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HIDDEN MARKOV AND REGIME SWITCHING COPULA
MODELS FOR STATE ALLOCATION IN MULTIPLE

TIME-SERIES

Francesco Bartolucci1, Fulvia Pennoni2, and Federico P. Cortese3

1 Department of Economics, University of Perugia
(e-mail: francesco.bartolucci@unipg.it)
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ABSTRACT: We consider hidden Markov and regime-switching copula models as
approaches for state allocation in multiple time-series, where state allocation means
prediction of the latent state characterizing each time occasion based on the observed
data. This dynamic clustering, performed under the two model specifications, takes the
correlation structure of the time-series into account. Maximum likelihood estimation
of the model parameters is carried out by the expectation-maximization algorithm. For
illustration we use data on the market of cryptocurrencies characterized by periods of
high turbulence in which interdependence among assets is marked.

KEYWORDS: daily log-returns, expectation-maximization algorithm, forecast, latent
variables, model-based clustering

1 Introduction

In the analysis of multiple time-series, state allocation, namely prediction of
the state or regime underlying the observed data at a certain time occasion,
is an important task, especially in finance and related fields. This type of
clustering is dynamic because a different state may be predicted at every time
occasion and may be based on models representing each time-specific state
by a discrete latent variable assuming, typically, a few possible values. In
this contribution, we compare two different model specifications of this type:
multivariate hidden Markov (HM) models (Zucchini et al., 2017) and regime-
switching (RS) copulas (Rodriguez, 2007).

Among HM models we consider, in particular, those based on the assump-
tion that the time-specific vector of observable variables follows a conditional
Gaussian distribution with parameters depending on the latent state.

RS copulas are instead based on a copula function, which may be chosen
among the Clayton, the Gumbel, the Gaussian, or the Student-t, with parameters
governed by a hidden Markov process of first-order so as to flexibly account for
the correlation patterns between each pair of series.

The expectation-maximization (EM) algorithm (Dempster et al., 1977) is
used for maximum likelihood estimation of the parameters of both models.
Model selection is performed to choose the most appropriate number of hidden
states and evaluate the level of chain homogeneity over time (Bartolucci et al.,
2013). For the HM model, this selection is based on the Bayesian Information
Criterion (BIC), and for RS copulas, it is also based on a goodness-of-fit
procedure relying on the Cramér-von Mises statistic.

As an illustration we consider the problem of state allocation in analyzing
time-series of the main cryptocurrencies daily log-returns over a three-year
period.

2 Hidden Markov and Regime-Switching Copula Models

Let yyyt , t = 1,2, . . ., be the vector where each element yt j, j = 1, . . . ,r, cor-
responds to the value of time-series j at time occasion t, with r denoting
the number of time-series under consideration. The main assumption of the
multivariate HM model is that the random vectors yyy111,yyy222, . . . are condition-
ally independent given a hidden process u1,u2, . . . that follows a first-order
Markov chain with k states, labeled from 1 to k. This process is governed
by the initial probabilities πu = p(u1 = u), u = 1, . . . ,k, and the transition
probabilities πu|ū = p(ut = u|ut−1 = ū), t = 2, . . ., ū,u = 1, . . . ,k. We assume
a Gaussian distribution for the observations at every time occasion, that is,
yyyt | ut = u ∼ Nr(µµµu,ΣΣΣu), where µµµu and ΣΣΣu are the mean vector and variance-
covariance matrix for latent state u. The above assumptions imply that the
conditional distribution of the time-series yyy111,yyy222, . . . , given the sequence of
hidden states, may be expressed as f (yyy1,yyy2, . . . | u1,u2, . . .) = ∏t φ(yyyt ;µµµut

,ΣΣΣut ),
where φ(·; ·) denotes the density of the multivariate Gaussian distribution. The
manifest distribution of the multiple time-series has the following density func-
tion:

f (yyy1,yyy2, . . .) = ∑
u1

πu1φ(yyy1;µµµu1
,ΣΣΣu1)∑

u2

πu2|u1φ(yyy2;µµµu2
,ΣΣΣu2) · · · .

Concerning the copula model, we first consider only the bivariate case, so
we define yyyt = (yt1,yt2) as a vector with elements yt j, j = 1,2, corresponding
to the observation for time-series j at time t = 1,2, . . . and F1 and F2 as the
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marginal cdfs of each time-series. Sklar’s theorem (Sklar, 1959) allows us to
separate the fitting of the marginal cdfs from the fitting of the joint distribution,
represented by a copula function. This approach consists in estimating the two
marginal distributions, obtaining F̂1 and F̂2, and then computing the normalized
ranks of the pseudo-observations ẽ̃ẽet = (ẽt1, ẽt2) as ẽt j = rank(ẑt j)/(T +1), with
ẑt j = F̂j(yt j), and T being the number of observed time occasions. Finally, for
the pseudo-observations ẽ̃ẽet , an RS copula model is assumed based on a hidden
homogeneous Markov process denoted as v1,v2, . . ., with k states. The copula
density indicated with c(·; ·) may be chosen among the Clayton, the Gumbel,
the Gaussian, or the Student-t copulas, with state-specific parameter βv. The
density of the pseudo-observations is given by

f (ẽee1, ẽee2, . . .) = ∑
v1

πv1c(ẽee1;βv1)∑
v2

πv2|v1c(ẽee2;βv2) · · · ,

and it is based on the initial and transition probabilities defined as above.
Given that the state sequence is not observable, a full maximum likelihood

approach for estimating the parameters of both models is carried out through
the EM algorithm. Following the current literature, model selection for the HM
model is based on the BIC, and for the RS copula it is also performed through
a goodness-of-fit procedure consisting in calculating a p-value referred to the
Cramér-von Mises statistic for the hypothesis of correct model specification.

We compare the performance of HM models and RS copulas focusing on
the crucial aspect of state allocation. The optimal state allocation is performed
by finding the optimal joint sequence ũ1, ũ2, . . . (or ṽ1, ṽ2, . . .) of unknown states
given the corresponding observations. This clustering procedure, also known
as global decoding, is achieved through the Viterbi algorithm (Viterbi, 1967),
which is a dynamic programming algorithm.

We also aim at extending the RS copula approach to an arbitrary number
of time-series r rather than to only 2. In this regard, we propose the composite
likelihood approach (Varin et al., 2011) for estimation, which is based on
considering all possible ordered pairs of time-series among the available ones.

3 Application

As an illustration, for the HM model we consider the joint daily log-returns*

of the five cryptocurrencies Bitcoin, Ethereum, Ripple, Litecoin, and Bitcoin

*provided by the Crypto Asset Lab: https://cryptoassetlab.diseade.unimib.
it/.

Cash, for the period 2017-2020. For the RS copulas, allowing only for bivariate
associations, we define four copulas where the bivariate vector of observations
consists of the Bitcoin and each of the other four cryptocurrencies. Results for
the HM model show that the minimum value of the BIC is reached considering
a five-state heteroschedastic structure. According to these estimates, there
are three negative regimes (in terms of estimated expected log-returns), with
relatively high and positive correlations of Bitcoin with all the other cryptocur-
rencies, and two states with positive returns and lower correlations. Regarding
the global decoding, these two states are the most likely in the first year of
observation, and the other three states characterize the last two years.

Concerning the RS copulas, and considering as an example the couple of
cryptocurrencies Bitcoin-Ethereum, we observe that a three-regime Clayton
copula provides the best fit. Given that the Clayton copula allows for explicit
computation of the lower tail correlation index, we estimate that two regimes
provide zero or low values for the lower tail index, and the third regime provides
high values for it. According to the optimal state sequence, we estimate that
there is substantial interchangeability between the first two states in the whole
period, whereas the third state is the most likely for the last year of observation.
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marginal cdfs of each time-series. Sklar’s theorem (Sklar, 1959) allows us to
separate the fitting of the marginal cdfs from the fitting of the joint distribution,
represented by a copula function. This approach consists in estimating the two
marginal distributions, obtaining F̂1 and F̂2, and then computing the normalized
ranks of the pseudo-observations ẽ̃ẽet = (ẽt1, ẽt2) as ẽt j = rank(ẑt j)/(T +1), with
ẑt j = F̂j(yt j), and T being the number of observed time occasions. Finally, for
the pseudo-observations ẽ̃ẽet , an RS copula model is assumed based on a hidden
homogeneous Markov process denoted as v1,v2, . . ., with k states. The copula
density indicated with c(·; ·) may be chosen among the Clayton, the Gumbel,
the Gaussian, or the Student-t copulas, with state-specific parameter βv. The
density of the pseudo-observations is given by

f (ẽee1, ẽee2, . . .) = ∑
v1

πv1c(ẽee1;βv1)∑
v2

πv2|v1c(ẽee2;βv2) · · · ,

and it is based on the initial and transition probabilities defined as above.
Given that the state sequence is not observable, a full maximum likelihood

approach for estimating the parameters of both models is carried out through
the EM algorithm. Following the current literature, model selection for the HM
model is based on the BIC, and for the RS copula it is also performed through
a goodness-of-fit procedure consisting in calculating a p-value referred to the
Cramér-von Mises statistic for the hypothesis of correct model specification.

We compare the performance of HM models and RS copulas focusing on
the crucial aspect of state allocation. The optimal state allocation is performed
by finding the optimal joint sequence ũ1, ũ2, . . . (or ṽ1, ṽ2, . . .) of unknown states
given the corresponding observations. This clustering procedure, also known
as global decoding, is achieved through the Viterbi algorithm (Viterbi, 1967),
which is a dynamic programming algorithm.

We also aim at extending the RS copula approach to an arbitrary number
of time-series r rather than to only 2. In this regard, we propose the composite
likelihood approach (Varin et al., 2011) for estimation, which is based on
considering all possible ordered pairs of time-series among the available ones.

3 Application

As an illustration, for the HM model we consider the joint daily log-returns*

of the five cryptocurrencies Bitcoin, Ethereum, Ripple, Litecoin, and Bitcoin

*provided by the Crypto Asset Lab: https://cryptoassetlab.diseade.unimib.
it/.

Cash, for the period 2017-2020. For the RS copulas, allowing only for bivariate
associations, we define four copulas where the bivariate vector of observations
consists of the Bitcoin and each of the other four cryptocurrencies. Results for
the HM model show that the minimum value of the BIC is reached considering
a five-state heteroschedastic structure. According to these estimates, there
are three negative regimes (in terms of estimated expected log-returns), with
relatively high and positive correlations of Bitcoin with all the other cryptocur-
rencies, and two states with positive returns and lower correlations. Regarding
the global decoding, these two states are the most likely in the first year of
observation, and the other three states characterize the last two years.

Concerning the RS copulas, and considering as an example the couple of
cryptocurrencies Bitcoin-Ethereum, we observe that a three-regime Clayton
copula provides the best fit. Given that the Clayton copula allows for explicit
computation of the lower tail correlation index, we estimate that two regimes
provide zero or low values for the lower tail index, and the third regime provides
high values for it. According to the optimal state sequence, we estimate that
there is substantial interchangeability between the first two states in the whole
period, whereas the third state is the most likely for the last year of observation.
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