acquisition

From now on, we will consider ’preprocessing’ as a working directory from the one specified dur-

ing the installation: ‘user_local_directory/VirMutSig/preprocessing’

Input data can be either (i) downloaded from public repositories, or (ii) provided from local

folders, if available.

a. Input data acquisition from public repositories

Input data can be downloaded from public repositories such as, e.g., the NCBI Sequence

Read Archive (SRA) (https://www.ncbi.nlm.nih.gov/sra). In this case, one can use the SRA

Run Selector web interface (https://www.ncbi.nlm.nih.gov/Traces/study/) to search for a data-

set and download the ‘‘Accession List’’ by using the related button. The obtained list of SRR

IDs (one per line) can be passed as input to download the files via SRA-toolkit, by editing

the following parameter of the ‘‘nextflow.config’’:

Also in this case, the library preparation layout (single-end or paired-end) must be specified by

editing the following parameter in ‘‘nextflow.config’’ file:

By default, the downloaded FASTQ files will be stored in the following path: ’/intermediate/

FASTQ’ (relative to SRR_to_SNVlist.nf file). It possible to change the directory by editing the

following parameter in in ‘‘nextflow.config’’ file:

b. Input data from local folders

In this case, the user must indicate the directory where the FASTQ files are located, editing the

following parameter of the ‘‘nextflow.config’’:

The library preparation layout (single-end or paired-end) must be specified by editing the following

parameter in ‘‘nextflow.config’’ file:

>nextflow run SRR_to_SNVlist.nf

params.FASTQ_input = ’../example/SRAlist_paired.txt’

params.library_preparation = ‘paired’ // or ‘single’

params.FASTQdir = ’intermediate/FASTQ’

params.FASTQ_input = ’/Path/To/Directory/’

params.library_preparation = ‘paired’ // or ‘single’
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Notice that with the ‘‘paired’’ configuration two FASTQ files are expected for each sample,

formatted as (sampleID_1.fastq.gz and sampleID_2.fastq.gz).

Conversely, with the ‘‘single’’ configuration one sampleID.fastq.gz file is expected for each sample.

5. Trimming

This step aims at removing from the sequence the nucleotides with low sequencing quality. To

perform this step, the Nextflow pipeline exploits the tool Trimmomatic (http://www.usadellab.

org/cms/?page=trimmomatic).

To tune the additional parameters used by Trimmomatic please edit the following parameter in

‘‘nextflow.config’’ file:

In brief, LEADING and TRAILING parameters cut the bases that display a quality below a certain

threshold, respectively at the start and the end of a read (20).

The SLIDINGWINDOWparameter sets the size of a sliding window (4 in our example) and deletes all

the bases from the leftmost position of the window to the end of the read, when the average quality

detected in the window drops below a given threshold (e.g., 20).

Finally, the MINLEN parameter specifies the minimum length of a read to be kept (40 bases in our

example). Please, refer to the Trimmomatic documentation for more details.

6. Alignment

Reads need to be aligned to a reference genome, which can be selected by the user, e.g.,

a. SARS-CoV-2-ANC (Ramazzotti et al., 2021),

b. EPI_ISL_405839 / GeneBank ID: MN975262.1 (https://www.ncbi.nlm.nih.gov/nuccore/

MN975262.1) (Bastola et al., 2020),

c. EPI_ISL_402125 / NCBI ID: NC_045512.2 (https://www.ncbi.nlm.nih.gov/nuccore/

1798174254) (Andersen et al., 2020).

In the subfolder ‘‘preprocessing/reference’’ of the GitHub repository, we provide the SARS-CoV-2-

ANC genome in FASTA format.

The user can specify the reference genome file by editing following parameter in

‘‘nextflow.config’’ file:

The alignment is performed with BWA-MEM (https://github.com/lh3/bwa), which generates a SAM

file including the aligned reads. All the associated files used by the BWA aligner will be automatically

generated and placed in the same reference genome folder.

Each SAM file will be sorted and compressed into a BAM file with Samtools (http://www.htslib.org/).

By default, the BAM files will be stored in the following path: ’/intermediate/BAM’ (relative to

SRR_to_SNVlist.nf file). It is possible to change the directory by editing the following parameter in

in ‘‘nextflow.config’’ file:

params.trimmomatic_setting = ’LEADING:20 TRAILING:20

SLIDINGWINDOW:4:20 MINLEN:40’

params.fasta = ’reference/SARS-CoV-2-ANC.fasta’
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7. Remove duplicated reads (optional)

Often, after obtaining an aligned BAM file, is useful to mark and remove duplicated reads to reduce

the impact of the amplification bias, especially with RNA-seq experiments. Otherwise, when dealing

with Amplicon data, several duplicated reads are expected and should not be removed. For this

reason, we made this step optional.

To include or skip this step in the preprocessing pipeline, please set accordingly the following

parameter in ‘‘nextflow.config’’ file:

Note: the tool used to perform this task is Picard (https://broadinstitute.github.io/picard/).

8. Get depth information

The aim of this step is to obtain the depth information for each sample in every genome position

(i.e., number of reads mapped on each position of the viral genome).

To perform this task, we used Samtools.

By default, the coverage files will be stored in the following path: ’/intermediate/COVERAGE’ (rela-

tive to SRR_to_SNVlist.nf file). It is possible to change the directory by editing the following param-

eter in in ‘‘nextflow.config’’ file:

9. Variant calling

Variants can be called comparing the aligned reads with the reference genome. To do so, we used

Samtools (http://www.htslib.org/) and VarScan (http://varscan.sourceforge.net/). More in detail, we

used the mpileup command included in Samtools which converts the BAM file into the pileup format

required by VarScan.

Then we used the VarScan pileup2snp for variant calling to produce a VCF file for each BAM file. The

VarScan setting can be adjusted by editing the following parameter included in ‘‘nextflow.config’’

file.

Note: For more information, please refer to the VarScan documentation.

By default, the VCF files will be stored in the following path: ’/intermediate/VCF’ (relative to

SRR_to_SNVlist.nf file). It is possible to change the directory by editing the following parameter in

in ‘‘nextflow.config’’ file:

Note: We suggest performing the alignment step according to the manufacturer’s recom-

mendations for all sequencing technologies.

params.BAMdir = ’intermediate/BAM’

params.remove_duplicates = ‘‘true’’ // or ‘‘false’’

params.COVERAGEdir = ’intermediate/COVERAGE’

params.varscan = ’–min-var-freq 0.01 –p-value 1’

params.VCFdir = ’intermediate/VCF’

ll
OPEN ACCESS

STAR Protocols 2, 100911, December 17, 2021 9

Protocol

https://broadinstitute.github.io/picard/
http://www.htslib.org/
http://varscan.sourceforge.net/


CRITICAL: All the above steps can be performed also by applying different pipelines for

variant calling, such as the one proposed in [https://github.com/andersen-lab/ivar],

which was specifically designed for handling viral amplicon data obtained via the artic

protocol.

10. Variant filtering

a. In order to reduce the impact of noise in the data (due, e.g., to sequencing issues), we adop-

ted multiple quality control (QC) filters to select only the reliable SNVs. The last step of the

preprocessing pipeline applies different filtering criteria on the detected SNVs. The

following parameters determine the filtering threshold, and they can be set by changing

the corresponding numeric value included into a string assigned to VirMutSig_QCfilter

parameter present in the ‘‘nextflow.config’’ file.

i. p-value on variant calling significance (PV_THR). The filter removes all the variants called

with a significance p-value larger than a given threshold (default = 0.01).

ii. Frequency threshold (VAR_FREQ_THR). The filter keeps only variants observed in the

data with a variant frequency that exceed the specified threshold (default = 0.05).

iii. Minimum coverage (MIN_COV). The filter keeps only variants with the specified minimum

coverage (default = 20).

iv. Minimum alternative read count (ALT_READ_THR). The filter keeps only variants with a

minimum number of reads showing the alternative allele equal to the given threshold.

(default = 3)

Note: Indels are not considered in the analysis.

b. By default, the SNV_list.txt file will be stored in the ’example’ directory. It is possible to

change the directory by editing the following parameter in in ‘‘nextflow.config’’ file:

This step uses a R script included in the ‘‘preprocessing/bin’’ directory of the GitHub repos-

itory named makeSNVlist.R. It takes as input different arguments with the following fixed

order:

i. A string with the path of the directory containing the VCF files generated by the variant

caller.

ii. A string with the path of the directory containing the depth files generated by step 8. Such

files must end with ’.depth.txt’.

iii. Reference file in fasta format. (e.g., SARS-CoV-2-ANC.fasta)

Note: If another pipeline has been used to perform variant calling, the R script can be used to

aggregate the vcf files into a SNV list. Instead, if VirMutSig preprocessing steps have been

used, the script is automatically executed via Nextflow.

CRITICAL: Parameters must be set according to the specific features of the datasets (see,

e.g., the guidelines proposed on the website: https://virological.org/).

11. Further information

The Trimming and Alignment step require greater computational resources than the other pro-

cesses. For this reason, it is possible to specify the maximum number of cores to be used, by chang-

ing the cpus value in the following setting of the ‘‘nextflow.config’’ file:

params.SNV_filters = ’PV_THR:0.01 VAR_FREQ_THR:0.05 MIN_COV:20 ALT_READ_THR:3’

params.SNVlistdir = ’../example
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An increase of the cpus number assigned to the processes reduces the computational time required

to trim and align the reads, but it also reduces the number of samples that can be analyzed in par-

allel. For these reasons, one should select a proper value based on the available computational re-

sources and number of samples.

All parameters (‘‘params.’’) can be specified by overriding when the pipeline is launched. To do so,

please specify the corresponding parameter name (the string following ‘‘params.’’) and specify the

opportune argument of the Nextflow command.

In the example, the SRR list file path and the output directory path of the SNVs list file will be spec-

ified without editing the ‘‘nextflow.config’’ file.

For a summary of the settings and processes executed with the example configuration please see

Figure 1.

Part 3. De novo discovery of mutational signatures (denovo.R)

Timing: �20 min (approximate time required to perform the step on a dataset with �100

samples and �10,000 mutations, with a significant variability related to the signature rank

range)

12. Input files and setup

The denovo.R script requires two input files to be executed.

a. List of selected SNVs [SNV_list.txt]

This file is generated following the preprocessing step. It is a semicolon-separated file with a

SNV for each line. It includes (at least) the following column headers:

i. SampleId: The ID of the sample.

ii. Position: The genome position.

iii. Reference: the reference allele (A, T, C, G).

iv. Alternative: the alternative allele (A, T, C, G).

v. VariantCount: the number of the reads including the alternative allele.

vi. TotalCount: the total number of reads covering the genome position.

For the 96-contexts analysis (see below) the following column is also required:

vii. ReferenceTrinucleotide: the triplet with the reference bases before and after the variant

position (e.g., ATC where T is the reference).

Please see the file SNV_list.txt contained in the ‘‘/example’’ directory for an example of

input formatting (see Table 1).

b. Configuration file [denovo_config.yaml]

process {

withName: ’Trimming_single’ {cpus = 4}

withName: ’Trimming_paired’ {cpus = 4}

withName: ’Alignment_and_sorting_single’ {cpus = 8}

withName: ’Alignment_and_sorting_paired’ {cpus = 8}

}

>nextflow run SRR_to_SNVlist.nf \

–FASTQ_input ‘SRRfile/custom/path’ \

–SNVlistdir ‘SNVlist/output/path’
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The parameters to run denovo.R are set in a text file called as default ‘denovo_config.yaml’. The

file must contain a parameter in each line formatted as:

The parameters that can be modified are the following:

[variant selection]

i. CLONAL_SNV_THR: Double [0,1]. default = 0.9.

This parameter defines the variant frequency threshold that determines whether a given

variant is clonal.

ii. MINOR_SNV_SEL: String {‘always’, ‘all’}. default = ‘always’.

To reduce the bias induced by mutations transmitted and inherited in the population

during the epidemic spread, for the signature analysis we select and employ only the

SNVs that are never observed with a frequency higher than CLONAL_SNV_THR in any

sample. The selected SNVs are defined as ‘always minor’. This parameter together

with the parameter CLONAL_SNV_THR are critical as they determine the variants that

are selected for the signatures analysis; the default parameters that we suggest here

(i.e., CLONAL_SNV_THR = 0.90 andMINOR_SNV_SEL ="always") are very conservative

and they should be determined based on the aim of the study. For further details, please

refer to (Ramazzotti et al., 2021).

iii. MAX_SNV_SAMPLE: Integer [1, Inf]. default = 100.

Figure 1. Summary of the settings and processes executed with the example configuration

We analyzed 150 samples with a paired-end library layout, downloaded from the SRA database. The related processes

are automatically executed via Nextflow.

Table 1. First 5 lines of the SNV_list.txt file imported in Rstudio

SampleID VariantID Position Reference Alternative Reference Trinucleotide VariantCount TotalCount Variant frequency Pvalue

SRR12661198 9996_C_T 9996 C T TCA 494 5720 0.0864 2.85E-144

SRR12661096 9965_C_T 9965 C T TCT 68 1263 0.0538 4.82E-20

SRR12833654 9960_G_T 9960 G T TGT 49 641 0.0764 6.85E-16

SRR12661080 995_C_T 995 C T ACG 165 2618 0.063 5.54E-48

SRR12661132 9945_G_T 9945 G T AGA 41 389 0.1054 1.50E-13

PARAMETER NAMES: value
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In order to reduce the impact of highly mutated samples, likely due to degradation of

their biological isolation, we suggest removing the samples exhibiting more than a

user selected number of variants.

iv. MIN_SNV_SAMPLE: Integer [1, Inf]. default = 6.

To assess the existence of statistically significant mutational signatures, we remove all

the samples with number of detected SNVs lower than this value.

[analysis parameters]

v. NUM_CONTEXTS: Integer {6, 96}. default = 6.

This parameter specifies the number of different nucleotide substitution types (based on

the flanking bases) that are considered.

6 indicates that no flanking bases are considered. In this case, the possible substitution types

are: C>A (or G>T), C>G (or G>C), C>T (or G>A), T>A (or A>T), T>C (or A>G), T>G (or A>C).

96 indicates that the two flankingbases are considered. In this case, the possible substitution

types include, e.g.,: ACA>AAA (or AGA>ATA), ACG>AAG (or AGG>ATG), ATA>ACA (or

AAA>AGA), etc. For further details, please refer to (Lal et al., 2021).

vi. MIN_NUM_SIG: Integer [1, NUM_CONTEXTS]. default = 1.

This parameter sets the lower bound of the range for the number of distinct signatures to

be searched.

vii. MAX_NUM_SIG: Integer [MIN_NUM_SIG, NUM_CONTEXTS]. default = 6

This parameter sets the upper bound of the range for the number of distinct signatures

to be searched.

viii. NMF_ITER: Integer [1, inf]. default = 100.

This parameter sets the number of Negative Matrix Factorization iterations performed

during the inference of A and B matrices

ix. SEED: Integer [0, Inf]. default = 0 (with 0 the seed will be randomly set).

This parameter initializes the random number generator. It is used to obtain reproduc-

ible results by keeping the same SEED.

x. N_CORE: Integer [0, Inf]. default = 0 (with 0 the number of cores available will automat-

ically be detected).

This parameter indicates the maximum number of computational units (cpus) available

for the inference.

CRITICAL: MAX_NUM_SIG andMIN_SNV_SAMPLE must be set accordingly with the NUM_-

CONTEXTS parameter. To obtain robust results, we suggest setting the former equal to half

the number of contexts (i.e., 3 or 48) and the latter larger than the number of contexts.

13. Run denovo.R

a. denovo.R can be run with the following command:

The script will generate in the output directory (specified by the user) the following three

subdirectories:

i. ‘‘Signatures’’:

This directory will contain a file for each number of searched signatures named

‘x_signatures.txt’. Each file will be formatted as a table with the context as header and

a row for each signature.

>Rscript denovo.R \

–SNV_list path/to/SNV_list.txt \

–config_file path/to/denovo_config.txt \

–output_dir path/to/output/dir
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ii. ‘‘Graphical’’:

This directory will contain the graphical representation of each signature set found in the

data.

iii. ‘‘Rank’’:

This directory will contain a set of files to determine the optimal number of signatures.

b. Unfortunately, no automated procedures are available to find the correct number of signa-

tures, so we here provide a set of metrics to determine it. The denovo.R script provides

four metrics as output and the relative plots:

i. explained variance (Hutchins et al., 2008)

ii. cophenetic coefficient (Brunet et al., 2004),

iii. dispersion coefficient (Kim and Park, 2007),

iv. silhouette consensus coefficient.

The four metrics are shown in Figure 2 and Table 2.

The first one measures how good is the fit of each given number of signatures, considering the

observed mutational profiles. This metric is useful to estimate when the number of signatures is

too high (i.e., overfitting). To this end, we suggest choosing the optimal number of signatures based

on the bend rule that selects the number of signatures corresponding to the elbow in the explained

variant plot (see the example in Figure 2A).

Often there is uncertainty to select a unique elbow point on the plot, so the latter three

metrics can be used as additional evaluation of the optimal rank. Roughly, they provide a

measure of stability of the NMF solutions over multiple runs (NMF_ITER parameter). These

coefficients range from 0 to 1 and higher values indicate higher consistency among NMF

solutions.

Figure 2. Metrics to evaluate the best number of signatures

(A) shows the explained variance at different ranks; in this case we observed a bend at 3.

(B–D) show stability-based coefficients which report the consistency of NMF solutions across multiple iterations.
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Considering all the above, our suggestion is to select one or few elbow points and among them

select the one corresponding to higher cophenetic, dispersion, or silhouette coefficient. If still there

is ambiguity it is reasonable to take the lower one.

Considering the example, and the metrics shown in Figure 2, we conservatively selected 3 as the

optimal number of signatures, as at this rank we have a first bend in the explained variance and

high values of the other metrics.

Note: Please get from the ‘Signatures’ directory the corresponding file that should be then

used in the following assignment step.

Note: Each signature file contains a different number of signatures (identified with SIG_NUM)

found in the data. In the ‘graphical’ directory, denovo.R generates pdf files with the same

name as the corresponding signatures set. Those files contain a plot of the categorical

distributions.

Part 4. Assignment of existing mutational signatures (assignment.R)

Timing: 15 min (approximate time required to perform the step on a dataset with �100

samples and �10,000 mutations, with significant variability related to bootstrap iterations)

14. Input files and setup

The assignment.R script requires three input files to be executed.

a. List of selected SNVs [SNV_list.txt]

This file is the same used in Part 3, please see above.

b. Signatures file [x_signatures.txt]

This file contains for each signature the frequency of substitutions. Their values are grouped

by context and normalized up to 1. The file must be formatted as a table with the context as

header and a row for each signature.

The header must be formatted as: G>T:C>A;G>C:C>G;G>A:C>T;A>T:T>A;A>G:

T>C;A>C:T>G.

Notice that, for instance, variants fromG to T and C to A are aggregated together in the cases

of 6-context. For further details, especially for the 96-contexts representation, please refer to

(Alexandrov et al., 2013).

This file can be generated via Part 3 or can be directly passed by the user.

c. Configuration file [assignment_config.yaml]

The parameters to run assignment.R are set in a text file called as default ‘assignment_con-

fig.txt’. The file must contain a parameter in each line formatted as PARAMETER_NAMES:

value

The parameters that can be modified are the following:

[variant selection]

i. CLONAL_SNV_THR: Double [0,1]. default = 0.9. This parameter defines whether a given

SNV is considered as clonal (default = 0.9).

Table 2. Metric coefficients for each different signature rank searched via denovo.R script

Rank Cophenetic coefficient Dispersion coefficient Silhouette consensus Explained variance

1 NA 1 NA 0.85

2 1 0.96 0.82 0.92

3 0.93 0.78 0.63 0.97

4 1 0.99 0.66 0.99

5 0.91 0.85 0.16 0.99

6 0.94 0.92 NA 1
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ii. MINOR_SNV_SEL: String {‘always’, ‘all’}. default = ‘always’. To reduce the bias induced

by the mutation transmitted and inherited among the population during the epidemic

spread we select for the signature analysis only SNVs never observed with a frequency

higher than CLONAL_SNV_THR in any sample. The remaining SNVs are defined as

‘always minor’. For further details, please refer to (Graudenzi et al., 2021).

iii. MAX_SNV_SAMPLE: Integer [1, Inf]. default = 100. In order to reduce the impact of

highly mutated samples likely due to degradation of their biological isolation. We sug-

gest removing the samples exhibiting more than a user selected number of variants.

iv. MIN_SNV_SAMPLE: Integer [1, Inf]. default = 6. In order to assess the existence of sta-

tistically significant mutational signatures we have to remove all the samples with less

than a given number of detected SNVs.

[analysis parameters]

v. BOOTSTRAP: String {‘yes’, ‘no’}. default = ‘yes’.

vi. GOODNESS_FIT_THR: Double [0.5,1]. default = 0.95. This threshold indicates the min-

imum level of goodness of fit until when keep adding signatures (among the signatur-

es.txt file) to the fit, in a given sample. The goodness of fit is measured with the cosine

similarity between observed and predicted counts in each sample.

vii. MIN_SIG_FREQ: Double [0,1]. default = 0.05. Each signature is considered to be

present in a given sample if its activity (alpha value) is greater than the value of this

parameter.

viii. P_VALUE: threshold to be used when assessing significance of the exposure of samples

to signatures. To this extent, Mann–Whitney U test is performed whose results are eval-

uated with the given P_VALUE threshold. default = 0.05

ix. NUM_ITER: Integer [1, Inf]. default = 100

x. SEED: Integer [0, Inf]. default = 0 (with 0 the seed will be set randomly)

xi. N_CORE: Integer [0, Inf]. default = 0 (with 0 the number of core available will automat-

ically detected)

CRITICAL: We suggest setting the parameters in accordance with the number of contexts.

Similar to Part 3 MIN_SNV_SAMPLE should be larger than the number of contexts to pro-

vide reasonable results.

15. Run assignment.R

assignment.R can be run by the following command:

The script will generate a table in a text file specified by the user (default: assignment_result.txt). This

table will have a row for each selected sample and one column for each signature, called ‘‘Sn_expo-

sure’’. This column reports the alpha values of each signature found in each sample (i.e., a numeric

value measuring the level of activity of the signature in that sample).

If the bootstrap procedure is performed, another column for each signature is added into file. This

column, called ‘Sn_pvalue’, shows the p-value of significance of observing each signature in a given

sample obtained with the harmonic mean of the one-sided (greater) Mann–Whitney U-test.

>Rscript assignment.R \

–SNV_list path_to_SNV_list.txt \

–signature path_to_signature_x.txt \

–config_file path_to_assignment_config.txt \

–output_file path_to_output_file
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EXPECTED OUTCOMES

denovo.R

This step provides as output:

The signature matrix (B) for each considered number of signatures and the corresponding graphical

visualization (see Figure 3). These files are stored into the ‘‘signatures’’ directory.

The metrics to estimate the optimal number of signatures in a text file (‘‘metric_coefficients.txt’’) and

the corresponding plots (see Figure 2 and Table 2). These files are stored into the ‘‘rank’’ directory.

Among them the user should select the optimal solution (‘‘signatures/files/x_signatures.txt’’) and use

it as input for the following step.

assignment.R

This step returns a matrix of the activity of each signature assigned to each sample, saved as a text

file (‘‘assignment_result.txt’’). See Table 3.

QUANTIFICATION AND STATISTICAL ANALYSIS

The produced signature-assignment matrix (‘‘assignment_result.txt’’) can be used as input in down-

stream analyses.

For example, as shown in (Graudenzi et al., 2021), the following tasks can be performed:

Figure 3. Output of the denovo.R script

(A) The table reports the frequency of the nucleotide substitutions for each context.

(B) The same values are represented with bar-plots. The figure is saved as 3_signatures.pdf file located in ‘‘VirMutSig/

example/denovo_results/signature/figures/’’.
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1. Stratification of samples into signature-based clusters

Samples can be stratified by applying k-means (or any other clustering methods) on the signature-

assignment matrix. Standard heuristics should be employed to determine the optimal number of

clusters.

2. Corrected-for-signatures dN/dS analysis

dN/dS analysis is a standard population genetics method to assess the selection pressure acting

on the virus. After the identification of viral mutational signatures, it is possible to investigate

whether the SNVs generated by the corresponding mutational process are positively or nega-

tively selected in the population. To this end, the dN/dS analysis must be corrected for the ex-

pected mutation frequency specific for each signature profiles, as proposed in (Graudenzi et al.,

2021).

LIMITATIONS

Reference genome

Any reference genome can be used with VirMutSig. Using different reference genomes may slightly

change the results. For SARS-CoV-2 analysis we highlight the presence of two other reference ge-

nomes besides SARS-CoV-2-ANC used in this protocol (see ‘‘reference genome’’ in ‘‘materials

and equipment’’ section):

EPI_ISL_405839 (Bastola et al., 2020)

EPI_ISL_402125 (Andersen et al., 2020)

Notice that the number of mismatches between those two reference genomes and the one SARS-

CoV-2-ANC is only 5 nucleotides.

Dataset quality

In these kinds of analyses using good quality data is mandatory because the level of random muta-

tions (sequencing artifacts or samples biological degradation) could affect the significance of the

signature identified and assigned.

However, we suggested parameter settings that can mitigate this issue. Depending on the specific

quality of the data, the stringency of such parameters could be increased.

TROUBLESHOOTING

Problem 1

It may be difficult to choose the optimal rank (i.e., the number of mutational signatures) on the basis

of the available metrics (see step 13).

Table 3. First 5 entries of the assignment_results.txt file obtained after assignment.R execution

Sample S1_exposure S2_exposure S3_exposure S1_pvalue S2_pvalue S3_pvalue

SRR12351622 4.63 0.13 1.92 1.98e-18 1 1.98e-18

SRR12351634 1.14 0.44 4.48 1.98e-18 1.98e-18 1.98e-18

SRR12351645 0.81 1.84 3.68 1.98e-18 1.98e-18 1.98e-18

SRR12351651 2.32 0.47 1.05 1.98e-18 1.98e-18 1.98e-18

SRR12351655 4.65 0.26 2.06 1.98e-18 1 1.98e-18

For each sample, an exposure value is assigned for each signature. The corresponding harmonic mean p-value of the one-sided Mann–Whitney U-test is

computed with a bootstrap procedure.
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Potential solution

The estimation of the optimal number of signatures is a critical task.We have already discussed in the

text how one should consider the results of different metrics to estimate the optimal rank. However,

such metrics may sometimes lead to ambiguous (or conflicting) indications, making it difficult to

select the optimal rank. In this case, one may try to improve the stability of the results by increasing

the number of NMF iterations, since a higher number of iterations is expected to deliver more reli-

able and stable results. To this end, please increase the value of the NMF_ITER parameter in the ‘de-

novo_config.yalm’ file.

As an alternative option, we suggest increasing the number of samples in the datasets, if possible.

Problem 2

The input file for both the de novo and the assignment analyses is a matrix with samples (rows) x mu-

tations (columns) that is automatically generated from the provided list of SNVs. If the mutations

kept after the quality filter are too few, the resulting matrix might be too sparse to obtain robust re-

sults (see parts 3 and 4).

Potential solution

The de novo extraction of mutational signatures is harder with very sparse matrices. If the input data

are too sparse, one may increase the number of mutations by loosening the quality check filters or

lowering the threshold to filter out fixed variants. In both cases, more mutations will be employed in

the analysis.

However, one should be cautious when relaxing quality control filters and should aim at preserving a

good tradeoff between the number of variants and the quality of the data, because including lower

quality mutations may reduce the robustness of the results and the reliability of the inference.

Problem 3

An issue similar to the one presented in Problem 2 may arise when the number of samples that sat-

isfies the quality criteria (e.g., minimum number of mutations) is too low (see parts 3 and 4).

Potential solution

Increasing the number of samples is extremely beneficial for the de novo inference of mutational sig-

natures. We provide a set of quality checks parameters to set the minimum and maximum number of

mutations used to filter out samples (i.e.,MIN_SNV_SAMPLE,MAX_SNV_SAMPLE).Onemay set these

parameters to increase the sample size of the datasets, but as stated in the previous point, one should

keep in mind that including lower quality samples may also reduce the quality of the inference.

Problem 4

After performing the bootstrap (see part 4) no significant signatures were assigned to the samples.

Potential solution

In the bootstrap procedure, the algorithm detects the signatures that are significantly exceeding a

given exposure for each sample. The method repeats the fit until a given ‘GOODNESS_FIT_THR’

threshold is reached (to reduce overfitting) and identifies the signatures significantly exceeding

‘MIN_SIG_FREQ’ percentage of mutations for each sample. Reducing these two parameters will

result in a larger number of significant signatures assigned to each sample. A correct tuning of

such parameters depends on the quality of the data and on theminimum number of mutations which

are considered to be significant to assess if a signature is active.

Problem 5

The user may face issues with software compatibility during the setup of VirMutSig or one needs to

execute it on a computer with a Windows operating system (see parts 1, 2, 3, and 4). .
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Potential solution

We provide a Docker image (see part 1) including all the VirMutSig scripts and data already prein-

stalled and tested. It is also possible to execute all the VirMutSig steps within the Docker image

even on a computer with Windows OS.

To do this, please start by selecting a directory (e.g., ‘‘C:\user\data’’) on the local machine

and copy all the files requested for the user analysis (e.g., SRA_list or fastq files, reference

genome of choice, etc.). This directory will be the only local directory available within the Docker

image.

After obtaining the dcblab/virmutsig_img, the user will need to access it by executing the following

command in a terminal or in the command prompt window.

Please, change "C:\user\data’’ with the absolute path of the selected directory.

The terminal will changce, and the username will be replaced by something similar to:

Now, it is possible to execute all the protocol steps within the new terminal, following the same in-

structions described above.

The user files are located in the /VirMutSig/UserData directory. To get the VirMutSig result

files please copy them into this location, and they will also be available in ‘‘C:\user\data\’’ local

directory.

All the files in VirMutSig_img are writable. For example, the config files (i.e., ‘‘nextflow.config’’, ‘‘de-

novo_config.yalm’’, and ‘‘assignment_config.yalm’’) can be modified using the ‘‘nano’’ editor with

the following command:

Once completed the analyses, please digit exit to close the VirMutSig image. Notice that, only the

files modified or created within the /VirMutSig/UserData directory will be permanently available

(in C:\user\data), while all other edits will be discarded.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Daniele Ramazzotti (daniele.ramazzotti@unimib.it).

Materials availability

This study did not generate new unique reagents.

Data and code availability

This study did not generate any unique data sets. The FASTQ files used in this protocol are public

available at NCBI BioProject database (https://www.ncbi.nlm.nih.gov/bioproject/) using the

following access numbers NCBI: PRJNA610428, PRJNA645906

>docker run -it –mount \

type=bind,source="C:\\user\\data’’,target=/VirMutSig/UserData/ \

dcblab/virmutsig_img

root@d55f578b7306:/#

root@d55f578b7306:/# nano /VirMutSig/denovo/denovo_config.yaml
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The VirMutSig protocol and the example files are available at: https://github.com/BIMIB-DISCo/

VirMutSig.
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