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Abstract: The methodological background of the virtual element method is presented and applied to model permanent magnets
via the Kikuchi formulation, considering both linear and non-linear magnetic permeability of the ferromagnetic regions. The
authors examine several study cases: a permanent magnet in free space, a permanent magnet energising a ferromagnetic core,
a four-pole permanent-magnet motor. In order to validate the proposed approach, comparisons with both virtual and finite
element potential formulations are presented and discussed.

1 Introduction
The virtual element method (VEM) is a recent generalisation of
classical finite elements allowing for very general domain
decompositions (polygons and polyhedra [1], even with curved
edges/faces [2, 3]) and approximation spaces enjoying features
difficult to obtain in the classical setting [4] (e.g. truly divergence-
free vector functions [5, 6]). Other important features of VEM are:

• the possibility of using hanging nodes in the decomposition
without special treatments [7];

• the compatibility with finite element method (FEM), meaning
that VEM and FEM can both be used at the same time;

• excellent robustness with respect to degeneracies of the mesh
(polygons/polyhedra with small edges/faces) [8, 9];

• sound mathematical analysis [10].

In this paper, we apply the VEM to the discretisation of classical
magnetostatics problems, including the modelisation of permanent
magnets, to validate this new methodology and emphasise the
advantages over the classical finite element techniques.

As far as case studies are concerned, it is difficult to overlook
the technological importance of permanent magnets as core
components of modern electrical devices like small-size motors for
domestic appliances or traction motors for full-electric vehicles.
Accordingly, for a permanent magnet to be a valid and competitive
industrial product, designers need advanced tools for accurate field
modelling; this is the basic rationale inspiring the application of
VEM in magnetics here presented.

The remaining part of this paper is organised as follows. In
Section 2, we present the continuous formulation of a
magnetostatic problem in the Kikuchi mixed form. We introduce
the VEM used to solve such kind of problem in Section 3. Then, in
Section 4, we present the VEM discrete counterpart of the
magnetostatic Kikuchi mixed problem. In Section 5, we show some
numerical examples. First, we simulate a permanent magnet
surrounded by air and iron. Then, we consider a magnetic circuit
energised by a permanent magnet both in a linear and a non-linear
framework. Finally, we make a simulation of an interior-
permanent-magnet motor. In such examples, special emphasis is
given to VEM discretisation techniques of two-dimensional (2D)
domains (general polygons, hanging nodes), as well as the use of
polynomial projectors for post-processing computation of field-
related quantities like forces and torques.

2 Kikuchi formulation of 2D magnetostatics
In this paper, we consider the mixed formulation proposed by
Kikuchi in [11]: find the pair H, p  solution of

∫
Ω

rot H rot v dΩ + ∫
Ω

∇p ⋅ μv dΩ = ∫
Ω

j rot v dΩ

∫
Ω

∇q ⋅ μH dΩ = 0
(1)

where since we are considering an isotropic material, μ = μ0μr is
the scalar magnetic permeability obtained by the product between
the magnetic permeability of the vacuum, μ0, and the relative
permeability, μr, H is the magnetic field, p plays the role of a
Lagrange multiplier to enforce weakly the condition div B = 0 and
the functions v and q are proper test functions.

In the presence of a permanent magnet, the induction field B is
decomposed in the following form:

B = μH + B0, (2)

where B0 is the induction field due to the magnet. Now the
divergence-free condition on B becomes

div(B) = div(μH + B0) = 0. (3)

Consequently, when we are considering the presence of a
permanent magnet the second condition of (1) has to be substituted
by

∫
Ω

∇q ⋅ μH dΩ = − ∫
Ω

∇q ⋅ B0 dΩ,

which is the weak form of the strong condition defined in (3).
In the numerical examples, we compared the proposed model

with a standard potential formulation where the permanent magnet
is approximated via equivalent current sheets [12]. In such cases,
we consider both the virtual element formulation proposed in [13]
and the classical finite element one [14]. To get the numerical
solution of such finite element approximation, we use the
commercial code MagNet [15].
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3 Virtual element functions
To better understand the virtual element discretisation of the
problem (1), we focus on the description of the approximation
spaces involved. First, we consider the lowest-order case, k = 1,
then we show how to extend it for a generic approximation degree
k. In the last subsection, we have made some key considerations
about virtual functions from both a theoretical and practical point
of view.

Given a domain D, we define ℙk D  as the space of
polynomials of degree up to k defined in D. In such a framework
D can be an edge e or a polygon E.

Consider a discretisation Ωh of the computational domain made
of polygons. In the following paragraphs, we present the lowest-
order and general-order cases. For a more detailed description of
them, we refer to [13].

3.1 Lowest-order case (k = 1)
The scalar variable p is approximated by a function ph linear on
each edge and harmonic inside each element, i.e.

ph e ∈ ℙ1(e) and Δph = 0 in E,

where e and E are a generic edge and element of the mesh Ωh,
respectively. In such a case, the degrees of freedom (dofs) of ph are
the values of ph at polygon vertexes, as shown in Fig. 1a. 

The magnetic field H is approximated by a discrete vector
function Hh characterised by the constant rotor, zero divergence
and whose tangential component is constant on each edge e of Ωh:

Hh ⋅ te e ∈ ℙ0(e), div Hh = 0 in E and rot Hh ∈ ℙ0(E),

where te is the tangential vector of an edge e. For such vectorial
function, the dofs are the tangential component value on each edge,
as shown in Fig. 1b.

3.2 General-order case

For k ≥ 2, the Lagrange multiplier variable ph is defined by the
conditions

ph e ∈ ℙk(e) and Δph ∈ ℙk − 2(E) .

In such a general-order case, ph is uniquely identified by

• the nodal values of ph at each polygon vertex;
• k − 1 values of ph on each polygon edge;
• the moments

∫
E

∇ph ⋅ x pk − 2dE ∀pk − 2 ∈ ℙk − 2(E),

where x := (x, y)t .
Since in the numerical experiments of Section 5, we use degree

k = 2, we show the scheme of such dofs in Fig. 2a. 
The approximated magnetic field Hh is defined by

Hh ⋅ t e ∈ ℙk − 1(e), div Hh ∈ ℙk − 2(E), rot Hh ∈ ℙk − 1(E) . (4)

In this case, the dofs are

• k − 1 values of Hh ⋅ te for each polygon edge e;
• the moments

∫
E

(Hh ⋅ p)pk − 2dE, pk − 2 ∈ ℙk − 2(E),

the moments of the rotor

∫
E

rot Hhpk − 1
0 dE, pk − 1

0 ∈ ℙk − 1(E)∖ℙ0(E) .

In Fig. 2b, we give the scheme of the dofs for Hh considering the
case k = 2.

3.3 Global spaces

The global spaces for Hh and ph are obtained by gluing such local
spaces along edges. As a result ph will be globally continuous,
while only the tangential component of Hh will be continuous
across edges. Then, the dofs of such global spaces are the union of
the local ones. We refer to such spaces as Vh and Qh for the field
and the multiplier variables, respectively.

If we consider the lowest-order case and a mesh Ωh made of
triangles, the vector space Vh coincides with the classical FEM
edge space described in [16–18], while the space Qh is simply the
linear Lagrange FEM space [19].

To solve a magnetostatic problem one can consider a potential
formulation [4, 13]. This formulation has fewer dofs than the
Kikuchi formulation. Indeed, given a mesh made of triangles with
NV vertexes, we roughly have k2 NV and 3k2 NV dofs for potential
and Kikuchi formulations, respectively. However, the increased
computational effort of the Kikuchi approximation results in a
much more robust method with respect to singularities due to re-
entrant corners and discontinuities of the permeability μ.

3.4 Important considerations on virtual functions

Functions Hh and ph are virtual so we know them only through the
values of their dofs.

Consequently, in principle, one has to compute such virtual
functions to get direct access to them. Indeed, given a polygon E of
the mesh, one could in principle define an auxiliary PDE having
the virtual function as unknown, sub-triangulate E, and get a
numerical solution that approximates the virtual function at hand
inside E. However, this strategy is against the main idea of VEM!

Indeed, starting from the dofs, it is possible to compute some
quantities in a straightforward way without solving any auxiliary
partial differential equation (PDE).

Fig. 1  VEM dofs for a pentagon in the lowest-order
(a) Scalar variable ph, (b) Vectorial variable Hh for. All the dofs are functions
evaluations

 

Fig. 2  VEM dofs for a pentagon degree 2
(a) Scalar variable ph, (b) Vectorial variable Hh. In a virtual element framework, dofs
can be the evaluation of function (dots and cross) and moments (triangles, squares and
stars) [13]
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First of all, we can find the polynomial that represents the rotor
of Hh in E. Then, we can define the L2 projection operator on each
mesh element E. Such projection operator maps the virtual function
Hh restricted to the element E into the space of vectorial
polynomials of degree k − 1. We recall that the definition of such
projection is based on the following identity:

Πk − 1Hh, p = Hh, p for all p ∈ ℙk − 1(E) 2, (5)

where ⋅ , ⋅  is the standard L2 inner product [13]. In a similar way,
it is possible to define a suitable L2 projection operator for the
scalar variable ph [4].

Both rot Hh and the projection operators play a key role in the
virtual element formulation. Indeed, they are exploited to discretise
problem (1). More specifically, they are used to build the discrete
bilinear forms of problem (1).

The projection operator (5) is also instrumental in a post-
processing procedure. In Section 5, we will give numerical
evidence about this fact in a real-life example. Indeed, we will use
Πk − 1Hh to get an approximation of the magnetic field and to
compute some derived quantities such as the energy of the vector
field or Maxwell stress tensor [14, 20].

We make a further remark about the correct use of the
constitutive law of a permanent magnet in the VEM formulations
taken into account. For a B-oriented formulation, like the potential
formulation, one obtains B as the curl of vector potential (in 3D
domains) or as the rotated gradient of a scalar potential in 2D;
therefore, H-field inside the permanent magnet is given by

H = μ0μr
−1 B − B0 .

On the contrary, for an H-oriented formulation, like the Kikuchi-
like formulation, one obtains H as the native unknown; therefore,
B-field inside the permanent magnet is given by (2).

4 Discretisation of the problem
Once the spaces Vh and Qh are constructed, the discretisation of the
problem follows the variational approach as in FEM: find
Hh, ph ∈ Vh × Qh such that

∫Ωh
rot Hh rot vh dΩ + ∇ph, μvh e = ∫Ωh

j rot vh dΩ

∇qh, μHh e = [∇qh, B0]pm

(6)

where vh ∈ Vh and qh ∈ Qh are test functions

∇ph, μvh e ≃ ∫
Ω

∇p ⋅ μv dΩ,

and

∇qh, B0 pm ≃ − ∫
Ω

∇q ⋅ B0dΩ .

These last two bilinear forms are built starting from the dofs and
the projection operator defined in (5). We refer to Subsection 3.3 in
[13] for a detailed description and analysis of them.

If we are able to integrate polynomials on generic polygons,
some of the integrals in (6) are computed ‘exactly’, i.e. up to
quadrature approximation rule precision. Indeed, given a function
vh ∈ Vh, rot vh is a polynomial that can be computed starting from
the dofs of vh. Consequently, the first integral which involves only
rotor of functions in Vh is exact, if we choose a proper quadrature
rule precision degree. Similar considerations can be done on the
integral appearing at the right-hand side of the first equation in (6),
but we have to take into account the approximation of the current
density j.

In the last two numerical experiments of Section 5, we consider
a non-linear approximation of the magnetic permeability μr. To
achieve this goal, we consider a fixed-point iterative scheme. More
specifically, given the discrete magnetic field Hh

i  at the ith iteration
and the constitutive law μr:ℝ+ → ℝ+, since Hh

i  is virtual and we
cannot compute the Hh

i , we exploit the projection operator to get
the value of μr at the quadrature points, i.e. μr Πk − 1Hh

i . Then,
such values are used to compute the solution of the next iteration,
i.e. Hh

i + 1. We break such iterative procedure when two subsequent
solutions are close to each other, i.e. when the solution vectors are
close to each other

Dof Hh
i + 1 − Dof Hh

i

Dof Hh
i < ϵ,

where ϵ is a proper tolerance value and Dof ⋅  is the operator
which associates the vector of the dofs with the discrete virtual
solutions, Hh

i + 1 and Hh
i .

5 Numerical examples
In this section, we consider three problems that involve permanent
magnets. The aim is to numerically validate VEM from the post-
processing point of view. In each example, we refer to the Kikuchi
mixed formulation as Kik, to the virtual element potential
formulation as Pot and to the commercial code MagNet [15] as
Mag. In some tests, to validate both Kikuchi and potential VEM
formulations, we will consider the results provided by MagNet as a
reference solution.

5.1 Permanent magnet

In this case, we consider a rectangular permanent magnet of
dimension 20 mm × 80 mm, we set μr = 1 and B0 = 1 T. We take
into account two configurations. The first one where the magnet is
only surrounded by air and the second one where there is iron
μr = 1000  and air around it, as shown in Fig. 3. 

The aim of this example is to verify that both fields B and H
obtained by VEM approaches are in accordance with those
provided by MagNet. Magnet is based on FEM, it cannot handle

Fig. 3  Permanent magnet: the configuration with the iron. We highlight the path Γ where we evaluate the y-component of the magnetic fields B and H
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polygonal meshes so we discretise the computational domain with
an unstructured quasi-uniform triangular mesh.

We compare B and H along the path Γ depicted in Fig. 3. Since
the magnet is oriented in the up direction, we compare only the y-

component of such fields due to the fact that the x-component is
close to zero for both B and H.

In Fig. 4, we show the results for each configuration taken into
account, i.e. the y-component of B with and without the iron. The
results obtained by both VEM approaches are in accordance with
that obtained by MagNet. We got a similar agreement for the H
field too, but we do not show it.

We further underline that when we consider the virtual element
approaches, we exploit the projection operator, (5), to compute the
vector fields B and H. Consequently, such a projection operator
offers a good numerical approximation of the magnetic field itself
and it can be used in a post-processing framework.

Starting from this consideration, we can infer that all the
derived quantities, such as the energy of the vector field or
Maxwell stress tensor, can be properly computed via such a
projection operator. In the next subsection, we will give numerical
evidence about this fact.

5.2 Permanent magnet circuit

In this example, we consider a rectangular permanent magnet of
dimension 50 mm × 50 mm energising a C-shaped magnetic circuit,
characterised by a non-uniform section, as shown in Fig. 5. We set
μr = 1, B0 = 1 T for the magnet and we take a varying air-gap d
from 1 to 4 mm with a step-size of 0.5 mm, while we fix the air-gap
width to 2 mm, as shown in Fig. 5. We consider both linear and
non-linear approximation of the magnetic permeability of the iron
core. In the former case, we take μr = 1000, while we use the
function μ H  of iron 0.5 mm proposed in [21]. We compute the
magnetic energy of different regions and in the whole domain
varying the air-gap d. Moreover, we numerically verify the energy
conservation law in the linear case.

The goal of such example is two-fold. On the one hand, we
validate the proposed non-linear approach by showing that it gives
similar results to the ones obtained via a linear approximation. This
fact is aligned with the physics of the problem at hand; indeed it
means that the magnetic field inside the iron is not so strong to
saturate the iron inside.

On the other hand, we give numerical evidence that the
projection operators are suitable to compute some derived
quantities. More specifically, to compute the energy on a specific
region D, we use the standard formula

W = 1
2∫D

B ⋅ H dD

where we substitute both fields B and H with their VEM projection
counterpart.

In Figs. 6 and 7, we provide the values of By when we consider
an air-gap equal to 1.0 mm. The simulations obtained via either
linear or non-linear case give reasonable results, since they are
approximately the same and lower than 2 T. We get similar results
(not shown here) for larger air-gaps. Indeed, the linear and non-
linear cases are in accordance for both Kikuchi and potential VEM
formulations.

Now we move to the computation of the energy. Let EPot and
EKik be the energies associated with the potential and Kikuchi
VEM formulation, respectively. First of all, we numerically verify
that EPot ≃ EKik. To achieve this goal, we compute

δE := EPot − EKik
EKik

,

and the close to zero δE is, the more such formulations are in
accordance with the energy inside the air-gap.

In Tables 1 and 2, we collect the results obtained by varying air-
gap for the linear and non-linear cases. All the values of δE are
small enough so we infer that the computation provided by both
virtual element methods is in accordance with each other.
Moreover, since the values of Table 1 are close to the
corresponding ones in Table 2, we deduce that the linear

Fig. 4  Permanent magnet: y-component of the field B along Γ. We show
the results with and without iron

 

Fig. 5  Permanent magnet circuit: the configuration taken into account. We
highlight the paths Γ1 and Γ2, where we compute By

 

Fig. 6  Permanent magnet circuit: values of By along the path Γ1

 

Fig. 7  Permanent magnet circuit: values of By along the path Γ2. Please
note that the highest discrepancy between such curves is ∼3% so all the
simulations provide similar results

 

IET Sci. Meas. Technol., 2020, Vol. 14 Iss. 10, pp. 1098-1104
This is an open access article published by the IET under the Creative Commons Attribution-NonCommercial-NoDerivs License
(http://creativecommons.org/licenses/by-nc-nd/3.0/)

1101



approximation of μr is still valid from the physical point of view
for all air-gaps taken into account.

In such example, the energy of the whole system is due to the
magnet. As a consequence, the sum of the energies inside iron and
air has to be equal to the energy of the magnet, i.e.

EAir + EIron = EMagnet . (7)

We consider only the linear case and we numerically verify that the
identity of (7) holds. We have taken into account the linear case
since the computation of the energy is more straightforward and it
is not effected by how we approximate the non-linear function
μ(H).

To verify the conservation of energy, we proceed in a similar
way as before. We define the quantity

δC = EAir + EIron − EMagnet
EMagnet

,

the closer to zero this quantity is, the more the energy of the system
is preserved.

In Table 3, we report the value of δC obtained by varying the
air-gap with both VEM formulations. Such values are close to zero
so we have a good agreement with (7). Moreover, we observe that
the potential VEM formulation gains one order with respect to the
Kukuchi one. Indeed, the discrepancy, in this case, is about 1%,
while in the potential formulation is 0.1%.

5.3 Permanent magnet motor

An internal-permanent-magnet motor characterised by 4 poles and
12 stator slots is considered as a further case study. The external
and the rotor diameters are 68  and 30 mm, respectively, while the
air-gap width is 0.5 mm. The permanent magnet exhibits a radial
magnetisation with a remanent field equal to B0 = 1 T and coercive
field equal to Hc = 7.957e + 05 Am−1. The μr − H curve featuring
the laminated magnetic core of the rotor and stator is shown in
Fig. 8. The saturation effect is likely to appear inside the small
magnetic bridges located in the rotor region between adjacent
magnets [21].

From a physical point of view, we validate the proposed virtual
element method in the computation of the cogging torque, i.e. the
torque acting on the rotor when the three-phase current in the rotor
slots is zero (no-load operation). Such quantity is important to
design a permanent magnet motor since it takes into account the
tendency of the permanent magnet axis to align with the direction
that corresponds to the minimum energy stored in the motor.
Although its value is substantially lower than the running torque
due to the on-load current, cogging torque could be responsible for
annoying vibrations occurring during the normal on-load operation
of the motor.

However, before dealing with such computations, we would
like to underline the advantages provided by VEM from the mesh
generation point of view.

As can be seen from Fig. 9, the computational domain is
complicated. Moreover, since we are considering different angular
positions of the rotor, one has to generate one mesh for each rotor
position. However, thanks to the virtual element method, one can
avoid this time-consuming operation, exploiting polygons and the
possibility to add hanging-nodes.

Before going into the detail of the adopted meshing procedure,
we underline that one can consider hanging nodes in a finite
element framework too, but this extension brings more complexity
from the theoretical and implementation point of view [22, 23]. On
the contrary, in VEM hanging nodes are simply two consecutive
edges that lie on the same line, and they do not need any special
treatment. Consider a square with a hanging node on one edge, as
shown in Fig. 10a. In a virtual element framework, such an
element is a (degenerate) pentagon. Consequently, if a code is able
to deal with a pentagon, it is able to manage a square with a
hanging node too: there is no need for interpolations or handling
particular configurations/cases as in [22]. Moreover, we can put as
many hanging nodes as we need and they can be arbitrarily placed
inside the edge without any further issue see Fig. 10b.

Such flexibility can be exploited to glue meshes together and, as
one can see from the description of the following mesh generation
procedure, this is the main feature of VEM we exploit to discretise
the motor represented in Fig. 9.

Table 1 Permanent magnet circuit: values of the energy obtained by varying the air-gap in the linear case
Air-gap, mm 1.0 1.5 2.0 2.5 3.0 3.5 4.0
EPot, J 25.51 30.95 34.19 36.16 37.35 38.18 38.33
EKik, J 25.31 30.60 33.94 36.14 37.40 38.00 38.51
δE 0.0080 0.0115 0.0073 0.0006 0.0012 0.0047 0.0047

 

Table 2 Permanent magnet circuit: values of the energy obtained by varying the air-gap in the non-linear case
Air-gap, mm 1.0 1.5 2.0 2.5 3.0 3.5 4.0
EPot, J 25.59 31.26 34.69 36.81 38.12 38.84 39.22
EKik, J 25.39 30.77 34.20 36.47 37.78 38.60 38.96
δE 0.0078 0.0159 0.0141 0.0093 0.0090 0.0062 0.0066

 

Table 3 Permanent magnet circuit: values of δC in the linear case with both Kikuchi and potential formulations
Air-gap, mm 1.0 1.5 2.0 2.5 3.0 3.5 4.0
KikδC 0.0119 0.0162 0.0153 0.0122 0.0122 0.0098 0.0110
PotδC 0.0008 0.0012 0.0013 0.0012 0.0014 0.0012 0.0015

 

Fig. 8  Permanent magnet motor: μr − H curve used
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First, we generate the mesh of each subdomain separately, see
Fig. 11a, and then we merge together with each sub-domains. At
this step, we get two meshes: one discretises the stator region and
the other the rotor region of the permanent magnet motor,
respectively, as shown in Fig. 11b. To generate the final mesh, we
rotate the rotor mesh by an arbitrary angle, and finally, we glue the
stator and rotor meshes together, as shown in Fig. 11c.

We underline some advantages from the mesh generation point
of view.

First of all, we can split the meshing procedure on each
component and exploit different strategies according to the shape
of the domain we are considering. In this example, slots and
magnets can be meshed by standard structured quadrilateral
meshes. The complex geometries of the iron parts of the rotor and
the stator can mesh via triangles. Finally, the air-gap region is
meshed by a sequence of quadrilaterals with hanging nodes to fit
the curved geometry, as shown in Fig. 11a.

Then, one can exploit symmetries of the domain to generate
only one mesh for different parts. In this particular case, we
generate only two meshes for the magnet and the slot. The other
meshes are obtained by translation and rotation of these two ones.

Moreover, the standard finite element code allows for gluing
procedure of step (c) between triangular meshes. Since they are not
able to handle hanging nodes, such gluing procedure is done node-
by-node so the rotation is constrained to specific angles which
depends on the discretisation itself, as shown in Fig. 12. The
proposed meshing procedure does not have such limitations.
Indeed, we can rotate the rotor mesh with an arbitrary angle and
glue it with stator mesh by adding as many hanging nodes as we
need.

Now we proceed with the computation of the cogging torque.
The accurate field models provided by the projection operators of
both Kikuchi and potential formulations allow us to compute the
torque. In Fig. 13, we show the induction map for a specific angle,

21°, when the motor current is zero obtained with the Kikuchi
formulation, a similar map holds for the potential formulation. 

To compute such quantity, we use the Maxwell stress tensor
approach considering a cylindrical surface co-axially located with
respect to the rotation axis as the integration surface accordingly. In
Fig. 14, we show the torque-angle curve for step equal to 1°. As
expected, the torque period is equal to 30°, indeed

360°/LCM 4, 12 = 30°,

Fig. 9  Permanent magnet motor: the geometry of the 4-pole motor taken
into account

 

Fig. 10  Permanent magnet motor: two squares
(a) Degenerate pentagon, (b) Degenerate decagon

 

Fig. 11  Permanent magnet motor: steps to generate the mesh of the
permanent magnet motor
(a) All the pieces of the computational domain, (b) The pieces are assembled to get the
rotor and stator meshes, respectively, (c) Rotor and stator mesh are glued together and
a detail of the connected boundary

 

Fig. 12  Permanent magnet motor: a way to move the mesh node-by-node
in a standard finite element framework
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where LCM is the least common multiple operator and 4 and 12
are the number of permanent magnets and slots, respectively.
Moreover, it exhibits zero mean value over the period. Once again,
there is a good agreement between Kikuchi and potential virtual
element formulations.

6 Conclusion
In this paper, we provide a VEM to simulate permanent magnets.
To solve such problems, we focus on the VEM approximation of
the Kikuchi formulation, but we compare the results with both the
VEM and FEM approximation of the vector potential formulation.
In particular, we propose a new way to model permanent magnets
within Kikuchi formulation in contrast to the standard current sheet
model of the potential approach.

We test the flexibility in mesh generation of VEM for a
complex computational domain: the permanent magnet motor. We
observe that the presence of many hanging nodes and arbitrarily
shaped polygons do not affect the numerical results.

We further underline that such flexibility can be exploited by
combining virtual and finite element approaches. Indeed, one can
use virtual element spaces and functions over elements

characterised by hanging nodes and polygonal elements while
standard finite elements over triangles and squares.

The fields B and H are approximated by such projection
operators and they are also exploited to compute some derived
quantities. Indeed, we numerically prove that energy, Maxwell
stress tensor and torque computed via the projection operators are
in accordance with the physics of the problem at hand.
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Fig. 13  Permanent magnet motor: magnetic induction map with an angle
of 21°

 

Fig. 14  Permanent magnet motor: values of torque for different position
of the rotor
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