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ABSTRACT The study of the dynamics of biological systems requires one to follow relaxation processes in time with micron-
size spatial resolution. This need has led to the development of different fluorescence correlation techniques with high spatial
resolution and a tremendous (from nanoseconds to seconds) temporal dynamic range. Spatiotemporal information can be
obtained even on complex dynamic processes whose time evolution is not forecast by simple Brownian diffusion. Our discussion
of the most recent applications of image correlation spectroscopy to the study of anomalous sub- or superdiffusion suggests that
this field still requires the development of multidimensional image analyses based on analytical models or numerical simulations.
We focus in particular on the framework of spatiotemporal image correlation spectroscopy and examine the critical steps in get-
ting information on anomalous diffusive processes from the correlation maps. We point out how a dual space-time correlative
analysis, in both the direct and the Fourier space, can provide quantitative information on superdiffusional processes when these
are analyzed through an empirical model based on intermittent active dynamics. We believe that this dual space-time analysis,
potentially amenable to mathematical treatment and to the exact fit of experimental data, could be extended to include the rich
phenomenology of subdiffusive processes, thereby quantifying relevant parameters for the various motivating biological prob-

lems of interest.

Complexity is an abused word. Even in scientific environ-
ments, we rarely use the term complex in a substantially
different way than “difficult”: difficult to predict and there-
fore to understand. Complexity is definitely not the simple
random behavior of colloidal particles. A speckle pattern
looks random but has features that are defined in terms of cor-
relation functions and determined by the excitation source
shape and by the emission fluctuations. Biological systems
have or can display random features. But they also have the
characteristic to be dynamic, either in a dynamic equilibrium
or driven by a force out of the equilibrium state. The way
DNA replicates, how it compacts and swells in the nucleus
in the different cellular phases, the way it is repaired—all
these examples of biological functions are intrinsically
related to dynamics and to complexity. These mechanisms
exemplify the dynamic behavior of an open dissipative sys-
tem; the living cell, and within this, of the nucleus.

Jorg Langowski, who untimely passed away in May 2017,
was attracted by the possibility to shed some light on these
processes. By following his production, we can see
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distinctly that his aim was always to try to understand the
molecular bases of the machinery involved in gene expres-
sion. His approach surfed on the crest of the evolution of
fluctuation spectroscopy and imaging techniques while
developing in the years his own analytical and simulative
tools to rationalize the data (1-4). The latest developments
from him and his colleagues (5) can offer us a perspective
in future trends in the study not only of the cell nucleus
in vivo but also of other complex molecular systems in
biology. After the outline of Jorg’s work, we will briefly re-
view the theory and recent applications of fluctuation spec-
troscopy and imaging techniques, starting from photon
correlation spectroscopy (PCS) up to the more recent image
correlation spectroscopy (ICS).

Overview of fluctuation imaging techniques
Fluctuations in scattered light

Jorg’s studies of DNA dynamics started with PCS (6) and
were based on the use of coherent light and on the observa-
tion of the dynamics of the speckle pattern arising from the
superposition of a high (~10®) number of scattering sources,
whose average translational diffusion coefficient is D.
Together with Mickey Schurr (7), he was one of the first
to exploit PCS to sample the internal motion of supercoiled
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DNA (8). The fluctuations were measured through the auto-
correlation function (ACF) of the scattered intensity, which
is related to the statistics of the molecular displacement ac-
cording to the following equation:
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In writing Eq. | we assume a Gaussian distribution,
P(Ao(7)), with zero mean for the displacement of the center
of mass, Ag(7) = F(t 4 7) — 7(1). feop is a factor that ac-
counts for the degree of coherence of the collected field,
and the exchanged wave vector ’Q’ =sin(6/2)/A (where
A is the scattered light wavelength and 6 is the scattering
angle) determines the spatial resolution of the sampled dy-
namics. If the molecule is flexible, as DNA is, we have in-
formation on the normal modes of the chain in addition to
center-of-mass diffusion. In this case, Eq. 1 is substituted
in the experimental approaches by a heuristic functional
form where a faster relaxation rate A;, takes internal mo-
tions into account:
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The parameter b is related to the relative orientation of the
excitation polarization and the emission analyzer. This
was the analysis followed in the study of DNA molecules
in vitro up to the 90s (9-11). It allowed for estimation of
the internal motions of plectonemical supercoiled DNAs
that were found to be faster than those of relaxed circular
DNAs. However, that was clearly not the end of the story,
and Jorg and other groups resorted to Monte Carlo
(1,12,13) and Brownian dynamics (2,9,14-16) simulations.
This was an unprecedented effort to access the DNA dy-
namics at a quantitative molecular level.

After the discovery of fluorescent proteins, the selectivity
of the fluorescence signal compared to light scattering paved
the way to the development of optical techniques allowing
micron resolution and measurements in living cells. Times
were ripening to merge the concepts of correlation spectros-
copy and optical fluorescence microscopy (17,18).

Fluorescence correlation spectroscopy and ICS

The fluorescence signal F(t) from fluorescent particles
changes with time because of the fluctuation of the number
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of particles N, within the excitation volume (such fluctua-
tion was negligible in PCS, where <N,,> = 106). The
average transit time of particles, because of Brownian diffu-
sion, can be obtained as the decay time of the temporal ACF
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of the fluorescence fluctuations (19-21). Explicitly, the ACF
is defined as
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is the fluorescence fluctuation, 6F(f)=F(t) — (F(t)),, at
time t (20,21) expressed in terms of the concentration fluc-
tuation 6C(x,7). By assuming again a Gaussian P(Ay(7))
distribution, by substituting Eq. 4 into Eq. 3, and by convert-
ing the integration from the real to the Fourier space, we
obtain the following (22):
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In Eq. 5, (|&o(7) | ?y = 6Dr is the particles’ mean-square
displacement (MSD), and the exponential term in the kernel
of the integral is the Fourier transform of the probability
density function P(Ay(7)). Fluorescence correlation spec-
troscopy (FCS) averages such a probability density,
measured by PCS at a single Q value, over a range of é
values determined by the objective numerical aperture and
weighted over the frequency content of the molecular
detection efficiency (MDE) function. If the MDE func-
tion is approximated by a three-dimensional Gaussian,
MDE(x,y,z) = MDE(0,0,0)[]._, , .exp(—2(e/;)?) (21),
we obtain in terms of the one-dimensional MSD
(| Bo iy (7) | )y =(i(r + 1) — i(r) |?) = 2D7 (21.22):
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In summary, for a Gaussian distribution—P(A(7))—the
ACEF provides direct access to the distribution of the particle
displacements through <‘&07,-(7) |2> Indeed, (}50,,'(7) ’2>
can be directly obtained by numerical inversion of Eq. 6,
as proposed in (23-25). FCS therefore complements sin-
gle-particle tracking by not requiring ensemble averaging
in terms of correlation functions, which allows for extrac-
tion of the statistics of complex stochastic transport pro-
cesses by the measurement of single-particle trajectories
(26-31).

Space is the additional variable needed when studying dy-
namic processes in living cells. By coupling single-point
FCS and fluorescence microscopy, the correlation approach
has been generalized into a variety of image-based tech-
niques (ICS) (20,32,33) depending upon the timescale of
the process of interest. ICS relies on the exploitation of
the spatial and temporal information intrinsically encoded
into (whole) images, either collected with camera-based
detection on a total internal reflection or SPIM (single plane
illumination) microscope (32,34,35) or acquired by raster
scanning in a confocal or two-photon excitation setup
(33,36-38). Excellent reviews on ICS techniques exist
(32,33). We focus here on spatiotemporal ICS (STICS)
(36) as the paradigm on which we discuss the general pos-
sibility to gain information on the statistics of the particle
motion.

We define the STICS correlation map in terms of spatial,
(&,m) = E’, and time, 7, lags as the following (36):

o J(oF(E+E 4 1)0FE 1),
G@”)‘< G DG 1+ ) >' @

The spatiotemporal correlation function can be analytically
derived for Brownian diffusion with the diffusion coefficient
D and for the combination of two-dimensional (2D) diffu-
sion and planar drift with velocity ¥ = (vy, vy) (36). In the
latter case, by assuming a diffusion equation of the type

OP(X,t)
ot
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and by operating in the Fourier space (X,y coordinates only),
G(&,7) can be computed as the following:
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Equation 10 highlights that differently from single-point
FCS (Eq. 6), the STICS correlation function provides an
additional parameter, the space lag &, to access the first
and second moment of the distribution of the particles’ dis-
placements. For the simple case described by Eq. 8, these
are simply (Ro(7)) = vr and (|Bo(7)|%) — (Bo(r))* =
4Dt. This theoretical approach allows for measuring
directly the MSD from the correlation maps as done
recently, for example, by Gratton’s group in STICS (39)
and raster ICS (40).

A close result for Eq. 10 can then be obtained once
the shape of the MDE is known (34,36). If a three-dimen-
sional Gaussian is assumed, the resulting G(g, 7) is a 2D
Gaussian in the (£,7) = £ variables (36). The variance
a*(t) = (wi_,, +4D7)/2 exclusively depends on the diffu-
sion coefficient and increases linearly with the lag time .
Information on the drift velocity can instead be gained
from the coordinates of the maximum of the spatiotemporal
correlation map: (§max»Mmax) = (Vx,Vy)7/0X (0x being the im-
age pixel size). In the case of wide-field SPIM images, the
STICS correlation function can be approximated by a 2D
Gaussian, with a variance dependent on the diffusion coef-
ficient and velocity-dependent peak coordinates (34.41).
Jorg, mainly together with Thorsten Wohland, worked out
the details of FCS theory for point-wise measurement in
SPIM setups (35) and applications to diffusion of proteins
in cells. Our group recently worked out the STICS analysis
of SPIM images (41), following their guidelines (34):

)
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where M (w;, D, 7) = \/w? + 4D, a is the pixel linear size,
Wy = W, = Wy, and

Xo=a+E+wnt); yo=a+n+wr); h =1
x1 = a—(§+vT); ylza—gn—l—vyT;; h =1.
X = (E4wnT); = m+wr);  h = -2
(12)

We finally observe that by defining
G(0.7)=|MDE(-0) |” exp(~ 0] *((|Bo(r) |°)

D Sl (13)

= (Bo(7))7) /4 +1Q + (Ao(7))),
Eq. 10 can be rewritten in the form G(E, 7)o
fdéG(é,T)e”'Q'g. G(0Q,) corresponds therefore to the
2D spatial Fourier transform of the G(,7)function.
Whereas the derivation of G(g, T) requires a (possibly
involved) integral over the Q variable, the analytical deriva-
tion is more straightforward for G(Q,T) (42). Instead of
operating in the direct 5 space, it might therefore be conve-
nient to move to the reciprocal space and adopt the
formalism of k-space ICS (43).

Anomalous diffusion in biological systems: single-point and
spot-variation FCS

Deviations from classical Brownian motion are common in
the complex heterogeneous cellular environment (23,44).
These deviations manifest themselves as a non-Gaussian
diffusion propagator (45-48) and/or as a nonlinear time
dependence of the particles’ MSD, which exhibits an anom-
alous power-law increase of the type MSD(t) = 4D,t* with
O<a<?2, a#1 (23,44,49,50). Here, D, is a generalized
diffusion coefficient and « discriminates between sub-
(0<a<1) and superdiffusion (1 <a<2; for « = 1 and
o = 2, classical Brownian motion and directed ballistic
transport are retrieved, respectively).

Superdiffusion is generally ascribed to the molecular-
motor-mediated active transport of tracer particles along
the filaments of the cytoskeleton (Fig. 1). By contrast, the
origin of intracellular subdiffusion is highly debated, being
attributed to the complex topology of a crowded environ-
ment, to the temporary confinement of transmembrane pro-
teins, and to the presence of rafts or corrals on variable
submicrometric scales (Fig. 1) (25,51-54). Since anomalous
diffusion is commonly encountered in the intracellular dy-
namics, there is the need for a generalization of the FCS
and ICS theory capable of accounting for transport mecha-
nisms more complex than normal diffusion.

A few attempts have been made to derive an extended
FCS theory based on theoretical models of anomalous
diffusion (53,55-58). The continuous-time random walk
(CTRW) specifies p(x,t) in terms of two uncoupled probabil-
ity density functions, A(Jx|) and y(t), which regulate jump
lengths and waiting times between successive jumps of
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FIGURE 1 Schematic representation of intracellular sub- and superdiffu-
sion. Permeable and impermeable barriers (black lines) represent both
phase separations and physical obstacles as well as separate regions where
particles have different diffusion constants. Subdiffusion occurs when a par-
ticle (large blue sphere) undergoing Brownian diffusion with the diffusion
coefficient D; overcomes a barrier with the given probability p;,, thereby
entering an adjacent domain where it diffuses with the diffusion coefficient
D, (and vice versa). In a subdiffusive scenario, symmetrically permeable
(p12 = p21 # 0) barriers and identical diffusion coefficients D; and D,
are usually exploited to describe hindered diffusion in a meshwork of fila-
ments; randomly located and isolated closed fences with asymmetric prob-
abilities pj» # p»; have instead been adopted to describe dynamic
partitioning and transient or permanent trapping of tracer particles into
sparse domains. If the diffusing particle reaches a binding partner (small
orange dot, representing, e.g., a molecular motor protein) and is actively
transported along a barrier with drift velocity V', superdiffusion is encoun-
tered instead. p;» and p,; are related here to the binding and unbinding
rates, and phases of normal diffusion (D;) alternate with phases of directed
transport (D; + 7). To see this figure in color, go online.

the random walk (49,50). If a Gaussian distribution is main-
tained for A(|x |) but an asymptotically fat-tailed distribution
(a Lévy stable density) y/(t) ~ t~!7* (0<u < 1) is assumed
for waiting times (44), particles can get stuck at a certain po-
sition for very long times: the system shows aging, ergo-
dicity breaking, and subdiffusive time dependence for the
MSD (49,50). Starting from a subdiffusive CTRW, a gener-
alized diffusion equation of fractional order has been
derived (44,59) and inserted into FCS theory (53). If we as-
sume instead y(f) = 6(+ — 1) and a Lévy stable density
A(|x ) with index 0 < u <2, we obtain superdiffusive Lévy
flights (49). The absence of a finite second moment for
the step-length distribution prevents formal definition of
an MSD, and a fractional u exponent in the Fourier-trans-
formed diffusion propagator (59) makes the inclusion of
Lévy flights in the framework of FCS look unfeasible. In
the attempt of regularizing the second-moment divergence,
a cutoff in the jump length distribution (truncated Lévy
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flights) and a spatiotemporal coupling between A(Jx|) and
Y(t) aimed at penalizing long jumps (Lévy walks) have
been proposed (31,60,61).

Anomalous dynamics in slowly fluctuating, inhomoge-
neous environments with linear MSD(t) and a non-Gaussian
short-time displacement probability density function have
been treated with superstatistical approaches (45,48,62). In
the “diffusing diffusivity” model, non-Gaussian diffusion
is attributed to the convolution of elementary Gaussian
processes (62,63), with a time-varying diffusivity whose
distribution satisfies the random-walk advection-diffusion
equation (63).

The alternative approach of time-dependent diffusion co-
efficients (TDDCs) (55,64) appears more easily transferable
to the FCS context. Exploited by fractional Brownian mo-
tion to introduce correlations between particle displace-
ments (56), TDDCs directly obtained from the power-law
scaling of the MSD (55) allow for deriving the FCS correla-
tion function (52,54,55,65) as

1

However, identification of the real underlying subdiffusion
mechanism remains ambiguous. A multicomponent Brow-
nian diffusion model often provides a similarly satisfactory
fit of experimental correlation functions (64—66), and ACFs
derived with TDDCs appear similar to numerically simu-
lated ACFs in the presence of a CTRW with fat-tailed
Y(t) distribution (54). Moreover, the ACF curves do not al-
ways catch the diffusion anomaly on the proper spatiotem-
poral scale, especially when a crossover from anomalous
to linear time dependence is observed for the MSD
(24,52,67,68). In this context, an approach based on spot
variation (or variable lengthscale) FCS (sv-FCS) has been
proposed (24,68).

In sv-FCS, a plot of the correlation half-height decay
time, Ty, versus the observation area wfy (w? = wzzwfy)
is obtained by progressively altering u)fy (51,68). For Brow-
nian diffusion, 7/, is directly proportional to w)z(y, whereas
for anomalous subdiffusion, different linear regimes are
observed (typically when wfy is at least a few times the
typical obstacle or mesh size). The nonzero extrapolated
intercept offers insight into the diffusion anomaly: a posi-
tive intercept is indicative of confinement into sparse mi-
crodomains, and a negative one is found for particles
trapping in a meshwork (68). When combined with a nu-
merical inversion procedure of experimental ACFs, sv-
FCS also allows for extracting the particles’ MSD under
the assumption of a Gaussian propagator (24). However,
the only available analytical derivation covers the case of
particles diffusing in a periodic, meshwork-like structure
(69): conclusions on the positive and negative intercept
of the FCS diffusion law are almost exclusively based on
numerical Monte Carlo simulations (51,68), and to our
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knowledge, no application of FCS diffusion laws to super-
diffusion has been reported.

STICS analysis as a variable-length ICS

The results of sv-FCS stress the importance of a spatially
extended correlation analysis and suggest moving to im-
age-based correlation methods for the investigation of com-
plex transport mechanisms.

Subdiffusive motions

Starting from the analysis of the general relation between
the STICS map and the MSD (Eq. 10), we envision a general
framework for the retrieval of information on the displace-
ment statistics. Experimentally, we assume to fit the STICS
maps to a Gaussian trial function; theoretically, we derive
the displacement of the map maximum from the center of
the correlation space and its 1/e* halfwidth from the sec-
ond-order expansion of the map:

0G,.(&,7)
0 :

Smax

1 1 0°G,(£,7)

o} (1) GillpurT) 0%

=0
5)

Smax

We can derive similarly the width of the correlation map in
the 7 direction and the overall width as o7,(7) = o7(7)+
af](r). For SPIM microscopy images, we obtain the
following (41):

5max = —WT

Mmax — _VyT

2 v a -6 .
(1) = BN 62(18_52)[51?"]6(6)4'\/1; (e © - 1)]

(16)

In Eq. 16 8 = / /wlg:xﬁy + 4D, ro Accounts for a possible

subdiffusion through the exponent 0 < o < 1, and Erf() is
the error function. STICS maps have been simulated
(Eq. 11) with ¥ = (0,0) as a function of the diffusion coef-
ficient, the pixel size, and the anomaly parameter. In SPIM
detection, the pixel size can be changed in the postprocess-
ing phase by rebinning the images, thereby providing a soft-
ware version of the spot variation technique (18,70).

The Gaussian approximation (Eq. 16) can fit well the
simulated maps (Fig. 2, A and B): the effect of the anomaly
is to widen the width as « decreases. The fit of the lag time
dependence of ¢%(7) to Eq. 16 allows for retrieving the
anomaly parameter with good accuracy even when the
o%(7) plot is reconstructed at low temporal resolution
(~10 Hz, Fig. 2 B, short-dashed lines and insef). When
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FIGURE 2 STICS analysis of anomalous diffusion. (A) Shown are STICS correlation functions simulated at 7 = 136 ms for D, = 10 umz/s"‘; a=1,0.8,
and 0.6; and w,, = a=0.6 um. Normalized G(&,n = 0) profiles are reported with the best Gaussian fit (squares: a = 1; circles: a = 0.8; and triangles: o = 0.6).
(B) Shown is the variance o*(7) recovered from the Gaussian fit of the STICS maps for D, =1 um?/s%, 0.6 < a < 1, and wyy = a = 0.6 um. Short dashed
lines fit to Eq. 16 with Dg, = 1.3 % 0.2 um?/s, and ag = 0.94 = 0.02, 0.89 + 0.02,0.76 =+ 0.03,0.73 = 0.04, and 0.60 =+ 0.01 for & = 1, 0.9, 0.8, 0.7, and
0.6, respectively. Dashed-dotted lines fit to agﬁ + 4D g7 for T > 400 ms (fit parameters in (C)). Inset: ag, recovered from the fit of 06H(7) to Eq. 16 for
D, =0.1, 1, and 10 ,umzls”‘ (squares, circles, triangles). The solid line is ag = 1.03 (£0.02) . (C) Shown are afﬁ (right) and Deg (left) as a function
of a, for D, = 10, 1, and 0.1 p,mz/x"‘(open squares, filled squares, and half-filled squares) with wy, = a = 0.6 um (A = 2% + wxyz = 0.72 um>).
(D) O'GZ(T) for D, =10 ,umz/s"‘, a = 0.8, and w,, = 0.8 um, and variable pixel size is shown: a = 0.2 (diamonds), 0.4 (squares), 0.8 (triangles), 1.6
(pentagons), and 2.4 (circles) um. Short dashed lines fit to Eq. 16; dashed-dotted lines show linear fit to O'gﬁc + 4D g7 for T > 8 ms. (E) agﬂ versus Aeg
for D, =1 ,umz/s“(ﬁlled symbols), and D, = 10 ,umZ/s“ (open symbols) for o = 1.0 (squares), 0.8 (circles), and 0.6 (triangles); solid and dashed lines show
linear fit of the data for D, = 10 and 1 um%s®. 3% of Gaussian noise was added to all the simulated STICS maps. To see this figure in color, go online.

the short lag time part of the curve is not accessible, a linear
fit o7,(7) = 0oy + 4Dgy7 (Fig. 2 B, dot-dashed lines) pro-
vides an effective diffusion coefficient D g and an effective
width Jgﬂf (Fig. 2 C). D¢ decreases for a decreasing anom-
aly parameter, and for 1 > « > 0.8, the difference between
Desr and D, is at most 15%. agﬁ increases as « decreases,
confirming the visual inspection of the STICS maps shown
in Fig. 2 A. In general, we find that aﬁﬁ- > Ugﬁ’,azl in the pres-

ence of anomalous diffusion: therefore, the value of agﬂ
measured for a fixed value of the pixel size can provide indi-
cation of a diffusion anomaly.

This indication is reinforced by computing the STICS
maps at different values of the effective sampling area
Aot = az—i—cuxy2 , obtained by binning the pixels of the im-
ages of the same xyt- stack. The obtained o7 (7)-versus-7
plot (Fig. 2 D) is linear at long lag times, with an increasing
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intercept at increasing pixel size. Fig. 2 E summarizes the
dependence of Jgﬁ-on Aeff2 (for fixed wy,) at a different
anomaly parameter and diffusion coefficient. When o = 1,
the afﬁ-versus At -plot is linear for a > wy, (Eq. 16
with 7 = 0), with the slope being fully determined by wy,.
When o # 1, agﬁc always lies above the normal diffusion
curve. This behavior can be exploited, as done in Fig. 2 C,
to put into evidence the presence of an anomaly on the
diffusion.

In summary, the study of the dependence of the STICS
map on the lag time and on the effective sampling area
can be advantageously employed to point out the presence
of a subdiffusive anomaly. As a limitation of the approach,
quantitative extraction of the « parameter requires the
knowledge of the diffusion coefficient, which is not always
known a priori. Moreover, the « parameter does not provide
a full picture of the phenomenology of the process under
study.

Superdiffusive motions

In the presence of superdiffusion, it is more convenient
to monitor the correlation peak coordinates (§axs Mmax)
as a function of the lag time. This can be appreciated by

working on simulated Lévy trajectories for increasing
values of the exponent u of the jump-length distribution
A(x|) ~ |x| ~'7*. Starting from these trajectories, we have
simulated and analyzed by the STICS formalism time se-
quences of images of noninteracting particles undergoing
Lévy flight superdiffusion. As reported in Fig. 3, A and B,
a nonlinear time dependence of the STICS peak displace-
ment is obtained, becoming more and more pronounced as
the exponent u decreases. A linear relation (§,.xs Mmax)
0x = (vx,Vy)T is expected for directed motion with planar
drift velocity ¥, whereas no displacement of the STICS
maximum should be retrieved for subnormal or normal
diffusion (36). Therefore, the irregular (§ax, Mmax)-Versus-
7 plot could be used as an indication of the underlying super-
diffusive behavior of the simulated Lévy flights. However,
since an analytical description of the (§4x, Mmax)-Versus-r
plot in terms of the exponent u is prevented by the complex
diffusion propagator associated with Lévy flights (59), con-
clusions on the possible value of the u exponent can at most
be drawn based on the comparison with the results of nu-
merical simulations.

A different analytical framework, aimed at the investiga-
tion of enhanced diffusion by correlation spectroscopy, has
been recently developed by our group (42) in terms of an

B FIGURE 3 STICS analysis of superdiffusion.
é’ . i . . (A and B) Peak coordinates &,.x and nmax (filled
4l A B 1slB P » o and open symbols, in pixel units) versus the lag
_»-" 2000000 ot ; «&; b time 7 provided by the STICS analysis of simulated
2¢ 5-2351' ;\.\ 00000 - % jj/’f . PSR ,’W = single-particle Lévy flights (reported as insets with
.- /T — 004 ] = i Fm 1  a 10-pixel scale bar representing 1000 steps of
E Of 1 ® 7 total trajectory length) of index u = 1.5 (A) and
i tooooooog 4+ D 1 = 1.3 (B). For the generation of Lévy-type trajec-
E 2+ oo b un tories, at each time point the particle direction and
o Bocoq 21 coood ] jump length have been extracted as pseudorandom
4r =R comooood peeeesee *e numbers from a uniform distribution in the interval
: ol ol / 1 (0,2m) and from a Lévy stable distribution of
-l ‘ . ‘ ] . . . ‘ index w. Image temporal stacks have been pro-
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6 C jereet o D simulate the microscope point-spread function.
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&% os0 e t,“ “ *; OL enson = .33? two-state intermittent dynamics of Eq. 17, with
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~ * R al " ‘”fp direction angle = 330°, and p,; = 0.05; p;p =
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. . . . . i R . . . . . P,°4= 0.5 in (C) and P, = 0.9 in (D). Following
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the procedure reported in (42) for the generation of
trajectories, the sequence of state occupancies has
been generated as a discrete Markov chain based
on the occupation state at t;_; and on the compar-

ison of the probabilities p;, and p,; with a pseudorandom number extracted at the same time step t; in the interval (0,1). Then the state sequence has been
employed to define particle displacements: the length and direction of Brownian jumps have been extracted from a Gaussian distribution with zero mean and
variance 2D At and from a uniform distribution in the range (0,27); for the particle in state 2, a term vAt has been added to the Brownian displacement.
Trajectories are reported as insets with a 10-pixel scale bar; a pixel size 6x = 0.03 um and a time step At = 2.5 s have been adopted for the simulations.
D and |v| values chosen for the simulations are in agreement with the experimental findings in (42). To see this figure in color, go online.
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intermittent model in which phases of 2D Brownian diffu-
sion (with diffusion coefficient D) alternate with phases of
active, directed transport (D and planar drift velocityV)
(71). Occupation probabilities for the two states, p;, and
P21, are assigned by the corresponding transition rates ki,
and k. The two-state model can be schematically repre-
sented as

k
D =D+ (17)

kay

The equivalence between the two approaches in terms of
nonlinear (§y,ax, Mmax)-versus-7 plots has been evaluated
by numerical simulations (Fig. 3, C and D). The adoption
of the model described by Eq. 17 allows for solving the
Fick’s equation for the diffusing and drifting populations
and for incorporating such a solution in the derivation of
correlation functions in the reciprocal Fourier (k,7) space
(42), thereby exploiting the formalism of k-space ICS
(43). This approach provides a quantitative estimate of the
transport parameters and the transition rates of the intermit-
tent dynamics (42).

Perspective

The discussion of these few selected examples, together
with the output of the simulations of the STICS maps, indi-
cates that there is a strong need for new image analysis
methods to address the complexity of a multitude of pro-
cesses in the crowded and intricate cellular environment.
Future developments in this field should allow for bringing
super- and subdiffusion into evidence, starting from a
spatiotemporal monitoring of the cells, and for casting the
analysis of the variety of possible situations (meshwork
confinement, crowding, microdomain partitioning, etc.) in
a general framework. In the case of superdiffusion, a rela-
tively simple approach obtained with the intermittent model
of Eq. 17 has been analytically solved in the Fourier space
(42), quantifying the relevant transport properties associated
with the model. In the case of subdiffusion, the situation
seems to not be solved yet: the large majority of data require
comparison to simulations, and based on those, approximate
expressions have been derived for the STICS variance in the
presence of dynamic partitioning and meshworks (39).
Future developments should encompass the development
of models for subdiffusion based on the a priori knowledge
of the molecular cell biology (see Fig. 1), equivalent to the
phenomenological intermittent model for superdiffusion.
Such models should comprise parameters such as the distri-
bution and size of obstacles, the tracers’ diffusion coefficient
in the different compartments, and the confinement proba-
bilities. The analytical incorporation of these models in
the framework of ICS should be easier, or exclusively
possible, in the reciprocal space by Fourier transforming
the STICS map in the spatial coordinates.

Biophysical Perspective

AUTHOR CONTRIBUTIONS

G.C., M.C., and M.B. all equally contributed to the writing of the manu-
script and to the numerical simulations.

ACKNOWLEDGMENTS

We acknowledge the funding from Universita degli Studi di Milano-
Bicocca for the year 2017.

REFERENCES

1. Hammermann, M., N. Brun, ..., J. Langowski. 1998. Salt-dependent
DNA superhelix diameter studied by small angle neutron scattering
measurements and Monte Carlo simulations. Biophys. J. 75:3057—
3063.

2. Klenin, K., H. Merlitz, and J. Langowski. 1998. A Brownian dynamics
program for the simulation of linear and circular DNA and other worm-
like chain polyelectrolytes. Biophys. J. 74:780-788.

3. Fritsch, C. C., and J. Langowski. 201 1. Chromosome dynamics, molec-
ular crowding, and diffusion in the interphase cell nucleus: a Monte
Carlo lattice simulation study. Chromosome Res. 19:63-81.

4. Kiihn, T., T. O. Thalainen, ..., J. Timonen. 2011. Protein diffusion in
mammalian cell cytoplasm. PLoS One. 6:€22962.

5. Langowski, J. 2017. Single plane illumination microscopy as a tool for
studying nucleome dynamics. Methods. 123:3-10.

6. Pecora, R. 1985. Dynamic Light Scattering: Applications of Photon
Correlation Spectroscopy. Springer, New York.

7. Schurr, J. M., and K. S. Schmitz. 1986. Dynamic light scattering studies
of biopolymers: Effects of charge, shape, and flexibility. Annu. Rev.
Phys. Chem. 37:271-305.

8. Langowski, J., A. S. Benight, ..., U. Schomburg. 1985. Change of
conformation and internal dynamics of supercoiled DNA upon binding
of Escherichia coli single-strand binding protein. Biochemistry. 24:
4022-4028.

9. Hammermann, M., C. Steinmaier, ..., J. Langowski. 1997. Salt effects
on the structure and internal dynamics of superhelical DNAs studied by
light scattering and Brownian dynamics. Biophys. J. 73:2674-2687.

10. Langowski, J., W. Kremer, and U. Kapp. 1992. Dynamic light scat-
tering for study of solution conformation and dynamics of superhelical
DNA. Methods Enzymol. 211:430-448.

11. Chirico, G., and G. Baldini. 1989. Dynamic light scattering from DNA
plasmids: Diffusional and internal motion. J. Mol. Lig. 41:327-345.

12. Gebe, J. A., S. A. Allison, ..., J. M. Schurr. 1995. Monte Carlo simu-

lations of supercoiling free energies for unknotted and trefoil knotted
DNAs. Biophys. J. 68:619-633.

13. Langowski, J., U. Kapp, ..., A. Vologodskii. 1994. Solution structure
and dynamics of DNA topoisomers: Dynamic light scattering studies
and Monte Carlo simulations. Biopolymers. 34:639—-646.

14. Chirico, G., and J. Langowski. 1996. Brownian dynamics simulations
of supercoiled DNA with bent sequences. Biophys. J. 71:955-971.

15. Merlitz, H., K. Rippe, ..., J. Langowki. 1998. Looping dynamics of
linear DNA molecules and the effect of DNA curvature: a study by
Brownian dynamics simulation. Biophys J. 74:773=779.

16. Chirico, G., and J. Langowski. 1994. Kinetics of DNA supercoiling
studied by Brownian dynamics simulation. Biopolymers. 34:415-433.

17. Koppel, D. E., D. Axelrod, ..., W. W. Webb. 1976. Dynamics of fluo-
rescence marker concentration as a probe of mobility. Biophys. J.
16:1315-1329.

18. Weidemann, T., J. Miicksch, and P. Schwille. 2014. Fluorescence fluc-
tuation microscopy: a diversified arsenal of methods to investigate mo-
lecular dynamics inside cells. Curr. Opin. Struct. Biol. 28:69-76.

Biophysical Journal 114, 2298-2307, May 22, 2018 2305


http://refhub.elsevier.com/S0006-3495(18)30194-2/sref1
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref1
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref1
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref1
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref2
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref2
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref2
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref3
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref3
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref3
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref4
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref4
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref4
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref5
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref5
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref6
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref6
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref7
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref7
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref7
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref8
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref8
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref8
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref8
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref9
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref9
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref9
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref10
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref10
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref10
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref11
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref11
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref12
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref12
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref12
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref13
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref13
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref13
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref14
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref14
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref15
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref15
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref15
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref16
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref16
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref17
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref17
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref17
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref18
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref18
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref18
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref18

Collini et al.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

Magde, D., E. L. Elson, and W. W. Webb. 1974. Fluorescence correla-
tion spectroscopy. II. An experimental realization. Biopolymers.
13:29-61.

Elson, E. L. 201 1. Fluorescence correlation spectroscopy: past, present,
future. Biophys. J. 101:2855-2870.

Schwille, P. 2001. Fluorescence correlation spectroscopy and its
potential for intracellular applications. Cell Biochem. Biophys. 34:
383-408.

Krichevsky, O., and G. Bonnet. 2002. Fluorescence correlation spec-
troscopy: the technique and its applications. Rep. Prog. Phys. 65:
251-297.

Hofling, F., and T. Franosch. 2013. Anomalous transport in the crowded
world of biological cells. Rep. Prog. Phys. 76:046602.

Banks, D. S., C. Tressler, ..., C. Fradin. 2016. Characterizing anoma-
lous diffusion in crowded polymer solutions and gels over five decades
in time with variable-lengthscale fluorescence correlation spectros-
copy. Soft Matter. 12:4190-4203.

Horton, M. R., F. Hofling, ..., T. Franosch. 2010. Development of
anomalous diffusion among crowding proteins. Soft Matter. 6:2648—
2656.

Norregaard, K., R. Metzler, ..., L. B. Oddershede. 2017. Manipulation
and motion of organelles and single molecules in living cells. Chem.
Rev. 117:4342-4375.

Weigel, A. V., B. Simon, ..., D. Krapf. 2011. Ergodic and noner-
godic processes coexist in the plasma membrane as observed by
single-molecule tracking. Proc. Natl. Acad. Sci. USA. 108:6438-
6443.

Jeon, J. H., V. Tejedor, ..., R. Metzler. 2011. In vivo anomalous diffu-
sion and weak ergodicity breaking of lipid granules. Phys. Rev. Lett.
106:048103.

Tabei, S. M. A., S. Burov, ..., N. F. Scherer. 2013. Intracellular trans-
port of insulin granules is a subordinated random walk. Proc. Natl.
Acad. Sci. USA. 110:4911-4916.

Meroz, Y., and I. M. Sokolov. 2015. A toolbox for determining subdif-
fusive mechanisms. Phys. Rep. 573:1-29.

Metzler, R., J. H. Jeon, ..., E. Barkai. 2014. Anomalous diffusion
models and their properties: non-stationarity, non-ergodicity, and
ageing at the centenary of single particle tracking. Phys. Chem.
Chem. Phys. 16:24128-24164.

Bag, N., and T. Wohland. 2014. Imaging fluorescence fluctuation spec-
troscopy: new tools for quantitative bioimaging. Annu. Rev. Phys.
Chem. 65:225-248.

Digman, M. A., and E. Gratton. 2011. Lessons in fluctuation correla-
tion spectroscopy. Annu. Rev. Phys. Chem. 62:645-668.

Krieger, J. W., A. P. Singh, ..., T. Wohland. 2015. Imaging fluorescence
(cross-) correlation spectroscopy in live cells and organisms. Nat.
Protoc. 10:1948-1974.

Krieger, J. W., A. P. Singh, ..., J. Langowski. 2014. Dual-color fluores-
cence cross-correlation spectroscopy on a single plane illumination mi-
croscope (SPIM-FCCS). Opt. Express. 22:2358-2375.

Hebert, B., S. Costantino, and P. W. Wiseman. 2005. Spatiotemporal
image correlation spectroscopy (STICS) theory, verification, and appli-
cation to protein velocity mapping in living CHO cells. Biophys. J.
88:3601-3614.

Digman, M. A., C. M. Brown, ..., E. Gratton. 2005. Measuring fast dy-
namics in solutions and cells with a laser scanning microscope.
Biophys. J. 89:1317-1327.

Sironi, L., M. Bouzin, ..., G. Chirico. 2014. In vivo flow mapping
in complex vessel networks by single image correlation. Sci. Rep.
4:7341.

Di Rienzo, C., E. Gratton, ..., F. Cardarelli. 2013. Fast spatiotem-
poral correlation spectroscopy to determine protein lateral diffusion
laws in live cell membranes. Proc. Natl. Acad. Sci. USA. 110:
12307-12312.

2306 Biophysical Journal 1714, 2298-2307, May 22, 2018

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Di Rienzo, C., V. Piazza, ..., F. Cardarelli. 2014. Probing short-range
protein Brownian motion in the cytoplasm of living cells. Nat. Com-
mun. 5:5891.

Ceffa, N. G., M. Bouzin, ..., G. Chirico. 2018. Spatiotemporal image
correlation analysis for 3D flow field mapping in microfluidic devices.
Anal. Chem. 90:2277-2284.

Bouzin, M., L. Sironi, ..., M. Collini. 2015. An intermittent model for
intracellular motions of gold nanostars by k-space scattering image cor-
relation. Biophys. J. 109:2246-2258.

Kolin, D. L., D. Ronis, and P. W. Wiseman. 2006. k-Space image cor-
relation spectroscopy: a method for accurate transport measurements
independent of fluorophore photophysics. Biophys. J. 91:3061-3075.

Metzler, R., and J. Klafter. 2004. The restaurant at the end of the
random walk: recent developments in the description of anomalous
transport by fractional dynamics. J. Phys. A Math. Gen. 37:R161—
R208.

Wang, B., J. Kuo, ..., S. Granick. 2012. When Brownian diffusion is
not Gaussian. Nat. Mater. 11:481-485.

Jeon, J., M. Javanainen, ..., I. Vattulainen. 2016. Protein crowding in
lipid bilayers gives rise to non-Gaussian anomalous lateral diffusion
of phospholipids and proteins. Phys. Rev. X. 6:021006.

Lampo, T. J., S. Stylianidou, ..., A. J. Spakowitz. 2017. Cytoplasmic
RNA-protein particles exhibit non-Gaussian subdiffusive behavior.
Biophys. J. 112:532-542.

élezak, J., R. Metzler, and M. Magdziarz. 2017. Superstatistical gener-
alized Langevin equation: non-Gaussian viscoelastic anomalous diffu-
sion. New J. Phys. 20:023026.

Metzler, R., A. V. Chechkin, and J. Klafter. 2009. Lévy statistics
and anomalous transport: Lévy flights and subdiffusion. In Encyclo-
pedia of Complexity and Systems Science. R. Meyers, ed. Springer,
pp. 5218-5239.

Weiss, M. 2014. Crowding, diffusion, and bichemical reactions. Int.
Rev. Cell. Mol. Biol. 307:383-417.

Lenne, P. F,, L. Wawrezinieck, ..., D. Marguet. 2006. Dynamic molec-
ular confinement in the plasma membrane by microdomains and the
cytoskeleton meshwork. EMBO J. 25:3245-3256.

Malchus, N., and M. Weiss. 2010. Elucidating anomalous protein diffu-
sion in living cells with fluorescence correlation spectroscopy-facts and
pitfalls. J. Fluoresc. 20:19-26.

Lubelski, A., and J. Klafter. 2009. Fluorescence correlation spectros-
copy: the case of subdiffusion. Biophys. J. 96:2055-2063.

Wachsmuth, M., W. Waldeck, and J. Langowski. 2000. Anomalous
diffusion of fluorescent probes inside living cell nuclei investigated
by spatially-resolved fluorescence correlation spectroscopy. J. Mol.
Biol. 298:677-689.

Wu, J., and K. M. Berland. 2008. Propagators and time-dependent
diffusion coefficients for anomalous diffusion. Biophys. J. 95:2049—
2052.

Boon, J. P, and J. F. Lutsko. 2015. Nonlinear theory of anomalous
diffusion and application to fluorescence correlation spectroscopy.
J. Stat. Phys. 161:1366—1378.

Khadem, S. M. J., C. Hille, ..., I. M. Sokolov. 2016. What information
is contained in the fluorescence correlation spectroscopy curves, and
where. Phys. Rev. E. 94:022407.

Szymanski, J., and M. Weiss. 2009. Elucidating the origin of anoma-
lous diffusion in crowded fluids. Phys. Rev. Lett. 103:038102.

Metzler, R., and J. Klafter. 2000. The random walk’s guide to anoma-
lous diffusion: a fractional dynamics approach. Phys. Rep. 339:1-77.

Mantegna, R. N., and H. E. Stanley. 1994. Stochastic process with ul-
traslow convergence to a Gaussian: the truncated Lévy flight. Phys.
Rev. Lett. 73:2946-2949.

Chen, K., B. Wang, and S. Granick. 2015. Memoryless self-reinforcing
directionality in endosomal active transport within living cells. Nat.
Mater. 14:589-593.


http://refhub.elsevier.com/S0006-3495(18)30194-2/sref19
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref19
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref19
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref20
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref20
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref21
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref21
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref21
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref22
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref22
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref22
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref23
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref23
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref24
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref24
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref24
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref24
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref25
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref25
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref25
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref26
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref26
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref26
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref27
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref27
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref27
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref27
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref28
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref28
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref28
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref29
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref29
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref29
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref30
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref30
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref31
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref31
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref31
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref31
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref32
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref32
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref32
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref33
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref33
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref34
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref34
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref34
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref35
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref35
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref35
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref36
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref36
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref36
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref36
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref37
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref37
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref37
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref38
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref38
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref38
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref39
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref39
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref39
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref39
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref40
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref40
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref40
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref41
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref41
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref41
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref42
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref42
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref42
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref43
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref43
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref43
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref44
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref44
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref44
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref44
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref45
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref45
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref46
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref46
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref46
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref47
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref47
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref47
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref48
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref48
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref48
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref49
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref49
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref49
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref49
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref49
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref49
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref50
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref50
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref51
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref51
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref51
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref52
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref52
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref52
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref53
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref53
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref54
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref54
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref54
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref54
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref55
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref55
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref55
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref56
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref56
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref56
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref57
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref57
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref57
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref58
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref58
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref59
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref59
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref60
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref60
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref60
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref60
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref61
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref61
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref61

62.

63.

64.

65.

66.

Chechkin, A. V., F. Seno, ..., I. M. Sokolov. 2017. Brownian yet non-
Gaussian diffusion: from superstatistics to subordination of diffusing
diffusivities. Phys. Rev. X. 7:021002.

Chubynsky, M. V., and G. W. Slater. 2014. Diffusing diffusivity:
a model for anomalous, yet Brownian, diffusion. Phys. Rev. Lett.
113:098302.

Weiss, M., H. Hashimoto, and T. Nilsson. 2003. Anomalous protein
diffusion in living cells as seen by fluorescence correlation spectros-
copy. Biophys. J. 84:4043-4052.

Schwille, P., J. Korlach, and W. W. Webb. 1999. Fluorescence correla-
tion spectroscopy with single-molecule sensitivity on cell and model
membranes. Cytometry. 36:176—182.

Bronshtein, I., E. Kepten, ..., Y. Garini. 2015. Loss of lamin A function

increases chromatin dynamics in the nuclear interior. Nat. Commun.
6:8044.

67.

68.

69.

70.

71.

Biophysical Perspective

Hofling, F., K. Bamberg, and T. Franosch. 2011. Anomalous transport
resolved in space and time by fluorescence correlation spectroscopy.
Soft Matter. 7:1358-1363.

Wawrezinieck, L., H. Rigneault, ..., P.-E. Lenne. 2005. Fluorescence
correlation spectroscopy diffusion laws to probe the submicron cell
membrane organization. Biophys. J. 89:4029-4042.

Destainville, N. 2008. Theory of fluorescence correlation spectroscopy
at variable observation area for two-dimensional diffusion on a mesh-
grid. Soft Matter. 4:1288-1301.

Bag, N., X.-W. Ng, ..., T. Wohland. 2016. Spatiotemporal mapping of
diffusion dynamics and organization in plasma membranes. Methods
Appl. Fluoresc. 4:034003.

Loverdo, C., O. Bénichou, ..., R. Voituriez. 2008. Enhanced reaction
kinetics in biological cells. Nat. Phys. 4:134-137.

Biophysical Journal 174, 2298-2307, May 22, 2018 2307


http://refhub.elsevier.com/S0006-3495(18)30194-2/sref62
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref62
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref62
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref63
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref63
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref63
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref64
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref64
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref64
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref65
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref65
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref65
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref66
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref66
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref66
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref67
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref67
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref67
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref68
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref68
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref68
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref69
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref69
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref69
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref70
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref70
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref70
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref71
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref71
http://refhub.elsevier.com/S0006-3495(18)30194-2/sref71

	Out of the Randomness: Correlating Noise in Biological Systems
	Overview of fluctuation imaging techniques
	Fluctuations in scattered light
	Fluorescence correlation spectroscopy and ICS
	Anomalous diffusion in biological systems: single-point and spot-variation FCS
	STICS analysis as a variable-length ICS
	Subdiffusive motions
	Superdiffusive motions
	Perspective


	Author Contributions
	Acknowledgments
	References


