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1 Introduction

The lack of any definitive signal of New Physics at the Large Hadron Collider (LHC)
suggests that the high-energy physics community must be open to alternative ways to probe
Beyond the Standard Model (BSM) effects at collider experiments. In particular, precision
measurements of the Standard Model (SM) Higgs sector may be a way to indirectly constrain
BSM theories which live at scales beyond our reach, both at the LHC and at future lepton
colliders or ‘Higgs factories’. It is therefore crucial that theoretical predictions for processes
involving the production or decay of the Higgs boson have a precision which matches that

of experiment.



In this work we consider the hadronic decays of a Higgs boson to a bb-quark pair and
to gluons.! Although these modes are difficult to observe at a hadron collider due to the
large QCD background, they may well prove to be useful probes of Higgs physics at a future
lepton collider since they contribute significantly to the total width of the Higgs boson.

The dominant decay mode of the Higgs boson is to a bb-quark pair, with a branching
ratio of about 58% [2]. An accurate measurement of this channel would allow an extraction
of the Yukawa coupling ¥, which is an important input to Higgs studies. The hadronic
environment at the LHC makes this a challenging prospect — nevertheless, the decay has
been observed recently by both ATLAS and CMS in the V H, or Higgsstrahlung, production
channel [3, 4]. QCD corrections to the partial width are known up to N*LO [5-12], and
fully differential NNLO calculations have also been available for quite some time [13, 14].
Recently, the fully differential N3LO calculation has also been completed [15].

The decay channel to gluons, on the other hand, proceeds via a top-quark loop and con-
tributes around 8% to the total width. Since QCD corrections to this channel are indistin-
guishable from the bb-quark case at higher orders in perturbation theory, one should consider
the classes of processes together to obtain a total hadronic width, as performed in ref. [1].
Nevertheless, at NNLO and in the case of kinematically massless b-quarks the processes can
be fully separated, since interference terms between the diagrams vanish. Related compli-
cations which arise at N3LO have been studied in ref. [16]. In the case of massive b-quarks,
these interference terms can no longer be neglected — their impact has been studied in
ref. [17] and a full NNLO calculation in the massive case has been carried out in refs. [18, 19].

In the limit that My < 2my, the top-quark loop which couples the Higgs boson to
gluons can be integrated out to obtain an effective theory with five light active flavours
in which the interaction is local. This simplifies the inclusion of QCD corrections and has
allowed calculations to be performed at NNLO [20, 21] and, for the total width, at N3LO [22]
and N4LO [23]. The effect of including a finite top-quark mass on the total width has also
been studied in ref. [24].

In light of the importance of Higgs physics, several other predictions at various accura-
cies and using different approximations are available beyond those listed here. A complete
review of the state of the theoretical calculations for Higgs boson production and decay
processes, including the calculation of electroweak corrections, can be found in ref. [25].

In a recent publication [26], the distributions of the thrust variable in these decay
processes were considered and fixed-order computations up to approximate NNLO (which
contribute at O(ad) relative to a Born H — bb/gg process) were performed. In that
work, the authors noted the poor convergence of the perturbative series for both processes
and were able to show that the approximate NNLO corrections obtained from the singular
terms of a SCET-derived factorisation formula could ameliorate the scale dependence of the
calculations. They also acknowledged several shortcomings of their calculation, one of which
related to the size of the logarithms log™ 7/7 which are not resummed in a purely fixed-

'Neglecting light quark Yukawa couplings, these decay channels constitute the only hadronic channels
in the Standard Model at this perturbative order [1]. Indeed, even if one were to consider decays to lighter
quarks the extension from the b-quark case implemented here would be relatively trivial since we treat them
as kinematically massless.



order computation and spoil predictivity in the small 7 region. Here, we provide resummed
predictions at NNLL’ accuracy which complement the results of ref. [26]. Compared to
NNLL, the resummation at NNLL’ accuracy incorporates the complete O(a2) singular
structure for 7o — 0, i.e. all 2-loop virtual and corresponding real corrections, allowing us
to comnsistently match to NNLO.

Using the GENEVA formalism developed in refs. [27-29], we are also able to construct
IR-finite events which combine the advantages of the resummed and fixed-order calculations
and are matched to a parton shower.?

Having a GENEVA implementation of the H — bb process will also allow us to produce
an NNLOPS generator for the signal process pp — V(H — bb). This can be achieved by
combining the Higgs boson decay presented here with our previous calculation of the VH
production process [31] in the narrow width approximation. Fixed-order calculations for the
full pp — Vbb process were performed in refs. [32-34] in the massless approximation — more
recently, a calculation with massive b-quarks also appeared [19]. An NNLOPS generator
for W (H — bb) production via the MINLO method [35-38] was presented in [39], while
a separate NNLOPS H — bb generator was also made available in ref. [40]. Nonetheless,
we believe an independent implementation of the combined corrections to both production
and decay in the GENEVA framework will provide a useful cross-check of previous results.
We leave this development to a future publication.

This paper is organised as follows. In section 2, we briefly explain how resummed pre-
dictions are obtained from a factorisation formula derived in soft-collinear effective theory
and provide numerical results for the resummed 75 distribution in H — bb and H — gg.
In section 3, we briefly recap the main features of the GENEVA method relevant for the
processes at hand. In particular, we discuss various implementation details, as well as how
the matching to the parton shower is achieved. We present our GENEVA results in section 4.
Finally, we report our conclusions and directions for future work in section 5, while we detail
the construction of the phase space mappings used and the analytical NNLO decay rates
in appendices A and B respectively.

2 Resummation from Soft-Collinear Effective Theory

In this section we present, for the first time, the NNLL’ resummation of the 2-jettiness
observable, Ty, for the decay of a Higgs boson into a pair of b-quarks. We also provide results
at the same accuracy for the Higgs boson decay into gluons, which were first presented in
ref. [30]. We present numerical results for the dimensionless 7 = 73/(2 My ) distribution,
where My is the mass of the Higgs boson.

2.1 Formulation

Our basic resolution parameter for the hadronic decays of the Higgs boson is the 2-jettiness,
defined as

To=2min) (B |- pil) . (2.1)
k

In the gluonic case, resummed predictions for the thrust distribution were presented in ref. [30] and
compared to parton shower results.



where k runs over all final state particles with momenta py = (Ej, pi) and 7 is the unit 3-
vector resulting from the minimisation procedure. In the case where all final-state particles
are massless, it is related to the more familiar thrust 7', which was widely studied for
ete™ collisions [41, 42] and extended to hadronic collisions in ref. [43], by the relation
To = 2E¢m(1 —T). For the decays that we consider, we work in the rest frame of the Higgs
boson and always have that E.,, = Mpy. Exactly like the thrust variable, the 2-jettiness is
constrained kinematically (0 < 73 < Mp) and its value is related to the spatial distribution
of the radiation: in the limit 75 — 0 the final state consists of two pencil-like jets, while for
To ~ My there are three or more jets distributed in a more spherical configuration.

We consider the decay rate differential in 75 of a Higgs boson to either a bb-quark pair
or to a pair of gluons. We consider massless b-quarks with a finite Yukawa coupling to the
Higgs yp. In the gluon case, we work in an effective theory in which the top-quark loop
that couples the Higgs boson to gluons has been integrated out, leaving an effective local
operator Hgg.

The Born level decay rates for the two processes considered are given by

yl?(:u) Nc MH
8w ’

a?(p) Gr M3,
3673 /2

It has been shown, both in QCD and SCET, that the differential decay rate factorises
in the small T3 limit [42, 44-46] as

T (1) = D% () = (2.2)

dare
d7s

2(p2 + p3)
My

=Th(p) H (Mp, p) /dpidp%dké (75 -~ —~ k‘) Ji (02, 1) T (p2, 1) S (k, 1)

(2.3)

where the index ¢ = b, g indicates the process in question.

The decay rate has been factorised into a hard contribution H*(Mp, 11), a soft function
S(k, 1) and two jet functions J¢ (p2, i) and J&(p2, i). The hard function is defined as the
square of the Wilson coefficients which match the full theory (the SM) onto SCET. In the
gluon case, an additional matching is required from the heavy-top limit effective theory we
are working in onto the SM — thus, the hard functions can be written as

H* (Mg, 1) = |Cdcpr(Mu, )|
HY(Mpy, 1) = |Cdcpr (M, 1) |* |Ce(ma, )] (2.4)

The jet functions describe collinear radiation from the Born-level partons along the jet
directions n and 7, which can be chosen without loss of generality to be orientated along 2,
viz. n = (1,0,0,1) and n = (1,0,0, —1). The soft function accounts for all soft radiation.

Each component in the factorisation theorem must be evaluated at its own characteristic
scale in order to prevent the appearance of large logarithms, viz. ug ~ My, puy ~ 1/ To My,
s ~ To. However, since the decay rate must be evaluated at a single scale, we evolve the
separate functions to a common scale p via renormalisation group (RG) evolution and in
so doing resum the large logarithms of ratios of scales which appear.
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Figure 1. The normalised, resummed spectrum in 7 = T3/(2Mp), corresponding to eq. (2.5), at
NLL’ and NNLL'. The left panel shows the process H — bb, the right shows H — gg.

The resummed spectrum, differential in the Born kinematics, can then be written as

drresum _ dFiB(M) i i i i
15dT; Ay H (M, i) U (s ) @ [S*(ps) © Ug(ps, )]

® [Jh (1) @ Uy, )] @ [J5 (1) @ Ul(pg, )] (2.5)

where dT'4(u)/d®, indicates the Born decay rate differential in the two-body phase space
and we have used ® to denote the convolutions, dropping the explicit dependence on the
convolution variables. The ingredients necessary for NNLL’ accuracy are all available in
the literature and many have been compiled in ref. [26]. For the H — bb case, we take
the hard function from ref. [26]. Since we are considering only massless b-quarks, we can
use the soft and jet functions as implemented in ref. [27] (and first calculated at NNLO
in refs. [47-49]) for eTe™ — jj, also recycling the evolution kernels from that work. For
the H — gg case, the fully expanded hard function, including contributions to the Hgg
effective vertex from both SCET and the effective theory where the top-quark is integrated
out, appears in ref. [30]. The NNLO jet function [50] and the evolution kernels are also
given therein, while we obtain the soft function via a Casimir rescaling of the H — bb case.

2.2 Numerical results

We have implemented the resummed calculation, eq. (2.5), in the GENEVA framework (see
section 3) up to NNLL' order, for which we now present results. Throughout the calculation
we choose a Higgs boson mass My = 125.09 GeV and set as(Mz) = 0.118, G = 1.16639 x
10~°. We set the renormalisation scale to be up = My and run the b-quark Yukawa y;, at
two-loop order, setting my = 4.92 GeV.

The normalised distributions in 7 = 73/(2Mp) are shown in figure 1 for both the
H — bb and the H — gg decay channels. These predictions have been obtained with the
scale choices detailed in section 3.2.1 and the uncertainties calculated as explained there.



Because of the resummation of large logarithms of 7, our results provide a physical
description at small 7, as can be seen in figure 1, improving on the resummed-expanded
results presented in ref. [26]. However, the range of validity of the resummed calculation
is still limited to low 7 values, since the factorisation formula we rely on (eq. (2.3)) is only
valid there. Comparing the two decay channels, we see that the H — bb process presents
a higher peak, located at a lower value of 7, with a narrower width. The peak of the 7
distribution in the H — gg case is instead lower and shifted to larger values of 7, with a
broader width. This behaviour is in line with expectations based on a naive analysis of the
Casimir scaling of the two processes.

In order to extend the validity of the calculation to all values of 7, one needs to match
the resummed result to the fixed-order calculation, which provides the physical behaviour
at large 7. Indeed, in this region, the nonsingular contribution becomes sizeable and ex-
ponentiating the singular contribution is no longer the correct approach. The matching
of fixed-order calculations to resummation has long been established at the level of the
resummed observable: the most straightforward approach simply adds the results for the
resummed and fixed-order distributions in the 7 variable and then subtracts the expansion
of the resummed result up to the same order included in the fixed-order result. In this way
the calculation is free from doubly counted contributions up to the given perturbative order
and includes all the higher-order terms properly resummed.

While the approach just outlined works flawlessly for the 7 distribution we are resum-
ming, it is not directly applicable to the construction of a fully exclusive event generator.
In the next section, section 3, we show how this can be achieved by means of the GENEVA
method, allowing us to perform the matching at the fully differential level.3

3 Implementation in the GENEVA framework

3.1 GENEVA in a nutshell

The GENEVA framework allows the matching of a resummed to a fixed-order calculation and
thence to parton shower programs such as PYTHIA [51]. In so doing, it provides theoretical
predictions which are accurate over the whole phase space and which describe realistic
events of high multiplicity. These can then be hadronised and fed into the analysis routines
used by the experimental collaborations. The method for separating events into different
multiplicity bins and for performing the matching has already been described thoroughly
in refs. [27, 29] and related references. Therefore, in this context, we limit ourselves to
restating the primary outcomes as applicable to the case of Higgs boson hadronic decays
up to NNLL%-+ NNLO; accuracy. We remind the reader that in order to achieve a sensible
separation between the exclusive 3-jet and the inclusive 4-jet decay rates, we must also
perform the resummation of 77" at least at leading-log order, as we do in the following.

3For the particular process at hand, there are no nontrivial distributions at leading-order, so, strictly
speaking, one could still perform the matching at the level of the 7 distribution and generate the other
variables needed to achieve a fully exclusive generator uniformly in the remaining phase space.



Dropping the process label i for ease of notation, the GENEVA Monte Carlo expressions
for the exclusive 2-jet, 3-jet and the inclusive 4-jet rates are given by*

dFNNLL/ dFNNLL’

(T3 — { T (Tcut)]NNLO +(Bo+ Vo +W3)(P2)

drye
A,

(Tcut)
dq):; t
+ / (B34 Va)(®3) 0T (®3) < T3

" / 901 (D4) 0[Ta(Bs) < TE™), (3.1)

dFNNLL’ dFNNLL’

(7.2 > Tcut Tcut) { 50T, P(@3)+(B3+V3C)((I)3)_ [MP<®3)] NLos}
% U3(<D3,7§CUt) (9(7.2 > 7-2cut)
+/[O@4 By(®4) 0[T2(24) > T3] 0(T5 < T3™)

dr;}c

do7]
e Ca() (T > )
— By(®3) U (@3, T3 (T2 > T3™) (3.2)
T (To S T5™) = OEKS (®3) (B +V3) (23) 0(To < T™), (33)
dF“ﬁC o o dFNNLL’ dFNNLL’
2T > T T > T = { P () + (By V) ()~ [MP@B)]NLO }
3
/ cut cut
}UN@,T)O(T> TS5, P(80)O(Ts > T5)

+{Ba(24)[1-07 (24) (T3 < T5"™)]

—B3(@]) ULV (@], T3) P(®4) (T3 > T5™) } 0 T2 (1) > T,
(3.4)

dr’ “ﬁi

= (T2 > T3 T3 < TE) = Ba(94) ©7 (94) 0(T5 < T3™) 0 (To(®4) > T3 (3.5)

where the Bj, V; and W; are the 0-, 1- and 2-loop matrix elements for j partons in the
final state.
In the equations above, we have introduced the shorthand notation

d®

480 = APy 6[®N — K (Par)] O (D), (3.6)

to indicate that the integration over a region of the M-body phase space is done keeping
the N-body phase space and the value of some specific observable O fixed, with N < M.

4We make a slight abuse of notation in order to highlight the dependence of the dI'}'° decay rate on the
resolution parameters. When an argument contains a single term, e.g. 75", it means that the corresponding

quantity has been integrated over up to the value of the argument. An argument T > T

implies instead
that the corresponding decay rate remains differential in the relevant resolution varlable for values larger

than the cutoff.



The @O(tb ~) term in the previous equation limits the integration to the phase space points
included in the singular contribution for the given observable O. For example, when gen-
erating 3-body events we use

d®y

16T = dd, §[P3 — ] (94)] O (04), (3.7)

where the map used by the 3 — 4 splitting has been constructed to preserve 7Ta, i.e.
Ta(®F (94)) = Ta(P4) (3.8)

and ©7 (®,) defines the projectable region of ®, which can be reached starting from a point
in ®3 with a specific value of 72. The usage of a To-preserving mapping is necessary to ensure
that the pointwise singular 73 dependence is alike among all terms in egs. (3.2) and (3.4)
and that the cancellation of said singular terms is guaranteed on an event-by-event basis.

The expressions in egs. (3.3) and (3.5) encode the nonsingular contributions to the 3-
and 4-jet rates which arise from non-projectable configurations below the corresponding
cut. This is highlighted by the appearance of the complementary © functions, ©F, which
account for any configuration which is not projectable either because it would result in an
invalid underlying-Born flavour structure or because it does not satisfy the 7a-preserving
mapping (see also ref. [31]).

The term V})C denotes the soft-virtual contribution of a standard NLO local subtraction
(in our implementation, we follow the FKS subtraction as detailed in ref. [52]). We have that

dd,

@04((1)4) ) (3-9)

VE (@) = Va(@g) + [
with C4 a singular approximation of By: in practice we use the subtraction counterterms
which we integrate over the radiation variables d®4/ dCIJg using the singular limit C' of the
phase space mapping. Us is a LL Sudakov which resums large logarithms of 73 and Uj its
derivative with respect to 73. Its exact form is given by

U (T5™, T) = exp [—;‘;ck log? (En )} (3.10)
3

where the Casimir factor C} depends on the flavour content of the 3-jet event,
Cqgg = 2CF + Cy or Cyyy = 3C 4, and we run the coupling at NNLL order.

The term P(Pn41) represents a normalised splitting probability which serves to ex-
tend the differential dependence of the resummed terms from the N-jet to the (IN+1)-jet
phase space. For example, in eq. (3.2), the term P(®3) makes the resummed spectrum in
the first term (which is naturally differential in the ®5 variables and 73) differential also
in the additional two variables needed to cover the full ®3 phase space. These splitting
probabilities are normalised, i.e. they satisfy

d® i1
——— P(P =1. A1
[t P(@ns) (311

The two extra variables are chosen to be an energy ratio z and an azimuthal angle ¢. In the
soft and collinear limit, z = FEgister/(Esister + Edaughter) Where the daughter and the sister



are assigned to be the pair of particles that are closest according to the N-jettiness metric
and which therefore set the value of Ty, i.e. which minimise the quantity

pij = |pil + 15| = |Pi + 1 (3.12)
The daughter particle is defined to be the gluon for ¢ — qg splittings, the quark for

g — qq and the softer gluon for g — gg. These definitions in hand, the normalised splitting
probability is given by

P(@ny1) = APgp (2, 9) d® ndTydzde o1
Zsp fzmin('(TNA;) d2d¢APSp(Z, (25) d@NJrl

where APg,(z, ¢) is the unregularised Altarelli-Parisi splitting function.®

The implementation of the splitting probability requires us to construct the full ®n 41
phase space from ®y and a value of 7Ty. Similarly, we mentioned above that the real
integration in the fixed-order part of the calculation requires us to project from Py
configurations onto ® while preserving the value of 75. Both of these tasks demand a map
that satisfies eq. (3.8) — the construction of such a map is detailed in appendix A.

3.2 Implementation details

In this section we discuss the particulars of the implementation of the Higgs boson decay
processes in GENEVA. Throughout this section we use the same settings and values for
SM parameters as in section 2.2. In the H — bb case, we implement the analytic matrix
elements found in ref. [14], while in the H — gg case we interface to the OPENLOOPS
package [53-55].

3.2.1 Profile scales

The resummation provided by the RGE of the functions in eq. (2.3) correctly accounts for
logarithms of the form log(72/2Mpr) which become large in size for small values of 73. In
the fixed-order region, however, where 75 is larger, such logarithms are more modest in size
and continuing to resum them would introduce undesirable higher-order contributions.

We must therefore switch off the resummation before this happens. This can be
achieved by setting all scales to a common nonsingular scale in the fixed-order region,
UNS = [s = jbj = g, which stops the evolution ensuring that the resummed contribution
is cancelled out exactly by the resummed-expanded. In order to achieve a smooth transition
between the resummation and the fixed-order (FO) regimes, we make use of profile scales
py(7T2) and pg(72) which interpolate between the characteristic scales and ung [56, 57].
Specifically, we have that

HH = KNS
NS(E) = HNSfrun(B/2MH)

MJ(E) = UNSV frun(B/zMH) ) (314)

5We note that the discussion here is simplified in the case of the Higgs boson decay as only final-state

radiation is present. A more detailed discussion including the case of initial-state radiation may be found
in ref. [29].
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Figure 2. The full, singular and nonsingular contributions to the Higgs boson decay rate as a
function of 7 = T5/(2Mp). The left panel shows the process H — bb, the right shows H — gg.

where the common profile function fiy,(x) is given by

p

2
axo 1+<x>] T % 2%,
2x9
ar 2(E0 <z< x1,
_ _ _ 2
frun(x) ~—Yax + (2 a2 al‘g)(l’ ZL‘1) 1 <2< L2, (315>
2(w2 — @1)(w3 — 21)
B B 2
- (2 —ax1 — axs)(z — 13) r9 <z < a3,
2(w3 — x1)(w3 — 22)
1 r3 < x.

This form has strict canonical scaling below x1 and switches off the resummation above x3;
for @ = 1 it matches the form of the profiles used in e.g. ref. [58].

In order to determine the choice of parameters a, x; it is instructive to examine the
relative sizes of the singular and nonsingular contributions as a function of 75 to determine
where the resummation should be switched off. This is done for the two decay channels as
shown in figure 2. We see that the singular and nonsingular pieces become similar in size
at around 7 = T2/(2Mp) ~ 0.3, and therefore set for both processes

HFO = UNS = MH, {$1,$2,$3} = {0.1,0.2,0.3}. (3.16)

We notice that in the limit 7 — 0 the singular contribution becomes an increasingly good
approximation to the fixed-order result, reflecting the proper cancellation of the singular
terms between the fixed-order and resummed-expanded parts of the calculation. We set the

remaining parameters a = 1, axg = 3 GeV /My for the gg channel following ref. [30], while
for the bb channel we set a = 1/2, azg = 2.5 GeV /M.

~10 -



The uncertainties associated with the resummed and fixed-order calculations are esti-
mated by varying the profile scales. For the uncertainty arising from the FO part, we adopt
the usual prescription of varying puro up and down by a factor of 2 and taking the maximal
absolute deviation from the central value as a measure of the uncertainty. This preserves
everywhere the ratios between the various scales pp, @y and pg and so the arguments of
the logarithms which are resummed by the RGE factors are unaffected. In the resummed
case, we vary the profile scales for py and pg about their central profiles while keeping
pr = pro fixed. Specifically, defining a variation function (see e.g. ref. [59])

2(1 — 22 /23) 0<xz<mg/2
feary(@) = 1+ 2(1 —x/23)? 23/2<ax<a23 (3.17)
1 T3 <x

we vary the soft- and jet-function scales such that

Mg(x) = fvary(x) ( )

1) = feary ()" ps(x)

() = ps ()2 ™

i () = ps (@) V2, (3.18)

where 7 = 1/6. In this way the arguments of the resummed logarithms are varied in order
to estimate the size of higher-order corrections in the resummed series while maintaining
the scale hierarchy prpo ~ pg > py ~ \/paps > ps. More details on the specifics of this
prescription may be found in ref. [59]. In addition, we include two more profiles where we
vary all x; transition points by 0.025 simultaneously. We thus obtain 6 profile variations
in total and take the maximal absolute deviation in the result from the central value as the
resummation uncertainty. The total uncertainty is then obtained as the quadrature sum of
the resummation and fixed-order uncertainties. The profiles and their variations are shown
in figure 3 for both the bb and gg cases.

3.2.2 Comparing the spectrum and the derivative of the cumulant

Since the profile scales which we just discussed have themselves a functional dependence
on Ta, the integral of the spectrum that one obtains from eq. (2.5) is not exactly equal to
the cumulant in eq. (3.1) evaluated at the highest scale.

Choosing canonical scaling, i.e. u oc 75X, we have

7’2max dI‘\NNLL’ dFNNLL'
/ (T2 u(T3"™)) + O(NLL), (3.19)
0

AB,dT5 (u(T2))dT2 = 4,

where 75"?* is the upper kinematical limit. By integrating the spectrum we therefore obtain
not only the cumulant but also unwanted additional terms of higher order. Depending on the
convergence properties of the perturbative series, these additional terms can be numerically
relevant and cause a sizeable difference between the inclusive decay rate obtained from the
resummed calculation and the FO result. To obviate this problem, we supplement the
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Figure 3. The profile scales from eq. (3.14) for the bb case (left) and gg case (right). The red (blue)
curves show the jet (soft) scale py (ug) and its variations. Variations due to shifts in the transition
points x; are shown as dashed lines, while the variations in eq. (3.18) are shown as dashed-dotted
lines. Variations of p g result in an overall rescaling of these curves and hence are not shown.

spectrum in egs. (3.2) and (3.4) with an additional higher order term. The contribution
of this term is restricted to the region of 73 where the spurious N3LL terms are sizeable,
and vanishes in the FO region; crucially, upon integration it ensures that the FO rate is
recovered. It takes the form:

d dFNNLL’ dFNNLL’

k(T2) TET{&(T%%(E)) TG

(1n(T2))| 5 (3.20)

where x(72) and pp(72) are smooth functions. It is clear that this vanishes in the FO
region where pp(72) ~ My as required — in order to restrict its contribution further, we
also choose k(732) to tend to zero in this region to minimise its size before exact cancellation
is reached and choose the profile scale pp(72) to reach My at a lower value of 73 than the
rest of the calculation. This prevents the accuracy of the tail of the spectrum from being
spoiled, while keeping the resulting changes in the peak region contained within its scale
uncertainty band. We tune x(72) to recover the correct inclusive rate, both for the central
FO scale and also for its variations such that the result of integration is identical to a FO
calculation for inclusive quantities.

3.2.3 Power-suppressed corrections to the nonsingular cumulant

The integration of the differential decay rate in eq. (3.1) over the ®, phase space produces
an NNLO accurate total width. For differential quantities, however, the O(a2) terms in
eq. (3.1) are guaranteed to be NNLO accurate only up to power corrections in 7" since
any projective map one could devise could not preserve all ®5 quantities simultaneously.
This fundamental limit on the accuracy of event generators actually allows us to sidestep
the problem of implementing a full NNLO subtraction — since the total width is the
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Figure 4. The missing O(a?) nonsingular contribution to the cumulant as a function of 71 for
the H — bb process (left) and the H — gg (right). The shaded band denotes the statistical error on
the spectrum rather than the cumulant, which we include to help gauge the size of the uncertainty

on the power corrections as a function of 7M.

only quantity that is certain to be NNLO accurate, we can drop all the O(a2) terms in
the cumulant and achieve the correct NNLO width by reweighting. That is, rather than
implementing the full form of eq. (3.1), we instead use

—~—

drg/{c . dFNNLL’ . dFNNLL’ .
cuty _ cuty cu Bo(® P
1@, 2 =g, ) | —gg, (T2 R 2) + Vo(®2)
dd
+/d@2 Bs3(®3) 0 (T2(®3) < T™) (3.21)

which requires only a local NLO subtraction. The remaining nonsingular terms take
the form

dFHOHS
d;>2 (T5) = [asfi(T5M, @2) + ol fo(T5™, 2)| T3 (3.22)

where the functions f;(75%, ®9) are at worst logarithmically divergent in the small 751
limit. We include the NLO term proportional to fi (75", ®3) in eq. (3.21) via an on-the-fly
NLO; calculation, but neglect the fo(75", ®9) piece. The size of this neglected term as a
function of the cut is shown in figure 4 for both processes. We see that at our default value
of 7% = 1GeV the missing O(a?) terms are of a size ~ 107° GeV in both cases. This
amounts to a relative correction of 0(0.4%) for the bb channel and of O(1%) for the gg.
Smaller power corrections could naturally also be obtained by modifying the factorisation
formula eq. (2.3) to include subleading power contributions [60, 61] or by lowering further
the value of 7. In this limit, however, the calculation suffers from numerical problems
originating from the stability of the matrix elements and of the NLO subtraction procedure
close to extreme soft or collinear configurations, which motivates our default choice.

In order to correct for this discrepancy and obtain the correct NNLO inclusive decay
width, we may simply rescale the weights of the ®5 events in such a way that we match
the known analytic result at NNLO. We are thus able to include the effects of the fo term
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in eq. (3.22) on the total cross section that would have been present had we implemented
eq. (3.1) literally. Since neither eq. (3.1) nor our approach in eq. (3.21) achieves the exact
O(a?2) ®, dependence of all observables, our approximation does not inherently limit the
accuracy of our predictions.

3.2.4 Interface to the parton shower

We briefly recap the main features of the parton shower interface in GENEVA here and refer
the interested reader to section 3 of ref. [29] for a more detailed discussion.

The partonic jet decay rates dI'y, dI'y'® and dI'Yy each include contributions from
higher multiplicity phase space points, but only in those cases where Tn(Py) < ’T]{}“t. In
order to make the calculation fully differential in the higher multiplicities, a parton shower
is interfaced which adds radiation to each jet decay rate in a unitary and recursive manner.
Ideally, the shower should leave the values of the jet rates and their accuracy unaffected,
restoring the emissions in dI'y'® and dI'y'® which were integrated over when the jet rates
were constructed and also adding extra final-state partons to the inclusive dI'{Y.

For illustrative purposes, we consider a shower strongly ordered in T]\; such that
To(®3) > T3(P4) > ... A shower history of this kind could be constructed by taking
the output of a shower ordered in a more conventional variable and reclustering the partons
using the N-jettiness metric Ty .

In general, the requirement of the preservation of the accuracy of the jet rates after ap-
plying the shower on a phase space point @ sets constraints on the point ® s reached after
the shower. For the cases in which the showered events originate from ®5 events, the main
constraint is that the integral of the decay rate below the 7" (which is NNLL/+NNLO
accurate) must not be modified. The emissions generated by the shower must in this case
satisfy T2(®n) < T5M, so that they recover the events which were integrated over in the
construction of the 2-jet exclusive decay rate and add events with more emissions below
the cut. In case of a single shower emission we require also that the resulting ®3 point is
projectable onto @9, as these are the only configurations at this order which are included in
eq. (3.21). Both of these conditions can be implemented with a careful choice of the starting
scale of the shower. The preservation of the decay rate below the cut is then ensured by
the unitarity of the shower evolution. In practice, we allow for a tiny spillover up to 5%
above T3 in order to smoothen the transition.

The showering of @3 and ®4 events must be treated more carefully in order to preserve
the NNLL'4+NNLO accuracy of the 73 spectrum. Crucially, we must ensure that the ®,4
points produced after the first emission are projectable onto ®3 using the T3-preserving
map discussed in appendix A. Since the shower cannot guarantee this, we instead perform
the first emission in GENEVA (using the analytic form of the LL Sudakov factor and phase
space maps) and only thereafter allow the shower to act as usual, subject to the restriction
Ti(®n) < T3(P4). We apply this procedure only to the ®3 events and find that

drg/lc cut cut dF]:\’)AC cut cut cut
dds (75>75 775 7A3): dds (75>7; 775 )U3(75 7A3) (323)
dryy dry;
G (> T T To> Ag) = g (T > T3 T > T3 (3.24)
MC
o S (T > T T To) x P(@a)0(Ag < Ty < T™).
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By choosing Az ~ Aqcp, the Sudakov factor Us(T5", A3) becomes vanishingly small
and we can relax the shower conditions on the 3-jet contributions. The showered events
therefore originate almost exclusively from either dI'§'® or dI'\Y.

We choose starting scales of 75" and T3 for the @9 and ®3 events respectively. For
the ®4 events, the starting scale ¢ needs to be a measure of the hardness of the splitting,

for example the 3-jettiness value 73. Here we follow the choice made in ref. [40] and set

E. daughter

t= 2pdaug;hter * Dsister 5 (325)

Esister

where the energies are defined in the Higgs boson rest frame. After interfacing to the
PYTHIA8 parton shower, we expect the accuracy for observables other than 75 to be no
worse than that of the standalone PYTHIAS shower.

3.2.5 Nonperturbative power corrections and hadronisation

The approach described up to now does not take into account nonperturbative power cor-
rections, which can significantly affect the partonic predictions. The framework of SCET
allows these nonperturbative effects to be systematically included via the introduction of a
shape function f(k, x) modifying the soft component as [44, 62, 63]

So(Ta ) = / Qe SE (T3 — o 1) £k ), (3.26)

where S5 is the perturbative soft function. At small 75 ~ Aqcp the shape function
gives an O(1) contribution to the cross section, while for larger 73 values one can show
that the dominant contribution is of O(Aqcp/7T2) and results in a overall shift of the 73
spectrum [56]. The same conclusions can be reached using a dispersive model and an
effective value for the strong coupling constant in the nonperturbative regime [64-67].

The resummed predictions obtained by GENEVA at the partonic level only include the
perturbative soft function, and we delegate the provision of nonperturbative ingredients to
the hadronisation models used in PYTHIA8. Therefore, after the showering stage, the events
are interfaced to the phenomenological hadronisation model in PYTHIA8 without further
constraints on the kinematics of the hadronised event. This means that the hadronisation
can potentially cause significant shifts of the 75 spectrum.

It is known that the 2-jettiness and the thrust observables receive different hadro-
nisation corrections, due to the different treatment of the hadron masses in their defini-
tions [68, 69]. Since there are currently no experimental data with which we can compare
for these decay channels, in this work we consistently use the definition of 73 in eq. (2.1)
even for hadronised events, despite the larger power corrections compared to schemes with
a different mass treatment. This is different from the approach taken for the ete™ — jets
study in ref. [27], where the definition based on thrust was used to compare to LEP data.

It is important to notice that we do not include uncertainties from these nonpertur-
bative contributions in the results presented in the next section. In our approach, a crude
estimate of their size could in principle be obtained by varying the tune parameters of the
PyTHIA8 hadronisation model, but a more detailed study of this goes beyond the scope
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inwo (1)) GeV Analytic GENEVA, T3 =1GeV
i=b,u=Mpy |3.053x1073 | 3.042 x 1073£0.2 x 107
i=0b, p=2Mpg | 3.104 x 1073 | 3.094 x 107340.2 x 107°
i=0b,u=Mpyg/2 | 2973 x 1073 | 2.961 x 10734+0.2 x 10~°
i=g, p=DMpg |3374x107* | 3.338 x 107%4+1.2 x 1076
i=g, pn=2My | 3189 x 107* | 3.178 x 107440.8 x 1076
i=g, u=Mpg/2 | 3.491 x 107* | 3.407 x 10~*4+1.8 x 1076

Table 1. Comparison of Higgs boson partial widths obtained from NNLO analytic expressions
and at the partonic level from GENEVA. Note that, due to the presence of the power corrections
displayed in figure 4, the values do not agree exactly within the statistical error and therefore a
reweighting must be performed.

of this work. It is worth noting, however, that in any calculation obtained by matching
higher-order calculations with parton shower one has to carefully evaluate which parameters
are truly encoding nonperturbative effects and should therefore be tuned.

4 Results

In this section we present the full GENEVA results obtained by matching the resummed
calculation to the fixed order. We adopt the same values of SM parameters as in section 2.2
and set TS = T = 1 GeV. We interface to the PYTHIA8 generator which showers our
events® and use the ete™ tune 3, turn off QED effects and prevent the decay of b-hadrons.
We set the strong coupling used by PYTHIAS to ag = 0.118, although ideally, one should
perform a dedicated tune to accommodate for this change.

With the setup as described, we verified that we obtain the correct NNLO decay rate
up to the power corrections shown in figure 4. The partonic results are presented for each
channel in table 1, where the analytic values have been obtained using the formulae appear-
ing in appendix B. In general, the GENEVA method also guarantees NNLO accuracy for
distributions differential in the Born variables of the process (see for example ref. [31]). In
the case of a spin-0 boson decaying into two particles, however, the Born phase space is pa-
rameterised by only two angles and is flat in both — there is therefore no non-trivial shape
information which can be compared to a fixed-order calculation. We have, however, vali-
dated our NLO calculations of H — bbg and H — ggg/H — qdg against AMC@QNLO [70]
and found perfect agreement. We checked that by increasing the 7" to ~ 5 GeV we obtain
smaller power corrections (see figure 4) — however, since this would limit our higher-order
resummed predictions for the shape of the spectrum to 75 > 5GeV, in the following we
continue to use 75" = 1 GeV and accordingly reweight our events in order to obtain the
correct total decay width.

5The publicly available PyTHIA8.235 version we used has difficulty parsing events read from an LHEF
file in which only one particle appears in the initial state — we therefore add dummy neutrino beams using
code provided by S. Prestel to mimic a collider process.
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Figure 5. Validation of the 75 spectrum in GENEVA for H — bb. The partonic NNLL/+NNLO 75
resummation is compared to the showered results, before the addition of nonperturbative effects.
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Figure 6. Comparison of the showered and hadronised 73 spectra in GENEVA for H — bb.

A comparison of the NNLO-+NNLL' results at the partonic and showered levels is
presented in figure 5 for the H — bb process and in figure 7 for the H — gg process, while
the corresponding comparisons of the showered and hadronised events are shown in figures 6
and 8. The panels in the plots show three different regions of the 2-jettiness spectrum:
the peak (leftmost panels), where resummation effects are expected to be dominant; the
transition (centre panels), where the resummed and fixed-order calculations compete for
importance; and the tail (rightmost panels), where the resummation is switched off and
the fixed-order calculation provides the correct physical description. We observe that in
the bb channel the 75 is well preserved by the shower, while hadronisation effects shift the
distribution to higher values of 73 across all regions. This can be compared to the results
obtained in ref. [27], keeping in mind the aforementioned difference between the 2-jettiness
definitions used at hadron level and the different energy scale which result in competing
contributions to the shift.

In the gg channel, the effect of the shower on the T3 spectrum is greater, especially at the
lowest values of 75, but it preserves the shape of the distribution to within the scale variation
bands closer to the peak and in the transition region. We also notice that the partonic and
showered predictions give a negative cross section for very small values of 72, below the
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Figure 7. Validation of the 73 spectrum in GENEVA for H — gg. The partonic NNLL'+-NNLO 75
resummation is compared to the showered results, before the addition of nonperturbative effects.
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Figure 8. Comparison of the showered and hadronised 73 spectra in GENEVA for H — gg.

nonperturbative freeze-out of the profile scales. This behaviour should not be concerning
as it happens in a region where the perturbative resummed results are already questionable
and, as mentioned before, we do not include any nonperturbative uncertainty. We have
verified that the size of the negative value is augmented by the nonsingular corrections
which we include via an additive approach. Indeed, when examining the resummed 75
distribution alone, the behaviour at small 75 remains negative but is compatible with a
value of zero to within the quoted uncertainties.

A peculiar feature is observed in the first bin of figure 7, which contains the cross
section below 75" and is positive. This is again a consequence of the missing nonsingular
corrections in eq. (3.21), which are included by the reweighting procedure. Since these
are particularly large for this process, see figure 4, their effect is to change the sign of the
cumulant below 75"t

We also observe somewhat larger effects on the spectrum due to hadronisation compared
to the bb case, particularly in the peak region. The seemingly unusual behaviour at small 75
is a consequence of the already discussed shift of the spectrum after hadronisation resulting
in a smearing of the first bin. We stress again that the small error bands reported are due
to the lack of nonperturbative uncertainties.
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Figure 10. Jet broadening and the JADE two-to-three differential jet rate at the partonic, showered

and hadronised levels for H — gg.

Finally, in figures 9 and 10 we show the results for distributions other than the

2-jettiness that we use as input to our GENEVA implementation, for the bb and gg cases

respectively. We consider the JADE clustering metric yo3 for separating two exclusive jets
from three or more |71, 72| and the jet broadening (Br) [73, 74] event shape defined as

follows

1
Br = ——= > |pi x 07|, (4.1)
2> k|| ; '

where the sum runs over all final state particles and np is the thrust axis.
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It is important to remark that we do not expect the GENEVA method to provide a
higher formal accuracy for these observables, but it is nonetheless interesting to observe the
effects of our predictions at the various stages. In general the bb decay channel is better
behaved after showering, providing results that are compatible with the predictions at the
partonic level over the majority of the phase space.

We notice that, at small values of the jet broadening, some unappealing artefacts
appear. We have verified that these features are a consequence of the additive matching
to the fixed-order calculation, used to include the nonsingular corrections. They are not
present, for example, when examining the jet broadening distribution of events obtained
from the 75 resummed calculation alone. We therefore conclude that the secondary peak
which appears constitutes an effect beyond the perturbative accuracy of our formulae,
despite being numerically large. In the future, one could explore whether by exploiting
the freedom in the handling of the recoil by the 3 — 4 mapping one could ameliorate this
undesirable effect — however, we do not pursue this further here. We also see deviations for
particular values of the observables after hadronisation and hadron decays are included. In
particular we notice a significant shift in the JADE y93 observable for both decay channels,
which is not unexpected for this specific jet-clustering measure.

5 Conclusions

In this work we have resummed the 2-jettiness at NNLL’ for hadronic Higgs boson decays
in the bb and gg channels via a SCET approach. Compared to previous fixed-order results,
we observe the expected improved behaviour in the small 73 region, where the physical
Sudakov peak is now described correctly. We have also implemented these processes in the
GENEVA framework, which has allowed us to match the resummed calculations with NNLO
fixed-order predictions and to a parton shower. This has required an examination of the
interplay of the singular and nonsingular contributions, in order to determine the region
in which resummation effects are dominant and hence design profile scales which provide
a smooth transition between the resummed and fixed-order regimes. As a result we have
produced NNLO accurate event generators interfaced to the PYTHIA8 parton shower for
the two processes, which provide accurate predictions in all regions of phase space.

We compared predictions at the partonic, showered and hadronised levels, finding the
expected good agreement for the total decay rates and for the 7s distribution up to the
showered level. We observed larger differences due to the hadronisation, especially in the
gg channel.

The completion of this work will eventually allow us to combine our H — bb result
with the GENEVA V H production generator in the narrow width approximation, yielding
a full NNLOPS generator for the signal channel of the IT1~bb final state. Given the recent
observation [3, 4] of the Higgsstrahlung process by the ATLAS & CMS experiments at
the LHC, this will constitute an important phenomenological result. It will also allow a
direct comparison with the only other existing NNLOPS generator for this process [40]. In
light of the findings in ref. [26] regarding the convergence of the perturbative series and the
N3LO results at fixed order which are also available for this decay channel, it might also be
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interesting to consider building an event generator at N3LOPS level. Another avenue for
development might be the inclusion of a finite b-quark mass in the generator, given recent
work on fixed-order calculations [19]. We leave this to future consideration.
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A Constructing a 2-jettiness-preserving map

The map used for 3 — 4-body splittings and 4 — 3-body projections presented in this
section was first developed and applied to the process eTe™ — jj in ref. [27]. Here, we detail
the construction of the map as used in that work and in addition provide the translation
to the splitting variables 75, z and ¢ needed for the Higgs boson decay case.

We start by considering the case of a splitting, which takes as input N-body phase
space points ®y and generates from them (N41)-body phase-space points ® 1. Since we
wish to calculate the NLO distribution in 2-jettiness, 7Ta, while still generating exclusive @3
points, we must use a map that produces ®4 points with the same value of 75 as the ®g
points with which we started. Unfortunately, the construction of such a map is challenging
since 73 is a global variable. A more manageable approach is to seek a map which preserves
not the exact 2-jettiness, 75, but instead a related quantity, the fully recursive 2-jettiness,
TR, defined by the following procedure:

1. Recursively cluster the starting phase space point ®,; down to a ®3 point using the
N-jettiness metric for final state particles

pij = |pil + |Pj] — 1Pi + Pj. (A1)
2. Measure 75 on the resulting ®3 point.

The quantity we obtain through this procedure has the same singular structure as the exact
T3, with any differences being captured by the nonsingular contributions.

Starting from the 3-parton phase space point @3, which is the input of the splitting
map, we label its momenta as

p1, p2, p3 with  pi > pd > pJ. (A2)
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The thrust axis will lie along the direction of the hardest parton (i.e. along pi), and we
have that
TR =Ty = 2Eem — 4|1 (A.3)

When we split to a 4-parton event and then cluster back to a massive 3-parton event, the
thrust axis is still determined by the most energetic of the three partons and we have that

TER = 2B — 4|Prmax] - (A.4)

If we are to preserve Ty &, clearly eqs. (A.3) and (A.4) must be equal and so the hardest
parton in the massive 3-parton event obtained after reclustering must be parton 1. We can
then split the massive leg to produce a 4-parton point. The emitter may or may not be the
hardest parton — these two cases must be treated separately.

We will now detail how the ®4 point is obtained from the ®3 point in the two separate
cases while preserving 7 ®. In addition, we will show in each case that taking the singular
limits of the Jacobian of the transformation reproduces the limits of the FKS Jacobian and
that our fixed-order subtractions in eq. (3.9) therefore survive unaltered.

A.1 Case 1: the emitter as hardest parton

We deal first with the case in which the emitter is the hardest parton, which we call the FR
primary (FRp) map. In this case the emitter is p; and, denoting the sum of the momenta
of the split pair by k, we must have that k || 1 in order to keep the thrust axis in the
same direction. We must also have |k| = |p1|. These conditions therefore fix the sum of the
three-momenta of the split pair.

In order to proceed with the actual construction of the split configuration we use the
same choice of variables as in the FKS approach, and therefore adopt a similar notation: we
label the momenta in ®3 by ki, ko, k3, with the emitter chosen as k3. For the ®, momenta we
use ki,..., ks with the split pair k3, k4 and k = k3 + k4. The recoil momenta are defined as

]%rec = ffl + ];52 ; krec = kl + k2 . (A5)

As discussed above, the splitting preserves the three-momentum of the emitter which
constrains the momentum of the split pair and the recoil:

];:3 = (E‘g, E?})a krec = (E?eca _%3) = (Ecm - E‘g, -

), (A.6)
k= (ko’ 1?;3)’ krec = (k?ecv - 3) = (Ecm - k()’ - .

) (A7)

We must now determine k° and define the recoil constituents such that they remain massless

ks
ks

and sum to kyee. Since we have that |k| = “?;3’ = kY, we may obtain an expression for k:
K= (K0)? — k[* = (F°)% — (K)*. (A.8)
Recalling the definitions of the FKS variables bealés ={{,y, 0}

1
k8 = B 2= 2001 ). (A9
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we may substitute in and solve the quadratic equation; one obtains
. ) 9 1/2
ko = iEcmg(l - y) == ((%%)2 - <2Ecm£> (1 - y2>> ) (A.IO)
1/2

2
8=-3 cmgyi<<i%§>2—(§Ecmg) <1—y2>> . (A1)

Having determined k° in terms of ¢ and y, we must carefully examine which solutions are
kinematically allowed. The specific @rFaIéS variables determine which (if either) of these roots
are permitted. In addition to ensuring that the solutions are real, we must also have that
KO > l_fg and that k:g > (0. The reality constraint gives

_ 1 2k9 1
k§>§Ecm§\/1—y2 = < =3 (A.12)

Ecm\/l—yQI

The effect of the remaining two constraints is determined by the sign of y. For y > 0, only

the positive root is a valid solution (since kg < 0 for the negative root), and we have a
stronger constraint on &:
i 2k
y > 0 : positive root for & < —=. (A.13)
Eem
For y < 0, the positive root is valid over the range in £ set by the real constraint, and
the negative root is valid for & > 2k3/Fep:

2k9 1
< 0: positive root for O A.l4
Y B VT -
2k9 29 1
negative root for CED T R — A.15
& Ecm 6 Ecm AV4 1-— y2 ( )
It remains for us to construct the four momenta of the ®4 event. We define

kO
d==—1, (A.16)

k3

and the parameter
k k9

Brec = | rec| - 3 (Al?)

1.0
krec

Eem — kS

We assign the recoil by defining a boost B; along k... with magnitude 3; and a constant
scaling of momenta «, so that

k‘i = Oé(Btk’i) s 1= 1, 2. (A.18)

Boosting along the recoil direction and then rescaling momenta allows us to keep the recoil
three-momentum fixed. We can solve for the parameters o and §; using

krec = a(Btkrec) s (Alg)
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which gives two constraints:

k?ec = O‘thgl(“)ec(l + /Btﬁrec) 5 (AQO)
|];:rec| = O"Yt]%?ec(ﬁt + /Brec) . (A.21)

These can be solved in terms of § and E;g to obtain

2 5 -1
B = — 2rec_ o , a=1/1— 5152 (1 + Bﬁ;) . (A22)

rec

For the splitting to exist, we must also ensure that 0 < §; < 1. Rewriting 3; as
_ K5 (KO — k5)
- Eg(ko - Eg) + Ecm(k](r)ec - Eg)
o Ecm(kl(r)ec — Eg)

kg(ko - kg) + Ecm(ko B kg) 7

rec

B (A.23)

=1

(A.24)

we see that for k9 k0. > Eg (i.e. for timelike k, kyec), the condition on [ is satisfied.

r i rec

Specifically, we require
k) <k < Eepy — K. (A.25)

The upper bound on &Y implies the additional constraint
2k

r<1l——=
Ecm

(A.26)
where z = k/E?_. This can be translated into a constraint on ¢ and y. We may then split
k into ks and k4 using the FKS variables in the same way as for the FKS splitting.

We can also invert the procedure and construct the projective map from &4 to Ps.
Again we must preserve the three-momentum of the split pair, so that

by Kk
‘1)3 : 153

&

(kov E) ) krec - (Ecm - k07 _E) y (A27>
(1, k), & —k). (A.28)

krec = (Ecm - ‘E‘7
We need only now define the individual partons in the recoil, which we achieve by using
the same boost technique as before. Defining

ki = B! <;k1) (A.29)

where the inverse boost is now along —ky e, as before we can obtain two constraints:

-

Eem — || = 2 (k. = BilR)) (A.30)

R = 2K = Bikfec). (A.31)

rec

Solving, we naturally recover the same a and f; as in eq. (A.22). In this case, however,
the constraints 0 < 8; < 1 and 0 < a < 1 are automatically satisfied so that the projection
from any ®, point onto a ®3 point is well-defined.
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Finally, we must show that the limits of the splitting Jacobian are indeed equivalent
to those in the FKS case. After manipulation of the above expressions, we find that

A®y(q; k1, ... ks) = Jerpd®s(q; ki, . . ., k3)dDEES (€, 4, ¢), (A.32)
where 1
FKS _
AR = pdeduds (A.33)
and

2K — Eend > . (A.34)

Jrrp = B2

Substituting eq. (A.10) into eq. (A.34), one can verify that taking the limit « — 1 and
expanding about £ = 0 or y = 1 one obtains the soft or collinear limits of the FKS Jacobian,
see e.g. section 5 of [52]. This means that one can use the same counterterms as those of
the FKS subtraction to obtain a local cancellation of the infrared divergences.

A.2 Case 2: the emitter as a softer parton

In the case where the emitter is not the most energetic particle, the FRp map is no longer
appropriate because we no longer need to keep the thrust-axis aligned with the emitter.
In this case, we can use instead the Catani-Seymour (CS) map |75]. For example, if we
assume the emitter is po and perform the splitting considering ps as the spectator parton,
the hardest parton p; is then unchanged by the splitting and the quantity (ps + p3)? is
preserved.” This means that the thrust axis remains along 5} and that the value of T} is
also unchanged. It is left for us to show that the singular limit of the Jacobian when using
the CS map with FKS variables is the same as in the FKS case up to an overall rescaling.

To describe the splitting in this case we adopt the CS notation, where p;; is the emitter
and pyg is the recoil in the ®3 phase space. The daughters of the splitting are labelled p;
and p;, while p;, is the recoil in the ®4 phase space:

Pij + Pk = pi + pj + Pk = Pij + Pr- (A.35)

For the case at hand, we begin by factorising ®4 into the 4-parton CS phase space and
a radiation part

dd, = dO§5(1 — yij4) E2,dPraa (2, Qo) (A.36)

where
i - Pi p.+p, 2
Yijh = ———— = A(’ A i) 5 (A.37)
pi-pj+pi-pe+pi-pe (i +Dj+DPr)

and x,{2 are a set of variables which parameterise the splitting p;; — p; + p;. We now
wish to express the {x,cos@} in terms of the FKS variables {£,y} which we do using the

"When the emitter is instead ps the roles of the emitter and spectator are interchanged but the same
quantities are preserved.
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defining relations of the CS and FKS variables:

2

- p -

Pij = Dij + 2~“zy — Pk (A.38)
Z] :
1
PZQ = *Ecmga (A'4O)
{= (pzj + |pij| cos 6). (A.41)
Solving, we find that
$E02m ~0> <~0 ngm ~0>2
m —pi | +1/ | D + —xE2_cosf, A.42
c 6 <plj 21?1]' Pk k 1] 2]91] pkpk cm ( )
2 ‘I.Ecm ~0 -
y=1—aE% |Emf sz T p — —Emé : (A.43)
Dij -

The Jacobian of this transformation is given by

dx dcos 6 2pY. 2 2pY; - 2|pijl -
drdeost _ (2 25y 21pig| A.44
ddy J(z,cos6;&,y) = ¢ (Ecm 5) (Ecm g) < Eem ) A

so that we have

2 -
Ay = do§5(1 - yij,k>(47;—2;rJ<x, cos 0; €, y)dedyde (A.45)
= dOR°JiRs (€, y)dd g, (A.46)

and the total Jacobian is

(€y) = y pw IAWE AN (W)_l (A.47)
Jeirs(&y % - r E2.¢ o § o 3 o . :

The soft and collinear limits of this expression are

JiRs(€ = 0,y) = EZ.¢, (A.48)

JS(6y = 1) = B2 ¢ (1— § ) (A.19)

gm ax

which are exactly the soft and collinear limits of the Jacobian in the usual FKS map. Once
again, the consequence is that the subtractions are precisely the same as in the FKS case
and we are therefore able to use the CS mapping consistently with the FKS subtractions.

A.3 Recasting the mapping for use in the splitting functions

The mapping which we have constructed in this appendix is used not only in the fixed-order
pieces of egs. (3.2) and (3.4) but also to make the resummed spectrum fully differential in
®, via the splitting function defined in eq. (3.13). We must therefore be able to construct
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a ¥4 phase space point using the mapping given a ®3 point and values of three splitting
variables.® This can be achieved ¢ la FKS, but in order to do so we must express our
splitting variables in eq. (3.13) in terms of the FKS variables.

We consider four momenta pl,, pf, py before the splitting producing a configuration
p1, P2, P3, p4 afterwards and assume the hierarchy F1 < Es < F3 < E4. Our splitting
variables are defined to be the azimuthal angle ¢, the 3-jettiness 73 and an energy ratio z:

T3 =2 (El + Ey — |ﬁ12|), (A50)
Eq

where |p12| = [p1 + p2|. Rewriting, we have that
1 -
By ==z 573 + |Pral ),

1
Ba=(1-2) (57 + Il )

1 .
Esy = My — 575 — |Pi2l, (A.52)
while the energy hierarchy which we have assumed limits z to the range
M 1
2—17H4<z<7. (A.53)
575 + |P12| 2
From the definitions of the FKS variables, we have that
2z (1
=— | = D" A.54
3 My (2734‘\]012\)’ (A.54)
AT |5
y—1__ T+ f”'pwt . (A.55)
82(1 — 2) (575 + [Pr2l)
and the Jacobian of the transformation is given by
- - = 11 9lp
@ 20pie]) [32T5 — (1= 2ol ] + T [1 = T5(1 — 2) + 2z[pia]] laz%,ﬂ
split = (A.56)

Mpz(1—2)? (573 + \1512|)2

It remains for us to determine the quantity |pi2| in terms of the ®3 momenta. This
depends on whether the FRp or CS map is being used. In the FRp case, this is rather
straightforward — the FRp map preserves the value of |pj2| by construction and so we
have that |pi2| = |p5]. Thus, the last term in the numerator of eq. (A.56) disappears and
the expression simplifies. In the CS case, matters are slightly more complicated. The map
preserves the four-momentum of the most energetic particle p) while pj is the spectator;
from the definition of the CS variables, we have that

pa =Pl
p3 = (1 — y12.3)p5- (A.57)

8This is of course also necessary when considering the 2 — 3 splitting functions. However, since

we directly use the FKS map in that case, we do not document here the simpler change of variables

{@2,6,9,0} = {P2, T2, 2,6}
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Using the definition of y;; 1 in eq. (A.37), we find that

7—2
M- Mp B+ (1 _ 74@,121]),3)2) E,
[p12| = T , (A.58)

Y —
(P9 +p5)?

where the right hand side is expressed solely in terms of primed quantities and splitting
variables. We may then substitute into eq. (A.56) which provides us with all the information
we require.

B NNLO decay rates
For convenience, we list here the NNLO decay rates of the Higgs boson to b-quarks and to

gluons, taken from [11, 24]. In the following, Ly = log(u?/M%) and L; = log(u?/m3), we
have set N. = 3 and ny is the number of light active flavours.

Tvro (1) =Th (1) { 1+ <as(u) > [68 +8LH]

4 3
as(p) 2 [10801 767> 1696 ,
+ — 5 —312((3)+—— Ly +T6L3
4 9 3 3
130 872 32 176 8
T <—3+9+3C(3)—9LH—3L§,>H (B.1)
s 14 4
F%Nuﬂﬂ)_r%00{1+<alf))[95+22LH+H€<—:;—3LH)]

2

149533

_|_<O‘Z(M)> [ 18 — 12172 —990¢ (3) +3301L ; +363 L%, +38L,
vy

9 3

508 472 28 4

2 2

L 4T Ly+-L B.2
+n£<27 9 +3 H+3 H>:|} ( )
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