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Abstract

Repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) requires

that the 5’-terminated DNA strands are resected to generate single-stranded DNA over-

hangs. This process is initiated by a short-range resection catalyzed by the MRX (Mre11-

Rad50-Xrs2) complex, which is followed by a long-range step involving the nuclease Exo1

or Dna2. Here we show that the Saccharomyces cerevisiae ATP-dependent chromatin-

remodeling protein Chd1 participates in both short- and long-range resection by promoting

MRX and Exo1 association with the DSB ends. Furthermore, Chd1 reduces histone occu-

pancy near the DSB ends and promotes DSB repair by HR. All these functions require Chd1

ATPase activity, supporting a role for Chd1 in the opening of chromatin at the DSB site to

facilitate MRX and Exo1 processing activities.

Author summary

DNA double strand breaks (DSBs) are among the most severe types of damage occurring

in the genome because their faulty repair can result in chromosome instability, commonly

associated with carcinogenesis. Efficient and accurate repair of DSBs relies on several pro-

teins required to process them. However, eukaryotic genomes are compacted into chro-

matin, which restricts the access to DNA of the enzymes devoted to repair DNA DSBs. To

overcome this natural barrier, eukaryotes have evolved chromatin remodeling enzymes

that use energy derived from ATP hydrolysis to modulate chromatin structure. Here, we

examine the role in DSB repair of the ATP-dependent chromatin remodeler Chd1, which

is frequently mutated in prostate cancer. We find that Chd1 is important to repair DNA

DSBs by homologous recombination (HR) because it promotes the association with a

damaged site of the MRX complex and Exo1, which are necessary to initiate HR. This

Chd1 function requires its ATPase activity, suggesting that Chd1 increases the accessibil-

ity to chromatin to initiate repair of DNA lesions.

Introduction

DNA double-strand breaks (DSBs) are the most common cause of genomic instability, because

their inaccurate repair can lead to chromosomal rearrangements. DSBs can be repaired by
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either homologous recombination (HR), which uses homologous DNA from sister chromatids

or homologous chromosomes as a template for repair, or non-homologous end joining

(NHEJ), which directly re-ligates the broken DSB ends [1].

HR is initiated by nucleolytic degradation of the 5’-terminated strands at the DSB ends to

generate 3’-ended single stranded DNA (ssDNA), in a process called resection [2]. In both

yeast and mammals, DSB resection is initiated by the Mre11-Rad50-Xrs2/NBS1 (MRX/N)

complex that, aided by the Sae2 protein (CtIP in mammals), cleaves the 5’-terminated DNA

strand on either side of a DSB [3]. This step is followed by 3’-5’ nucleolytic degradation by

Mre11, which proceeds back towards the DNA end and by the Exo1 or the Dna2 nuclease,

which degrades double-stranded DNA (dsDNA) in the 5’-3’ direction [4–11]. The resulting 3’-

ended ssDNA is first coated by the Replication Protein A (RPA) complex, which is replaced by

the Rad51 recombinase, creating a nucleoprotein filament that searches and anneals to a

homologous DNA sequence [1]. Repair can then take place via synthesis-dependent strand

annealing (SDSA) or the canonical recombination pathway that involves formation of a double

Holliday junction [12].

The repair of DNA DSBs is challenged by the packaging of genomic DNA through histone

and non-histone proteins into a high-order structure called chromatin, raising the question as

to how the DNA repair machineries overcome this barrier to gain access to damaged DNA.

The presence of nucleosomes inhibits DSB resection in vitro [13]. Furthermore, a genome-

wide analysis of resection endpoints around Spo11-induced DSBs during meiosis showed that

resection frequently terminates at nucleosomes, reflecting a tendency for nucleosomes to

block nuclease activity in vivo [14]. Chromatin immunoprecipitation experiments support

nucleosome disassembly near DSBs [15]. Furthermore, recent data indicate that histones

exclusively associate with dsDNA and that the rate of histone loss correlates with resection

[16], suggesting that nucleosome eviction occurs concomitantly with DSB resection.

Indeed, chromatin structure is tuned by various processes such as nucleosome remodeling

by ATP-dependent chromatin remodelers. These protein complexes use the energy derived

from ATP hydrolysis to alter histone-DNA interactions, resulting in nucleosome sliding, evic-

tion, and/or histone exchange [17,18]. Several ATP-dependent nucleosome remodelers have

been implicated in HR, particularly with regard to DSB resection [19–20]. In budding yeast,

the RSC, INO80 and SWI/SNF protein complexes are recruited to chromatin regions adjacent

to a nuclease-induced DSB [21–24]. Furthermore, their lack reduces not only nucleosome

removal/sliding but also DSB resection [21,22,25–28], suggesting that nucleosome eviction

and resection are intrinsically coupled. These changes in chromatin compaction have been

shown to facilitate the access to DSBs of DNA repair proteins, such as MRX, Rad51 and Rad52

[15,21,22,25].

Another chromatin remodeler implicated in DSB resection is Fun30 (SMARCAD1 in

mammals), which has highest sequence homology to INO80-like remodelers but lacks the split

ATPase domain [29–31]. In contrast to INO80 that promotes DSB resection either by remov-

ing histones or by controlling distribution of the histone variant H2A.Z adjacent to a DSB

[15,21,26,32,33], Fun30 promotes DSB resection by antagonizing the association with DSBs of

Rad9 that inhibits the processing activity of Exo1 [29–31].

The evolutionary conserved chromodomain-helicase-DNA-binding protein 1 (Chd1) is an

ATP-dependent chromatin remodeler that contains a N-terminal tandemly arranged chromo-

domain and a central ATPase-helicase domain that confers nucleosome spacing, removal or

exchange activity [34,35]. In contrast to most chromatin remodelers, Chd1 is active as a mono-

mer and does not assemble as a multi-subunit complex. Chd1 has the ability to assemble his-

tones along dsDNA and to induce a regular nucleosome spacing [36–39]. In yeast, Chd1 was

shown to associate with RNA polymerase II elongation factors on actively transcribed genes
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and to be important for recycling histones over coding regions during transcription [40–42].

Experiments in yeasts have shown that Chd1 is also important for generating spaced nucleo-

somes at the 5’ end of several genes [38,43–45].

Only one CHD protein is present in yeast (Chd1), whereas at least nine CHD proteins are

expressed in vertebrates. Among them, CHD1, CHD2, CHD3, CHD4, CHD6 and CHD7 have

been implicated in the cellular response to DNA damage. In particular, CHD2, CHD3, CHD4

and CHD7 accumulate at DNA regions flanking a DSB and promote the recruitment of pro-

teins involved in NHEJ [46], whereas CHD6 is a key component of the signaling and transcrip-

tional response to reactive oxygen species [47].

In humans, CHD1 is one of the most frequently inactivated genes in prostate cancer [48–

50]. Furthermore, its loss sensitizes prostate cancer cells to chemotherapeutic DNA-damaging

agents, suggesting a role in the DNA damage response [51]. Consistent with this hypothesis,

CHD1 is recruited to UV-damaged nucleosomes in a manner dependent on the DNA binding

protein XPC [52]. Furthermore, it promotes the repair of UV-damaged DNA by stimulating

the handover between XPC protein and the TFIIH complex at DNA damaged sites [52].

CHD1 is also recruited to chromatin in response to DSBs, where it promotes the loading of

CtIP [53,54]. Furthermore, loss of CHD1 decreases the assembly of RPA and RAD51 foci at

DNA breaks and stalled replication forks [53,55], suggesting a role in DSB resection. Finally,

in Saccharomyces cerevisiae, Chd1 interacts with Exo1 and participates in the generation of

meiotic crossovers by enabling the processing of joint molecules by both Exo1 and the mis-

match repair complex Mlh1-Mlh3 (MutLγ) [56].

In this study, we found that Saccharomyces cerevisiae Chd1 improves the efficiency of

nucleosome eviction from the DSB ends. Furthermore, it promotes DSB resection by enhanc-

ing the association of the MRX complex and Exo1 with the DSB ends. The lack of its ATPase

activity impairs all these functions, suggesting that Chd1 promotes MRX and Exo1 resection

activities by increasing their accessibility to DSBs.

Results

Chd1 is recruited to a DSB and its lack reduces histone removal

To investigate whether Chd1 has a direct role in the repair of DNA DSBs, we first evaluated

whether Chd1 is physically enriched at a DSB by chromatin immunoprecipitation (ChIP). To

this end, we used a strain background carrying a galactose-inducible HO endonuclease, which

generates a single DSB at the MAT locus in the presence of galactose [57]. To minimize the

effect of DSB repair, the MAT homology regions HML and HMR were deleted, leading to a DSB

that cannot be repaired by HR [57]. Following HO induction by galactose addition, Chd1-Myc

was recruited near the HO-induced DSB and its binding increases over three hours (Fig 1A).

After a DSB is formed, nucleosomes are rapidly evicted at both sides of the DSB and this

process is thought to promote DSB repair by facilitating the access of DNA repair proteins

[19,20]. As Chd1 has a nucleosome eviction activity [34], we analyzed occupancy of histone

H3 near the HO-induced DSB at both the LEU2 and the MAT loci. To exclude possible effects

of DNA replication on histone association with DNA, HO expression was induced by galactose

addition to G2-arrested cells that were kept arrested in G2 with nocodazole for the duration of

the experiment. Furthermore, to exclude that possible differences in histone occupancy were

due to different repair kinetics, repair of the HO-induced DSB at the LEU2 locus was pre-

vented by deleting RAD52, whereas repair of the HO-induced DSB at the MAT locus was pre-

vented by deleting the homologous donor loci HML and HMR. The H3 signal detected near

the HO-induced DSB at both the LEU2 and the MAT loci remained higher in chd1Δ than in

wild type cells, suggesting that Chd1 participates in histone removal near a DSB (Fig 1B).
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Chd1 carries an ATP-binding domain (AAA domain) that contains conserved Walker A

and B motifs [58]. Within the P-loop of Walker A, a conserved lysine residue (K407 in Chd1)

in the consensus sequence GXXXXGK[T/S] (where X is any amino acid) directly interacts

with the phosphates of ATP. Mutation of this residue eliminates both ATP binding and

ATPase activity [59–61]. The Walker B motif contains aspartate (D513 in Chd1) and glutamate

(E514 in Chd1) residues within the hhhhDE sequence (where h represents a hydrophobic

amino acid) that are crucial for ATPase activity, with the D residue coordinating Mg2+ and the

Fig 1. Chd1 recruitment to a DSB and histone removal. (A) Exponentially growing YEPR cell cultures of JKM139

derivative strains were transferred to YEPRG, followed by Chd1-Myc ChIP at the indicated distances from the HO-cut

site compared to untagged Chd1 (no tag). Data are expressed as fold enrichment at the HO-cut site over that at a non-

cleavable locus (ARO1), after normalization to the corresponding input for each time point. Fold enrichment was then

normalized to cut efficiency. Plotted values are the mean values ± s.d. from three independent experiments. ���P<0.005,
��P<0.01, �P<0.05, t-test. (B) HO expression was induced by galactose addition to G2-arrested cells carrying the HO

system at the LEU2 or at the MAT locus. Cells were kept arrested in G2 by nocodazole throughout the experiment.

Histone H3 ChIP with anti-H3 antibody at the indicated distances from the HO-cut site. Data are expressed as fold

enrichment at the HO-cut site over that at the non-cleavable ARO1 locus after normalization to the corresponding input

for each time point. Fold enrichment was normalized to cut efficiency. Plotted values are the mean values ± s.d. from

three independent experiments.

https://doi.org/10.1371/journal.pgen.1009807.g001
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E residue activating water for the hydrolysis reaction [62]. Mutation of the E residue was

shown to impair nucleotide hydrolysis without affecting ATP binding [60,62,63]. To test

whether the ATPase activity of Chd1 is required for histone eviction around the DSB, we intro-

duced either the K407R or the E514A amino acid substitution into Chd1. Both chd1-K407R
and chd1-E514A mutant cells were as defective in histone removal from the HO-induced DSB

as chd1Δ cells (Fig 1B).

Chd1 promotes DSB resection

Nucleosome eviction from DSBs occurs concomitantly with DSB resection [16], prompting us

to monitor directly the generation of ssDNA at the HO-induced DSB in chd1Δ, chd1-K407R
and chd1-E514A mutant cells. Because ssDNA cannot be cleaved by most restriction enzymes,

generation of ssDNA was assessed by testing resistance to cleavage as resection proceeds

beyond restriction sites located at different distances from the HO-cut site at the MAT locus

(Fig 2A). First, we used a Southern blot analysis approach to detect the appearance of slower

migrating bands (r1-r6) after denaturing gel electrophoresis of SspI-digested genomic DNA

and hybridization with a probe that anneals to the unresected strand at one side of the DSB

(Fig 2B). When HO was induced by galactose addition to exponentially growing cells, the

resection products (r2 to r6) appeared less efficiently in galactose-induced chd1Δ, chd1-K407R
and chd1-E514A mutant cells compared to wild type cells (Fig 2B and 2C). The resection defect

of chd1Δ cells was similar to that of sae2Δ cells, whereas it was less severe than that of mre11Δ
cells (S1 Fig).

Detection of SspI-resistant ssDNA by denaturing gel electrophoresis does not allow one to

monitor the resection events that do not proceed beyond the SspI site located 0.9 kb from the

HO-induced DSB. Furthermore, the signal for the r1 resection product, which can be detected

when resection does not proceed beyond the SspI site located 1.7 kb from the DSB, is very low

and difficult to quantify. Thus, we used a quantitative PCR-based method to evaluate genera-

tion of restriction enzyme-resistant ssDNA [64]. CHD1 deletion caused a reduction in ssDNA

generation very close to the HO-cut site (0.15 kb, 0.65 kb and 0.9 kb) (Fig 2D), indicating a

defect in initiation of resection. The same analysis at more distant sites (1.7 kb and 3.5 kb) (Fig

2D) confirmed the long-range resection defect that was detected by denaturing Southern blot-

ting. We can conclude that Chd1 is involved in both short- and long-range resection.

The 3’-ended ssDNA generated during DSB resection is coated by the RPA complex, which

is replaced by Rad51 to generate a nucleoprotein filament that invades and anneals to a homol-

ogous DNA sequence [1]. Although protein extracts from wild type, chd1Δ, chd1-K407R and

chd1-E514A cells contained similar Rad51 amount (Fig 2E), Rad51 association at different dis-

tances from the HO-induced DSB was reduced in chd1Δ, chd1-K407R and chd1-E514A cells

compared to wild type cells (Fig 2F), consistently with a role of Chd1 in both initiation and

extension of DSB resection.

Chd1 promotes MRX and Exo1 association with DSBs

DSB resection involves sequential action of short- and long-range nucleases. In short-range

resection, Mre11 endonuclease, aided by Sae2, cleaves the 5’-terminated DNA strand at ~250–

300 nucleotides from the DSB ends, followed by degradation toward the DNA ends by Mre11

exonuclease. Then, Exo1 or Dna2 resects thousands of nucleotides in length in the 5’-3’ direc-

tion away from the DSB ends [3–11]. While MRX and Sae2 binding to DSBs occurs indepen-

dently of each other [65], MRX has a structural role in promoting Exo1 and Dna2 association

with DSBs [66], thus explaining the more severe resection defect caused by the lack of any

MRX subunit compared to that caused by the lack of Mre11 nuclease activity.
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Fig 2. Chd1 dysfunction reduces DSB resection. (A) Schematic representation of the MAT locus and the distance of RsaI (R) and SspI (S) restriction sites from the

HO-cut site. The DNA fragments detected in panel B before (uncut) and after HO cleavage (HO-cut) were also indicated. (B) YEPR exponentially growing cell

cultures of JKM139 derivative strains were transferred to YEPRG at time zero. Southern blot analysis of SspI-digested genomic DNA after alkaline gel electrophoresis
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As Chd1 dysfunction leads to a defect in both short- and long-range resection, we measured

MRX, Sae2 and Exo1 association with the HO-induced DSB. The amount of Mre11 (Fig 3A)

and Exo1 (Fig 3B) bound at the HO-induced DSB was lower in chd1Δ, chd1-K407R and

chd1-E514A cells than in wild type cells. The decreased Mre11 and Exo1 recruitment was not

due to lower protein levels, as protein extracts prepared from wild type, chd1Δ, chd1-K407R
and chd1-E514A cells contained similar amounts of Mre11 (Fig 3C) and Exo1 (Fig 3D). By

contrast, Sae2 association with the HO-induced DSB was similar in wild type, chd1Δ,

chd1-K407R and chd1-E514A cells (Fig 3E). Thus, we can conclude that Chd1 facilitates MRX

and Exo1 association with DSBs.

Chd1 promotes DSB repair by HR

The finding that Chd1 promotes DSB resection led us to investigate whether Chd1 has a role

in HR. Among the HR repair pathways, single-strand annealing (SSA) is used to repair a DSB

flanked by direct DNA repeats when resection uncovers the complementary DNA sequences

that can then anneal to each other [67]. To measure the efficiency of SSA, we used YMV45

derivative strains that carry the GAL-HO construct and tandem repeats of the LEU2 gene

located 4.6 kb apart on chromosome III, with the HO cutting site adjacent to one of the repeats

(Fig 4A) [68]. HO was induced by galactose addition to exponentially growing cells and galac-

tose was maintained in the medium in order to re-cleave the HO sites that can be rejoined by

NHEJ. When DSB repair was monitored by Southern blot analysis with a LEU2 probe, accu-

mulation of the SSA repair product was delayed in chd1Δ, chd1-K407R and chd1-E514A cells

compared to wild type cells (Fig 4B and 4C), indicating a role for Chd1 in the SSA repair

mechanism. Consistent with a defective DSB repair by SSA, chd1Δ, chd1-K407R and

chd1-E514A cells showed a decreased viability on galactose-containing plates (HO expression

on) compared to wild type cells (Fig 4D).

Because the SSA repair mechanism does not require strand invasion and therefore does not

involve the Rad51 protein [69], we investigated the role of Chd1 in the generation of Rad51--

dependent crossover (CO) and non-crossover (NCO) events by ectopic recombination. In the

canonical HR pathway, ssDNA invades the homologous dsDNA to form a D-loop structure

consisting of heteroduplex DNA and displaced ssDNA. If the displaced ssDNA anneals with

the complementary sequence on the other side of the break, extension by DNA synthesis and

ligation result in the formation of a double Holliday junction, whose cleavage results in equal

number of NCO and CO products. However, if the invading strand extended by DNA synthe-

sis is displaced and anneals with the complementary sequences on the other side of the DSB,

this event leads to NCO products by SDSA [70,71].

To analyze formation of CO and NCO products, we used tGI354 derivative strains that

carry two copies of the MATa sequence [72]. One copy carries the HO cutting site and is

located ectopically on chromosome V, whereas the endogenous MAT sequence on chromo-

some III carries a single base pair mutation that prevents cleavage by HO (MATa-inc) (Fig

5A). The HO-induced DSB at the MAT sequence on chromosome V can be repaired by using

with a probe that anneals to the unresected strand. 5’-3’ resection progressively eliminates SspI sites (S), producing SspI fragments (r1 through r6) detected by the

probe. (C) The experiment as in panel B has been independently repeated three times, and the mean values are represented with error bars denoting s.d. (D)

Quantification of ssDNA by qPCR at the indicated distances from the HO-cut site. Plotted values are the mean values of three independent experiments, with error

bars denoting s.d. ���P< 0.005, ��P< 0.01, �P< 0.05, t-test. (E) Western blot with anti-Rad51 antibodies of extracts used for the ChIP analysis shown in panel F.

The same amount of extracts was separated by SDS-PAGE and stained with Coomassie Blue as loading control. (F) Rad51 ChIP at the indicated distances from the

HO-induced DSB. Data are expressed as fold enrichment at the HO-cut site over that at the non-cleavable ARO1 locus, after normalization to the corresponding

input for each time point. Fold enrichment was normalized to cut efficiency. Plotted values are the mean values ± s.d. from three independent experiments.
���P<0.005, ��P<0.01, �P<0.05, t-test.

https://doi.org/10.1371/journal.pgen.1009807.g002
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the uncleaved MATa-inc sequence on chromosome III, resulting in CO and NCO products

(Fig 5A) [72,73]. HO was induced by galactose addition to G2-arrested cells and galactose was

maintained in the medium to cleave the HO sites that were eventually reconstituted by NHEJ.

Both the 3 kb and the 3.4 kb band resulting from NCO and CO recombination events, respec-

tively, accumulated less efficiently in chd1Δ and chd1-E514A cells compared to wild type cells,

with the NCO band decreasing more severely than the CO band (Fig 5B and 5C), indicating a

role for Chd1 in Rad51-dependent HR.

Consistent with defective DSB repair by ectopic recombination, a lower percentage of

chd1Δ and chd1-E514A cells were able to form colonies on galactose-containing plates com-

pared to wild type cells (Fig 5D).

The role of Chd1 in supporting DSB repair appears to be restricted to HR-based mecha-

nisms. In fact, when we measured the ability of cells to re-ligate by NHEJ a plasmid that was

Fig 3. Chd1 dysfunction impairs MRX and Exo1 association with a DSB. (A,B) Mre11-Myc (A) and Exo1-Myc (B) ChIP at the indicated distances from the HO-

cut site. Data are expressed as fold enrichment at the HO-cut site over that at a non-cleavable locus (ARO1), after normalization to the corresponding input for

each time point. Fold enrichment was normalized to cut efficiency. Plotted values are the mean values ± s.d. from three independent experiments. ���P<0.005,
��P<0.01, �P<0.05, t-test. (C,D) Western blot with anti-Myc antibodies of extracts used for the ChIP analysis shown in panels A and B. (E) Sae2-Myc ChIP at the

indicated distances from the HO-cut site.

https://doi.org/10.1371/journal.pgen.1009807.g003

PLOS GENETICS Chd1 in DSB resection

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009807 September 14, 2021 8 / 20

https://doi.org/10.1371/journal.pgen.1009807.g003
https://doi.org/10.1371/journal.pgen.1009807


linearized before being transformed into the cells, the efficiency of plasmid re-ligation was

similar in wild type, chd1Δ and chd1-E514A cells (Fig 5E). Furthermore, the amount of Ku70

bound at the HO-induced DSB in both chd1Δ and chd1-E514A cells was similar to that of wild

type cells (Fig 5F).

Chd1 supports DNA damage resistance and long-range resection when

MRX is not fully functional

The rad50-V1269M (rad50-VM) mutation leads to a decreased MRVMX association with DSBs

[74]. To investigate whether the diminished MRX binding to DSBs in chd1Δ cells is physiologi-

cally important, we analyzed the effect of Chd1 dysfunction in rad50-VM cells. CHD1 deletion

and the presence of chd1-K407R or chd1-E514A allele, which caused by themselves a mild sen-

sitivity to high doses of phleomycin (phleo), camptothecin (CPT) or methyl-methane sulfonate

(MMS) (S2 Fig), exacerbated the sensitivity to genotoxic agents of rad50-VM cells (Fig 6A).

As previously reported [74], rad50-VM cells slightly decreased Mre11 association with the

HO-induced DSB (Fig 6B). Although similar amount of Mre11 can be detected in protein

Fig 4. Chd1 dysfunction reduces DSB repair by SSA. (A) Schematic representation of the YMV45 chromosome III region, where a unique HO-cut site is

adjacent to the leu2::cs sequence, which is 4.6 kb apart from the homologous leu2 sequence. HO-induced DSB results in generation of 12 kb and 2.5 kb DNA

fragments (HO-cut) that can be detected by Southern blot analysis with a LEU2 probe of KpnI-digested genomic DNA. DSB repair by SSA generates a product

of 8 kb (SSA). K, KpnI. (B) Exponentially growing YEPR cell cultures of YMV45 derivative strains were transferred to YEPRG. Southern blot analysis of KpnI-

digested genomic DNA. (C) Densitometric analysis of the SSA product. Plotted values are the mean values of three independent experiments as in panel B, with

error bars denoting s.d. (D) Percentage of colony formation on YEPRG plates relatives to colony formation on YEPD plates. The reported values are the mean

values of three independent experiments, with error bars denoting s.d. ���P<0.005, t-test.

https://doi.org/10.1371/journal.pgen.1009807.g004
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extracts from wild type, chd1Δ, rad50-VM and chd1Δ rad50-VM cells (Fig 6C), the amount of

Mre11 bound to the HO-induced DSB was lower in chd1Δ rad50-VM cells than in chd1Δ and

rad50-VM cells (Fig 6B), thus explaining the increased DNA damage sensitivity of chd1Δ
rad50-VM double mutant cells.

We also monitored the resection kinetics by following resistance to cleavage by restriction

enzymes at different distances from the HO-induced DSB. As previously reported [74], the

rad50-VM mutation affected DSB resection only very mildly (Fig 6D). ssDNA generation close

to the HO-cut site (0.15 kb and 0.65 kb) in chd1Δ rad50-VM cells was similar to that of chd1Δ
cells (Fig 6D). By contrast, chd1Δ rad50-VM cells showed a reduction in ssDNA generation at

Fig 5. Chd1 dysfunction reduces DSB repair by HR. (A) System to detect ectopic recombination. HO generates a DSB at a MATa DNA sequence inserted on

chromosome V, while the homologous MATa-inc region on chromosome III cannot be cut by HO and is used as a donor to generate noncrossover (NCO) and

crossover (CO) products. E, EcoRI. (B) G2-arrested YEPR cell cultures of tGI354 derivative strains were transferred to YEPRG at time zero and were kept arrested in

G2 by nocodazole. Southern blot analysis of EcoRI-digested genomic DNA with the MATa probe depicted in panel A. (C) Densitometric analysis of CO (3.4 kb) versus

NCO (3 kb) repair bands at the indicated times after HO induction. (D) Percentage of colony formation on YEPRG plates relatives to colony formation on YEPD

plates. Plotted values are the mean values of three independent experiments, with error bars denoting s.d. ���P<0.005, t-test. (E) Plasmid re-ligation assay. Cells were

transformed with the same amounts of BamHI-linearized pRS316 plasmid DNA. Data are expressed as percentage of re-ligation relative to wild type that was set up at

100% after normalization to the corresponding transformation efficiency. (F) Ku70-HA ChIP at the indicated distance from the HO-cut site.

https://doi.org/10.1371/journal.pgen.1009807.g005
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more distant sites (1.7 kb, 3.5 kb, 6.5 kb and 8.9 kb) compared to both chd1Δ and rad50-VM
cells (Fig 6D), indicating a more severe long-range resection defect in the double mutant. Con-

sistent with a role of Chd1 in promoting extended DSB processing, the DNA damage sensitiv-

ity of both chd1Δ and chd1Δ rad50-VM cells was partially suppressed by EXO1 overexpression

(Fig 6E), indicating that part of their DNA damage sensitivity was due to defects in DNA

processing.

While DSB repair by SSA requires that resection reaches the complementary DNA

sequences that can anneal to each other, DSB repair by ectopic recombination does not require

extensive processing of the DSB ends [75–77]. Consistent with the finding that chd1Δ
rad50-VM cells compromised extended DSB resection more severely than chd1Δ cells, per-

centage of survival of chd1Δ rad50-VM cells was lower than that of chd1Δ cells upon genera-

tion of a HO-induced DSB that is repaired by SSA (Fig 6F). By contrast, chd1Δ and chd1Δ
rad50-VM cells showed similar percentage of survival upon generation of a HO-induced DSB

that is repaired by ectopic recombination (Fig 6G).

Discussion

In mammals, loss of the ATP-dependent chromatin-remodeling protein CHD1 impairs DSB

repair and decreases the assembly of RPA and RAD51 foci [51], suggesting a role for this pro-

tein in DSB resection. This study shows that the lack of S. cerevisiae Chd1 reduces nucleosome

eviction from the DSB ends. Furthermore, its lack impairs both short- and long-range resec-

tion by reducing MRX and Exo1 association with DSBs. The Chd1 functions in nucleosome

eviction from DSBs and resection require its ATPase activity, suggesting that Chd1 promotes

resection by acting as nucleosome evictor in the opening of chromatin to promote/stabilize

MRX and Exo1 association with DSBs. Consistent with a role of chromatin compaction in

counteracting MRX and Exo1 accessibility to the DSB ends, assembly of DNA into nucleo-

somes causes inhibition of both Exo1 resection activity and MRX-dependent activation of Tel1

kinase [13,78]. Furthermore, high-throughput single-molecule microscopy has shown that

MRN searches for free DNA ends by one-dimensional facilitated diffusion and transiently dis-

sociates from the DNA backbone to bypass a nucleosome [79].

The decreased DSB resection in chd1 mutants impairs DSB repair by SSA, which requires

that resection of the DSB ends reaches the complementary DNA sequences. Furthermore, the

lack of Chd1 or of its ATPase activity leads to a reduction of NCO products during ectopic

recombination. Consistent with a previous finding that the lack of Chd1 does not affect forma-

tion of ectopic CO products in mitotically dividing cells [56], the generation of CO products in

chd1 mutants is only slightly affected. In any case, the role of Chd1 appears specific for DSB

repair by HR, as the lack of Chd1 affects neither DSB repair by NHEJ nor the association of

the Ku complex with DSBs.

The function of Chd1 in promoting MRX binding/persistence to DSBs becomes important

to support DNA damage resistance when MRX accumulation at DSBs is suboptimal, such as

in the presence of the rad50-VM mutation. This mutation reduces MRX association with DSBs

Fig 6. Chd1 dysfunction exacerbates the DNA damage sensitivity and the long-range resection defect of rad50-VM cells. (A) Exponentially growing cultures

were serially diluted (1:10) and each dilution was spotted out onto YEPD plates with or without CPT or MMS. (B) Mre11-Myc ChIP at the indicated distances

from the HO cleavage site. Data are expressed as fold enrichment at the HO-cut site over that at a non-cleavable locus (ARO1), after normalization to the

corresponding input for each time point. Fold enrichment was normalized to cut efficiency. Plotted values are the mean values ± s.d. from three independent

experiments. ���P<0.005, ��P<0.01, �P<0.05, t-test. (C) Western blot with anti-Myc antibodies of extracts used for the ChIP analysis shown in panel B. (D)

Quantification of ssDNA by qPCR at different distances from the HO-cut site. Plotted values are the mean values of three independent experiments, with error

bars denoting s.d. ���P<0.005, ��P<0.01, �P<0.05, t-test. (E) Exponentially growing cultures were serially diluted (1:10) and each dilution was spotted out onto

YEPD plates with or without CPT. (F,G) Percentage of colony formation of YMV45 (F) and tGI354 (G) derivative strains on YEPRG plates relative to colony

formation on YEPD plates. Plotted values are the mean values of three independent experiments, with error bars denoting s.d. �P<0.05, t-test.

https://doi.org/10.1371/journal.pgen.1009807.g006
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and the lack of Chd1 reduces further the amount of MRVMX bound to DSBs. As a conse-

quence, chd1Δ rad50-VM cells are more sensitive to genotoxic agents compared to each single

mutant. Interestingly, while resection very close to the DSB occurs with similar kinetics in

chd1Δ and chd1Δ rad50-VM cells, long-range resection is compromised more severely in

chd1Δ rad50-VM cells compared to both chd1Δ and rad50-VM single mutants. These findings,

together with the observation that overexpression of EXO1, which is the main nuclease

involved in long-range resection, partially suppresses the DNA damage sensitivity of both

chd1Δ and chd1Δ rad50-VM cells, suggests a direct role of Chd1 in supporting Exo1 resection

activity. In accord with this hypothesis, Chd1 was found to interact with Exo1 and to enable

MutLγ-Exo1-dependent processing of joint molecules into COs during meiosis I [56].

While in mammals CHD1 was shown to promote the recruitment of CtIP to DSBs, the

association of Sae2, the yeast CtIP counterpart, does not require Chd1 function. However, it

should be pointed out that the localization of CtIP to DSBs in both mammals and S. pombe
requires the MRN complex [80–82], whereas Sae2 association with DSBs in S. cerevisiae occurs

independently of MRX [65]. As the role of mammalian CHD1 in promoting MRN association

with DSBs has not been investigated yet, one possibility is that the poor CtIP binding to DSBs

in CHD1-depleted cells might be due to a diminished MRN association with DSBs.

In conclusion, we propose that Chd1 increases the accessibility of chromatin to facilitate/

stabilize the association of MRX and Exo1 with DSBs, which in turn initiate DSB processing.

The CHD1 gene is frequently mutated in prostate cancer where these mutations are associated

with a poor prognosis [48–51]. Our finding that Mre11 dysfunction can be rendered syntheti-

cally lethal with chd1 mutations in the presence of genotoxic agents suggests that MRX inhibi-

tors in combination with DNA-damaging chemotherapy could be beneficial in patients whose

tumors are defective in CHD1 function.

Materials and methods

Yeast strains and media

Strain genotypes are listed in S1 Table. Strains JKM139, YMV45 and tGI354, used to detect

DSB resection, DSB repair by SSA and DSB repair by ectopic recombination, respectively,

were kindly provided by J. Haber (Brandeis University, Waltham, USA). Cells were grown in

YEP medium (1% yeast extract, 2% bactopeptone) supplemented with 2% glucose (YEPD), 2%

raffinose (YEPR) or 2% raffinose and 3% galactose (YEPRG). Gene disruptions were generated

by one-step PCR homology cassette amplification and standard yeast transformation method.

Spot and DSB survival assays

For spot assays, exponentially growing cell cultures were diluted to 1x107 cells/ml. 10-fold

serial dilutions were spotted on YEPD with or without the indicated DNA damaging drugs.

Plates were incubated for 3 days at 30˚C. To determine viability in DSB assays, cells exponen-

tially growing in YEPR were plated onto YEPD and YEPRG plates. Survivor colonies were

counted after 3 days of incubation at 30˚C, and the survivor percentage was calculated by nor-

malizing colony number on YPRG to colony number on YEPD.

DSB resection at the MAT locus

DSB end resection at the MAT locus in JKM139 derivative strains was analyzed on alkaline

agarose gels by using a single-stranded probe that anneals to the unresected DSB strand, as

previously described [83]. Quantification of DSB resection was determined by calculating the

ratio of band intensities for ssDNA to the total amount of DSB products. To normalize to cut
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efficiency, the value of the uncut band was subtracted from the total amount of DSB products

for each time point. Quantitative PCR (qPCR) analysis of DSB resection at the MAT locus in

JKM139 derivative strains was carried out as previously described [64]. Genomic DNA was

extracted at different time points following HO induction. Oligonucleotides were designed to

detect ssDNA at specific distances from the DSB (0.15 kb, 0.65 kb, 0.9 kb, 1.7 kb, 3.5 kb, 6.5 kb

and 8.9 kb) (S2 Table). The DNA was digested with both SspI and RsaI restriction enzymes. A

mock reaction without the restriction enzymes was set up in parallel. qPCR was performed on

both digested and mock samples using SsoFast EvaGreen supermix (Bio-Rad) on the Bio-Rad

CFX Connect Real-Time System apparatus. For each time point, Ct values were normalized to

those obtained from the mock sample, and then further normalized to values obtained from

an amplicon in the KCC4 control gene. Finally, the obtained values were normalized to the

HO-cut efficiency measured by qPCR by using oligonucleotides that anneal on opposite sides

with respect to the HO cutting sequence (S2 Table). The percentage of HO-cut was calculated

by comparing the Ct values before and after HO induction in undigested samples.

DSB repair by SSA

DSB repair by SSA in YMV45 strains was detected by Southern blot analysis using an

Asp718-SalI fragment containing part of the LEU2 gene as a probe, as previously described

[84]. Quantitative analysis of DSB repair by SSA was determined by calculating the ratio of

band intensities for SSA to the total amount of SSA and DSB products for each time point. To

normalize to cut efficiency, the value of the uncut band was subtracted from the total amount

of SSA and DSB products.

DSB repair by ectopic recombination

DSB repair by ectopic recombination was detected in tGI354 background as previously

described [84]. To determine the repair efficiency, the intensity of the uncut band at 2 h after

HO induction (maximum efficiency of DSB formation) was subtracted from the normalized

values of NCO and CO bands at the subsequent time points after galactose addition. The

obtained values were divided by the normalized intensity of the uncut MATa band at time

zero before HO induction (100%).

Chromatin immunoprecipitation and qPCR

ChIP analysis was performed with anti-HA (12CA5), anti-Myc (9E10), anti-H3 (ab1791,

Abcam) and anti-Rad51 (ab63798, Abcam) antibodies as previously described [74]. Quantifi-

cation of immunoprecipitated DNA was achieved by qPCR on a Bio-Rad CFX Connect Real-

Time System apparatus. Triplicate samples in 20 μl reaction mixture containing 10 ng of tem-

plate DNA, 300 nM for each primer, 2X SsoFast EvaGreen supermix (1725201, Bio-Rad) (2X

reaction buffer with dNTPs, Sso7d-fusion polymerase, MgCl2, EvaGreen dye, and stabilizers)

were run in white 96-well PCR plates Multiplate (MLL9651, Bio-Rad). The qPCR program was

as follows: step 1, 98˚C for 2 min; step 2, 90˚C for 5 s; step 3, 60˚C for 15 s; step 4, return to

step 2 and repeat 45 times. At the end of the cycling program, a melting program (from 65˚C

to 95˚C with a 0.5˚C increment every 5 s) was run to test the specificity of each qPCR. For

each time point, data are expressed as fold enrichment at the HO-cut site over that at the non-

cleaved ARO1 locus, after normalization of each ChIP signals to the corresponding input sig-

nals. Fold enrichment was normalized to cut efficiency that was determined by qPCR. For his-

tone loss, log2 values of the relative enrichment were calculated. Oligonucleotides used for

qPCR analyses are listed in S2 Table.
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Plasmid religation

The centromeric pRS316 plasmid was digested with the BamHI restriction enzyme before

being transformed into the cells. Parallel transformation with undigested pRS316 DNA was

used to determine the transformation efficiency. Efficiency of re-ligation was determined by

counting the number of colonies grown on medium selective for the plasmid marker and nor-

malizing them with respect to the transformation efficiency for each sample. The re-ligation

efficiency in mutant cells was compared to that of wild type cells that was set up to 100%.

Western blotting

Protein extracts for western blot analysis were prepared by trichloroacetic acid (TCA) precipi-

tation. Frozen cell pellets were resuspended in 200 μL 20% TCA. After the addition of acid-

washed glass beads, the samples were vortexed for 10 min. The beads were washed with 200 μL

of 5% TCA twice, and the extract was collected in a new tube. The crude extract was precipi-

tated by centrifugation at 3000 rpm for 10 min. TCA was discarded and samples were resus-

pended in 70 μL 6X Laemmli buffer (60mM Tris pH 6.8, 2% SDS, 10% glycerol, 100mM DTT,

0.2% bromophenol blue) containing 0.9% 2-mercaptoethanol and 30 μL 1M Tris pH8.0. Prior

to loading, samples were boiled at 95˚C and centrifuged at 3.000 rpm for 10 min. To detect

Mre11-Myc, Exo1-Myc and Rad51, TCA protein extracts were separated on 10% polyacryl-

amide gels and probed with anti-Myc (9E10) or anti-Rad51 (ab63798, Abcam) antibody.

Supporting information

S1 Table. List of yeast strains used in this study.

(DOCX)

S2 Table. List of oligonucleotides used in this study.

(DOCX)

S1 Fig. DSB resection. YEPR exponentially growing cell cultures of JKM139 derivative strains

were transferred to YEPRG at time zero. Southern blot analysis of SspI-digested genomic

DNA after alkaline gel electrophoresis with a probe that anneals to the unresected strand. 5’-3’

resection progressively eliminates SspI sites (S), producing SspI fragments (r1 through r6)

detected by the probe.

(TIF)

S2 Fig. DNA damage sensitivity of chd1 mutants. Exponentially growing cultures were seri-

ally diluted (1:10) and each dilution was spotted out onto YEPD plates with or without CPT,

MMS or phleomycin.

(TIF)

S1 Data. Original data sheets.

(XLSX)
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52. Rüthemann P, Balbo Pogliano C, Codilupi T, Garajovà Z, Naegeli H. Chromatin remodeler CHD1 pro-

motes XPC-to-TFIIH handover of nucleosomal UV lesions in nucleotide excision repair. EMBO J. 2017;

36: 3372–3386. https://doi.org/10.15252/embj.201695742 PMID: 29018037

53. Kari V, Mansour WY, Raul SK, Baumgart SJ, Mund A, Grade M, et al. Loss of CHD1 causes DNA repair

defects and enhances prostate cancer therapeutic responsiveness. EMBO Rep. 2016; 17: 1609–1623.

https://doi.org/10.15252/embr.201642352 PMID: 27596623

54. Zhou J, Li J, Serafim RB, Ketchum S, Ferreira CG, Liu JC, et al. Human CHD1 is required for early

DNA-damage signaling and is uniquely regulated by its N terminus. Nucleic Acids Res. 2018; 46: 3891–

3905. https://doi.org/10.1093/nar/gky128 PMID: 29529298

55. Delamarre A, Barthe A, de la Roche Saint-André C, Luciano P, Forey R, Padioleau I, et al. MRX
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