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1 Introduction

Renormalization group flows constitute a foundational element in the study of quantum

field theory. As fixed points of these flows, conformal field theories are especially important

in a range of physical phenomena. One of the surprises from string theory is that suitable

decoupling limits lead to the construction of conformal fixed points in more than four

spacetime dimensions [1].

Though the full list of conformal field theories is still unknown, there has recently been

significant progress in classifying six-dimensional superconformal field theories (SCFTs). A

top down classification of 6D SCFTs via compactifications of F-theory has been completed

in [2–6] (see also [7] and [8] as well as the holographic classification results of reference [9]).1

1There are still a few outlier theories which appear consistent with field theoretic constructions, and

also admit an embedding in perturbative IIA string theory (see e.g. [10]). As noted in [8], these will likely

yield to an embedding in a non-geometric phase of F-theory since the elements of these constructions are

so close to those obtained in geometric phases of F-theory.
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An important element in this work is that in contrast to lower-dimensional systems, all

of these SCFTs have a simple universal structure given (on its partial tensor branch) by

a generalized quiver gauge theory consisting of a single spine of quiver nodes joined by

links which in [3] were dubbed “conformal matter.” There can also be a small amount of

decoration by such links on the ends of this generalized quiver.

With such a list in place, the time is ripe to extract more detailed properties of these

theories. Though the absence of a Lagrangian construction is an obstruction, it is never-

theless possible to extract some precision data such as the anomaly polynomial [11–13],

the scaling dimensions of certain protected operators [4] and the structure of the partition

vector and its relation to the spectrum of extended defects [14, 15].

It is also natural to expect that there is an overarching structure governing possible

RG flows between conformal fixed points. In recent work [16], the geometry of possible

deformations of the associated Calabi-Yau geometry of an F-theory compactification has

been used to characterize possible flows between theories, and has even been used to give a

“proof by brute force” (i.e. sweeping over a large list of possible flows) of a- and c-theorems

in six dimensions [17] (see also [18] and [19, 20]). In this geometric picture, there are

two general classes of flows parameterized by vevs for operators of the theory. On the

tensor branch, we consider vevs for the real scalars of 6D tensor multiplets, which in the

geometry translate to volumes of P1’s in the base of an F-theory model. On the Higgs

branch, we consider vevs for operators which break the SU(2) R-symmetry of the SCFT.

Geometrically, these correspond to complex structure deformations. There are also mixed

branches. Even so, a global picture of how to understand the network of flows between

theories remains an outstanding open question.

Motivated by the fact that all 6D SCFTs are essentially just generalized quivers, our

aim in this note will be to study possible RG flows for one such class of examples in which

the decoration on the left and right of a generalized quiver is “minimal.” These are theories

which in M-theory are realized by a stack of k M5-branes probing the transverse geometry

R⊥×C2/ΓADE, i.e. the product of the real line with an ADE singularity. In F-theory they

are realized by a single linear chain of −2 curves in the base which are wrapped by seven-

branes with gauge group of corresponding ADE type, in which there is a non-compact

ADE seven-brane on the very left and one on the very right as well. In M-theory, we

reach the SCFT point by making all the M5-branes coincident on the R⊥ factor (while still

probing the orbifold singularity), while in F-theory this is obtained by collapsing all of the

−2 curves to zero volume.

One of the interesting features of these models is that on the partial tensor branch,

i.e. where we separate all M5-branes along the transverse real line, and in F-theory where we

resolve all −2 curves, we can recognize that there are additional degrees of freedom localized

along defects of a higher-dimensional bulk theory. Indeed, from the F-theory perspective,

the degenerations of the elliptic fibration at these points needs to be accompanied by

additional blowups in the base, leading to “conformal matter.” The reason for the suggestive

terminology is twofold. First, the actual structure of the geometries constructed from M-

and F-theory has the appearance of a generalized quiver. Second, and perhaps more

importantly, there is a precise notion in the F-theory description of activating complex
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structure deformations at the places where conformal matter is localized. For example, the

breaking pattern for a conformal matter system with E8×E8 global symmetry to a system

with only E7 × E7 global symmetry is given by:

y2 = x3 + αu3v3x+ u5v5. (1.1)

Such deformations trigger a decrease in the total number of tensor multiplets, and also

break the UV R-symmetry, with another emerging in the IR.

Since the structure of tensor branch flows is immediately captured by the geometry of

the F-theory model, i.e. Kähler resolutions of the base, we shall primarily focus on Higgs

branch flows. Part of our aim will be to develop a general picture of how vevs for conformal

matter generate RG flows.

Along these lines, we provide supporting evidence for this picture of conformal matter

vevs, and use it as a way of characterizing the induced flows for 6D SCFTs. In more detail,

we consider the class of theories called

T (G,µL, µR, k) (1.2)

in reference [3]. They are parameterized by a choice of ADE group G; by a pair of nilpotent

elements µL and µR in the complexification gC of the Lie algebra of G; and by a positive

integer k. In the M-theory realization, k is the number of M5-branes, and µL, µR specify

“Nahm pole data” of a 7D super Yang-Mills theory. In the F-theory description, the

theories (1.2) represent a chain of −2 curves with gauge group G on each of them, with

a “T-brane” [21, 22] (see also [23–27]) on each flavor curve at an end of the chain. The

µL and µR appear as residues of a Higgs field for a Hitchin system on these flavor curves.

These residues are in turn captured by operator vevs of the low energy effective field

theory [24, 28]. This provides the basic link between “boundary data” and the vevs of

operators associated with conformal matter.

The first result of this paper is an explicit identification of the tensor branch for

the theories T (G,µL, µR, k) of line (1.2). To reach this, we shall find it convenient to

take k in (1.2) sufficiently large so that the effects of µL and µR decouple, so our aim

will be to capture the effects of flows associated with just a single nilpotent element of

the flavor symmetry algebra. For G = SU(N) or SO(2N), nilpotent elements can be

parameterized by partitions (i.e. Young diagrams). For G = En, one cannot use partitions

any more: their analogues are called Bala-Carter labels (for a review of B–C labels, see for

example [29, chapter 8] or [30]).2

Secondly, we will find that the well-known partial ordering on nilpotent elements also

leads to a class of theories which can be connected by an RG flow:

µ < ν ⇒ RG Flow: T (µ)→ T (ν). (1.3)

2As a brief aside, let us note that the case of k sufficiently large leads to a class of (singular) M-theory

duals for these theories in which the T-brane data is localized near the orbifold fixed points of the classical

gravity dual [3]. For G = SU(N), these theories also have a IIA realization [10, 31] and a non-singular

holographic dual [9, 32].
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To provide further evidence in favor of our proposal, we also consider related theo-

ries where the left flavor symmetry is replaced by a non-simply laced algebra. We get

to such theories by first doing a blowdown of some curves on the tensor branch for the

T (G,µL, µR, k) theories which are then followed by a further vev for conformal matter.

In this case, the flavor symmetry does not need to be a simply laced ADE type algebra,

but can also be a non-simply laced BCFG algebra. All of this is quite transparent on the

F-theory side, and we again expect a parametrization of flows in terms of nilpotent hierar-

chies. We find that this is indeed the case, again providing highly non-trivial evidence for

our proposal.

Another outcome from our analysis is that by phrasing everything in terms of algebraic

data of the 6D SCFT flavor symmetry, we can also read off the unbroken flavor symmetry,

i.e. those symmetry generators which commute with our choice of nilpotent element. This

provides a rather direct way to determine the resulting IR flavor symmetry which is different

from working with the associated F-theory geometry. Indeed, there are a few cases where

we find that the geometric expectation from F-theory predicts a flavor symmetry which is a

proper subalgebra of the flavor symmetry found through our field theoretic analysis. This

is especially true in the case of abelian flavor symmetries. For more details on extracting

the geometric contribution to the flavor symmetry, see e.g. [33].

The rest of this paper is organized as follows. In section 2 we give a brief overview of

some elements of conformal matter and how it arises in both M- and F-theory constructions.

After this, in section 3 we give a first class of examples based on flows involving 6D SCFTs

where the flavor symmetry is a classical algebra. For the SU -type flavor symmetries, there

is a beautiful realization of nilpotent elements in terms of partitions of a brane system.

This is also largely true for the SO- and Sp-type algebras as well, though there are a few

cases where this correspondence breaks down. When this occurs, we find that there is still

a flow, but that some remnants of exceptional algebras creep into the description of the 6D

SCFT because of the presence of conformal matter in the system. After this, we turn in

section 4 to flows for theories with an exceptional flavor symmetry. In some cases there is a

realization of these flows in terms of deformations of (p, q) seven-branes, though in general,

we will find it more fruitful to work in terms of the algebraic characterization of nilpotent

orbits. Section 5 extends these examples to “short” generalized quivers where the breaking

patterns of different flavor symmetries are correlated, and in section 6 we explain how this

algebraic characterization of flavor breaking sometimes leads to different predictions for

the flavor symmetries of a 6D SCFT compared with the geometric realization. In section 7

we present our conclusions and potential directions for future research. Some additional

material on the correspondence between nilpotent orbits for exceptional algebras and the

corresponding F-theory SCFTs is provided in an appendix.

2 Conformal matter

In this section we discuss some of the salient features of 6D conformal matter introduced

in references [3, 4], and the corresponding realization of these systems in both M- and

F-theory. We also extend these considerations, explaining the sense in which conformal
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matter vevs provide a succinct way to describe brane recombination in non-perturbatively

realized configurations of intersecting seven-branes.

Recall that to get a supersymmetric vacuum in 6D Minkowski space, we consider F-

theory compactified on an elliptically fibered Calabi-Yau threefold. Since we are interested

in a field theory limit, we always take the base of the elliptic model to be non-compact so

that gravity is decoupled. Singularities of the elliptic fibration lead to divisors in the base,

i.e. these are the loci where seven-branes are wrapped. When the curve is compact, this

leads to a gauge symmetry in the low energy theory, and when the curve is non-compact,

we instead have a flavor symmetry.

In F-theory, we parameterize the profile of the axio-dilaton using the Minimal Weier-

strass model:

y2 = x3 + fx+ g, (2.1)

where here, f and g are sections of bundles defined over the base. As explained in refer-

ence [2], the “non-Higgsable clusters” of reference [34] can be used to construct the base for

the tensor branch of all 6D SCFTs. The basic idea is that a collapsed −1 curve in isolation

defines the “E-string theory,”that is, a theory with an E8 flavor symmetry. By gauging

an appropriate subalgebra of this flavor symmetry, we can start to produce larger bases,

provided these additional compact curves are part of a small list of irreducible building

blocks known as “non-Higgsable clusters.”

For the present work, we will not need to know much about the structure of these

non-Higgsable clusters, so we refer the interested reader for example to [2, 34] for further

details. The essential feature we require is that the self-intersection of a curve — or a

configuration of curves — dictates the minimal gauge symmetry algebra supported over

the curve. In some limited situations, additional seven-branes can be wrapped over some

of these curves. Let us briefly recall the minimal gauge symmetry for the various building

blocks of an F-theory base:

single curve:
su3
3 ,

so8
4 ,

f4
5,

e6
6,

e7
7,

e7
8,

e8
9,

e8
10,

e8
11,

e8
12 (2.2)

two curves:
su2
2

g2
3 (2.3)

three curves: 2
sp1
2

g2
3 ,

su2
2

so7
3

su2
2 . (2.4)

In some cases, there are also matter fields localized at various points of these curves. This

occurs, for example, for a half hypermultiplet in the 56 of an e7 gauge algebra supported

on a −7 curve, and also occurs for a half hypermultiplet in the 2 of an su2 gauge algebra

supported on the −2 curve of the non-Higgsable cluster 2, 3. When the fiber type is

minimal, we shall leave these matter fields implicit.

For non-minimal fiber enhancements, we indicate the corresponding matter fields which

arise from a collision of the compact curve supporting a gauge algebra, and a non-compact

component of the discriminant locus. We use the notation [Nf = n] and [Ns = n] to indicate

n hypermultiplets respectively in the fundamental representation or spinor representation

(as can happen for the so-type gauge algebras). Note that when the representation is
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pseudo-real, n can be a half-integer. We shall also use the notation [G] to indicate a

corresponding non-abelian flavor symmetry which is localized in the geometry.3

One of the hallmarks of 6D SCFTs is the generalization of the conventional notion of

hypermultiplets to “conformal matter.” An example of conformal matter comes from the

geometry:

y2 = x3 + u5v5. (2.5)

At the intersection point, the order of vanishing for f and g becomes too singular, and

blowups in the base are required. Let us list the minimal conformal matter for the collision

of two ADE singularities which are the same [2–4, 34, 35]:

[E8]1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 1[E8] (2.6)

[E7]1, 2, 3, 2, 1[E7] (2.7)

[E6]1, 3, 1[E6] (2.8)

[SO2n]
spn
1 [SO2n] (2.9)

[SUn] · [SUn]. (2.10)

In the case of the collision of D-type symmetry algebras, there are also half hypermultiplets

localized at the so/sp intersections, and in the case of the A-type symmetry algebras, we

have a conventional hypermultiplet in the bifundamental representation.

Given this conformal matter, we can then proceed to gauge these flavor symmetries to

produce longer generalized quivers. Assuming that the flavor symmetries are identical, we

can then label these theories according to the number of gauge groups (k − 1):

[G0]−G1 − . . .−Gk−1 − [Gk], (2.11)

in the obvious notation. Implicit in the above description is the charge of the tensor

multiplets paired with each such gauge group factor. In F-theory, we write the partial

tensor branch for this theory as:

[G]
g
2 . . .

g
2[G], (2.12)

i.e. there are (k−1) compact −2 curves, each with a singular fiber type giving a correspond-

ing gauge group of ADE type, and on the left and the right we have a flavor symmetry

supported on a non-compact curve. This is a partial tensor branch because at the collision

of two components of the discriminant locus, the elliptic fiber ceases to be in Kodaira-Tate

form. Indeed, such a collision point is where the conformal matter of the system is localized.

Performing the minimal required number of blowups in the base to reach a model where all

fibers remain in Kodaira-Tate form, we get the tensor branch of the associated conformal

matter. Let us note that this class of theories also has a straightforward realization in

M-theory via k spacetime filling M5-branes probing the transverse geometry R⊥ ×C2/ΓG,

where ΓG is a discrete ADE subgroup of SU(2). In that context, the conformal matter is

associated with localized “edge modes” which are trapped on the M5-brane.

3Here we do not distinguish between the algebra and the global structure of the flavor symmetry group.
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Starting from such a configuration, we can also consider various boundary conditions

for our configuration. In the context of intersecting seven-branes, these vacua are dictated

by the Hitchin system associated with the G0 and Gk flavor branes. In particular, the

collision point between G0 and G1 and that between Gk−1 and Gk allows us to add an

additional source term for the Higgs field at these punctures:

∂Φ0 = µ
(L)
0,1 δG0∩G1 and ∂Φk = µ

(R)
k−1,k δGk−1∩Gk

, (2.13)

where the δ’s denote (1, 1)-form delta functions with support at the collision of the two

seven-branes. Here, µ
(L)
0,1 and µ

(R)
k−1,k are elements in the complexifications of the Lie algebras

g0 and gk. The additional subscripts indicate that these elements are localized at the

intersection point of two seven-branes. Moreover, the superscript serves to remind us that

the source is really an element of the left or right symmetry algebra. In what follows, we

shall often refer to these nilpotent elements as µL and µR in the obvious notation.

When the collision corresponds to ordinary localized matter, there is an interpretation

in terms of the vevs of these matter fields [24, 28]. More generalized source terms localized

at a point correspond to vevs for conformal matter [3, 4]. Let us also note that similar

considerations apply for the boundary conditions of 7D super Yang Mills-theory, and so

can also be phrased in M-theory as well.

In principle, there can also be more singular source terms on the righthand sides of

line (2.13). Such higher order singularities translate in turn into higher (i.e. degree 2 or

more) order poles for the Higgs field at a given puncture. Far from the marked point, these

singularities are subleading contributions to the boundary data of the intersecting seven-

brane configuration so we expect that the effects of possible breaking patterns (as captured

by the residue of the Higgs field simple pole) will suffice to parameterize possible RG flows.

Proceeding in this way, we see that for each collision point, we get two such source

terms, which we can denote by
(
µ
(L)
i,i+1, µ

(R)
i,i+1

)
. On general grounds, we expect that the

possible flows generated by conformal matter vevs are specified by a sequence of such pairs.

Even so, these sequences are rather rigid, and in many cases simply stating µ
(L)
0,1 and µ

(R)
k−1,k

is typically enough to specify the flow.4 In this case, the invariant data is really given

by the conjugacy class of the element in the flavor symmetry algebra, i.e. the orbit of the

element inside the complexified Lie algebra [3, 31].

In the context of theories with weakly coupled hypermultiplets, the fact that neigh-

boring hypermultiplet vevs are coupled together through D-term constraints means that

specifying one set of vevs will typically propagate out to additional vev constraints for

matter on neighboring quiver nodes. Part of our aim in this note will be to determine what

sorts of constraints are imposed by just the leftmost element of such a sequence. Given a

sufficiently long generalized quiver gauge theory, the particular elements µL and µR can

be chosen independently from one another [3]. For this reason, we shall often reference the

flow for a theory by only listing the leftmost quiver nodes:

[G0]−G1 −G2 − . . . . (2.14)

4Note that when we initiate a larger breaking pattern from say [E8] − E8 − . . . − E8 − [E8] to [E7] −
E7 − . . . − E7 − [E7], the effects of the breaking pattern are not localized and propagate from one end of

the generalized quiver to the other. We leave a detailed analysis of such flows for future work.
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Now, although the M-theory realization is simplest in the case where the left flavor

symmetry is of ADE-type, there is no issue in the F-theory realization with performing a

partial tensor branch flow to reach more general flavor symmetries of BCFG-type. Indeed,

to reach such configurations we can simply consider the corresponding non-compact seven-

brane with this symmetry. From the perspective of the conformal field theory, we can reach

these cases by starting with a theory with ADE flavor symmetry and flowing through

a combination of Higgs and tensor branch flows. We shall therefore view these flavor

symmetries on an equal footing with their simply laced cousins.

What then are the available choices for our boundary data µ ∈ gC? It is helpful at

this point to recall that any element of a simple Lie algebra can be decomposed into a

semi-simple and nilpotent part:

µ = µs + µn, (2.15)

so that for any representation of gC, the image of µs is a diagonalizable matrix, and µn is

nilpotent. Geometrically, the contribution from the semi-simple elements is described by

an unfolding which is directly visible in the complex geometry.

Less straightforward is the contribution from the nilpotent elements. Indeed, such

“T-brane” contributions (so-named because they often look like upper triangular matrices)

have a degenerate spectral equation, and as such do not appear directly in the deformations

of the complex geometry. Rather, they appear in the limiting behavior of deformations

associated with the Weil intermediate Jacobian of the Calabi-Yau threefold and its fibration

over the complex structure moduli of the threefold [24]. For flows between SCFTs, however,

the key point is that all we really need to keep track of is the relevant hierarchies of scales

induced by such flows. This is where the hyperkahler nature of the Higgs branch moduli

space, and in particular its geometric avatar becomes quite helpful. We recall from [24] that

there is a direct match between the geometric realization of the Higgs branch moduli space

of the seven-brane gauge theory in terms of the fibration of the Weil intermediate Jacobian

of the Calabi-Yau threefold over the complex structure moduli. In this picture, the base

of the Hitchin moduli space is captured by complex structure deformations. Provided

we start at a smooth point of the geometric moduli space, we can interpret this in the

associated Hitchin system as a diagonalizable Higgs field vev. As we approach singular

points in the geometric moduli space, we can thus reach T-brane configurations. From the

geometric perspective, however, this leads to the same endpoint for an RG flow, so we can

either label the resulting endpoint of the flow by a nilpotent orbit of the flavor symmetry

group or by an explicit F-theory geometry. Said differently, T-brane vacua do not lead to

non-geometric phases for 6D SCFTs [6]. One of our aims will be to determine the explicit

Calabi-Yau geometry for the F-theory SCFT associated with a given nilpotent orbit.5

5A related class of explicit F-theory models classified by group theoretic data was studied in refer-

ences [3, 6]. Though this data is purely geometric on the F-theory side, in the dual heterotic description,

we have small instantons of heterotic string theory on an ADE singularity in which the boundary data of the

small instantons leads to different classes of 6D SCFTs. This boundary data is classified by homomorphisms

from discrete ADE subgroups of SU(2) to E8.
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In general, given a nilpotent element µ ∈ gC a semisimple Lie algebra, the Jacobson-

Morozov theorem tells us that there is a corresponding homomorphism

ρ : sl(2,C)→ gC (2.16)

where the nilpotent element µ defines a raising operator in the image. The commutant

subalgebra of Im(ρ) in gC then tells us the unbroken flavor symmetry for this conformal

matter vev. Though a microscopic characterization of conformal matter is still an out-

standing open question, we can therefore expect that an analysis of symmetry breaking

patterns can be deduced using this purely algebraic characterization. Indeed, more ambi-

tiously, one might expect that once the analogue of F- and D-term constraints have been

determined for conformal matter, we can use such conformal matter vevs as a pragmatic

way to extend the characterization of bound states of perturbative branes in terms of such

breaking patterns. From this perspective one can view the analysis of the present paper as

determining these constraints for a particular class of operator vevs.

One of the things we would like to determine are properties of the IR fixed point

associated with a given nilpotent orbit. For example, we would like to know both the

characterization on the tensor branch, as well as possible flavor symmetries of the system.

As explained in reference [16], a flow from a UV SCFT to an IR SCFT in F-theory is given

by some combination of Kähler and complex structure deformations. In all the flows, we

will indeed be able to track the rank of the gauge groups, as well as the total number of

tensor multiplets for each proposed IR theory. The decrease in the rank of gauge groups

(on the tensor branch) translates to a less singular elliptic fiber, and is a strong indication

of a complex structure deformation. So, to verify that we have indeed realized a flow, it will

suffice to provide an explicit match between a given nilpotent orbit and a corresponding

F-theory geometry where the tensor branch of the SCFT is given by a smaller number of

tensor multiplets and a smaller gauge group.

With this in mind, our plan in much of this note will be to focus on the flows induced

by nilpotent elements, i.e. T-branes, and to determine the endpoints of these flows. An

added benefit of this analysis will be that by tracking the commutant subalgebra of the

parent flavor symmetry, we will arrive at a proposal for the unbroken flavor symmetry for

these theories.

2.1 E-string flows

As we have already mentioned, one of the important structural features of 6D SCFTs is

that on their tensor branch, they are built up via a gluing construction using the E-string

theory. As one might expect, the RG flows associated with this building block will therefore

be important in our more general discussion of flows induced by conformal matter vevs.

With this in mind, let us recall a few additional features of this theory. Recall that in

M-theory, the rank k E-string theory is given by k M5-branes probing an E8 Hořava-Witten

nine-brane [36, 37]. In F-theory, it is realized on the tensor branch by a collection of curves

in the base:

E-string theory base: [E8] 1, 2, . . . , 2︸ ︷︷ ︸
k

. (2.17)
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We reach the 6D SCFT by collapsing all of these curves to zero size. Now, provided k < 12,

we also get an SCFT by gauging this E8 flavor symmetry. This gauge group is supported

on a −12 curve:
e8

(12) 1, 2, . . . , 2︸ ︷︷ ︸
k

. (2.18)

Starting from the UV SCFT, we reach various IR fixed points by moving onto a partial

Higgs branch. These have the interpretation of moving onto the Higgs branch of the 6D

SCFT. In the heterotic picture, we can picture this as moving onto various branches

of the multi-instanton moduli space. For example, we can consider moving some of the

small instantons to a different point of the −12 curve. This complex structure deformation

amounts to partitioning the small instantons into separate chains (after moving onto the

tensor branch for the corresponding fixed point):

e8
(12) 1, 2, . . . , 2︸ ︷︷ ︸

k

→ 2, . . . , 2, 1︸ ︷︷ ︸
l

e8
(12) 1, 2, . . . , 2︸ ︷︷ ︸

k−l

, (2.19)

and as can be verified by an analysis of the corresponding anomaly polynomials, this does

indeed define an RG flow [16]. In equations, the deformation of the singular Weierstrass

model for the UV theory to the less singular IR theory is given by:

y2 = x3 + u5vk → x3 + u5(v − v1)l(v − v2)k−l, (2.20)

where u = 0 denotes the e8 locus, and v = v1 and v = v2 indicate the two marked points

on u = 0 where the small instantons touch this seven-brane.

We can also consider dissolving the instantons back into flux in the e8 gauge theory.

Geometrically, this is described by a sequence of blowdowns involving the −1 curve, which

in turn increases the self-intersection of its neighboring curves by +1. Moving to a generic

point of complex structure moduli then Higgses the e8 down to a lower gauge symmetry

(on the tensor branch). For example, after combining four small instantons we reach a −8

curve with an e7 gauge symmetry:

e8
(12) 1, 2, . . . , 2︸ ︷︷ ︸

k

→
e7

(8) 1, 2, . . . , 2︸ ︷︷ ︸
k−4

. (2.21)

An important feature of this class of deformations is that they are localized. What this

means is that when we encounter larger SCFT structures, the same set of local deformations

will naturally embed into more elaborate RG flows, and can be naturally extended to small

instanton tails attached to other curves of self-intersection −x.

For example, in all cases other than the A-type symmetry algebras, we will encounter

examples of a blowdown of a −1 curve, and a corresponding complex structure deformation.

Additionally, in the case of the exceptional flavor symmetries, we will sometimes have to

consider “small instanton maneuvers” of the type given in line (2.19):

. . . (x) 1, 2, . . .→ . . . (x)
1

1, . . . , (2.22)
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that is, we move one of the small instantons to a new location on the −x curve. Doing this

may in turn require further deformations, since now the curve touching the −1 curve on

the right is now closer to the −x curve.

3 Flows for classical flavor symmetries

As a warmup for our general analysis, in this section we consider the case of RG flows

parameterized by nilpotent orbits of the classical algebras of SU -, SO- and Sp-type. Several

aspects of nilpotent elements of the classical algebras can be found in [29], and we shall

also follow the discussion found in [30].

There is a simple algebraic characterization of all nilpotent orbits of sl(N,C). First,

note that given an N ×N nilpotent matrix we can then decompose it (in a suitable basis)

as a collection of nilpotent Jordan blocks of size µi × µi. Without loss of generality, we

can organize these from largest to smallest, i.e. µ1 ≥ . . . ≥ µN ≥ 0, so we also define a

partition, i.e. a choice of Young diagram. Note that we allow for the possibility that some

µi are zero. When this occurs, it simply means that the partition has terminated earlier

for some l ≤ N . Similar considerations also hold for the other classical algebras with a few

restrictions [29]:

so : even multiplicity of each even µi (3.1)

sp : even multiplicity of each odd µi, (3.2)

where we note that if all µi are even for so(2N,C), we get two nilpotent elements which

are related to each other by a Z2 outer automorphism of the algebra.

There is also a natural ordering of these partitions. Given partitions µ = (µ1, . . . , µN )

and ν = (ν1, . . . , νN ), we say that:

µ ≥ ν if and only if
k∑

i=1

µi ≥
k∑

i=1

νi for all 1 ≤ k ≤ N. (3.3)

There is a related ordering specified by taking the transpose of a given partition, i.e. by

reflecting a Young diagram along a 45 degree angle (see figure 1 for an example). The

ordering for the transposed partitions reverses the ordering of the original partitions, i.e. we

have µ > ν if and only if µT < νT . Finally, as a point of notation we shall often write a

partition in the shorthand (µd11 , . . . , µ
dl
l ) to indicate that µi has multiplicity di.

As an example, see the first column of figure 2 for an example of the ordering of

partitions of N = 4 according to (3.3). The diagrams are reverse ordered so that for µ < ν

(or equivalently for µT > νT ), the partition µ appears higher up than ν. Intuitively, if one

takes a Young diagram and moves a box at the end of a row to a lower row, one obtains

a “smaller” Young diagram. In the example of figure 2, the ordering is total (i.e. any two

diagrams can be compared). This ceases to be the case for larger N .

Given such a partition, we can also readily read off the “unbroken” symmetry, i.e. the

generators which will commute with this choice of partition. As reviewed for example

– 11 –



J
H
E
P
0
7
(
2
0
1
6
)
0
8
2

Figure 1. Example of a transposition of a partition.

in [30], for a partition µ where the entry µi has multiplicity di, these are:

su : gunbroken = s

(
⊕
i
u(di)

)
(3.4)

so : gunbroken = ⊕
i odd

so (di)⊕ ⊕
i even

sp (di/2) (3.5)

sp : gunbroken = ⊕
i even

so (di)⊕ ⊕
i odd

sp (di/2) , (3.6)

where in the above “i odd” or “i even” is shorthand for indicating that µi is odd or even,

respectively.

Observe that in the case of the su-type flavor symmetries, there is an overall trace

condition on a collection of unitary algebras. This leads to a general expectation that

such theories will have many u(1) symmetry algebra factors. Similarly, for the so and sp

algebras, we get so(2) ' u(1) factors when di = 2. Such symmetry factors can sometimes

be subtle to determine directly from the associated F-theory geometry, a point we return

to later on in section 6.

For su gauge groups, there is also a physical realization in terms of IIA suspended brane

configurations [10, 31]; we will return to this picture in subsection 3.1. For the so/sp-type

gauge algebras, which we will discuss in subsection 3.2, a similar story involves the use of

O6 orientifold planes. In these cases, the best we should in general hope for is that the

nilpotent elements which embed in a maximal su(N) subalgebra can also be characterized

in terms of partitions of branes (and their images under the orientifold projection). Indeed,

we will see some striking examples where the “näıve” semi-classical intuition fails in a rather

spectacular way: starting from a perturbative IIA configuration, we will generate SCFT

flows which land us on non-perturbatively realized SCFTs i.e. those in which the string

coupling is order one!

The rest of this section is organized as follows. Mainly focusing on a broad class of

examples, we first explain for the su-type flavor symmetries how hierarchies for nilpotent

elements translate to corresponding hierarchies for RG flows. We then turn to a similar

analysis for the soeven flavor symmetries where we encounter our first examples of flows

involving conformal matter vevs. These cases are a strongly coupled analogue of weakly

coupled Higgsing, and we shall indeed see that including these flows is necessary to maintain

the expected correspondence between nilpotent elements and RG flows. Finally, we turn

to the cases of soodd and sp-type flavor symmetry algebras.
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3.1 Flows from suN

As a first class of examples, we consider flows starting from the 6D SCFT with tensor

branch:

[SU(N)]
suN
2 . . .

suN
2 [SU(N)], (3.7)

that is, we have colliding seven-branes with a hypermultiplet localized at each point of

intersection. One can Higgs each of the two SU(N) flavor symmetries in a way parameter-

ized by two partitions µL, µR of N ; this results in the SCFT T (SU(N), µL, µR, k), where

(k − 1) is the number of gauge groups in (3.7).

These theories can be realized in terms of D6-branes suspended in between NS5-

branes [10, 31]. At the very left and right, these D6-branes attach to D8-branes, and the

choice of boundary condition on each D8-brane is controlled by “Nahm pole data,”which

in turn dictates the flavor symmetry for the resulting 6D SCFT. These Nahm poles are

boundary conditions for the Nahm equations living on the D6-brane worldvolume; they

describe a “fuzzy funnel,” namely a fuzzy sphere configuration on the D6s which expands

into a D8. This description is T-dual to the Hitchin pole description of section 2.

As described in the introduction, we will at first consider theories where the number of

gauge groups (k − 1) is sufficiently large enough so that the effect of Higgsing the left and

right flavor groups are decoupled. (We will comment on the situation where that does not

happen in section 5.) Given partitions µL and µR for the theory T (SU(N), µL, µR, k), there

is a straightforward algorithm for determining the associated suspended brane configura-

tion [3, 10, 31] (for a longer review, see also section 2 of [20]). To illustrate, let us focus on

the left partition µL = µ. Consider now the transposed Young diagram µT = (µT1 , . . . , µ
T
N ).

The gauge groups are now given by SU(Ni(µ)), with

µTi = Ni −Ni−1 (3.8)

where N0 = 0. The gauge group SU(Ni) also has fi hypermultiplets in the fundamental

representation. Anomaly cancellation requires 2Ni = Ni−1 + Ni+1 + fi. So in fact the

function i 7→ Ni is convex; moreover, the fi are equal to the jump in the slope of this

function. This accounts for the presence of the product flavor symmetry factors in (3.4).

See figure 2 for a depiction of the suspended brane configurations, associated partitions

and quivers for the N = 4 case.

Let us now verify that if we have a two partitions µ and ν such that µ < ν, that there

is then a corresponding RG flow between the theories, i.e. T (µ) → T (ν). For each choice

of partition, we get a sequence of gauge groups:

{Ni(µ)}i and {Ni(ν)}i . (3.9)

From (3.8) we see that Ni(µ) =
∑i

j=1 µ
T
j . So the condition that µ < ν, or µT > νT ,

translates to a related condition on the values of each of these ranks:

Ni(µ) ≥ Ni(ν). (3.10)

In some cases this condition is vacuously true since Ni(ν) may be zero after initiating some

breaking pattern. The resulting nilpotent hierarchy therefore directly translates back to
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1

… . . .43

1

21

Figure 2. Depiction of the IIA suspended brane configuration for a 6D SCFT with su4 flavor

symmetry. The partitioning of the branes is specified by taking the transpose of the corresponding

partition. In the figure, the vertical lines indicate D8-branes, and the horizontal lines denote D6-

branes which attach on the left to D8-branes and on the right to NS5-branes.

allowed RG flows for our system. We also note that this correspondence between hierarchies

and RG flows applies even for partitions of different sizes. More precisely, for theories with a

different number of boxes in the respective Young diagrams, we first consider the transposed

partition, and then use the partial ordering for these partitions. In other words, µT > νT

implies the existence of an RG flow between the corresponding theories even if |µ| 6= |ν|.

3.2 Flows from soeven

One of the significant simplifications in studying RG flows for the theories with su-type

flavor symmetries is that there is a direct match between nilpotent orbits of the flavor
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symmetry and geometric maneuvers for the configuration of suspended branes. This is

mainly due to the fact that the resulting theories on the tensor branch have conventional

matter fields. In all other cases, we will inevitably need to include the effects of vevs for

conformal matter.

As a first example of this type, we now turn to examples where the flavor symme-

try on one side of our generalized quiver theory is an soeven-type flavor symmetry. One

way to engineer these examples is to consider the case of a stack of M5-branes probing

a D-type orbifold singularity. In the F-theory realization, we then get our UV theory on

the tensor branch:

[SO(2N)]
spN
1

so2N
4

spN
1 . . .

so2N
4

spN
1 [SO(2N)]. (3.11)

We shall primarily focus on the effects of nilpotent flows associated with just one flavor

symmetry factor, so we will typically assume a sufficiently large number of tensor multiplets

are present to make such genericity assumptions.

Because this is still a classical algebra, all of the nilpotent orbits are labeled by a

suitable partition of 2N , but where each even entry occurs with even multiplicity. Addi-

tionally, there is clearly a partial ordering of these partitions. However, in this case we

can expect the breaking patterns to be more involved in part because now, we can also

give vevs to conformal matter. Indeed, we shall present examples where matter in a spinor

representation inevitably makes an appearance. In the IIA setup, these “oddities” formally

require the presence of a negative number of branes in a suspended brane configuration,

as shown in figure 3. In such cases, we must instead pass to the F-theory realization of

these models.

We shall primarily focus on some illustrative examples. Figure 4 summarizes RG

flows among theories T (SO(8), µL, µR, k) where we vary µL and for simplicity hold fixed

µR = (18). In figures 5 and 6 we show similar diagrams for T (SO(10), µL, 1
10, k) and

T (SO(12), µL, 1
12, k), respectively. As already noted in section 2, we omit the flavors which

are implicit for theories with minimal fiber types, i.e. those which arise on non-Higgsable

clusters (e.g. 2, 3 and 7).

All of the flows we consider are associated with motion on the Higgs branch. So, even

though these flows are parameterized by nilpotent orbits (i.e. T-branes), the hyperkahler

structure of the Higgs branch ensures that we can also understand these flows in terms

of a complex structure deformation [6]. It is easiest to exhibit them after shrinking some

−1 curves present on the tensor branch. For example, in the first flow of figure 5, one

can shrink the leftmost −1 curve on both the (110) and (22, 16) configuration. The com-

plex deformation from (110) to (22, 16) is actually realized by a two-parameter family of

deformations which in Tate form (see e.g. [38]) is given by the Weierstrass model:

y2 + (u+ ε1)vxy + (uv)2y = x3 + (uv)x2 + (u+ ε2)(u
2v3)x+ (uv)4, (3.12)

so that when ε1, ε2 = 0, we realize the original (110) configuration, while for ε1, ε2 6= 0,

we have an su4 ' so6 flavor symmetry localized along u = 0, with an so10 localized along

v = 0. The appearance of the two unfolding parameters is instructive and illustrates that

specifying a T-brane configuration imposes further restrictions on the allowed deformations.
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3 2 1Figure 3. IIA realizations of SO(10) nilpotent orbits. TOP: (110), MIDDLE: (22, 16), BOTTOM:

(24, 12). Vertical lines indicate the presence of D8-branes, horizontal lines indicate D6-branes, and

×’s indicate NS5-branes. The numbers of D6’s and D8’s are displayed. A + superscript indicates

an O6+ while a − indicates an O6−. The (24, 12) theory formally requires a negative number

of D6-branes, indicating a breakdown of the IIA description and the presence of Spin(10) spinor

representations.

Indeed, although there is no nilpotent generator which breaks so10 to either so8 or su5,

there are of course semisimple generators which do.

In principle, one could proceed in this way for all the flows in figures 4, 5, and 6. In

practice, however, one can speed up the computation by using information coming from

field theory, from anomaly cancellation, and from the known properties of the E-string

theory. The possible gauge algebras on a curve, depending on its self-intersection number,

are listed for example in [6, pages 45–46]. The expected representations of the matter

fields, and the corresponding flavor group symmetries acting on them, are listed in [33,

table 5.1]. For example, we sometimes encounter an so-type gauge theory on a −4, −3,

−2 and −1 curve. Anomaly cancellation uniquely fixes the spectrum of hypermultiplets

transforming in a non-trivial representation of the gauge symmetry algebra. For a −4 curve

with so-type gauge algebra, all matter transforms in the fundamental representation. For

the last three cases, there are always spinor representations, and the number of spinors is

16/ds, 32/ds and 48/ds respectively, where ds is the dimension of the irreducible spinor

representation of this algebra. Note that this also places an upper bound on the rank of

the gauge groups, i.e. the maximal rank so-type algebra for a system with spinors is in

these cases respectively so(12), so(13) and so(12).
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18 : [SO(8)] 1
so8
4 1

so8
4 1 . . . [SO(8)]

22, 14 : [SU(2)× SU(2)× SU(2)]
so8
3 1

so8
4 1 . . . [SO(8)]

3, 15 : [Sp(2)]
so7
3 1

so8
4 1 . . . [SO(8)] 24II : [Sp(2)]

so7
3 1

so8
4 1 . . . [SO(8)]24I : [Sp(2)]

so7
3 1

so8
4 1 . . . [SO(8)]

3, 22, 1 : [SU(2)]
g2
3 1

so8
4 1 . . . [SO(8)]

32, 12 :
su3
3 1

so8
4 1 . . . [SO(8)]

5, 13 :
su2
2

so7
3

[SU(2)]
1

so8
4 1 . . . [SO(8)]42I :

su2
2

so7
3

[SU(2)]
1

so8
4 1 . . . [SO(8)] 42II :

su2
2

so7
3

[SU(2)]
1

so8
4 1 . . . [SO(8)]

5, 3 :
su2
2

g2
3 1

so8
4 1 . . . [SO(8)]

7, 1 : 2
su2
2

g2
3 1

so8
4 1 . . . [SO(8)]

Figure 4. Flows for SO(8) nilpotent orbits. Blue arrows indicate flows where one or more free

tensors appears in the IR.

Finally, one should keep in mind that the E-string living on an empty −1 curve has

an E8 flavor symmetry; thus, when we gauge a product subalgebra, we necessarily have

g1 × g2 ⊂ e8 (see [2]). If this subalgebra is not maximal, we also expect there to be a

residual flavor symmetry given by the commutant subalgebra.

Let us now turn to some examples. The first flow of figure 5 simply corresponds to

giving a vev to a fundamental hypermultiplet for the leftmost sp1 gauge algebra, breaking

it completely. One ends up with an E-string, and so6 ⊕ so10 ⊂ so16 is indeed a subalgebra

of e8. The gauge algebra so10 on the leftmost −4 curve should still have 2 fundamental

hypermultiplets; given the presence of the sp1 on the right, we deduce the presence of a

“side link” of conformal matter with flavor symmetry SU(2). In the next step, we can give

a vev to this side link, which breaks so10 → so9 and leads to (3, 17); or alternatively we

can shrink the empty −1 curve. In this second case, the −4 curve becomes a −3 curve,

and now the so10 should support three fundamental hypers; again, given the presence of
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110 : [SO(10)]
sp1
1

so10
4

sp1
1

so10
4

sp1
1 . . . [SO(10)]

22, 16 : [SO(6)] 1
so10
4

[SU(2)]

sp1
1

so10
4

sp1
1 . . . [SO(10)]

3, 17 : [SO(7)] 1
so9
4

sp1
1

[Nf=
1
2
]

so10
4

sp1
1 . . . [SO(10)] 24, 12 : [Sp(2)]

so10
3

[Ns=1]

sp1
1

so10
4

sp1
1 . . . [SO(10)]

3, 22, 13 : [SU(2)× SU(2)]
so9
3

sp1
1

[Nf=
1
2
]

so10
4

sp1
1 . . . [SO(10)]

32, 14 : [SU(2)× SU(2)]
so8
3

sp1
1

[Nf=1]

so10
4

sp1
1 . . . [SO(10)]

32, 22 : [SU(2)]
so7
3

sp1
1

[Nf=1]

so10
4

sp1
1 . . . [SO(10)]

33, 1 :
g2
3

sp1
1

[SU(2)]

so10
4

sp1
1 . . . [SO(10)]

5, 15 : [Sp(2)]
so7
3 1

so9
4

sp1
1

[Nf=
1
2
]
. . . [SO(10)]

42, 12 :
su3
3 1

so10
4

[SU(2)]

sp1
1 . . . [SO(10)] 5, 22, 1 : [SU(2)]

g2
3 1

so9
4

sp1
1

[Nf=
1
2
]
. . . [SO(10)]

5, 3, 12 :
su3
3 1

so9
4

sp1
1

[Nf=
1
2
]
. . . [SO(10)]

52 :
su2
2

so7
3

sp1
1

[Nf=1]

so10
4 . . . [SO(10)] 7, 13 :

su2
2

so7
3

[SU(2)]
1

so9
4 . . . [SO(10)]

7, 3 :
su2
2

g2
3 1

so9
4 . . . [SO(10)]

9, 1 : 2
su2
2

g2
3 1

so9
4 . . . [SO(10)]

Figure 5. Flows for SO(10) nilpotent orbits. Blue arrows indicate flows where one or more free

tensors appears in the IR.

the sp1 on the right, we deduce an sp2 flavor symmetry. We can now iterate the process

until no further Higgsing is possible; this leads to figure 5.

The diagram precisely corresponds with the ordering of partitions, in agreement with

line (1.3). That we achieve a perfect match between the hierarchies of nilpotent elements

and a corresponding hierarchy of RG flows again provides strong evidence for our proposed

picture of RG flows induced by conformal matter vevs.
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112 : [SO(12)]
sp2
1

so12
4

sp2
1

so12
4

sp2
1 . . . [SO(12)]

22, 18 : [SO(8)]
sp1
1

so12
4

[SU(2)]

sp2
1

so12
4

sp2
1 . . . [SO(12)]

24, 14 : [SO(4)] 1
so12
4

[Sp(2)]

sp2
1

so12
4

sp2
1 . . . [SO(12)] 3, 19 : [SO(9)]

sp1
1

so11
4

sp2
1

so12
4

sp2
1 . . . [SO(12)]

26 : [Sp(3)]
so12
3

sp2
1

so12
4

sp2
1 . . . [SO(12)] 3, 22, 15 : [SO(5)] 1

so11
4

[Sp(1)]

sp2
1

so12
4

sp2
1 . . . [SO(12)]

32, 16 : [SO(6)] 1
so10
4

sp2
1

so12
4

sp2
1 . . . [SO(12)]3, 24, 1 : [Sp(2)]

so11
3

sp2
1

so12
4

sp2
1 . . . [SO(12)]

32, 22, 12 : [Sp(1)]
so10
3

sp2
1

so12
4

sp2
1 . . . [SO(12)]

33, 13 : [Sp(1)]
so9
3

sp2
1

[SO(3)]

so12
4

sp2
1 . . . [SO(12)]

42, 14 : [SU(2)× SU(2)]
so8
3

sp1
1

so12
4

[Sp(1)]

sp2
1 . . . [SO(12)] 34 :

so7
3

sp2
1

[SO(4)]

so12
4

sp2
1 . . . [SO(12)]

42, 22 : [SU(2)]
so7
3

sp1
1

so12
4

[SU(2)]

sp2
1 . . . [SO(12)]

42, 3, 1 : [SU(2)]
g2
3

sp1
1

so12
4

[SU(2)]

sp2
1 . . . [SO(12)] 5, 17 : [SO(7)] 1

so9
4

sp1
1

so11
4

sp2
1 . . . [SO(12)]

5, 22, 13 : [SU(2)× SU(2)]
so9
3

sp1
1

so11
4

sp2
1 . . . [SO(12)]

5, 3, 14 : [SU(2)× SU(2)]
so8
3

sp1
1

so11
4

sp2
1 . . . [SO(12)]

5, 3, 22 : [SU(2)]
so7
3

sp1
1

so11
4

sp2
1 . . . [SO(12)]

5, 32, 1 :
g2
3

sp1
1

so11
4

sp2
1 . . . [SO(12)]

52, 12 :
su3
3 1

so10
4

sp2
1 . . . [SO(12)]

62 :
su2
2

so7
3

sp1
1

so12
4

[SU(2)]

sp2
1 . . . [SO(12)] 7, 15 : [Sp(2)]

so7
3 1

so9
4

sp1
1

so11
4

sp2
1 . . . [SO(12)]

7, 22, 1 : [Sp(1)]
g2
3 1

so9
4

sp1
1

so11
4

sp2
1 . . . [SO(12)]

7, 3, 12 :
su3
3 1

so9
4

sp1
1

so11
4

sp2
1 . . . [SO(12)]

7, 5 :
su2
2

so7
3

sp1
1

so11
4

sp2
1 . . . [SO(12)] 9, 13 :

su2
2

so7
3

[SU(2)]
1

so9
4

sp1
1

so11
4

sp2
1 . . . [SO(12)]

9, 3 :
su2
2

g2
3 1

so9
4

sp1
1

so11
4

sp2
1 . . . [SO(12)]

11, 1 : 2
su2
2

g2
3 1

so9
4

sp1
1

so11
4

sp2
1 . . . [SO(12)]

Figure 6. Flows for SO(12) nilpotent orbits. Blue arrows indicate flows where one or more free

tensors appears in the IR.
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As an examples of a Higgsing operation, consider the SCFT with tensor branch:

[SO(12)]
sp2
1

so12
4

sp2
1 . . . . (3.13)

We can flow to another SCFT in the IR by activating a vev for a fundamental hypermul-

tiplet of the leftmost sp2 gauge algebra. The resulting tensor branch for this IR SCFT

is then:

[SO(8)]
sp1
1

so12
4

[Sp(1)]

sp2
1 . . . . (3.14)

The hypermultiplet in the bifundamental representation, i.e. the 1
2(4,12) decomposes as

1
2(2,12) ⊕ (1,12), yielding the single fundamental on the leftmost so12 of the IR theory,

which transforms under a global Sp(1) symmetry.

We can also see that vevs of conformal matter can sometimes drive us away from a

perturbative IIA realization of the tensor branch. For example, by starting on the tensor

branch, we can collapse the leftmost −1 curve of the configuration:

[SO(7)] 1
so9
4

sp1
1 . . . (3.15)

so a vev for conformal matter can trigger a flow to the configuration with tensor branch:

[SU(2)× SU(2)]
so9
3

sp1
1 . . . . (3.16)

That is, collapsing the −1 curve converts the −4 curve to a −3 curve and the remnants

of conformal matter not eaten by the Higgs mechanism show up as matter in possibly

“exotic” representations. In this case, a spinor and a fundamental of so9 appear on the -3

curve after blowdown. Note that at the SCFT point, we are always dealing with collapsed

curves anyway, so we should properly view this as a complex structure deformation. Such

deformations may also involve collapsing −1 curves located in the interior of the tensor

branch quiver. For instance, the bottom flow in figure 4 corresponds to a blowdown of the

leftmost −1 curve of the theory

su2
2

g2
3 1

so8
4 1 . . . [SO(8)] (3.17)

and produces a theory with quiver

2
su2
2

g2
3 1

so8
4 1 . . . [SO(8)] (3.18)

Note that the −3 curve of the UV theory has become the second −2 curve of the IR theory,

and the leftmost −4 curve of the UV theory has become the −3 curve of the IR theory.

Additionally, recall that partitions of 2N with only even entries give rise to two distinct

nilpotent orbits of so(2N), which are related to each other by outer automorphism. How-

ever, matching with the hierarchy of RG flows reveals that these distinct nilpotent elements

do not give rise to distinct 6D SCFTs. Thus, we conclude that RG flows parametrized by

nilpotent orbits related by an outer automorphism lead to physically equivalent IR fixed

points. This is illustrated most poignantly in the so(8) case shown in figure 4: here, not
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only the two (24) orbits but also the (3, 15) partition are related by the triality outer au-

tomorphism (likewise for (42)I , (42)II and (5, 13)).6 We see that in both cases, all three of

these nilpotent orbits correspond to the same 6D SCFT. In the so(10) and so(12) figures,

we therefore display only a single theory for each partition.

We also observe that just as in the case of theories with an su-type flavor symmetry,

we can extend the nilpotent hierarchy to partitions with a different number of boxes, i.e.

by working in terms of the transposed Young diagrams:

µT > νT ⇒ T (µ)→ T (ν). (3.19)

For instance, comparing the list of SO(10) theories with the list of SO(12) theories, we see

that there is clearly a flow from the (22, 18) theory of SO(12) to the (110) theory of SO(10),

as expected since (22, 18)T > (110)T . However, there is no flow that will take us from the

(24, 14) theory of SO(12) to the (110) theory of SO(10), and indeed (24, 14)T ≯ (110)T .

3.3 Flows from soodd and spN

Finally, we come to the analysis of flows involving the non-simply laced classical algebras

so(2N+1) and sp(N). In these cases, we do not directly reach the desired flavor symmetry

from M5-branes probing an ADE singularity. Rather, we must first consider the case of

a partial tensor branch flow and/or some contribution from conformal matter vevs. For

example, to reach the sp-type flavor symmetries, we can start from:

[SO(2N)]
spN
1

so2N
4

spN
1 . . .

so2N
4

spN
1 [SO(2N)], (3.20)

and by decompactifying the leftmost and rightmost −1 curves, we reach the system:

[Sp(N)]
so2N

4
spN
1 . . .

so2N
4 [Sp(N)]. (3.21)

In the case of an SO(2N + 1) flavor symmetry we can also start from a theory with

SO(2N + 2p) flavor symmetry. For sufficiently large p, we can then reach the desired

SO(2N + 1) flavor symmetry by activating a conformal matter vev associated with the

partition (2p − 1, 12N+1). See figures 7 and 8 for examples of the flow diagrams and

associated F-theory models for these systems.

4 Exceptional flavor symmetries

In the previous section we focused on examples with classical flavor symmetry algebras

where there is a combinatorial construction of all nilpotent orbits in terms of partitions of

positive integers (with suitable restrictions).

But we have also seen that for all cases other than the A-type flavor symmetry, con-

formal matter vevs can sometimes drive us to a conformal fixed point where spinor rep-

resentations are present, indicating that the construction really requires non-perturbative

elements (i.e., an embedding in F-theory).

6One way to see this triality is to note that the weighted Dynkin diagrams associated with these nilpotent

orbits are related by permutation of the three external nodes [29, page 84].
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16 : [Sp(3)]
so14
4

sp3
1

so14
4 . . . [Sp(3)]

2, 14 : [Sp(2)]
so13
4

sp3
1

[Nf=
1
2
]

so14
4 . . . [Sp(3)]

22, 12 : [Sp(1)]
so12
4

sp3
1

[Nf=1]

so14
4 . . . [Sp(3)]

23 :
so11
4

sp3
1

[SO(3)]

so14
4 . . . [Sp(3)]

32 :
so10
4

sp2
1

so14
4

[Sp(1)]

sp3
1

so14
4 . . . [Sp(3)]4, 12 : [Sp(1)]

so11
4

sp2
1

so13
4

sp3
1

[Nf=
1
2
]

so14
4 . . . [Sp(3)]

4, 2 :
so10
4

sp2
1

[Nf=
1
2
]

so13
4

sp3
1

[Nf=
1
2
]

so14
4 . . . [Sp(3)]

6 :
so9
4

sp1
1

so11
4

sp2
1

so13
4

sp3
1

[Nf=
1
2
]

so14
4 . . . [Sp(3)]

Figure 7. Flows for Sp(3) nilpotent orbits.

Now, in the case of flows from a theory with exceptional flavor symmetries, we must

resort to the F-theory realization from the start. Nevertheless, we still expect that some

(but not all!) of the RG flows induced by nilpotent orbits can be understood in terms

of partitions of perturbative D7-branes. For example, in the terminology of [39], a seven-

brane with E8 gauge symmetry is given by a non-perturbative bound state of seven-branes

of different (p, q) type, i.e. A7BC2. In a suitable duality frame, the A-type seven-branes are

just the perturbative D7-branes, and so we can expect some of the nilpotent orbits to be

described by partitions of these seven seven-branes. By a similar token, there are six such

seven-branes for E7 and five for E6. Nevertheless, there are also more general nilpotent

orbits which do not appear to admit such a simple characterization in terms of partitions.

To deal with this more general class of nilpotent orbits, and to verify that we indeed

get a corresponding match with hierarchies expected from RG flows, we will instead need to

rely on some results from the Bala-Carter (B-C) theory of nilpotent orbits for exceptional

algebras. The main point is that for each nilpotent element µ ∈ gC, we get a corresponding

homomorphism via the Jacobson-Morozov theorem (see line (2.16)). So, to characterize

possible homomorphisms, we simply need to specify the embedding in a subalgebra of gC.

Indeed, there is also a notion of partial ordering for these nilpotent orbits, which is reviewed

in great detail in reference [30]. For this reason, we should expect there to be a similar

correspondence between nilpotent orbits and RG flows.
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19 : [SO(9)]
sp1
1

so11
4

sp2
1

[Nf=
1
2
]

so12
4

sp2
1 . . . [SO(9)]

22, 15 : [SO(5)] 1
so11
4

[Sp(1)]

sp2
1

[Nf=
1
2
]

so12
4

sp2
1 . . . [SO(9)]

3, 16 : [SO(6)] 1
so10
4

sp2
1

[Nf=1]

so12
4

sp2
1 . . . [SO(9)]24, 1 : [Sp(2)]

so11
3

[Ns=
1
2
]

sp2
1

[Nf=
1
2
]

so12
4

sp2
1 . . . [SO(9)]

3, 22, 12 : [Sp(1)]
so10
3

[Ns=1]

sp2
1

[Nf=1]

so12
4

sp2
1 . . . [SO(9)]

32, 13 : [Sp(1)]
so9
3

sp2
1

[SO(3)]

so12
4

sp2
1 . . . [SO(9)]

33 :
so7
3

sp2
1

[SO(4)]

so12
4

sp2
1 . . . [SO(9)]

42, 1 : [SU(2)]
g2
3

sp1
1

[Nf=
1
2
]

so12
4

[SU(2)]

sp2
1 . . . [SO(9)]

5, 14 : [SU(2)× SU(2)]
so8
3

sp1
1

[Nf=
1
2
]

so11
4

sp2
1 . . . [SO(9)]

5, 22 : [SU(2)]
so7
3

sp1
1

[Nf=
1
2
]

so11
4

sp2
1 . . . [SO(9)]

5, 3, 1 :
g2
3

sp1
1

[Nf=1]

so11
4

sp2
1 . . . [SO(9)]

7, 12 :
su3
3 1

so9
4

sp1
1

so11
4

sp2
1 . . . [SO(9)]

9 :
su2
2

g2
3 1

so9
4

sp1
1

so11
4

sp2
1 . . . [SO(9)]

Figure 8. Flows for SO(9) nilpotent orbits. Blue arrows indicate flows where one or more free

tensors appears in the IR.

Since there is a finite list of nilpotent orbits for each exceptional flavor symmetry, we

can explicitly determine the induced flow for each case. For the simply laced algebras E6,

E7 and E8, our starting point will be a long generalized quiver of the form:

[E6]− E6 − E6 − . . . , (4.1)

[E7]− E7 − E7 − . . . , (4.2)

[E8]− E8 − E8 − . . . , (4.3)
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i.e. we take a stack of M5-branes probing an E-type singularity. The links here “−” denote

the corresponding conformal matter for these systems. In F-theory terms, the resolved

theory on the tensor branch for each of these cases is:

[E6] 1
su3
3 1

e6
6 . . . , (4.4)

[E7] 1
su2
2

s07
3

su2
2 1

e7
8 . . . , (4.5)

[E8] 1 2
sp1
2

g2
3 1

f4
5 1

g2
3

sp1
2 2 1 (

e8
12) . . . , (4.6)

We can also reach SCFTs with non-simply laced flavor symmetry algebras g2 and f4 by

decompactifying the −3 and −5 curves of the (E8, E8) conformal matter system:

[G2]
sp1
2 2 1 (

e8
12) . . . , (4.7)

[F4] 1
g2
3

sp1
2 2 1 (

e8
12) . . . . (4.8)

In these cases, the “. . .” indicates that we continue beyond this point with a sequence of

E8 gauge groups with conformal matter between each such factor.

The rest of this section is organized as follows. We begin by giving an analysis of the

nilpotent orbits of the simply laced exceptional algebras and the corresponding F-theory

models associated with each such element. Using Bala-Carter theory, we also determine

the flavor symmetries expected from the commutant of the nilpotent orbit in the parent

flavor symmetry algebra and compare it with those flavor symmetries visible on the tensor

branch of an F-theory model. We then turn to a similar analysis for the non-simply laced

exceptional algebras.

4.1 Flows from e6, e7, e8

Let us begin with an analysis of the flows for the exceptional algebras e6, e7 and e8.

Proceeding as in the previous examples, we start from the theories (4.4)–(4.6) and break

the flavor symmetry on the left in various ways while holding fixed the flavor symmetry

on the right. That is, we consider the theories T (En, µL, µR, k) obtained by varying µL
whilst holding µR fixed and trivial. We now show how the hierarchy on nilpotent orbits

determines hierarchies of RG fixed points.

For e6 we show the results in a diagram similar to the ones given so far, in figure 9. In

the cases with e7 and e8 flavor symmetry, the full list of nilpotent hierarchies does not easily

fit on a few pages, but is presented for example in [30, appendix C]. Thus in appendix A we

give the full list of Bala-Carter labels, the corresponding global flavor symmetries (expected

from the commutants of Im(ρ) in gC; see (2.16)) and the corresponding realization in an

F-theory model, with the understanding that there is an RG flow whenever there is an

ordering relation between the corresponding label as in [30, appendix C], in agreement

with line (1.3).
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0 : [E6] 1
su3
3 1

e6
6 1

su3
3 1 . . . [E6]

A1 : [SU(6)]
su3
2 1

e6
6 1

su3
3 1 . . . [E6]

2A1 : [SO(7)]
su2
2 1

e6
6 1

su3
3 1 . . . [E6]

3A1 : [SU(2)] 2 1
[SU(3)]

e6
6 1

su3
3 1 . . . [E6]

A2 : [SU(3)] 1
e6
6
1

[SU(3)]

1
su3
3 1 . . . [E6]

A2 +A1 : [SU(3)] 1
e6
5

[Nf=1]
1

su3
3 1 . . . [E6]

2A2 : [G2] 1
f4
5 1

su3
3 1

e6
6 1 . . . [E6] A2 + 2A1 : [SU(2)]

e6
4 1

su3
3 1

e6
6 1 . . . [E6]

2A2 +A1 : [SU(2)]
f4
4 1

su3
3 1

e6
6 1 . . . [E6] A3 : [Sp(2)]

so10
4 1

su3
3 1

e6
6 1 . . . [E6]

A3 +A1 : [SU(2)]
so9
4 1

su3
3 1

e6
6 1 . . . [E6]

D4(a1) :
so8
4 1

su3
3 1

e6
6 1 . . . [E6]

A4 : [SU(2)]
so7
3

su2
2 1

e6
6 1 . . . [E6]

A4 +A1 :
g2
3

su2
2 1

e6
6 1 . . . [E6]

D4 :
su3
3 1

e6
6
1

[SU(3)]

1
su3
3 1

e6
6 1 . . . [E6]

A5 : [SU(2)]
g2
3 1

f4
5 1

su3
3 1

e6
6 1 . . . [E6]

D5(a1) :
su3
3 1

e6
5

[Nf=1]
1

su3
3 1

e6
6 1 . . . [E6]

E6(a3) :
su3
3 1

f4
5 1

su3
3 1

e6
6 1 . . . [E6]

D5 :
su2
2

so7
3

su2
2 1

e6
6 1 . . . [E6]

E6(a1) :
su2
2

g2
3 1

f4
5 1

su3
3 1

e6
6 1 . . . [E6]

E6 : 2
su2
2

g2
3 1

f4
5 1

su3
3 1

e6
6 1 . . . [E6]

Figure 9. Flows for E6 nilpotent orbits. Blue arrows indicate flows where one or more free tensors

appears in the IR. In the above, we always take a trivial nilpotent orbit on the right; on the left we

present the B-C label for the nilpotent orbit. The same information is also presented in the table

of appendix A.1, where both abelian and non-abelian flavor symmetries are also shown.
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The methods we used to produce these results are the same as the ones for the pre-

vious tables, as described in section 3.2. Once again, each flow corresponds to a complex

deformation, which can be exhibited most easily by shrinking some −1 curve; for example,

the very first flow corresponds to the deformation y2 = x3 + (u2 + εx)2v2. At ε = 0 this

describes a collision between an e6 at u = 0 and an su3 curve at v = 0; for ε 6= 0 the u = 0

curve instead supports an su6 gauge algebra. Once again, however, it is quicker to use a

combination of field theory techniques and F-theory intuition. There is a new type of Higgs

flow that did not appear earlier: see for example the flows 3A1 → A2 or D4(a1) → D4 in

figure 9. This type of flow was discussed around [16, eq. (4.24)]. In 3A1, we can shrink the

leftmost −1 curve, we reveal another −1 curve; if we also shrink that one as well, we have a

special point on the leftmost e6 curve of multiplicity 2. The flow consists of going to a more

generic situation where there are two special points of multiplicity 1; blowing them up pro-

duces two separate −1 curves touching the e6 curve, which we see in the A2 theory. These

are examples of “small instanton maneuvers” of the type encountered in subsection 2.1.

Another new point is that in some examples the flavor symmetry expected from the

B-C labels refines the “näıve” expectation one would have from just treating subsectors

of a field theory on its tensor branch in isolation. In some cases, this also conforms with

restrictions on non-abelian flavor symmetries expected from F-theory considerations. In

other cases, however, we find that — especially for abelian symmetry factors — the B-

C label analysis provides a systematic way to extract such flavor symmetries which are

difficult to deduce using other techniques. We develop this point further in section 6.

An important aspect of the tight match found here is that in general, we find several

gauge groups of en type will generically be Higgsed in a given flow by conformal matter

vevs. This is not altogether surprising since related phenomena are already present for

models with weakly coupled hypermultiplets. Indeed in the quivers in the third column

of figure 2 we see that the ranks of the gauge groups decrease in an RG flow not only in

the rightmost position. There, it is a consequence of the fact that there will typically be a

propagating sequence of D-term constraints.

4.2 Flows from f4, g2

Finally, as a last class of examples, we also consider flows induced by nilpotent orbits for

the non-simply laced algebras f4 and g2. Actually, we can reach all of these flows by first

considering a nilpotent orbit which has commutant subalgebra f4 and g2, and then adding

an additional nilpotent element which embeds in this subalgebra. This is quite similar

to our analysis of flavor symmetries of soodd type. Alternatively, we can work out the

F-theory geometries obtained from such nilpotent orbits. The results of this final set of

analyses, along with the partially ordered set of RG flows/nilpotent elements is displayed

in figures 10 and 11.

As a curiosity, we also notice that the diagrams for f4 and g2 can be embedded into

the one for e8. The reason is that both f4 and g2 appear in the E8 −E8 conformal matter

theory. In the e8 nilpotent hierarchy, the theory labeled D4 (see the table of appendix A.3),

for example, is almost identical to the theory labeled 1 in figure 11; the only difference is

that the leftmost e8 is on a −11 curve rather than on a −12 curve. Starting from this D4

– 26 –



J
H
E
P
0
7
(
2
0
1
6
)
0
8
2

1 : [G2]
su2
2 2 1

e8
12 1 2

su2
2

g2
3 1

f4
5 1 . . . [G2]

A1 : [SU(2)] 2 2 1
e8
12 1 2

su2
2

g2
3 1

f4
5 1 . . . [G2]

Ã1 : [SU(2)] 2 1
e8
11 1 2

su2
2

g2
3 1

f4
5 1 . . . [G2]

G2(a1) :
e8
9 1 2

su2
2

g2
3 1

f4
5 1 . . . [G2]

G2 :
e7
8 1

su2
2

g2
3 1

f4
5 1 . . . [G2]

Figure 10. Flows for G2 nilpotent orbits.

theory, then, we can reproduce all the flows that appear in the f4 diagram of figure 11; the

theories of that figure have almost identical avatars in the e8 nilpotent hierarchy. We show

the correspondence in figure 12. One can check in [30, table 19] that the theories shown

in that diagram are indeed in the correct inclusion relation for e8. Thus, the f4 nilpotent

hierarchy is isomorphic to a sub-hierarchy of the e8 nilpotent hierarchy. Similarly, one can

check that the g2 is also a sub-hierarchy of the f4 hierarchy, as also summarized in figure 12.

5 Short quivers

Up to this point, we have assumed that the generalized quivers of our 6D SCFTs were

sufficiently long to Higgs the left and right of the quiver independently. Strictly speaking,

even when this is not the case we can continue to parameterize all flows according to

two independent nilpotent orbits. However, the resulting flow will then contain various

redundancies since the data associated with this pair will inevitably become correlated.

Our plan in this section will be to extend our analysis of flows to theories where this

happens, which we will call “short quivers.”

The picture is clearest in the case of flows from suN . Here, the allowed Higgsings are

characterized by a partition on the left of the quiver and a partition on the right. The non-

redundant data of such flows is captured by a pair of partitions of equal size. Moreover, each

column of a partition corresponds to the change in gauge group rank between neighboring

nodes. If there are (k−1) tensor multiplets in the theory, then there can be up to k changes

in the rank of the associated symmetry algebra (including the leftmost and rightmost flavor

symmetries). So, there are at most total k columns in the two partitions. For a large quiver

k � N , and the restriction on the number of columns of the partition simply comes from

the size of each partition, N . For small quivers, on the other hand, the requirement that

the total number or columns should be at most k places important constraints.
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1 : [F4] 1
g2
3

su2
2 2 1

e8
12 1 . . . [F4]

A1 : [Sp(3)]
g2
2

su2
2 2 1

e8
12 1 . . . [F4]

Ã1 : [SU(4)]
su3
2

su2
2

su1
2 1

e8
12 1 . . . [F4]

A1 + Ã1 : [SO(4)]
su2
2

su2
2

[Nf=1]

su1
2 1

e8
12 1 . . . [F4]

A2 :
su1
2

su2
2

[SU(3)]

su1
2 1

e8
12 1 . . . [F4] Ã2 : [G2]

su2
2

su1
2 1

e8
11 1 . . . [F4]

Ã2 +A1 : [SU(2)] 2 2 1
e8
11 1 . . . [F4]

A2 + Ã1 : [SU(2)] 2 2 2 1
e8
12 1 . . . [F4]

B2 : [SU(2)] 2 1
e8
12
1
2

[SU(2)]

1 . . . [F4]

C3(a1) : [SU(2)] 2 1
e8
10 1 . . . [F4]

F4(a3) :
e8
8 1 2

su2
2

g2
3 1

f4
5 1 . . . [F4]

B3 :
e7
8 1

[SU(2)]
2

su2
2

g2
3 1

f4
5 1 . . . [F4] C3 : [SU(2)] 1

e7
8 1

su2
2

g2
3 1

f4
5 1 . . . [F4]

F4(a2) :
e7
7 1

su2
2

g2
3 1

f4
5 1 . . . [F4]

F4(a1) :
e6
6 1

su3
3 1

f4
5 1 . . . [F4]

F4 :
f4
5 1

g2
3

su2
2 2 1

e8
11 1 . . . [F4]

Figure 11. Flows for F4 nilpotent orbits. Blue arrows indicate flows where one or more free tensors

appears in the IR.
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1→ D4

A1 → D4 +A1

Ã1 → D5(a1)

A1 + Ã1 → D5(a1) +A1

A2 → D4 +A2 Ã2 → E6(a3)

Ã2 +A1 → E6(a3) +A1

A2 + Ã1 → D5(a1) +A2

B2 → D6(a2)
C3(a1)→ E7(a5)

F4(a3)→ E8(a7)

B3 → A6 +A1 C3 → E7(a4)

F4(a2)→ D5 +A2

F4(a1)→ E6(a1) +A1

F4 → E6 +A1

Figure 12. For each of the theories of figure 11, we show here the corresponding theory in the e8
nilpotent hierarchy of the table in appendix A.3. This realizes the f4 nilpotent hierarchy as a sub-

hierarchy of the e8 one. The underlined labels realize in a similar way the g2 hierarchy of figure 10.

As an example, we list the theories with three tensor multiplets and partitions of

size three:

(13) : [SU(3)]
su3
2

su3
2

su3
2 [SU(3)] : (13) (5.1)

(13) : [SU(3)]
su3
2

su3
2

[Nf=1]

su2
2 [SU(1)] : (2, 1) (5.2)

(13) : [SU(4)]
su3
2

su2
2

su1
2 : (3) (5.3)

(2, 1) : [SU(1)]
su2
2

su3
2

[SU(2)]

su2
2 [SU(1)] : (2, 1) (5.4)
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where for the purposes of uniformity with higher rank examples we have listed the (trivial)

flavor symmetry factor SU(1) which in F-theory is associated with a component of the

discriminant locus with I1 fiber type.

For longer quivers, we could also consider the flows corresponding to partitions µL=(3),

µR = (2, 1) and µL = (3), µR = (3). However, since we only have three hypermultiplets in

the case at hand, we are constrained to consider pairs of partitions with no more than four

columns, so we need not concern ourselves with such flows.

Similar comments apply for the BCDEFG theories. We illustrate it with a discussion

of E6 nilpotent orbits. Here, the analog to the “number of columns of the partition” in

the suN case is the distance that the breaking pattern propagates into the interior of the

quiver, that is, the number of E6 gauge group factors which are (partially) broken. For

instance, the nilpotent orbits in figure 9 with B-C labels 0, A1, 2A1, 3A1, A2, A1 + A1, and

A2 + 2A1 do not introduce any breaking into the interior of the quiver. Even for a theory

with a single e6 node, it is possible to trigger an RG flow from any of these nilpotent orbits

on the left or the right. Two such examples are

A1 : [SU(6)]
su3
2 1

e6
5

[Nf=1]
1 [SU(3)] : A2 +A1 (5.5)

3A1 : [SU(2)] 2 1
[SU(3)]

e6
6 1

su3
3 1 [E6] : 0 (5.6)

On the other hand, nilpotent orbits such as the one of B-C label D5 propagate several

nodes into the interior of the quiver. For quivers with a single e6 node, we can ignore these

nilpotent elements.

6 Global symmetries in 6D SCFTs

One of the important aspects of the characterization of RG flows in terms of nilpotent orbits

is that this is algebraic data directly associated with a conformal fixed point. Assuming

the absence of an emergent flavor symmetry in the IR, we can then use the labelling by

nilpotent orbits to read off the flavor symmetry for IR fixed points.

Indeed, we have performed a match between a particular class of 6D SCFTs and

nilpotent orbits for classical and exceptional algebras. In many cases, the global symmetry

which is manifest on the tensor branch matches to what is expected from the nilpotent

orbit. An example is the theory

[SU(6)]
su3
2 1

e6
6 1

su3
3 1 . . . [E6], (6.1)

which corresponds to the nilpotent orbit of E6 with B-C label A1. However, there are other

instances in which the global symmetry of a 6D SCFT cannot be easily determined from

the theory on the tensor branch. In particular, as discussed in [33], there are instances in

which the expected field theoretic global symmetry does not match the global symmetry

predicted by F-theory. An example is the theory with tensor branch,

[SO(7)]
su2
2 1

e6
6 1

su3
3 1 . . . [E6]. (6.2)
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This is the theory associated with nilpotent orbit of E6 with B-C label 2A1. The “näıve”

field theoretic expectation is that there should be an SO(8) acting on the eight half-

hypermultiplets of SU(2), whereas F-theory only permits an so(7) flavor curve to meet

the su(2) gauge algebra. However, in [40], it was argued that the näıve field theoretic

expectation is wrong in this instance, and the correct global symmetry of the field theory

matches the prediction from F-theory, with the eight half-hypermultiplets transforming in

the spinor of so(7). We note that this also matches the global symmetry predicted from

the data of the corresponding nilpotent orbit.

This example dealt with the simple case of an I2 Kodaira fiber type over the leftmost

−2 curve. But the business of determining global symmetries for 6D SCFTs becomes even

more involved once we consider theories with I1, II, III, and IV fiber types. The fibers

I0, I1, and II all lead to trivial gauge algebras; I2 and III both lead to su(2) gauge

algebras; and the split I3 and IV fibers both lead to su(3) gauge algebras. Nevertheless,

the expectation from geometry is that they lead to different global symmetries [33, 41].

This leads to the natural question: do theories with distinct fiber types but identical gauge

algebras lead to distinct 6D SCFTs? If not, what is the correct global symmetry for these

theories? If so, does the F-theory prediction always match the global symmetry seen in

field theory?

The analysis of the present paper sheds light on these questions. We expect that the

continuous component of the global symmetry of a 6D SCFT can be read off directly from

the commutant of the nilpotent orbit. Indeed, in all cases in which the global symmetry

of the 6D SCFT is well understood, including the subtle case of line (6.2), we find this is

indeed the case.7 Under the assumption that this holds generally, we compare the global

symmetries of the 6D SCFTs to the F-theory prediction. We find that the global symmetry

group of a 6D SCFT always contains the global symmetry group predicted by F-theory,

and in many cases this containment is proper. We also find no evidence that theories with

identical gauge algebras but distinct fiber types should correspond to distinct 6D SCFTs

up to different numbers of free hypermultiplets.

For a first example, consider the theory corresponding to the E7 nilpotent orbit of B-C

label A3 +A2 +A1,

[SU(2)]
e7
5 1 . . .

The global symmetry here is evidently SU(2), rotating the three half-hypermultiplets of

e7 as a triplet, but as was shown in [33], F-theory does not permit any flavor curves to

meet a curve carrying gauge algebra f4, e6, e7, or e8. Instead, it appears that a flavor

symmetry emerges at the origin of the tensor branch (i.e. the SCFT point of the mod-

uli space), matching the field-theoretic expectation (cf. table 5.1 of [33]) rather than the

F-theory prediction.

7Note that this match holds for SO(2N +1) nilpotent orbits only after we take into account the subtlety

of SO(2N + 1) ⊂ SO(2N + 2p) for small p discussed in section 3.3.
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A similar story arises in the case of the E7 theory corresponding to B-C label 2A2.

This theory has G2 × SU(2) global symmetry. The gauge algebras of the theory may be

realized in several different ways within F-theory, two of which are as follows:

[I∗,ns0 ]
IV ns

2
II
2

I0
1

III∗

8 . . .

[I3]
I2
2

I1
2

I0
1
[I2]

III∗

8 . . . (6.3)

Here, the Kodaira fiber types in brackets are supported on non-compact flavor curves. The

first theory has a G2 flavor symmetry living on the non-compact curve with fiber type

I∗,ns0 , but no non-Abelian flavor curve may touch the curve of self-intersection −1 with I0
fiber type [42–44]. In the second case, on the other hand, an SU(2) flavor curve of Kodaira

type I2 does touch the I0 curve, but the global symmetry on the left is reduced from G2

to SU(3). Thus, there is one F-theory configuration in which the G2 flavor symmetry on

the left is apparent and one F-theory configuration in which the SU(2) flavor symmetry

below is apparent, but there is no F-theory configuration in which the full G2 × SU(2)

symmetry is realized. It appears that upon flowing to the IR, the flavor symmetry acting

on the hypermultiplets of this theory is the maximal symmetry group acting on those

hypermultiplets in any F-theory realization of the model.

Consider next the theory corresponding to B-C label A2 + 2A1:

[SO(4)]
su2
2

su2
2

[SU(2)]
1

e7
8 1 . . .

Here, the flavor symmetry expected from F-theory is simply SU(2) × SU(2), coming from

a non-compact I2 flavor curve hitting each of the two −2 curves with su2 gauge algebras.

However, the symmetry is enhanced from su2 × su2 to su2 × su2 × su2.

The theory corresponding to the E8 orbit with B-C label D4 +A2 has an SU(3) global

symmetry:

2
su2
2

[SU(3)]
2 1

e8
11 1 . . . [E8]

We should think of this SU(3) as rotating three hypermultiplets charged under the su2
gauge symmetry. An additional half-hypermultiplet of the su2 lives at the intersection

with each unpaired −2 tensor.

Another important point is that theories with identical gauge algebras never show up

as distinct nilpotent orbits. The two F-theory models of (6.3) provide one such example.

Another particularly interesting case is the E7 nilpotent orbit with B-C label A3 + 2A1:

[SU(2)] 2 1
[SU(2)]

e7
7 1 . . .

The gauge algebras shown can be realized in F-theory with either a I0 fiber, an I1 fiber, or a

II fiber on the empty −2 curve. The fact that these do not correspond to different nilpotent

orbits of E7 is a possible indication that all three of these F-theory realizations give the
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same 6D SCFT up to different numbers of free hypermultiplets.8 If we decompactify all

base curves besides this −2 curve (corresponding to a flow along the tensor branch), we are

left with a theory of just a −2 curve of fiber type I0, I1, and II, respectively. Assuming

that all three of these fiber types do indeed give the same 6D SCFT before this tensor

branch flow, we find that the resulting 6D SCFTs after the flow must be identical as well

(modulo free hypermultiplets). Thus, we conjecture that the interacting sector of these

three theories are the same and given by the A1 (2, 0) 6D SCFT.

Of course, the other possibility is that these distinct F-theory models do give rise to

distinct 6D SCFTs, but that only one of them can be realized by an RG flow parameterized

by a nilpotent orbit. This would itself be a rather surprising result. Determining which

solution is the correct one is left as a question for future study.

As a final set of comments, we note that we have also presented evidence for IR

fixed points with abelian flavor symmetries, a fact which is quite straightforward using

the algebraic data of nilpotent orbits. By contrast, identifying such symmetry factors

from a geometric perspective can sometimes be subtle. Roughly speaking, we would like to

associate such abelian symmetry factors with non-compact components of the discriminant

locus supporting a singular I1 fiber. Observe, however, that at least for gauge theories (i.e.

fibers supported on compact curves), an In fiber is expected to realize an sun rather than

un gauge algebra. The distinction boils down to the fact that for a 6D SCFT on its tensor

branch, this additional u(1) factor is anomalous, and so inevitably decouples anyway via

the Stückelberg mechanism. For flavor symmetries, however, there is a priori no such issue.

Indeed, in many of the examples encountered earlier, we can clearly see that the presence

of an additional u(1) correlates tightly with such In fibers. We have also seen that in

some breaking patterns, there is an overall tracelessness condition, for example with flavor

symmetry algebras such as s(u(n1) ⊕ . . . ⊕ u(nl)). We take this to mean that these u(1)

flavor symmetries can in general be delocalized in the geometry, that is, they are spread

over multiple components of the discriminant locus.

For this reason, we have not assigned the presence of u(1)’s to specific locations in the

diagrams of figures 4–11, as we did for non-abelian symmetries. Their presence can be read

off from (3.5) and (3.6) for figures 4–8, and is shown explicitly in the tables of appendix A.

In many cases, there is a clear guess as to the origin of the abelian symmetries, coming

from the presence of a hypermultiplet localized at the collision of a compact curve with a

non-compact curve. In other cases, they are associated to an E-string which has a gauged

subgroup of E8 whose commutant has one or more u(1). For example, for the E6 nilpotent

orbit 2A1 in appendix A.1 (or figure 9) we see an E-string with gauged subalgebra su2⊕ e6;

or in theory (32, 12) we see an E-string with gauged subalgebra su3 ⊕ so8.

It would be interesting to further explore the extent to which such abelian flavor

symmetry factors (both continuous and discrete) can be deduced more directly from the

geometric perspective.

8The requirement that Higgs branch flows preserve gravitational anomalies fixes the number of free

hypermultiplets, which means that our RG flow analysis will be unable to distinguish between two F-theory

models that give 6D SCFTs differing only by a number of free hypermultiplets.
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7 Conclusions

In this note we have studied renormalization group flows between 6D SCFTs induced

by vevs for conformal matter. Focusing on the case of “T-brane vacua” i.e. those vacua

labeled by the orbits of nilpotent elements of a flavor symmetry algebra, we have first

of all established a direct correspondence between certain nilpotent orbits, and a class

of F-theory geometries. An important aspect of this analysis is that the natural notion

of partial ordering of elements in the nilpotent cone of a simple Lie algebra has a direct

physical interpretation in terms of hierarchies of renormalization group flows. Moreover,

we have also used this algebraic data to calculate the unbroken flavor symmetry of the IR

fixed point. To reinforce this point, we have considered explicit examples of generalized

quiver theories with flavor symmetries of type ABCDEFG. We have used these examples

to study global symmetries in 6D SCFTs, finding that the global symmetry read off from

the nilpotent orbit can be larger than the global symmetry predicted from F-theory. In

the remainder of this section we discuss some avenues for future investigation.

In the case of suN and soeven theories, we remarked that by taking transposed parti-

tions, our nilpotent hierarchy of RG flows extends to flows between theories of different

maximal gauge group rank such as

[SU10]− SU10 − . . .− SU10 − [SU10]→ [SU9]− SU9 − . . .− SU9 − [SU9]. (7.1)

It would be interesting to extend this analysis to exceptional algebras. Establishing this

sort of correspondence in more detail would provide an opportunity to potentially map

out the full class of possible RG flows from a UV parent theory. This would bring us

significantly closer to the ambitious goal of classifying all RG flows between 6D SCFTs.

In our analysis, we primarily focused on theories which have a sufficiently large number

of tensor multiplets. Indeed, the parent theories we have started with all have known

holographic duals which take the form AdS7 × S4/ΓADE. The effects of the nilpotent

element vevs are primarily confined to a small region of the quiver theory, which in the

holographic dual will correspond (in units where the radius of the sphere is one) to an

order 1/N size effect. It would be quite interesting to confirm this picture directly in

the holographic dual, perhaps by evaluating a protected quantity such as the conformal

anomalies of the 6D SCFT.

Finally, it would be interesting to also study how the data of conformal matter vevs

as parameterized by nilpotent orbits shows up in little string theories (see e.g. [8]). We

arrive at examples of little string theories by compactifying M5-branes on the background

S1 × C2/ΓADE. When we do so, the independent data about partitions used to label

possible flows are now identified, and always appear with gauge group factors rather than

flavor group factors (there are none for the circular quivers). This in turn means that the

purely local perturbations induced by a choice of partition now propagate out to the entire

generalized quiver, providing a rather novel window into flows for more general 6D theories.
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A Nilpotent flows for E-type flavor symmetries

In this appendix we collect the full list of nilpotent orbits for exceptional E-type flavor

symmetries, and the corresponding F-theory model associated with each such flow. We

also present the unbroken flavor symmetry for each such model which is predicted by the

choice of a nilpotent element.

A.1 E6 nilpotent orbits

The E6 Nilpotent orbits are as follows. The nilpotent hierarchy is given in figure 9.

B-C Label Global Symmetry Theory

0 E6 [E6] 1
su3

3 1
e6
6 1

su3

3 1 . . . [E6]

A1 SU(6) [SU(6)]
su3

2 1
e6
6 1

su3

3 1 . . . [E6]

2A1 Spin(7)×U(1) [SO(7)]
su2

2 1
e6
6 1

su3

3 1 . . . [E6]

3A1 SU(3)× SU(2) [SU(2)] 2 1
[SU(3)]

e6
6 1

su3

3 1 . . . [E6]

A2 SU(3)× SU(3) [SU(3)] 1
e6
6
1

[SU(3)]

1
su3

3 1 . . . [E6]

A2 +A1 SU(3)×U(1) [SU(3)] 1
e6
5

[Nf=1]
1

su3

3 1 . . . [E6]

2A2 G2 [G2] 1
f4
5 1

su3

3 1
e6
6 1 . . . [E6]

A2 + 2A1 SU(2)×U(1) [SU(2)]
e6
4 1

su3

3 1
e6
6 1 . . . [E6]

2A2 +A1 SU(2) [SU(2)]
f4
4 1

su3

3 1
e6
6 1 . . . [E6]

A3 Sp(2)×U(1) [Sp(2)]
so10

4 1
su3

3 1
e6
6 1 . . . [E6]

A3 +A1 SU(2)×U(1) [SU(2)]
so9

4 1
su3

3 1
e6
6 1 . . . [E6]
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D4(a1) U(1)2
so8

4 1
su3

3 1
e6
6 1 . . . [E6]

A4 SU(2)×U(1) [SU(2)]
so7

3
su2

2 1
e6
6 1 . . . [E6]

A4 +A1 U(1)
g2

3
su2

2 1
e6
6 1 . . . [E6]

D4 SU(3)
su3

3 1
e6
6
1

[SU(3)]

1
su3

3 1
e6
6 1 . . . [E6]

A5 SU(2) [SU(2)]
g2

3 1
f4
5 1

su3

3 1
e6
6 1 . . . [E6]

D5(a1) U(1)
su3

3 1
e6
5

[Nf=1]
1

su3

3 1
e6
6 1 . . . [E6]

E6(a3) 1
su3

3 1
f4
5 1

su3

3 1
e6
6 1 . . . [E6]

D5 U(1)
su2

2
so7

3
su2

2 1
e6
6 1 . . . [E6]

E6(a1) 1
su2

2
g2

3 1
f4
5 1

su3

3 1
e6
6 1 . . . [E6]

E6 1 2
su2

2
g2

3 1
f4
5 1

su3

3 1
e6
6 1 . . . [E6]

A.2 E7 nilpotent orbits

The E7 Nilpotent orbits are as follows. The nilpotent hierarchy can be found for example

in [30, table 16].

B-C Label Global Symmetry Theory

0 E7 [E7] 1
su2

2
so7

3
su2

2 1
e7
8 1 . . . [E7]

A1 SO(12) [SO(12)]
sp1

1
so7

3
su2

2 1
e7
8 1 . . . [E7]

2A1 SO(9)× SU(2) [SO(9)] 1
so7

3
[SU(2)]

su2

2 1
e7
8 1 . . . [E7]

(3A1)′ Sp(3)× SU(2) [Sp(3)]
so7

2
[SU(2)]

su2

2 1
e7
8 1 . . . [E7]

(3A1)′′ F4 [F4] 1
g2

3
su2

2 1
e7
8 1 . . . [E7]

4A1 Sp(3) [Sp(3)]
g2

2
su2

2 1
e7
8 1 . . . [E7]

A2 SU(6) [SU(6)]
su4

2
su2

2 1
e7
8 1 . . . [E7]

A2 +A1 SU(4)×U(1) [SU(4)]
su3

2
su2

2
[Nf=1]

1
e7
8 1 . . . [E7]

A2 + 2A1 SU(2)× SU(2)× SU(2) [SO(4)]
su2

2
su2

2
[SU(2)]

1
e7
8 1 . . . [E7]

2A2 G2 × SU(2) [G2]
su2

2
su1

2 1
[SU(2)]

e7
8 1 . . . [E7]

A2 + 3A1 G2

su1

2
su2

2
[G2]

1
e7
8 1 . . . [E7]

2A2 +A1 SU(2)× SU(2) [SU(2)] 2 2 1
[SU(2)]

e7
8 1 . . . [E7]

A3 SO(7)× SU(2) [SO(7)]
so7

2 1
e7
8
1

[SU(2)]

1 . . . [E7]
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(A3 +A1)′ SU(2)× SU(2)× SU(2) [SU(2)] 2 1
[SU(2)]

e7
8
1

[SU(2)]

1 . . . [E7]

(A3 +A1)′′ SO(7) [SO(7)]
su2

2 1
e7
7 1 . . . [E7]

A3 + 2A1 SU(2)× SU(2) [SU(2)] 2 1
[SU(2)]

e7
7 1 . . . [E7]

D4(a1) SU(2)× SU(2)× SU(2) [SU(2)] 1

[SU(2)]
1
e7
8
1

[SU(2)]

1 . . . [E7]

D4(a1) +A1 SU(2)× SU(2) [SU(2)] 1

[SU(2)]
1
e7
7 1 . . . [E7]

A3 +A2 SU(2)×U(1) [SU(2)] 1
e7
6

[Nf=1]
1 . . . [E7]

D4 Sp(3) [Sp(3)]
so12

4
sp1

1
so7

3
su1

2 1
e7
8 1 . . . [E7]

A3 +A2 +A1 SU(2) [SU(2)]
e7
5 1 . . . [E7]

A4 SU(3)×U(1) [SU(3)] 1
e6
6 1

su2

2
so7

3 . . . [E7]

A4 +A1 U(1)2
e6
5

[Nf=1]
1

su2

2
so7

3 . . . [E7]

D4 +A1 Sp(2) [Sp(2)]
so11

4
sp1

1
[Nf=

1
2 ]

so7

3
su2

2 1
e7
8 1 . . . [E7]

D5(a1) SU(2)×U(1) [Sp(1)]
so10

4
sp1

1
[Nf=1]

so7

3
su2

2 1
e7
8 1 . . . [E7]

A4 +A2 1
f4
5 1

[SU(2)]

su2

2
so7

3 . . . [E7]

A′′5 G2 [G2] 1
f4
5 1

g2

3 . . . [E7]

A5 +A1 SU(2) [Sp(1)]
f4
4 1

g2

3 . . . [E7]

D5(a1) +A1 SU(2)
so9

4
sp1

1
[SO(3)]

so7

3
su2

2 1
e7
8 1 . . . [E7]

A′5 SU(2)× SU(2) [SU(2)]
so9

4 1
so7

3
[SU(2)]

su2

2 1
e7
8 1 . . . [E7]

D6(a2) SU(2) [SU(2)]
so9

4 1
g2

3
su2

2 1
e7
8 1 . . . [E7]

E6(a3) SU(2)
so8

4 1
so7

3
[SU(2)]

su2

2 1
e7
8 1 . . . [E7]

E7(a5) 1
so8

4 1
g2

3
su2

2 1
e7
8 1 . . . [E7]

D5 SU(2)× SU(2) [SU(2)]
so7

3
su2

2 1
e7
8
1

[SU(2)]

1 . . . [E7]

A6 SU(2) [SU(2)]
so7

3
su2

2 1
e7
7 1 . . . [E7]

D6(a1) SU(2)
g2

3
su2

2 2 1
[SU(2)]

e7
8 1 . . . [E7]

D5 +A1 SU(2)
g2

3
su2

2 1
e7
8
1

[SU(2)]

1 . . . [E7]

E7(a4) 1
g2

3
su2

2 1
e7
7 1 . . . [E7]
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D6 SU(2) [SU(2)]
g2

3 1
f4
5 1

g2

3
su2

2 1
e7
8 . . . [E7]

E6(a1) U(1)
su3

3 1
e6
6 1

su2

2
so7

3
su2

2 1
e7
8 . . . [E7]

E6 SU(2)
su2

2
so7

3
su2

2 1
e7
8
1

[SU(2)]

1
su2

2
so7

3
su2

2 . . . [E7]

E7(a3) 1
su3

3 1
f4
5 1

g2

3
su2

2 1
e7
8 . . . [E7]

E7(a2) 1
su2

2
so7

3
su2

2 1
e7
7 1

su2

2
so7

3
su2

2 . . . [E7]

E7(a1) 1
su2

2
g2

3 1
f4
5 1

g2

3
su2

2 1
e7
8 . . . [E7]

E7 1 2
su2

2
g2

3 1
f4
5 1

g2

3
su2

2 1
e7
8 . . . [E7]

Table 1. 6D SCFTs associated with E7 nilpotent orbits.

A.3 E8 nilpotent orbits

The E8 Nilpotent orbits are as follows. The nilpotent hierarchy can be found for example

in [30, table 19].

B-C Label Global Symmetry Theory

0 E8 [E8] 1 2
su2

2
g2

3 1
f4
5 1

g2

3
su2

2 2 1
e8
12 1 . . . [E8]

A1 E7 [E7] 1
su2

2
g2

3 1
f4
5 1

g2

3
su2

2 2 1
e8
12 1 . . . [E8]

2A1 SO(13) [SO(13)]
sp1

1
g2

3 1
f4
5 1

g2

3
su2

2 2 1
e8
12 1 . . . [E8]

3A1 F4 × SU(2) [F4] 1
g2

3
[Sp(1)]

1
f4
5 1

g2

3
su2

2 2 1
e8
12 1 . . . [E8]

A2 E6 [E6] 1
su3

3 1
f4
5 1

g2

3
su2

2 2 1
e8
12 1 . . . [E8]

4A1 Sp(4) [Sp(4)]
g2

2 1
f4
5 1

g2

3
su2

2 2 1
e8
12 1 . . . [E8]

A2 +A1 SU(6) [SU(6)]
su3

2 1
f4
5 1

g2

3
su2

2 2 1
e8
12 1 . . . [E8]

A2 + 2A1 SO(7)× SU(2) [SO(7)]
su2

2 1
[SU(2)]

f4
5 1

g2

3
su2

2 2 1
e8
12 1 . . . [E8]

A3 SO(11) [SO(11)]
sp1

1
so9

4 1
g2

3
su2

2 2 1
e8
12 1 . . . [E8]

A2 + 3A1 G2 × SU(2) [SU(2)] 2 1
[G2]

f4
5 1

g2

3
su2

2 2 1
e8
12 1 . . . [E8]

2A2 G2 ×G2 [G2] 1
f4
5
1

[G2]

1
g2

3
su2

2 2 1
e8
12 1 . . . [E8]

2A2 +A1 G2 × SU(2) [G2] 1
f4
4

[Sp(1)]
1

g2

3
su2

2 2 1
e8
12 1 . . . [E8]

A3 +A1 SO(7)× SU(2) [SO(7)] 1
so9

4
[SU(2)]

1
g2

3
su2

2 2 1
e8
12 1 . . . [E8]

2A2 + 2A1 Sp(2) [Sp(2)]
f4
3 1

g2

3
su2

2 2 1
e8
12 1 . . . [E8]

D4(a1) SO(8) [SO(8)] 1
so8

4 1
g2

3
su2

2 2 1
e8
12 1 . . . [E8]

A3 + 2A1 Sp(2)× SU(2) [Sp(2)]
so9

3
[SU(2)]

1
g2

3
su2

2 2 1
e8
12 1 . . . [E8]
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D4(a1) +A1 SU(2)× SU(2)× SU(2) [SU(2)× SU(2)× SU(2)]
so8

3 1
g2

3
su2

2 2 1
e8
12 1 . . . [E8]

D4 F4 [F4] 1
g2

3
su2

2 2 1
e8
11 1 . . . [E8]

A3 +A2 Sp(2)×U(1) [Sp(2)]
so7

3 1
g2

3
su2

2 2 1
e8
12 1 . . . [E8]

A4 SU(5) [SU(5)]
su4

2
su3

2
su2

2
su1

2 1
e8
12 1 . . . [E8]

A3 +A2 +A1 SU(2)× SU(2) [Sp(1)]
g2

3 1
[SU(2)]

g2

3
su2

2 2 1
e8
12 1 . . . [E8]

D4 +A1 Sp(3) [Sp(3)]
g2

2
su2

2 2 1
e8
11 1 . . . [E8]

D4(a1) +A2 SU(3)
su3

3 1
[SU(3)]

g2

3
su2

2 2 1
e8
12 1 . . . [E8]

A4 +A1 SU(3)×U(1) [SU(3)]
su3

2
su3

2
[Nf=1]

su2

2
su1

2 1
e8
12 1 . . . [E8]

2A3 Sp(2)
su2

2
g2

2
[Sp(2)]

su2

2 2 1
e8
12 1 . . . [E8]

D5(a1) SU(4) [SU(4)]
su3

2
su2

2
su1

2 1
e8
11 1 . . . [E8]

A4 + 2A1 SU(2)×U(1)
su2

2
[Nf=1]

su3

2
[SU(2)]

su2

2
su1

2 1
e8
12 1 . . . [E8]

A4 +A2 SU(2)× SU(2) [SO(4)]
su2

2
su2

2
su2

2
[Nf=1]

su1

2 1
e8
12 1 . . . [E8]

D5(a1) +A1 SU(2)× SU(2) [SO(4)]
su2

2
su2

2
[Nf=1]

su1

2 1
e8
11 1 . . . [E8]

A4 +A2 +A1 SU(2)
su1

2
su2

2
[Nf=1]

su2

2
[Nf=1]

su1

2 1
e8
12 1 . . . [E8]

A5 G2 × SU(2) [G2]
su2

2 2 1
e8
12
1
2

[SU(2)]

1 . . . [E8]

A4 +A3 SU(2) [SU(2)] 2 2 2 2 1
e8
12 1 . . . [E8]

D4 +A2 SU(3) 2
su2

2
[SU(3)]

2 1
e8
11 1 . . . [E8]

E6(a3) G2 [G2]
su2

2 2 1
e8
10 1 . . . [E8]

A5 +A1 SU(2)× SU(2) [SU(2)] 2 2 1
e8
12
1
2

[SU(2)]

1 . . . [E8]

D5(a1) +A2 SU(2) [SU(2)] 2 2 2 1
e8
11 1 . . . [E8]

E6(a3) +A1 SU(2) [SU(2)] 2 2 1
e8
10 1 . . . [E8]

D6(a2) SU(2)× SU(2) [SU(2)] 2 1
e8
11
1
2

[SU(2)]

1 . . . [E8]

D5 SO(7) [SO(7)]
su2

2 1
e7
8 1

su2

2
g2

3 1
f4
5 1 . . . [E8]

E7(a5) SU(2) [SU(2)] 2 1
e8
9 1 . . . [E8]

D5 +A1 SU(2)× SU(2) [SU(2)] 2 1
[SU(2)]

e7
8 1

su2

2
g2

3 1
f4
5 1 . . . [E8]

E8(a7) 1
e8
7 1 2

su2

2
g2

3 1
f4
5 1 . . . [E8]

D6(a1) SU(2)× SU(2) [SU(2)] 1
e7
8
1

[SU(2)]

1
su2

2
g2

3 1
f4
5 1 . . . [E8]
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A6 SU(2)× SU(2) [SU(2)] 1
e7
8 1

[SU(2)]
2

su2

2
g2

3 1
f4
5 1 . . . [E8]

E7(a4) SU(2) [SU(2)] 1
e7
7 1

su2

2
g2

3 1
f4
5 1 . . . [E8]

A6 +A1 SU(2)
e7
7 1

[SU(2)]
2

su2

2
g2

3 1
f4
5 1 . . . [E8]

E6(a1) SU(3) [SU(3)] 1
e6
6 1

su3

3 1
f4
5 1 . . . [E8]

D5 +A2 U(1)
e7
6

[Nf=1]
1

su2

2
g2

3 1
f4
5 1 . . . [E8]

D7(a2) U(1)
e6
6 1

su2

2
g2

3 1
f4
5 1 . . . [E8]

E6 G2 [G2] 1
f4
5 1

g2

3
su2

2 2 1
e8
11 1 . . . [E8]

A7 SU(2)
f4
5 1

g2

3
[Sp(1)]

1
f4
5 1

g2

3
su2

2 2 1
e8
12 1 . . . [E8]

E6(a1) +A1 U(1)
e6
5

[Nf=1]
1

su3

3 1
f4
5 1

g2

3
su2

2 2 1
e8
12 1 . . . [E8]

E8(b6) 1
f4
5 1

su3

3 1
f4
5 1

g2

3
su2

2 2 1
e8
12 1 . . . [E8]

D6 Sp(2) [Sp(2)]
so11

4
sp1

1
so9

4 1
g2

3
su2

2 2 1
e8
12 1 . . . [E8]

E7(a3) SU(2) [Sp(1)]
so10

4
sp1

1
[Nf=

1
2 ]

so9

4 1
g2

3
su2

2 2 1
e8
12 1 . . . [E8]

D7(a1) U(1)
so9

4
sp1

1
[Nf=1]

so9

4 1
g2

3
su2

2 2 1
e8
12 1 . . . [E8]

E6 +A1 SU(2) [Sp(1)]
f4
4 1

g2

3
su2

2 2 1
e8
11 1 . . . [E8]

E7(a2) SU(2) [Sp(1)]
so9

4 1
g2

3
su2

2 2 1
e8
11 1 . . . [E8]

E8(a6) 1
so8

4 1
so8

4 1
g2

3
su2

2 2 1
e8
12 1 . . . [E8]

E8(b5) 1
so8

4 1
g2

3
su2

2 2 1
e8
11 1 . . . [E8]

E7(a1) SU(2) [SU(2)]
so7

3
su2

2 1
e7
8 1

su2

2
g2

3 1
f4
5 1 . . . [E8]

D7 SU(2)
g2

3
su2

2 2 1
e8
12
1
2

[SU(2)]

1 . . . [E8]

E8(a5) 1
g2

3
su2

2 2 1
e8
10 1 . . . [E8]

E8(b4) 1
g2

3
su2

2 1
e7
8 1

su2

2
g2

3 1
f4
5 1 . . . [E8]

E7 SU(2) [SU(2)]
g2

3 1
f4
5 1

g2

3
su2

2 2 1
e8
11 1 . . . [E8]

E8(a4) 1
su3

3 1
e6
6 1

su3

3 1
f4
5 1 . . . [E8]

E8(a3) 1
su3

3 1
f4
5 1

g2

3
su2

2 2 1
e8
11 1 . . . [E8]

E8(a2) 1
su2

2
so7

3
su2

2 1
e7
8 1

su2

2
g2

3 1
f4
5 1 . . . [E8]

E8(a1) 1
su2

2
g2

3 1
f4
5 1

g2

3
su2

2 2 1
e8
11 1 . . . [E8]

E8 1 2
su2

2
g2

3 1
f4
5 1

g2

3
su2

2 2 1
e8
11 1 . . . [E8]

Table 2. 6D SCFTs associated with E8 nilpotent orbits.
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