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In spite of growing evidence that climate change may dramatically affect

networks of interacting species, whether—and to what extent—ecological

interactions can mediate species’ responses to disturbances is an open question.

Here we show how a largely overseen association such as that between hydro-

zoans and scleractinian corals could be possibly associated with a reduction

in coral susceptibility to ever-increasing predator and disease outbreaks.

We examined 2455 scleractinian colonies (from both Maldivian and the

Saudi Arabian coral reefs) searching for non-random patterns in the occurrence

of hydrozoans on corals showing signs of different health conditions

(i.e. bleaching, algal overgrowth, corallivory and different coral diseases). We

show that, after accounting for geographical, ecological and co-evolutionary

factors, signs of disease and corallivory are significantly lower in coral colonies

hosting hydrozoans than in hydrozoan-free ones. This finding has important

implications for our understanding of the ecology of coral reefs, and for their

conservation in the current scenario of global change, because it suggests that

symbiotic hydrozoans may play an active role in protecting their scleractinian

hosts from stresses induced by warming water temperatures.
1. Introduction
Biotic interactions are major drivers for ecosystem functioning and evolutionary

processes, being capable of altering ecosystem productivity [1], determining geo-

graphical distributions of species [2] and influencing evolutionary processes.

In the present context of global environmental crisis, understanding the dynamic

interplay between climate and species interactions is crucial to predict how eco-

systems will respond to climate change. However, while an increasing body of

literature is demonstrating that climate change may have a strong effect on species

interactions [3], little is known about how species interaction may shape the

responses of ecological communities to environmental stresses.

There are several reasons why this issue is relevant for the future of coral reefs.

First, coral reefs are one of the most diverse ecosystems on Earth, and of the richest

in terms of species interactions [4]. Second, they support about 500 million people

worldwide [5]. Third, they are dramatically challenged by climate change [6,7].

In particular, rising sea temperatures have both direct and indirect detrimental

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2017.2405&domain=pdf&date_stamp=2017-12-20
mailto:giovanni.strona@ec.europa.eu
https://dx.doi.org/10.6084/m9.figshare.c.3946255
https://dx.doi.org/10.6084/m9.figshare.c.3946255
http://orcid.org/
http://orcid.org/0000-0003-2294-4013


rspb.royalsocietypublishing.org
Proc.R.Soc.B

284:20172405

2
effects on reefs, by causing extensive mortality due to coral

bleaching, and by increasing the frequency of coral diseases

and predator outbreaks [8,9].

The commonness of coral–invertebrate interactions suggests

that taking them into account could be fundamental for a

better understanding of those processes. In fact, although several

invertebrates are known to be associated with corals [10], the

nature of such associations is mostly unclear. A few works

have shown that some associations may increase coral resistance

to external disturbances [11–13]. Yet, the overall paucity of infor-

mation on the matter raises several interesting questions that call

for further investigation. Among these, a very timely one is

whether, and to what extent, interspecific interactions can

mitigate the direct and indirect effects of increasing sea-

water temperatures on coral reefs, helping them to cope with

worsening environmental conditions expected in the near future.

In an attempt to answer this question, we focus here on an

invertebrate group whose ecology is largely overlooked.

Already known to form symbiotic relationships with many

marine taxa [14,15], hydrozoans have also been reported as

associates of scleractinian corals with increasing frequency

[16–24]. To date, four polymorphic hydrozoans species, all

belonging to the genus Zanclea Gegenbaur, 1857, have been

recorded on more than 40 scleractinian species (belonging to

26 genera and eight families) from several Indo-Pacific areas,

including Australia, Indonesia, Taiwan, Japan, the Maldives,

the Red Sea, and the Caribbean [16–20,24–26].

In various known associations, corals identify opportunis-

tic or parasitic invertebrates as a threat, to which they

respond with immune reactions and/or tissue inflammation

[27]. By contrast, the ability of hydrozoans to creep into

coral tissues without triggering any immune reaction

suggests that their relationship with corals is more intimate

than an opportunistic epibiosis, as also supported by circum-

stantial evidence of hydrozoans’ specific coral preferences

[17,23]. This places the coral–hydrozoan association close

to other known symbioses characterized by high host

specificity, and strong co-evolutionary patterns [28].

Coral-associated hydrozoans possess specialized polyp

morphologies (called ‘dactylozoids’) dedicated exclusively to

defend the colony [17], which are armed with venomous

nematocysts capable of injecting a substance whose compo-

sition is substantially different from that released by

anthozoans [29]. Furthermore, studies on related groups

suggest that coral-associated hydrozoans may be unpalatable

due to noxious secondary metabolites, which could provide

them with an additional, chemical defense against predators

[30]. It has been, therefore, hypothesized that hydrozoans may

bring benefit to corals by deterring predators. Additional

benefits they could bring to corals include removing detritus

and/or pathogenic protozoans. On an opposite view, the fact

that hydrozoans have sometimes been reported from corals sub-

ject to bleaching events and/or diseases has led to speculation

that they might instead be detrimental to coral health [17].

In any case, regardless of its nature, the widespread diffusion

of the hydrozoan–coral association and the high hydrozoan

density observed in colonized corals suggest that this relation-

ship should have an important, yet largely overlooked role in

reef ecology. To shed light on this issue, we examined more

than 2000 coral colonies in the Western Indian Ocean to investi-

gate the existence of non-random patterns of associations

between hydrozoans and coral colonies focusing, in particular,

on the potential effects of hydrozoan presence on coral health.
2. Material and Methods
(a) Field work
The study was conducted in the waters of the Republic of Maldives

and along the Saudi Arabian coastline of the Red Sea in 2015. We

surveyed 33 sites (23 in the Maldives and 10 in Saudi Arabia) taken

at random from those accessible among two reef types: inner reefs

(lagoon-patches reefs or lagoon-facing sides of the atoll rim) and

outer reefs (ocean-facing sides of the reef edge).

We applied the ‘roving SCUBA diving technique’, which con-

sists of a 1-h dive where the diver moves progressively from the

maximum depth to shallower water, swimming freely throughout

the dive site [31]. We visually examined every scleractinian colony

that was encountered during the dive, searching for the occurrence

(i.e. presence/absence) of Zanclea. When maximum depth at the

sampling locality was less than 5 m, we applied the same tech-

nique by snorkelling (i.e. without SCUBA). We identified each

colony at the genus level, also taking note of its depth (� 5 m,

5–10 m, .10 m), and size (� 50 cm; 50–100 cm, .100 cm).

Additionally, for each coral colony, we searched for (and

recorded) signs of one or more of the following conditions: coral

bleaching, algal overgrowth, predation by fish, predation by coral-

livorous gastropods of the genus Drupella, and four different

diseases (white syndrome, brown band disease, skeletal eroding

band disease, black band disease) [32]. Note that, in all cases, we

focused on live corals only. Since the prevalence of black band

disease was extremely low (0.5% on average), we excluded it

from subsequent analyses. The complete dataset is provided as

electronic supplementary material (SM1).
(b) Co-occurrence analysis
We quantified co-occurrence between hydrozoans and the

different coral conditions using the C-score [33], which is computed

as (N1 2 S) � (N2 2 S), with N1 and N2 being the respective

number of occurrences for the two entities under study (in our

case, total number of hydrozoan occurrences, and number of

times we detected the target coral condition), and S being the

number of shared occurrences (i.e. the number of times we found

hydrozoans and the target coral condition on the same coral

colony). The number of occurrences for the two entities creates an

upper boundary for the C-score, which makes comparison of

C-scores between different pairs of entities problematic. For this, fol-

lowing [34], we rescaled C-scores between 0 and 1 by quoting them

for N1 � N2. Low C-scores (either rescaled or not) indicate high

co-occurrence, while high C-scores indicate segregation. Here we

quantified co-occurrence between two entities as 1 minus their stan-

dardized C-score, with 0 indicating total lack of shared occurrences

between entities, and 1 indicating complete co-occurrence, that is

full overlap between the occurrences of the two entities. Hereafter,

we refer to this quantity as ‘co-occurrence’ for simplicity.
(c) Null model analysis
To investigate whether the observed patterns deviated from a

random expectation, we compared the actual co-occurrence

between hydrozoans and different coral conditions with null scen-

arios obtained by randomly redistributing hydrozoan occurrences

on coral colonies. In doing this, we designed a null model control-

ling for biogeographical, ecological and taxonomical factors

potentially influencing hydrozoan occurrence independently

from coral condition. This consists of a randomization procedure

where hydrozoan occurrences can only be moved to and from

coral colonies belonging to the same biogeographical areas,

found at the same site and depth, having comparable size, and

belonging to the same genus (figure 1). The original database con-

sists of a set of entries, each corresponding to a coral colony.

Columns in the dataset report three different types of information,
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Figure 1. Schematic representation of the null modelling approach used to assess the significance of co-occurrence patterns. The original database consists of a set
of entries each corresponding to a coral colony. Columns in the dataset report potential ‘confounding’ factors (F1, F2, F3); presence/absence of a specific coral
condition (C ); presence/absence of hydrozoans (H). At Step 1, the dataset is broken apart into sub-datasets having identical entries in columns F1, F2, F3. At
Step 2, column H is shuffled within each sub-dataset. At Step 3, the sub-datasets are merged again into a complete dataset, and the co-occurrence between
H and C is computed. At Step 4, Steps 2 and 3 are reiterated 1000 times, providing a set of null C-scores to be compared with the corresponding ones observed
in the original dataset (Step 5). (Online version in colour.)
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and particularly, the five potential ‘confounding’ factors (as indi-

cated above); six binary fields indicating the presence/absence of

a specific coral condition (see previous paragraph); a binary field

indicating presence/absence of hydrozoans.

In the first step of the randomization procedure, the dataset is

broken apart into sub-datasets having identical entries in the factor

columns (i.e. including coral colonies from the same region,

sampled at the same site and depth, belonging to the same size

class and genus). In the second step, the column corresponding

to the hydrozoan presence/absence field is reshuffled within

each sub-dataset. In the third step, the sub-datasets are merged

again into a complete dataset, and the co-occurrence between the

randomized hydrozoan occurrences and the various coral con-

ditions is computed. Steps 2 and 3 are reiterated 1000 times,

providing a set of null C-scores to be compared with the corre-

sponding ones observed in the original dataset. We computed a

p-value as the fraction of null C-scores higher than the correspond-

ing observed ones. In addition, we quantified effect sizes using

Z-values, which we computed as the difference between the

observed C-scores and the mean of the 1000 corresponding null

values, quoted by their standard deviation.
3. Results and discussion
In both investigated regions (Maldives and Saudi Arabia), both

the occurrence of hydrozoans and of the target coral conditions

(corallivory, disease, bleaching and algal overgrowth) were
quite common. Nevertheless, in most of the reef localities,

corals were, in general, in good health, with more than 50%

of the investigated colonies being, on average, free from any

sign of disturbance (table 1). Bleaching was much lower in

the Maldives than in Saudi Arabia (with an average of 1.9%

of bleached colonies in the first region, and of more than 17%

in the latter), while the scenario was reversed as regards preda-

tion by Drupella gastropods, with more than 11% of colonies

affected in the Maldives, and only 0.4% in Saudi Arabia. The

same applies to diseases, which were much more frequent in

the first region than in the second one, while algal overgrowth

affected colonies in Saudi Arabia almost double the percentage

of investigated corals than in the Maldives (16.9% versus 9.5%).

Co-occurrence levels between hydrozoans and, respect-

ively, partial algal overgrowth, brown band disease and

white syndromes were not different from the null expectation

( p . 0.05). By contrast, coral colonies hosting hydrozoans

were significantly less susceptible to predation by Drupella
( p ¼ 0.000), fish bites ( p ¼ 0.011), and skeletal eroding band

disease ( p ¼ 0.012) than corals without hydrozoans. Further-

more, hydrozoans were found on bleached corals less

frequently than expected ( p ¼ 0.024) (figure 2).

Reduction of predation by Drupella and fish bites could be

a direct consequence of the deterring action of hydrozoan

nematocysts (figure 2b). Of course, this is not due to the exig-

uous quantity of venom that can be injected by a single
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Figure 2. Epibiotic hydrozoans protect corals from predation and disease. Histograms show the frequency distribution of co-occurrence values of the considered coral
conditions in null models, while magenta lines indicate the observed co-occurrence values. Numerical values (observed co-occurrence values, average and standard
deviation of null co-occurrence values) are summarized in the central table. (Online version in colour.)

rspb.royalsocietypublishing.org
Proc.R.Soc.B

284:20172405

5

hydrozoan polyp, but to the density of hydrozoans on coral

hosts, which, in the areas of study, typically ranges between

about 10 and 30 polyps per cm2, with peaks of more than 50

polyps per square centimetre [21] (figure 3a).

The effect size (Z) observed for Drupella was much higher

than that for fish bites (figure 2). This may reflect the fact that, dif-

ferently from fish, Drupella gastropods need to crawl on the coral

surface to feed, which would put them in continuous contact

with the poisonous hydrozoan carpet. The smaller incidence

of skeletal eroding band disease could be explained both as an

indirect effect of the reduced coral susceptibility to bite

wounds (because these can open doors to infection, with preda-

tors acting as spreaders [35,36]), and as a direct consequence of

hydrozoan predation upon pathogenic protozoans.

Among all described hydrozoan species of the genus

Zanclea, there have been no reports of this species on dead

coral or abiotic substrate [16]. Consistently we found that
hydrozoans tend to be less common than expected on bleached

corals ( p ¼ 0.024), thus supporting the idea that hydrozoans

receive more benefits from their coral hosts than just a sub-

strate, and that those can be provided only by a healthy host,

as hypothesized by previous work [21]. Another possible

explanation for the observed pattern is that the co-evolution

between corals and hydrozoans may have led them to have

overlapping thermal niches, and hence doomed hydrozoans

to share corals’ vulnerability to warming waters.
4. Caveats
Our field survey presents a trade-off in pros and cons when

compared to a strictly experimental study. On the one hand,

our sampling design permitted us to take simultaneously

into account a wide range of disturbance factors whose



(a)

(c)

(b)

Figure 3. Zanclea – scleractinian association. (a) High density of Zanclea gallii on Acropora muricata; (b) close up of the Zanclea sp. polyp on Leptastrea purpurea;
(c) colony of Zanclea sp. on Dipsastraea sp.: arrowhead shows the defense-modified polyps called dactylozoids. Scale bars: a � 5 mm, b � 200 mm; c � 1 mm.
All pictures were taken in the Maldives.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

284:20172405

6

replication in a laboratory (both singularly and in combination)

would have been difficult. On the other hand, our results do

not necessary imply a causation. Nevertheless, our interpret-

ation of the observed patterns can be considered conservative

in light of the hypothesized ‘protective’ action of hydrozoans.

Our main result is the strong negative co-occurrence pat-

tern between hydrozoans and corals subjected to predation

by Drupella spp., which supports our claim that ‘hydrozoans

may protect corals from predatory gastropods’. The alternative

interpretation of the observed pattern would be that whenever

a coral is predated by a gastropod, it loses its hydrozoans, and

that it does not recover them for a while (at least until the feed-

ing signs of Drupella are visible). Yet, this scenario sounds

much less reasonable than the one we hypothesize. That is, it

is much easier to imagine that a gastropod would be discour-

aged from crawling over a poisonous nematocyst carpet,

rather than a widespread mortality of hydrozoans in a colony

following a predation event (or that colonizers avoid coloniz-

ing corals showing predation signs). A similar reasoning

may apply to the less-than-expected co-occurrence between

hydrozoans and skeleton eroding band (SEB) disease.

As for the less-than-expected occurrence of hydrozoans on

bleached coral colonies, the concrete evidence provided by
recent worldwide events of mass coral mortality [6] urged us

to restrain from the appealing conclusion that hydrozoans may

protect corals from warming waters. Nevertheless, the potential

positive effect on coral health may play an important role in areas

subjected to nearly lethal bleaching intensity: there, even a small

advantage in terms of resilience can make a difference between

life and death. And our findings suggest that hydrozoans may

have the potential to provide corals with that advantage.

In our survey, we recorded only presence–absence of hydro-

zoans on coral colonies, without quantifying their density. Our

choice was driven by difficulties in obtaining reliable estimates

of hydrozoan density in the field because of their very small size

and transparent body. These features make it very difficult to

spot hydrozoans on a coral colony, let alone counting them

to obtain density estimates. Forced also by the limited time to

sample a site by SCUBA diving, we preferred to maximize the

number of surveyed colonies at the expense of the information

on hydrozoan density, in order to have a sample size large

enough to explore a broad range of ecological hypotheses. Fur-

thermore, the same features making hydrozoans very hard to

spot in the field also ensure that their detection on a coral indi-

cates the presence of a population of non-negligible size (in

terms of potential effect) compared to that of the coral (that is,



(a) (b)

Figure 4. Evidence of coral reef decline. (a) Pristine coral reefs of Maaga, Maldives (38040 N 728570 E) showing a complete live coral community dominated by
Acropora plate coral in February 2015. (b) Overview of identical coral reef system of Maaga showing coral mortality to nearly 90% after a mass bleaching event
occurred in April 2016 ( photo October 2016). (Online version in colour.)
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the chances of spotting an hydrozoan on a coral decrease rapidly

with their density, making detection very unlikely when there

are only a few individuals present, with respect to the size of

the colony). Nevertheless, more specific future work, possi-

bly oriented by the preliminary findings we report in this

paper, will certainly benefit from precise quantitative data on

hydrozoan–coral associations.

A fundamental value of the present study is that it simul-

taneously takes into account a broad range of ecological,

environmental and geographical factors, clearly not reproduci-

ble in a controlled setting. Nevertheless, our results identify

several interesting questions that could be individually

addressed by targeted laboratory and/or mesocosm exper-

iments. Although a detailed discussion about specific research

lines goes far beyond the purpose of this work, we hope that

our findings could promote the exploration of neglected areas

in reef ecology, and shed new light on the complex, elusive

mechanisms controlling coral reef functioning.

5. Conclusion
Coral reefs are among the most diverse and most threatened

ecosystems on Earth [6,7]. In particular, the extraordinary

richness of species interactions that could be key to reef diver-

sity [37] may also increase their vulnerability to global

change, providing local perturbations with countless paths

for propagation [38]. Thus, improving our knowledge on

the complex networks connecting the fates of reef species is

of paramount importance to identify key vulnerabilities,

to predict possible responses to species loss, and hence to

address effective conservation actions [39].

The hydrozoan–coral association has been documented

only recently [16,17]. Thus, it is virtually impossible to establish

whether this association has emerged in recent times, or

whether it has been simply ignored in the past, possibly due

to the very small size of the hydrozoan polyps (having

length , 1 mm), which makes their detection very difficult.

Patterns of host specificity, however, suggest the existence of

a longstanding co-evolutionary history, which supports the

second hypothesis [12,40].

How complexity emerges and is maintained in natural

communities is one of the most important open ecological
questions. The trade-off between consumer specialization

and resource dependability (with consumers avoiding special-

ization on risky resources) may play a key role in permitting

species coexistence [38,41]. In this perspective, the specializ-

ation of hydroids on corals could represent evidence of the

long-term stability of reef systems, and of the high dependabi-

lity of corals. Global change is now rapidly modifying this

scenario, depleting coral communities at an unprecedented rate

[42,43], so that we may not even have time to fully understand

what is going on [44].

Although our findings suggest that symbiotic hydrozoans

may help corals to resist environmental stress, they cannot pre-

serve coral reefs from the dramatic consequences of current

anthropogenic impacts: despite the documented abundance

and diversity of symbiotic hydrozoans on the reefs we have

surveyed for the present study, most of them have recently

experienced a dramatic and possibly irreversible bleaching

event (figure 4). Unfortunately, their fate is shared by most of

world’s reefs [6]. In a dark, yet realistic final consideration, as

in other fields of biodiversity research [45], global change is

reducing our chances to achieve a proper understanding of

the ecological significance of the intimate relationships

between corals and symbiotic hydrozoans faster than we can

cope with. Although we hope that this study will pave the

way for future field investigations, we also fear that it may be

just another testament of something we lost long before we

got to know.
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