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It is known that a plasma in a magnetic field, conceived microscopically as a system of point

charges, can exist in a magnetized state, and thus remain confined, inasmuch as it is in an ordered

state of motion, with the charged particles performing gyrational motions transverse to the field.

Here, we give an estimate of a threshold, beyond which transverse motions become chaotic, the

electrons being unable to perform even one gyration, so that a breakdown should occur, with

complete loss of confinement. The estimate is obtained by the methods of perturbation theory,

taking as perturbing force acting on each electron that due to the so–called microfield, i.e., the

electric field produced by all the other charges. We first obtain a general relation for the threshold,

which involves the fluctuations of the microfield. Then, taking for such fluctuations, the formula

given by Iglesias, Lebowitz, and MacGowan for the model of a one component plasma with

neutralizing background, we obtain a definite formula for the threshold, which corresponds to a

density limit increasing as the square of the imposed magnetic field. Such a theoretical density

limit is found to fit pretty well the empirical data for collapses of fusion machines. VC 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4745851]

The existence of a transition from order to chaos in

Hamiltonian systems, as a generic phenomenon occur-

ring when a perturbation is added to an integrable sys-

tem, is a well established fact. This fact involves deep

mathematical features (see for example Ref. 1) and was

made popular in the scientific community through the

striking pictures of H�enon and Heiles2 and the discov-

ery, by Izrailev and Chirikov,3 which the ordered

motions found by Fermi, Pasta, and Ulam in their

model
4

become chaotic above a certain threshold (see

Figs. 4.3 and 4.5 of the review 5 or 6)). Transitions of

this type were met also in the frame of plasma physics,

in connection with the destruction of magnetic surfa-

ces,7,8 and also with the chaoticity thus induced on single

particle motions.
9

See Refs. 10–12. On the other hand, in

plasma physics, a phenomenon of great relevance exists

that is yet unexplained, and for which we propose here

an explanation just in terms of a transition from order

to chaos. We refer to the loss of plasma confinement, a

plasma collapse that is met when the plasma density is

increased beyond a certain density limit (see Ref. 13,

Fig. 3). Let us recall that confinement (i.e., keeping the

charged particles away from the walls) is actually

achieved by means of a suitable magnetic field, the form

of which depends on the concrete machine (either just a

field imposed from outside or a superposition of the

imposed one with that due to a plasma current). So,

when the phenomenon of destruction of magnetic surfa-

ces was understood, people thought that it might play a

role in explaining the breakdown occurring at the den-

sity limit (see for example Ref. 14). However, such con-

siderations did not prove sufficient to explain the quick

collapses of plasmas. Here, we propose a solution of a

different character, completely unrelated to peculiarities

of the field lines, up to the point of applying even in the

extremely idealized case in which the field is uniform, so

that the field lines are just straight parallel lines, cover-

ing the whole space (and the plasma is uniform too). We

refer to the existence of a magnetic pressure, which is

essential in keeping the particles away from the walls.

The point is that such a pressure exists inasmuch as the

plasma is diamagnetic, which means, in microscopic

terms, that each electron is equivalent to a magnetic

moment, just in virtue of its dynamical property of per-

forming gyrational motions transverse to the field lines.

This is the kind of ordered motions we are referring to.

Indeed such ordered motions persist indefinitely in the

unperturbed case, when one neglects the perturbation

due to the so called microfield, i.e., the microscopic elec-

tric field acting on each charge and due to the Coulomb

interactions with all the other ones (see the recent review

Ref. 15). On the other hand, the intensity of such a per-

turbation clearly increases with the density, and so it

seems natural to expect that when the perturbation is

large enough, i.e., at a large enough density, a transition

to a state of chaotic motions should occur, in which dia-

magnetism is lost, together with magnetic pressure. The

proposal advanced here is that such a kind of transition

may explain the loss of confinement, at least in its gross

features, by providing a theoretical estimate of the den-

sity limit that should be compatible, as far as order of

magnitude is concerned, with the observed ones. This is

what we actually find out. Working with an extremely

simple model, we predict a chaoticity threshold, which

corresponds to a density limit that fits pretty well those

observed in collapses of several kinds of fusion

machines. To this end, we make use of quite recent

results on perturbation theory holding in the thermody-

namic limit,
16–18

and of an old result of of Iglesias,
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Lebowitz and MacGowan19 concerning the fluctuations

of the microfield.

I. INTRODUCTION

The idea that the loss of confinement in magnetized plas-

mas corresponds to a transition from order to chaos is easily

understood. Indeed, an essential point in guaranteeing con-

finement is the existence of a magnetic pressure. Now, in a

macroscopic magnetohydrodynamic description of the prob-

lem, the existence of a magnetic pressure is derived from the

constitutive equations of a plasma, i.e., from the assumption

that the plasma be diamagnetic. However, from a micro-

scopic point of view in which the plasma is modeled as a sys-

tem of discrete charges, such an assumption has to be

justified. In such a perspective, diamagnetism is a dynamical

property that can be present or absent, according to the

motions being ordered or chaotic. In fact, existence of mag-

netization corresponds to the prevailing of gyrational motions

transverse to the field, whereas in the state of statistical equi-

librium (i.e., with prevailing chaotic motions), magnetization

vanishes (see for example Ref. 20). This breakdown is thus a

global characteristic feature of magnetized plasmas, irrespec-

tive of the particular mechanism employed for obtaining

confinement.

The conception that magnetization due to orbital motions

can exist only in a nonequilibrium state, characterized by

motions of ordered type, was apparently first proposed by

Bohr (see Ref. 21, page 382). Now, Bohr took for granted

that the relaxation time to equilibrium would be very short, as

“the collective motions of the electrons would disappear very
rapidly.” On the other hand, we are well acquainted with the

fact that the relaxation time from order to chaos can be very

long, as occurs for example with glasses and with the Fermi,

Pasta and Ulam (FPU) model, and was recently pointed out

also in connection with orbital magnetization.22 Thus, in

order to establish up to which time is the magnetized state

conserved, one should estimate a typical relaxation time after

which the system becomes chaotic (see for example the

“characteristic time of mixing” defined in Ref. 23, sec. 5).

It is well known that this is a quite hard task. However,

estimates of the relaxation time from below are available

through perturbation theory,24–26 as we now recall. Indeed, in

general such a theory allows one to construct adiabatic invari-

ants IðnÞ at any order n, providing for their changes I
ðnÞ
t � IðnÞ

(where Xt denotes the time evolved at time t of any dynamical

variable X) estimates which in their simplest form are of the

type

���IðnÞt � IðnÞ
��� � n!�nþ1 I t

s
; (1)

where � is the perturbation parameter, while s and I are a

characteristic time and a characteristic value of I, of the sys-

tem. Now, imposing jIðnÞt � IðnÞj � I�, and recalling

n! ’ ðn=eÞn, formula (1) gives t � sðe=n�Þn for all n, which,

by taking the optimal value of n, nð�Þ ’ 1=�, gives

t � sexpð1=�Þ. Thus, a lower estimate to the relaxation time

is obtained, which is exponentially long in 1=� as long as

� < 1. It is thus clear that the condition � ¼ 1 provides a nat-

ural chaoticity threshold, which should identify the relevant

transition, at least as concerns the order of magnitude of the

characteristic parameters of the problem. Indeed, for smaller

�, the motions keep an ordered character for practically infi-

nite times, whereas for larger �, the ordered character is not

even guaranteed up to the microscopic time s. As a matter of

fact, the estimates for the changes of the adiabatic invariants

are in general a little more complicated than Eq. (1), and the

lower estimates for the relaxation time are found to increase

as stretched (rather than pure) exponentials, but the conclu-

sion for the chaoticity threshold to be drawn in a moment

remains unaltered.

This classical scheme was implemented in a probabilis-

tic frame in the paper.27 Later, the scheme was shown to be

applicable also for systems of macroscopic sizes, i.e., in the

so called thermodynamic limit,16–18 which is an essential

point for our purposes. In such a probabilistic frame, one

renounces to control the changes of the adiabatic invariant

along all single trajectories and just controls mean properties

with respect to a given invariant measure in phase space. For

example, one can look at the time autocorrelation function

CIðnÞ ðtÞ of the adiabatic invariant at order n, defined as usual

by

CIðnÞ ðtÞ ¼ hI
ðnÞ
t IðnÞi � hIðnÞi2 ;

where h�i denotes mean with respect to the given measure. In

terms of the time autocorrelation function, the analogue of

the classical estimate Eq. (1) then takes the form

CIðnÞ ðtÞ
r2

IðnÞ
� 1� 1

2
n!�nþ1 t

s

� �2

;

where r2
X ¼ hX2i � hXi2 is the variance of X. The latter pro-

vides a natural dimensional constant for the autocorrelation,

since one has CXð0Þ ¼ r2
X. By optimization with respect to n,

the time after which the adiabatic invariant may lose correla-

tion is still found to be exponentially long in 1=�, provided

one has � < 1. So, � ¼ 1 again turns out to be the perturba-

tion estimate of the chaoticity threshold.

Our main task is thus to estimate the chaoticity threshold

for a magnetized plasma, in the probabilistic frame just

sketched. In Sec. II, we describe the model that will be stud-

ied, define the dynamical variable of interest (the component

of the angular momentum of each electron along the field),

and give the lowest order estimate for its time autocorrela-

tion function. This leads to a natural conjecture for identify-

ing the perturbation parameter �, which then gives the

chaoticity threshold by the condition � ¼ 1. In Sec. III, we

give a general formula for the threshold in terms of tempera-

ture and of the fluctuations of the microfield. Using the avail-

able analytical estimate of such fluctuations for the model of

a one component plasma with a neutralizing background,19 a

definite formula for the theoretical density limit is then

obtained. In Sec. IV, the theoretical density limit is com-

pared to the empirical data for collapses in fusion machines.

Some comments are finally added in the conclusions.
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II. DEFINITION OF THE MODEL. CONJECTURE
ON THE CHAOTICITY THRESHOLD

The model chosen for the magnetized plasma is the sim-

plest one we could conceive in order to check the main idea

of the present paper, namely, that the relevant feature con-

cerning loss of confinement, regardless of the particular

mechanism involved in each machine, is the occurring of a

sharp transition from order to chaos as the perturbation due

to the microfield is increased beyond a threshold. So, first of

all, for what concerns the magnetic field B, we consider the

extremely idealized case in which it is uniform, say B ¼ Bez,

where ez is the unit vector along the z axis. Concerning the

plasma itself, the key point is that it should be conceived as a

dynamical system of point charges and not as a continuum.

Thus, any charge will be subject, in addition to the Lorentz

confining force due to B, also to the force of the microfield

E, defined as the vector sum of the Coulomb fields created

by all the other charges. Mutual magnetic forces and retarda-

tion effects are neglected.

So, we have a dynamical system of several kinds of

charges, and the Newton equation for the jth charge (in the

nonrelativistic approximation) is then

mj€xj ¼ ejvj � Bþ ejEj; (2)

where mj and ej are the mass and the charge of the particle,

xj and vj ¼ _xj its position vector and velocity, and Ej the

microfield evaluated at xj, i.e., the microscopic electric field

acting on the jth particle and due to the Coulomb interactions

with all the other ones; obviously Ej depends on the posi-

tions of all the charges. Finally, in order that the dynamical

system be defined within the standard approach of ergodic

theory, we consider as given also an invariant measure, a

few minimal properties of which will be mentioned later.

If the microfield is neglected, the transverse motion of

each particle is a uniform gyration about a field line with its

characteristic cyclotron frequency xcj ¼ jejjB=mj. So, the

system is integrable, the z component of the angular momen-

tum of each particle being a constant of motion. The micro-

field, acting as a perturbation, makes the system no more

integrable.

For what concerns the adiabatic invariant to be investi-

gated, in principle, we should look at the magnetization of

the system, to which each charge contributes through the z
component of its angular momentum. However, it is well

known that only the electrons are relevant, the ions contribu-

tion to magnetization being negligible. So, we will consider

the contribution to magnetization due to any single electron,

i.e., the z component of its angular momentum. Since now

on, the index j referring to a chosen electron will be left

understood. Thus, as zeroth order approximation for the adi-

abatic invariant, we take the quantity

L ¼ m2

eB
v2
?; (3)

(v? denoting transverse velocity of the chosen electron),

which is proportional to the transverse kinetic energy of the

electron. One immediately checks (see page 16 of the book

of Alfv�en,28 or any plasma physics textbook) that L is the z
component of the angular momentum of the chosen electron,

referred to its instantaneous gyration center (or guiding cen-

ter), the latter being calculated in the approximation in which

the perturbing force is neglected.

We also add here the formula for the time derivative _L
of L, as we will need it in a moment. As L is a multiple of

v? � v?, _L is immediately obtained through dot multiplica-

tion of Newton’s Eq. (2) by 2v?, which gives

_L ¼ 2m

B
v? � E?; (4)

where E? denotes the transverse component of the microfield.

We come now to the main point: to find the dimension-

less perturbation parameter �, which determines the chaotic-

ity threshold corresponding to the destruction of the chosen

adiabatic invariant (and of all the adiabatic invariants corre-

sponding to each electron). This would require performing

the corresponding perturbation estimates at all orders, which

at the moment, we are unable to do. What we can easily do

is to perform the zeroth order estimate for the time autocor-

relation function of L, which turns out to be

CLðtÞ
r2

L

� 1� 1

2

r _L
2

x2
cr

2
L

ðxctÞ2 : (5)

Notice that as characteristic microscopic time s of the

unperturbed electron’s motion, we have naturally taken 1=xc.

The proof of Eq. (5) is rather simple. One starts from the

elementary identity

CLðtÞ ¼ r2
L �

1

2
hðLt � LÞ2i

and uses the inequality hðLt � LÞ2i � h _L
2it2, which is just a

function theoretic analogue of the Lagrange finite increment

formula of elementary calculus, and basically follows from

unitarity of the time evolution of the dynamical variables

(see Ref. 16, Theorem 1, and Ref. 17, Sec. 7). This already

gives inequality Eq. (5), with h _L
2i in place of r _L2. Relation

(5) then immediately follows by noting that, due to the time–

invariance of the measure, for any dynamical variable X, one

has h _Xi ¼ 0, so that h _X
2i ¼ r2

_X
.

As explained in the Introduction, from Eq. (5), we are

led to conjecture that the relevant dimensionless parameter

of the problem is

� ¼ r _L

xcrL
; (6)

(rX ¼
ffiffiffiffiffiffi
r2

X

p
denoting standard deviation), and this leads to a

chaoticity threshold given by

r _L

xcrL
¼ 1: (7)

We add now a comment of a general character, which

concerns the way in which a relaxation time for L (or analo-

gously for any variable X) turns out to be identified in the
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present approach, which combines perturbation and statisti-

cal mechanics methods. From Eq. (5), one sees that the

relaxation time trel
L of L is given by trel

L ¼ rL=r _L , a formula

which involves standard deviations. Now, compare such a

formula with the one generally met in textbooks, i.e.,

trel
L ¼ L= _L, where it should be understood that “typical val-

ues” are to be taken for the numerator and the denominator.

But, this requires a great ingenuity from the part of the

reader, especially when variables are involved which have

vanishing mean. So, one may say that the identification of

the relaxation time provided by perturbation theory in a

probabilistic frame, namely, trel
L ¼ rL=r _L , appears to be

some definite quantitative implementation of the intuitive

idea underlying the familiar informal definition and amounts

to the prescription that the informal qualification “typical

values” should be understood in the sense of “standard

deviations.”

We add now a final remark in which the previous com-

ment is used in order to read in a quite transparent way the

condition (7), which defines the chaoticity threshold. Indeed,

through formula (9) of Sec. III, it will be seen that the condi-

tion for the threshold can be expressed in the form

ðrE?=BrvÞ ¼ 1. Thus, just in virtue of the previous comment

relating standard deviations and typical values, one sees that

the threshold occurs when the typical value of the perturbing

force due to the microfield equals the typical value of the

Lorentz force, which characterizes the unperturbed motions.

So, the condition � ¼ 1, which we have assumed as a defini-

tion of the threshold within a rather abstract point of view, is

just what one would immediately guess, as the naivest imple-

mentation of the idea that a threshold occurs when the per-

turbing force equals the unperturbed one.

III. THE CHAOTICITY THRESHOLD IN TERMS OF
MACROSCOPIC PARAMETERS: THE THEORETICAL
DENSITY LIMIT

Our aim is now to express the chaoticity threshold (7) in

terms of the macroscopic parameters T, n, B, temperature,

electron number density, and field strength. Recalling the

expressions (3) and (4) of L and _L, and the definition

xc ¼ jejB=m, the threshold (7) takes the form

2

B

rv?�E?
rv2
?

¼ 1: (8)

It is clear that the standard deviations appearing in Eq.

(8) depend on the model of plasma adopted, which deter-

mines the microfield, as well as on the chosen invariant mea-

sure. The choice of the invariant measure is a quite delicate

problem, particularly in a nonequilibrium situation as the

one we are discussing here. A general introduction may be

found in the book.29 For example, it is obvious that rv? and

rv2
?

should be expressed in terms of temperature, albeit with

coefficients, which depend on the assumptions made for the

velocity distribution. Analogously, the statistical properties

of the microfield may be different for a system composed by

electrons plus a neutralizing background, rather than for a

system of electrons and ions.

Quite natural assumptions on the measure are: (i) that

velocities and positions are independent variables; (ii) that

the distribution of the transverse velocities is Maxwellian at

a temperature T; (iii) that the distribution of positions is iso-

tropic. Under these natural assumptions, the Eq. (8) for the

threshold is seen to take the form

ffiffiffi
2

3

r
rE

B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p ¼ 1: (9)

Indeed, from (i) and (ii), one gets

r2
v?�E? ¼

1

2
r2

v?
r2

E?
;

the variance of a vector F being defined by r2
F ¼ r2

Fx
þ r2

Fy

þ r2
Fz

. One also gets

1

2
r2

v?
¼ kBT

m

(kB being the Boltzmann constant) and furthermore, as one

easily checks,

r2
v2
?
¼ 4

kBT

m

� �2

:

Finally, from (iii), one gets r2
E?
¼ ð2=3Þr2

E

The form (9) of the equation for the threshold already

constitutes in our opinion a significant result. Indeed, the

fluctuation r2
E of the microfield should in principle be itself a

measurable quantity, which depends on the macroscopic

state of the plasma, namely, electron number density n and

the temperatures of the several constituents. So, the previous

relation provides in principle the density limit as a function

of the macroscopic state of the plasma.

However, we were unable to find in the literature suffi-

cient experimental information on the fluctuation r2
E of the

microfield. So, in order to have a definite theoretical formula

to be compared with the experimental data, we limit our-

selves to the consideration of a particular model for which an

estimate of r2
E is available. In fact a formula for r2

E at equi-

librium with respect to the Gibbs distribution was given by

Iglesias, Lebowitz, and MacGowan19 for the model of a one

component plasma with neutralizing background, namely,

r2
E ¼

n kBT

e0

; (10)

where e0 is the vacuum dielectric constant and n the electron

number density (see Ref. 19, formula (2.5), substituting n for

q and 1=e0 for 4p).

So, for a one component plasma with neutralizing back-

ground at temperature T, the chaoticity threshold (9) takes

the form

n ¼ 3

2

e0

m
B2; (11)

in which temperature disappeared, so that the threshold only

involves density and field strength. Notice however that this
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might not be true with a more realistic model of a plasma, in

which the temperature appearing in Eq. (10), which refers to

the plasma as a whole, may be different from the electron

transverse temperature which enters the previous formulas.

Formula (11) for the limit density (holding for a one

component plasma with neutralizing background, at temper-

ature T) is the type of result we were looking for, inasmuch

as it provides a definite theoretical formula for the density

limit that can be compared to the available empirical data for

collapses in fusion machines, as will be done in Sec. IV.

Notice that formula (11) for the chaoticity threshold can

be written in the enlightening form

xc

xp
’ 1; or equivalently;

kD

rL
’ 1; (12)

where xc and xp are the cyclotron and plasma frequencies,

while kD and rL are the Debye length and the Larmor radius,

with their usual meanings.

IV. COMPARISON WITH THE EMPIRICAL DATA
FOR PLASMA COLLAPSES IN FUSION MACHINES

We now check whether the transition from order to

chaos discussed here has anything to do with the empirical

data for collapses in fusion machines. We recall that a pro-

portionality of the density limit to the square of the magnetic

field in tokamaks was suggested by Granetz30 on the basis of

empirical data, but apparently was not confirmed by later

observations.13,47 It is well known that, while at first, a pro-

portionality to the magnetic field (through B/R, where R is

the major radius of the torus) had been proposed on an em-

pirical basis for tokamaks by Murakami,31 in the plasma

physics community, the common opinion is rather that the

density limit for tokamaks should be proportional to the

Greenwald parameter Ip=r2
a , where Ip is the plasma current

and ra the minor radius of the torus (see Ref. 13).

We do not enter here a discussion of this point, and only

content ourselves with plotting in Figure 1, a collection of

available data of the density limit for several fusion

machines versus their operating magnetic field B in log–log

scale, comparing the data to the theoretical formula (11).

The first thing that comes out from the figure is that the order

of magnitude of the theoretical threshold is correct, and this

without having introduced any phenomenological parameter.

There is no adjustable parameter in the theory, and no fitting

at all. One is thus tempted to say that the essence of the phe-

nomenon has perhaps been captured, especially in considera-

tion of the extreme simplicity of the model (see Ref. 55 for a

discussion of the complexity of the problem), with respect to

the variety of machines and of operational conditions to

which the experimental data refer.

Entering now in some more details, one sees that the the-

oretical law appears to correspond not so badly to the data for

the high field machines (tokamak and stellarators), whereas a

sensible discrepancy is met for the low field machines (spher-

ical tokamaks), for which the experimental data are larger by

even an order of magnitude. Perhaps this discrepancy might

be attributed to the fact that we are discussing here a model

describing an isolated, non sustained, system (i.e., with no

input heating power), whereas the low field machines consid-

ered in the figure are just the ones characterized, in general,

by lower confinement time and thus by larger sustainment.

Indeed (see the empirical Sudo limit for stellarators51) larger

densities are expected to be accessible as the input power is

increased (although this is not so clear for tokamaks13). This

is illustrated, in the figure, by the three points reported for the

same device (the stellarator WS-A7 (Ref. 48)) at essentially

the same applied field, which however corresponds to three

different (increasing) input heatings.

V. CONCLUSIONS

In view of the lack of any first principles rationale for the

existence of a density limit in fusion machines, the compari-

son between theory and experiments exhibited in Figure 1

appears encouraging. Particularly so, if one considers the

extreme simplicity of the model (uniform plasma in a uni-

form field) with respect to the variety of machines and of

operational conditions to which the experimental data refer.

FIG. 1. Density limit values vs B for various machines:

conventional tokamaks, for which recent data are

shown (see Refs. 32–47) along with the original ones of

Murakami (see Ref. 31), stellarator machines,48–51 and

spherical tokamaks.52–54 Dotted line is the theoretical

density limit (11).
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The essence of the phenomenon seems to have been

captured.

Actually, one might conceive that the chaoticity thresh-

old discussed here may be of some interest even outside the

domain of fusion machines, for example for astrophysical

plasmas, although this is not at all clear. See for example

Sec. 3.3 of Alfv�en’s book.28 So, we leave this subject for

possible future investigations.

So, one might consider as plausible the main proposal

advanced in the present paper, namely, that the density limit

characterizing the empirical collapses of fusion machines cor-

responds to a transition from order to chaos in the following

sense. At low densities, ordered motions due to the imposed

magnetic field prevail, with the electrons performing trans-

verse gyrational motions, and thus with a magnetic pressure.

Then, as density is increased, the perturbations caused by the

fluctuations of the microfield (which increase as the density)

introduce some chaotization, until a chaoticity limit (and so a

density limit) is attained, beyond which ordered motions are

lost, together with magnetic pressure and confinement.

A key feature of the present approach, with respect to

treatments involving the continuum approximation, such as

magnetohydrodynamics, is that we are dealing here with the

plasma as a discrete system of charges. Indeed in our treat-

ment, an essential role is played by the microfield acting on

a single electron, and so it is not clear how the instability

found here could find place within the continuum approxi-

mation, or any other approximation involving high–fre-

quency cutoffs. For an analogous role of discreteness of

matter in cosmology, see Refs. 56 and 57.

Actually, even in plasma physics theory, there exists a

huge literature in which the discrete nature of matter is taken

into account, following the approach of kinetic theory (see for

example Ref. 58). A comparison with the results obtained

here within the approach of dynamical systems theory would

thus be in order. We hope to come back to this problem in the

future.

A further remark is that the existence of a density limit

proportional to the square of the magnetic field is well known

in the frame of nonneutral plasmas (see Ref. 59), under the

name of Brillouin limit. The physical context is however rather

different, because the density limit in the latter case refers to

the existence of a particular motion, in which the plasma, dealt

with as a continuum, performs a rigid rotation about the z axis.

Actually, it is clear that a magnetization threshold in the sense

discussed here should exist for nonneutral plasmas too. The

only problem is that we are unaware of any estimate of the

standard deviation of the microfield in such a case. We hope to

come back to this problem in the future.

We finally point out that the proportionality of the den-

sity limit to the square of the magnetic field predicted by the

theoretical law (11), if confirmed, might have relevant impli-

cations for future tokamaks.
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