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1 Introduction

In the study of supersymmetry, one often finds that more transparent interpretations are

obtained by encoding the fermionic degrees of freedom in non-spinorial objects. For ex-

ample, the problem of finding BPS solutions is usually simplified by mapping the spinorial

transformation parameters to a set of equivalent tensors, such as forms.

In supergravity, various techniques have been deployed for this purpose: G-structures

(starting from [1, 2]), generalized (complex) geometry [3–6] and spinorial geometry (see [7]

for a recent review). This has worked rather well: not only are the equations obtained in

this fashion easier to solve than the original spinorial ones, but in some cases they also

have an elegant physical interpretation.

For example, the problem of finding AdS4 or Minkowski4 compactifications of type

II supergravity reduces with generalized complex geometry to a set of “pure spinor equa-

tions” [6]. In this formulation the metric only appears indirectly: the usual notions of Rie-

mannian geometry are replaced by natural operations involving forms, namely wedge prod-

ucts and exterior differentials, which makes the equations much easier to solve. Moreover,

the pure spinor equations can be interpreted in terms of calibration conditions,martucci-

smyth,koerber-martucci-ads. In differential geometry, a calibration is a closed form that

measures if a submanifold minimizes its volume [10]. In supergravity we have a similar

concept [11, 12], sometimes called generalized calibration, dealing with the various branes

of the theory: in this case a calibrated brane minimizes its energy and the calibration

condition is equivalent to imposing that the brane preserves part of the background super-

symmetry (though generalizations to non-supersymmetric settings are also possible [13]).

These successes have fueled speculations that a reformulation of the supersymmet-

ric equations in terms of calibration conditions might exist in supergravity even without

assuming a factorization into an external spacetime and an internal manifold. This is

sometimes called “supersymmetry-calibrations correspondence”. For compactifications to

six dimensions, there is evidence [14] that such a correspondence still holds. However,

for two dimensions [15, 16] found equations that are rather elegant, but that so far don’t

appear to have a straightforward calibration interpretation. Thus, a general answer to this

question has been elusive so far.

In [17], the general problem of BPS solutions in type II was considered without assum-

ing any factorization. Building on [9, 18, 19], a system of equations in terms of forms was

found; it is equivalent to supersymmetry, and it reproduces the pure spinor equations when

specialized to four-dimensional compactifications. As in previous less general settings, part

of the BPS system of [17] can be interpreted in terms of calibrations [20]. However, two of

the equations in [17] are rather clumsy and have no clear physical interpretation.

In this paper, we point out a new, alternative reformulation of the ten-dimensional

BPS equations in type II supergravity. The equations are all written using just forms

and exterior algebra. The two main ones have a clear physical interpretation in terms

of calibrations for D-branes and for NS5-branes. Another equation seems to be related

to a similar concept for Kaluza-Klein (KK) monopoles. Moreover, we have found a way

to supplement them with two reasonably elegant equations that make the full system

– 1 –
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equivalent to the BPS system for timelike solutions, which means that the Killing vector

K naturally associated to the spinorial parameters is timelike. We recall that K2 ≤ 0, so

in the space of all solutions the subset K2 < 0 is actually the generic case, while K2 = 0

has measure zero. Let us stress that fluxes are not expected to be completely determined

in terms of BPS conditions and indeed we will discuss which equations of motion we must

impose in order to get a proper supergravity solution. (This is similar to what happens for

example in [2, 21], where some components of the flux are shown to be undetermined by

supersymmetry.)

While we do not consider our system the final say in the matter, it certainly points in

the right direction. The new NS5 equation is rather natural: it implies rather straightfor-

wardly the equation of motion for the NS three-form in the Killing direction, and we show

that it behaves well under dualities. Moreover, we show in both IIA and IIB that it can be

interpreted as the existence of a generalized calibration, very similarly to the interpretation

given in [8] to the pure spinor equations in terms of D-branes. NS5-branes do not have an

effective world-volume description from open strings, but we manage to demonstrate the

interpretation using dualities: in IIA by using a reduction from the M5 calibration, in IIB

by using S-duality with the D5 one.

The KK equation is probably to be improved in the future, but it points to the possi-

bility that the sought-after calibration reformulation of supergravity might so far not have

worked because of the failure to consider various gravitational defects.

Even if the timelike requirement can be seen as a limitation of our results, it is actually

met in a lot of situations in which a complete classification is still missing. For example,

one can use the BPS system to study some vacuum compactifications with extended super-

symmetry but also stationary black-hole backgrounds. In particular, we take a first step in

this direction by facing the problem of finding AdS2 near-horizon solutions. We explicitly

show how to specialize our system to that type of geometry.

In a slightly separate development, while studying how our various calibrations be-

have under dualities, we also managed to complete the supersymmetry system for IIB

supergravity in such a way as to be manifestly covariant under SL(2,Z) transformations.

Moreover, we extend this result also to the case of N = 1 vacua, which were excluded from

our system since they do not meet the timelike requirement; in particular, we focused on

the four-dimensional ones.

We begin in section 2 by presenting our system, its derivation, and its interplay with

the equations of motion. We discuss in section 3 its duality transformations, and use them

to write a manifestly SL(2,Z)-invariant version in type IIB. In 4 we interpret one of the

equations in our system as the calibration condition for an NS5-brane; using calibrations

we manage in section 5 to define central charges in purely gravitational terms, this re-

formulation can be generalized to KK-monopole charge and we then argue that another

equation can be interpreted in terms of KK5-monopoles calibration. We then discuss some

applications. In section 6 we show how to apply our system to AdS2×M8 solutions, which

is relevant for black hole horizons. In section 7 we show how to apply the manifestly

SL(2,Z)-invariant system to four-dimensional vacua (see also [22, 23]).

– 2 –
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2 System

After some definitions and mathematical preliminaries in sections 2.1 and 2.2, we will

give our system in section 2.3. We will show that it is necessary for supersymmetry in

section 2.4.

2.1 Some spinorial geometry

We start by reviewing quickly some aspects of the forms associated to the supersymmetry

parameters of type II theories. More details can be found in [17] and appendix A.

In ten-dimensional space-time the irreducible spinorial representation is given by

sixteen-dimensional Majorana-Weyl spinors. One can choose the gamma matrices γM

to be all real and we underline the indices that must be interpreted as flat when it is not

evident from the context. In this basis, γ0 is the only antisymmetric matrix, while the

other ones are all symmetric. This can be summarized by

γtM = γ0 γM γ0 . (2.1)

In order to extract from a spinor ε its geometrical content more transparently, it is

often convenient to use its associated bispinor ε ⊗ ε = ε ⊗ εt γ0. Since the antisymmetric

products of k gamma matrices γM1...Mk are a basis for the space of bispinors, ε⊗ ε can be

expanded on it using the Fierz identity:

ε⊗ ε =

10∑
k=0

1

32 k!
(ε γMk...M1

ε) γM1...Mk . (2.2)

This bispinor can in turn be understood as a sum of forms of different degrees using the

Clifford map

Ck =
1

k!
CM1...Mk

γM1...Mk −→ Ck =
1

k!
CM1...Mk

dxM1 ∧ · · · ∧ dxMk , (2.3)

which is an isomorphism between the space of bispinors and the space of differential forms.

In what follows, we will make no distinction between a differential form and a bispinor.

If ε is chiral, only forms of even degrees survive. If ε is also Majorana we see that

ε γMk...M1
ε = (ε γMk...M1

ε)t = − εt(γMk...M1
)t γ0 ε

= −(−)k(−)k(k−1)/2 ε γMk...M1
ε ,

(2.4)

which sets to zero the degrees k = 0, 3, 4, 7, 8 in (2.2), so that in fact only k = 1, 5, 9

are present. Moreover, the chiral operator γ = γ01...9 can be translated in terms of form

operations:

γ Ck = ∗λ(Ck) , (2.5)

where ∗ indicates the Hodge dual and λ acts on a k-form by λ(Ck) ≡ (−1)k(k−1)/2Ck.

Depending on the ε chirality we have γ ε⊗ ε = ± ε⊗ ε; thus the nine-form is dual or anti-

dual to the one-form, while the five-form is self-dual or anti-self-dual. So in the end, if ε is

Majorana-Weyl of chirality ±, its bilinear can be written in terms of forms as

ε⊗ ε = K + Ω± ∗K , (2.6)

– 3 –
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where K and Ω are a one- and five-form with components

KM ≡
1

32
ε γM ε and ΩM1...M5 ≡

1

32
ε γM1...M5

ε . (2.7)

Notice that ∗Ω = ±Ω for ε of chirality ±.

These forms have notable algebraic properties. For starters, using

γM Ck γ
M = (−)k(10− 2k)Ck (2.8)

and (2.5), we have

K ε = KM γM ε =
1

32
γM ε ε γM ε = −1

4
(1± γ)K ε = −1

2
K ε , (2.9)

from which

K ε = 0 . (2.10)

From equation (2.10) we can obtain that KM is a null vector:

KMKM =
1

(32)2
ε γM ε ε γM ε = − 1

2 · 32
εK ε = 0 . (2.11)

Moreover, remembering (A.1),

K ε ε = ε εK = 0 =⇒ K ∧ ε ε = ιK ε ε = 0 . (2.12)

From (2.6) we then have

K ∧ Ω = ιKΩ = 0 . (2.13)

Therefore we can rewrite the 5-form as

Ω = K ∧Ψ (2.14)

for some four-form Ψ, which can be chosen to satisfy ιKΨ=0. As we review in appendix B.1,

it is a Spin(7) form. Notice that, in particular, K is determined by Ω.

2.2 Type II spinorial geometry

In type II theories, we have two spinorial parameters, ε1 and ε2, both Majorana-Weyl; in

our conventions, they have both chirality + in IIB, and chiralities + and − respectively in

IIA. Their bilinears are obtained by applying (2.6) twice:

ε1⊗ ε1 ≡ K1 + Ω1 + ∗K1

ε2⊗ ε2 ≡ K2 + Ω2 ∓ ∗K2 for
IIA
IIB ,

(2.15)

but this time we can also define the mixed bispinor

ε1⊗ ε2 ≡ Φ , (2.16)

– 4 –
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a collection of forms with the property that ∗λ(Φ) = Φ. If ε1 and ε2 have the same chirality

then Φ will contain only forms with odd degree, otherwise it will contain only forms with

even degree:

Φ =

{
Φ0 + Φ2 + Φ4 + Φ6 + Φ8 + Φ10 for IIA

Φ1 + Φ3 + Φ5 + Φ7 + Φ9 for IIB
. (2.17)

The bispinor ε2⊗ ε1 is not indepedent: it can be obtained from Φ as

ε2 ε1 = −(−)degΦλ(Φ) . (2.18)

From (2.10), we see that

K1Φ = ΦK2 = 0 . (2.19)

If we define

K ≡ 1

2
(K1 +K2)M∂M , K̃ ≡ 1

2
(K1 −K2)Mdx

M , (2.20)

we can rewrite (2.19) using (A.1):

(ιK + K̃∧)Φ = 0 . (2.21)

In the same spirit we define

Ω ≡ 1

2
(Ω1 ± Ω2) , Ω̃ ≡ 1

2
(Ω1 ∓ Ω2) for

IIA
IIB . (2.22)

Notice that ∗Ω = Ω̃ in IIA while ∗Ω = Ω, ∗Ω̃ = Ω̃ in IIB.

The vector K will play a key role in our discussion and in particular it can be seen that

K2 ≤ 0 . (2.23)

The case where K2 = 0 is called the light-like case; the case where K2 < 0 is called the

timelike case, and will be the focus of this paper.

We have used the metric and the spinors ε1, ε2 to construct the forms Φ,Ω1,Ω2.1

Viceversa, in the spirit of [17], we have to wonder if the geometric data encoded in Φ,Ω1,Ω2

contain the complete information on metric and spinors, at least in the timelike case.

We can use G-structures to address this question. As often happens dealing with G-

structures, it is useful to enlarge the structure group of the tangent bundle T to the

one on the generalized tangent bundle T ⊕ T ∗, which is O(10, 10) [4]. Furthermore, the

generalized tangent bundle can be B-twisted in order to accomodate for a non-trivial H-

field. In this framework the common stabilizer of the metric and the B-field, i.e. the

subgroup of O(10, 10) that does not transform g and B, is known and it is given by

O(9, 1) × O(9, 1). In generalized complex geometry differential forms are spinors with

respect to the generalized tangent bundle metric, and the gamma matrices are given by

contraction and wedge operators. We can then compute the infinitesimal action that leaves

the appropriately B-twisted “generalized spinors” Φ,Ω1,Ω2 invariant. In appendix B.1 we

prove that

Stab(Φ,Ω1,Ω2) ⊂ O(9, 1)×O(9, 1) , (2.24)

1We recall that we don’t have to consider also K1 and K2 since they are completely determined by Ω1,Ω2.

– 5 –
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so that we have enough geometric data to define metric, B-field and spinors of our back-

grounds. In the following we will in fact use the ‘untwisted’ picture, in which the B-field

is treated as an external ingredient and Φ,Ω1,Ω2 determine only metric and spinors.

2.3 Necessary and sufficient system

We will now present a system of differential form equations which is equivalent to the

supersymmetry conditions in the timelike case K2 < 0.

For both IIA and IIB, the system is

dH(e−φ Φ) = −(ιK + K̃∧)F , (2.25a)

e2φ d(e−2φ Ω) = −ιK ∗H + eφ(Φ, F )6 , (2.25b)

e2φ d(e−2φ Ω̃) = − ∗ (K̃ ∧H)− 1

2
(−)|Φ| eφ

(
ΦM , F

M
)

6
, (2.25c)

LKφ = 0 , d ∗ K̃ = −1

8
(−)|Φ| eφ

(
Φ, γM F γM

)
. (2.25d)

As usual, d is the de Rham differential, dH ≡ d−H∧ and F is the polyform obtained by

summing all RR field strength, which is dH -closed away from localized sources, and |Φ| is

a short-hand for the form degree of Φ. We have introduced the Chevalley-Mukai pairing

between two forms A and B:

(A,B) = (A ∧ λ(B))10 , (2.26)

where the subscript 10 denotes keeping the coefficient of the ten-form part only; and a

similar novel six-form-valued pairing

(A,B)6 ≡ (A ∧ λ(B))6 . (2.27)

The first equation (2.25a) of the system was derived in [17], building upon results in [9]

for a 1+9 splitting of spacetime. It was shown in [17] that it is enough to reproduce the

pure spinor equations for Mink4 or AdS4 solutions [6, 24]. The second equation can again

be found in [9] in the case of 1+9 splitting or in [25] in the case of 4+6 splitting. The

result LKφ = 0 was also derived in [17], and it is part of the more general result that K

is a symmetry of the solution (in other words, LK = 0 for all fields, not just the dilaton);

in particular, K is a Killing vector [9, 18, 19]. This follows from (2.25), rather than being

part of the system as in [17]. The complete system (2.25) implies also the equation

dK̃ = ιKH (2.28)

which appears in the system of [17].

In later sections, we will interpret most of this system in terms of calibrations. (2.25a)

and (2.28) already have a known interpretation in terms of D-branes and F1-string calibra-

tions, which we will review. (2.25b) has a similar interpretation in terms of NS5 calibrations

while (2.25c) seems to be related to the T-dual of an NS5, namely a KK5-monopole, al-

though a calibration interpretation is more subtle, for reasons we will see below.

In the next subsection, we will sketch how to derive the system (2.25) from the super-

symmetry equations; in other words, we will show that those equations are necessary for

supersymmetry. The proof of sufficiency is more technical, and we give it in appendix B.

– 6 –
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2.4 Derivation

As we mentioned, (2.25a) was derived in [17]. So we will start with the second and the third

equations of each system, which we will derive together. While this is in principle a straight-

forward application of gamma matrix identities and the supersymmetry equations, in prac-

tice it is simplified by some tricks; for this reason, we describe the computation below.

We start by deriving an equation for the contraction with a three form, using (A.1):

ιH =
1

8 · 3!
HMNP

(−→γ MNP −←−γ MNP (−)deg + 3−→γ M←−γ NP − 3−→γ NP←−γ M (−)deg
)

=
1

8

(−→
H −

←−
H (−)deg +−→γ M

←−
HM −

−→
HM
←−γ M (−)deg

)
.

(2.29)

This is the “dual” of the three-form wedge obtained in [24, (A.10)].

Now let us compute

2e2φd(e−2φ ε1 ε1)+2ιH ε1 ε1 =
[
γM ,DM (ε1 ε1)−2∂Mφε1 ε1

]
(2.30)

+
1

4

(
H ε1 ε1+ε1 ε1H+γM ε1 ε1HM+HM ε1 ε1 γ

M
)

=

=

(
D− 1

4
H−∂φ

)
ε1 ε1+γM ε1

(
DM ε1+

1

4
ε1HM

)
−
(
DM−

1

4
HM

)
ε1 ε1 γ

M −ε1
(
DM ε1 γ

M +
1

4
ε1H−ε1∂φ

)
−
(
∂φ− 1

2
H

)
ε1 ε1+ε1 ε1

(
∂φ+

1

2
H

)
.

If we now replace the supersymmetry equations (B.1), (B.2) (and their transpose) and we

use (2.18) we get

e2φd(e−2φ ε1 ε1) =−ιH ε1 ε1+(−)|F |
eφ

32
γM ΦγM λ(F )−(−)|F |

eφ

32
F γM λ(Φ)γM

−(−)|F |
eφ

32
γM F γM λ(Φ)+(−)|F |

eφ

32
ΦγM λ(F )γM .

(2.31)

The same procedure can be applied for ε2:

2e2φd(e−2φ ε2 ε2)−2ιH ε2 ε2 =

(
D+

1

4
H−∂φ

)
ε2 ε2+γM ε2

(
DM ε2−

1

4
ε2HM

)
−
(
DM+

1

4
HM

)
ε2 ε2 γ

M −ε2
(
DM ε2 γ

M −1

4
ε2H−ε2∂φ

)
−
(
∂φ+

1

2
H

)
ε2 ε2+ε2 ε2

(
∂φ− 1

2
H

)
, (2.32)

from which we obtain

e2φ d(e−2φ ε2 ε2) = ιH ε2 ε2 − (−)|F |
eφ

32
γM λ(Φ) γM F + (−)|F |

eφ

32
λ(F ) γM Φ γM

+ (−)|F |
eφ

32
γM λ(F ) γM Φ− (−)|F |

eφ

32
λ(Φ) γM F γM .

(2.33)
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From the difference between (2.31) and (2.33) we have

e2φd(e−2φ(ε1 ε1−ε2 ε2)) =−ιH(ε1 ε1+ε2 ε2)−(−)|F |
eφ

32

(
[γM F γM ,λ(Φ)]

+[F,γM λ(Φ)γM ]+[γM λ(F )γM ,Φ]+[λ(F ),γM ΦγM ]
)
.

(2.34)

Now, the calculation will be different depending on the theory. If we are in IIB

we obtain

e2φ d(e−2φ(ε1 ε1 − ε2 ε2)) = −ιH(ε1 ε1 + ε2 ε2)− eφ
{

2[F1,Φ1]

+ [F5,Φ1] + [F1,Φ5]− [F3,Φ3]
}
,

(2.35)

from which, taking the six-form part:

e2φ d(e−2φ Ω) = −ιH(γ K)− eφ

2
(F5 ∧ Φ1 + F1 ∧ Φ5 − F3 ∧ Φ3)

= −ιK ∗H + eφ
(
Φ, F

)
6
,

(2.36)

which is (2.25b). If we are in IIA, we have

e2φ d(e−2φ(ε1 ε1 − ε2 ε2)) = −ιH(ε1 ε1 + ε2 ε2) +
eφ

2

{
3[F2,Φ2]

+ [F2,Φ6] + [F6,Φ2]− [F4,Φ4]
}
,

(2.37)

where, using the relation

[F4,Φ4]6 = −2ΦM
4 ∧ F4M , [F6,Φ2] = −2ΦM

2 ∧ F6M (2.38)

we get (2.25c).

We now turn to the sum of (2.31) and (2.33):

e2φd(e−2φ(ε1 ε1+ε2 ε2)) =−ιH(ε1 ε1−ε2 ε2)−(−)|F |
eφ

32

(
{γM F γM ,λ(Φ)}

+{F,γM λ(Φ)γM}−{γM λ(F )γM ,Φ}−{λ(F ),γM ΦγM}
)
.

(2.39)

Again, we distinguish the IIB from the IIA case. In IIB we have

e2φ d(e−2φ(ε1 ε1 + ε2 ε2)) = −ιH(ε1 ε1 − ε2 ε2) +
eφ

2

(
3{F1,Φ3} − {F9,Φ3}

− 3{F3,Φ1} − {F7,Φ1} − {F3,Φ5}+ {F5,Φ3}
)
.

(2.40)

Substituting in this equation the equalities

{F9,Φ3}6 = 2 ιΦ3(γ F1) = −2F1MΦM
7 , {F3,Φ5}6 = 2F3M ∧ ΦM

5 ,

{F7,Φ1}6 = 2 ιΦ1(γ F3) = 2Φ1MF
M
7 , {F5,Φ3}6 = 2Φ3M ∧ FM5 ,

(2.41)

we get (2.25c).

On the other hand, for IIA we have

e2φ d(e−2φ(ε1 ε1 + ε2 ε2)) = −ιH(ε1 ε1 − ε2 ε2)− eφ
(
2{F2,Φ0} − 2{F0,Φ2}

+ {F2,Φ4}+ {F6,Φ0} − {F4,Φ2} − {F0,Φ6}
)
,

(2.42)

from which, taking the six-form part, (2.25b) follows.
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We finally turn to the last line of (2.25). The first equation, LKφ = 0, is obtained by

multiplying from the left (B.2a) by ε1, (B.2b) by ε2, and subtracting the result. To derive

the second, take the difference of

DMK
M
1 = − 3

4 · 32
ε1H ε1 +(−)|F |

eφ

16 · 32
ε2 γM λ(F ) γM ε1

+
3

4 · 32
ε1H ε1−

eφ

16 · 32
ε1 γM F γN ε2

= −4 eφ

322
ε1 γM F γM ε2

(2.43)

with

DMK
M
2 =

4 eφ

322
ε1 γM F γM ε2 ; (2.44)

then we get

DMK̃
M = − eφ

8 · 32
ε1 γ

M F γM ε2 = (−)|Φ|
eφ

8 · 32
Tr(λ(Φ) γM F γM ) , (2.45)

where we used (2.18). The left-hand-side is ∗d ∗ K̃. For the right-hand-side, from (2.5) we

write ∗Φ = −(−)|Φ|λ(Φ); using (A.7) we obtain the second equation in (2.25d).

2.5 Supersymmetry and integrability

We proved that the system (2.25) is necessary and sufficient for supersymmetry for a

configuration with timelike Killing vector K. However, in general (2.25) guarantees only

part of the equations of motion [13, 15, 26–28].

First of all, we impose the Bianchi identity for the B-field and the RR fluxes:

dH = 0 , dHF = 0 . (2.46)

(These equations must be appropriately corrected in presence of localized sources.) By

using the results of [13] as in appendix C of [28], one can then prove that the supersymmetry

implies the dilaton’s equation of motion and the spinorial equations(
EMN −

1

2
HMN

)
γN ε1 = 0 ,

(
EMN +

1

2
HMN

)
γN ε2 = 0 , (2.47)

where EMN = 0 gives the string-frame trace-reversed Einstein equations, while the vanish-

ing HMN corresponds to the B-field equations of motion:

H ≡ 1

2
HMNdxM ∧ dxN = e2φ ∗

[
d(e−2φ ∗H)− 1

2
(F, F )8

]
= 0 . (2.48)

As discussed in appendix B, we may choose a vielbein ea = (e+, e−, eα) such that e+ and

e− are proportional to the one-forms K1 and K2 respectively. Remember that γ+ε1 =

γ−ε2 = 0, while (γ−ε1, γ
αε1) and (γ+ε2, γ

αε2) give two sets of linearly independent spinors.

Hence (2.47) implies the following components of the equations of motion:

E++ = E−− = EMα = HMα = 0 , (2.49)
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together with

E+− =
1

2
H+− . (2.50)

Hence, once we have imposed (2.25) and (2.46), in order to solve the complete set of

equations of motion, it remains to impose either E+− = 0 or H+− = 0. The latter condition

may be written as

K ∧ K̃ ∧
[
d(e−2φ ∗H)− 1

2
(F, F )8

]
= 0 , (2.51)

where the index of K has been implicitly lowered by using the metric, while one can check

that E+− = 0 is implied by

�e−2φ − e−2φH2 − 1

4

∑
k

kF 2
k = 0 , (2.52)

which is a combination of the trace of the Einstein equation with the dilaton equation

of motion.

3 Dualities

In this section we will discuss the action of T-duality and the type IIB SL(2,Z) duality on

the geometric objects entering (2.25); moreover, we will also discuss the duality between M-

theory and type IIA. The system (2.25) is not manifestly invariant under the most general

duality transformation. One can overcome this problem by combining (2.25) with other

(non-independent) equations which follow from it. In particular, we will see how (2.25) for

IIB backgrounds can be replaced by a system which is manifestly SL(2,Z) duality invariant.

3.1 SL(2,Z) duality

We start by focusing on the IIB theory. As is well known, it enjoys an SL(2,Z) symmetry.

The general element (
α β

γ δ

)
∈ SL(2,Z) (αδ − βγ = 1) (3.1)

acts on the axion-dilaton as

τ ′ =
ατ + β

γτ + δ
, τ ≡ C0 + ie−φ . (3.2)

The RR self-dual 5-forms F5 is invariant under (3.1), while the 2-form potentials (C2, B2)

transform as a doublet. It is convenient to combine the corresponding field-strengths in

the complex three-form

G3 ≡ e
1
2
φG3 ≡ e

1
2
φ(F3 − ie−φH) . (3.3)

One can then check that G3 transforms by a phase under SL(2,Z):

G′3 = e−iθG3 , θ ≡ arg(γτ + δ) . (3.4)
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fields U(1)D-charge

gE, K, Θ3, Ω̃E , F5 0

Θ1, Θ5 1

G3 −1

eφdτ −2

Table 1. U(1)D charges of relevant fields.

We may think of G3 as having charge −1 under the U(1)D transformation defined by the

phase eiθ; more generally, we will say that a field has charge q under U(1)D if it transforms

by a phase eiqθ. As another example, the one-form eφdτ has U(1)D-charge q = −2, that is

eφ
′
dτ ′ = e−2iθ(eφdτ) . (3.5)

Notice that the U(1)D transformations are typically point-dependent, since τ is in

general non-constant, and then they do not commute with ordinary derivatives. One can

however construct a composite compatible connection

Q ≡ 1

2
eφF1 (3.6)

and an associated covariant derivative ∂M− iqQM . In particular, we will need the covariant

exterior derivative

dQ ≡ d− iqQ ∧ . (3.7)

It is convenient to use the Einsten-frame metric

gE ≡ e−
1
2
φg (3.8)

which is invariant under SL(2,Z) dualities. Finally, the spinors ε1, ε2 transform in such a

way that the complex combination e−
1
2
φ(ε1 + iε2) has U(1)D-charge q = 1

2 [29].

By using the transformation rules of metric and spinors, we can compute the transfor-

mation properties of the fields K, K̃,Φ,Ω, Ω̃ appearing in (2.25). It is easy to check that the

Killing vector K, the three-form e−φΦ3 ≡ Θ3 and the five-form e−
3
2
φΩ̃ ≡ Ω̃E are invariant

under SL(2,Z) duality, while the other forms get mixed. It is then useful to express them

in terms of the complex combinations

Θ1 ≡ e−
1
2
φ(K̃ + iΦ1) , Θ5 ≡ e−

3
2
φ(Ω + iΦ5) , (3.9)

and their Hodge-duals, which transform with definite U(1)D charge q = 1. We have then

reorganized all the relevant fields in combinations transforming with definite U(1)D-charges,

summarized in table 1.

Notice that the Einstein frame Hodge-operator ∗E commutes with the duality transfor-

mation so that, for instance, ∗E G3 has U(1)D-charge −1. These transformation rules will

acquire a clear physical interpretation when we will identify the above differential forms in

terms of calibrations for various extended objects that transform in a precise way under

SL(2,Z) duality.
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By manipulating (2.25) with the help of the (redundant) algebraic equations of

appendix D and (2.28), we get the system of equations

LKτ = 0 , eφdτ ∧ ∗EΘ1 +
i

2
G3 ∧ ∗EΘ3 = 0 , (3.10a)

dQΘ1 −
i

2
eφdτ ∧Θ1 + i ιKG3 = 0 , (3.10b)

dΘ3 + ιKF5 + Re
(
Θ1 ∧ G3

)
= 0 , (3.10c)

dQΘ5 +
i

2
eφdτ ∧Θ5 + Θ3 ∧ G3 − iιK(∗E G3) + iΘ1 ∧ F5 = 0 , (3.10d)

d ∗E Θ3 +
1

2
Re (G3 ∧Θ5 − ∗E G3 ∧Θ1) = 0 , (3.10e)

dQ ∗E Θ1 −
i

2
eφdτ ∧ ∗EΘ1 = 0 , (3.10f)

dΩ̃E +
1

4
gMN

E [Im(Θ5M ∧ G3N )− 2Θ3M ∧ F5N ]− 3 ∗E Im(Θ1 ∧ G3) = 0 . (3.10g)

According to the general definition (3.7) and the U(1)D-charges of table 1, dQ ≡ d− iQ ≡
d − i

2e
φF1∧. From table 1 it is also easy to see that the system is manifestly SL(2,Z)

invariant.

The system (3.10) contains more equations than (2.25). However, having used addi-

tional (redundant) equations, the equivalence with supersymmetry may not be guaranteed

anymore. Therefore, to be sure that none of the supersymmetry data is lost, one should

check that the following algebraic constraints are satisfied:

gMN
E (G3M ∧Θ5N )− ∗E(G3 ∧Θ1)− 2eφdτ ∧ Ω̃E + 2i ∗E (eφdτ ∧Θ3) = 0 ,

G3 ∧Θ5 −Θ1 ∧ ∗EG3 + 2eφιK ∗E dτ + 2ieφdτ ∧ ∗EΘ3 = 0 ,
(3.11)

which are complex combinations of (D.12), (D.15c) and (D.15b). Again, by using the

U(1)D-charges of table 1 one can easily check that (3.11) are manifestly invariant under

SL(2,Z) dualities.

While the system (3.10)–(3.11) we just presented might look alarmingly large, it lists

separately each form degree, unlike for example (2.25).

3.2 T-duality

Type II theories with d commuting isometries are characterized by an O(d, d;Z) group of

T-dualities. Any element of the O(d, d;Z) T-duality can be decomposed into a product

of ‘simple’ T-dualities along a given isometry, discrete diffeomorphisms and shifts of the

B-field. We can then focus on the action of a simple T-duality along a certain Killing

direction, parametrized by a coordinate y.

Let us then split the coordinates as xM = (xm, y), with m = 0, . . . , 8, and assume

that all the geometric quantities do not depend on y. In order to describe the action of

T-duality on bosonic fields it is convenient to define

EMN ≡ gMN −BMN ,

Ftw ≡ e−B ∧ F ;
(3.12)
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the latter satisfies dFtw = 0 away from localized sources. Locally we can set Ftw = dCtw,

with Ctw ≡ e−B ∧ C. T-duality along y gives [30, 31]

g′yy =
1

gyy
, g′my = −Bmy

gyy
, B′my = −gmy

gyy
,

E′mn = Emn −
1

gyy
EymEny , e−2φ′ = gyy e

−2φ
(3.13)

on the type NS-NS bosonic sector, while the RR forms transform as, see e.g. [32]:

C ′tw = Ty · Ctw , F ′tw = Ty · Ftw . (3.14)

We have introduced the operator

Ty· ≡ (dy ∧ −ι∂y)(−)deg , T 2
y = 1 . (3.15)

T-duality admits a natural formulation in terms of generalized complex geometry (see for

instance [24, 33]). In particular, we can regard Ctw and Ftw as spinors associated with

the B-twisted generalized tangent bundle. Ty may be considered as a generalized vector

of the (B-twisted) generalized tangent bundle whose action (3.14) on Ctw and Ftw defines

the spinorial O(10, 10) representation. This observation can be immediately extended to a

more general O(d, d,Z) T-duality group [32], regarded as a subgroup of O(10, 10).

The action on K, K̃,Φ,Ω, Ω̃ can be computed by using the spinorial T-duality rules

derived by Hassan in [34].2 In particular, the T-duality along y transforms the spinors to

ε′1 = ε1 and ε′2 = Tyε2, with Ty ≡ − 1√
gyy
γy. By using these formulas and the appropriate

transformation rules for the vielbein [34], we obtain the simple T-duality rule3

e−φ
′
Φ′tw = Ty · e−φΦtw , Φtw ≡ e−B ∧ Φ . (3.16)

We then see that e−φΦtw, which can also be regarded as a spinor of the generalized tangent

bundle, transforms exactly like Ftw under a simple T-duality. This correspondence clearly

holds for discrete diffeomorphisms and shifts of B too. Hence, a more general O(d, d,Z)

T-duality group acts on e−φΦtw in the O(10, 10) spinorial representation.

The T-duality action on K and K̃ can also be naturally described by using the language

of generalized geometry. First of all, we may organize them in the generalized vector

K = K + ω , ω ≡ K̃ + ιKB . (3.17)

By using Hassan’s rules, one can check that K transforms as an O(10, 10) vector under a

simple T-duality:

K′ = K + 2I(K, Ty)Ty (3.18)

2The relation with Hassan’s conventions in [34] is ε1 = εH− , ε2 = εH+, F = λ(FH), C = (−)degλ(CH), H =

−HH. Furthermore in [34] the T-duality transformation is defined up to an arbitrary choice of sign, which

corresponds to the choice of orientation of the T-duality direction y ≡ x9. We fix this ambiguity by choosing

a(A−B) = −a(B−A) = −1 in Hassan’s formulas.
3In components: (e−φ

′
Φ′tw)m1...mp = −(e−φΦtw)ym1...mp , (e−φ

′
Φ′tw)ym1...mp = (e−φΦtw)m1...mp .
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where I denotes the canonical (10, 10) metric on the generalized tangent bundle, such

that I(v + η, v + η) = 2η(v). In components, (3.18) reads (Km)′ = Km, (Ky)′ = ωy,

ω′m = ωm, ω′y = Ky. One can check that (3.18) indeed defines an O(10, 10) transformation,

in the sense that I(K′,K′) = I(K,K) since K′ = TyKTy. As above, we can consider more

general O(d, d,Z) T-duality groups under which K transforms in the fundamental O(10, 10)

representation.

Unfortunately Ω and Ω̃ transform in a less nice form. The action of a simple T-duality

in the y-direction can be written as:

e−2φ′Ω′y = e−2φΩy , e−2φ′(dy ∧ Ω′)y = e−2φ(η ∧ Ω̃− ιyB ∧ Ω)y ,

e−2φ′Ω̃′y = e−2φΩ̃y , e−2φ′(dy ∧ Ω̃′)y = e−2φ(η ∧ Ω− ιyB ∧ Ω̃)y ,
(3.19)

where ( )y ≡ ι∂y , and we have introduced the one-form

η ≡ (∂y)MdxM = gyMdxM . (3.20)

We observe that the supersymmetry condition (2.25a) can be rewritten in the twisted

form

d(e−φΦtw) = −K · Ftw , (3.21)

which is manifestly invariant by using the above T-duality rules and the fact that the Lie

derivative along y on all fields gives zero. The transformation of the remaining equations

of (2.25) is less obvious and is discussed in appendix C.2. The last line (2.25d) and the

y-longitudinal parts of (2.25b) and (2.25c) remain invariant. On the other hand, the y-

transversal parts of (2.25b) and (2.25c) transform in a more complicated way, as one might

guess from (3.19). We will come back to this point when we will discuss the interpretation

of (2.25) in terms of calibrations.

3.3 Type IIA/M-theory duality and forms

In this section we spell out the relations between the forms entering our system (2.25)

in the type IIA case and the forms that can be naturally be constructed from bispinors

in M-theory. These relations connect our results to those of [2] and will be useful in the

following.

We adopt the same M-theory conventions of [2] besides the use of a hat that will be

useful to distinguish the eleven-dimensional objects from the ten-dimensional ones. One

can use the Majorana supersymmetry generator ε̂ to construct the vector

K̂ =
1

25
ε̂ Γ̂M ε̂ ∂M (3.22)

and the two- and five- forms

Ω̂ =
1

25 · 2!
ε̂ Γ̂M1M2 ε̂ dxM1 ∧ dxM2 , (3.23a)

Σ̂ =
1

25 · 5!
ε̂ Γ̂M1...M5 ε̂ dxM1 ∧ · · · ∧ dxM5 . (3.23b)
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By imposing that ε̂ is a Killing spinor, one can show that K̂ is a Killing vector and that

Ω̂ and Σ̂ satisfy a set of differential conditions [2]. In particular, in the following we will

need the equations:

dΩ̂ = ι
K̂
F̂ , (3.24a)

dΣ̂ = ι
K̂
∗̂ F̂ − Ω̂ ∧ F̂ , (3.24b)

where F̂ = dÂ is the M-theory four-form field-strength.

As usual, in order to connect M-theory to type IIA, we now perform a dimensional

reduction following [35] and [36, Chap. 8], which are consistent with our conventions except

for ε1,2 → ε2,1, C1 → −C1 and H → −H. In particular, the metric and the supersymmetry

parameter split as follows

dŝ2 = e−
2
3
φds2 + e

4
3
φ(dx10 − C1)2 , (3.25a)

ε̂ =
1√
2
e−

1
6
φ(ε1 + ε2) , Γ10 ε1 = − ε1 , (3.25b)

while for Â and the associated field-strength we have:

Â = C3 −B ∧ dx10 ,

F̂ = F4 −H ∧ (dx10 − C1) .
(3.26)

By using (3.25), one can then identify the relations between M-theory and IIA geo-

metrical structures

K̂ = K − e−φΦ0 ∂10 , (3.27a)

Ω̂ = −e−φΦ2 − K̃ ∧ (dx10 − C1) , (3.27b)

Σ̂ = e−2φΩ− e−φΦ4 ∧ (dx10 − C1) . (3.27c)

We clearly see the compatibility of (3.27a) with the fact that K describes a Killing vector

in IIA. Furthermore, one can use (3.27) into (3.24) to derive part of the supersymmetry

conditions appearing in (2.25). Notice also that the IIA forms which do not appear on the

r.h.s. of (3.27) can be obtained by dimensionally reducing the Hodge-duals of ω̂ and Σ̂ in

M-theory along the same lines. For example, in the following we will need

∗̂Σ̂ = −e−2φΩ̃ ∧ (dx10 − C1)− e−φΦ6 . (3.28)

4 Brane calibrations

It is known that (2.25a) has an interpretation in terms of D-brane calibrations [20]. Let us

give here a lightning review of this. In what follows, we will partially interpret the other

equations in (2.25) in terms of calibrations.

In the original definition in Riemannian geometry [10], a calibration ω on a manifold

M is a p-form such that i) ω|N ≤ volN for any p-dimensional subspace N of the tangent

space TxM at any point x, and ii) dω = 0. The idea of the definition is that if a calibrated
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submanifold Σ exists, namely a Σ such that the tangent space TxΣ ⊂ TxM at any point

obeys ω|Σ = volΣ, then Σ has minimal volume in its homology class. Indeed, given a

“deformed” Σ′ in the same homology class of Σ, call Γ a p+1 submanifold whose boundary

∂Γ = Σ− Σ′; we can then write

Vol(Σ)−Vol(Σ′) =

∫
Σ

vol−
∫

Σ′
vol ≤

∫
Σ
ω −

∫
Σ′
ω =

∫
Γ

dω = 0 . (4.1)

Calibrations show up naturally in string theory in various contexts, in particular deal-

ing with solitonic objects that appear in the supergravity algebra; they are usually obtained

as spinor bilinears, and calibrated submanifolds are wrapped by branes which obey BPS

conditions. These are sometimes called “generaralized” calibrations [12], perhaps confus-

ingly in the present context; a better name might be almost-calibrations since condition

ii) above is not met. In such a case, the failure of ω to be closed is related to the presence

of a flux F . Schematically,

dω = −ιKF (4.2)

where F = dC with C a (p + 1)-form potential and K is the time-like Killing associated

to the supersymmetric configuration, as in (2.20). (Recall that in this paper we consider

it to be timelike, even though the discussion applies also for general K, as argued in [20].)

For instance, (2.28) has exactly the form (4.2). The analogue of condition i) above leads

to minimizing the brane energy −KMPM (where PM is the brane momentum) rather than

its volume, and (4.1) is translated to the BPS bound:

−
∫

Σ
KMPMvol ≥

∫
Σ

(ω − ιKC)|Σ . (4.3)

Choosing the gauge LKC = 0, we can write (4.2) as

dϕ = 0 with ϕ = ω − ιKC ; (4.4)

therefore the right-hand side of (4.3) is a topological quantity, which we interpret as the

brane central charge. We refer to section 5.1 and to [20] for further details about this brief

discussion. Notice that, generically, ϕ is not a globally defined differential form since the

potential C may be only locally defined. However this subtlety will not play a role in our

discussion and in the following we will loosely call calibration forms objects like ϕ in (4.4).

In [8] it was shown that all the pure spinor equations for Mink4 or AdS4 compactifi-

cations [6, 24], which are equivalent to the background supersymmetry, can be interpreted

in terms of calibrations or generalized calibrations for D-branes extended along different

numbers of spacetime dimensions. Since, as we mentioned, the pure spinor equations follow

from (2.25a), the latter also have a direct interpretation in terms of D-branes [20]. Indeed,

with the help of (2.28), one can check that (2.25a) is equivalent to the closure of the forms

ϕDp =
[
e−φΦtw − (ιK + ω∧)Ctw

]
p
, (4.5)

where we recall that Φtw ≡ e−B ∧ Φ, Ctw = e−B ∧ C and ω = K̃ + ιKB, as in section 3.2,

and we are assuming a gauge in which all form potentials like C and B are vanishing under
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LK . The forms (4.5) are the D-brane counterpart of ϕ in (4.4).4 For D-branes, the role of

calibrations and the generalized calibration inequality (4.3) can be argued rather directly

using the D-brane action and kappa-symmetry as shown in [20]. NS-branes are a little

more subtle, since they do not have a direct definition in terms of open strings, but only as

solitonic supergravity solutions. In this section, we will overcome this by using dualities.

This issue will present itself again in the next section for KK5-monopoles; we will attack

it there with a more general discussion of calibrations in a purely gravitational context.

Most of the present section will be now dedicated to provide an interpretation

for (2.25b) in terms of calibrations for NS5-branes. Moreover, we will also briefly discuss

the calibration condition for the more exotic NS9-brane.

4.1 Closure condition for NS5 calibration

The purpose of this subsection is to rewrite (2.25b) as

dϕNS5 = 0 (4.6)

for a certain form ϕNS5, which we will then interpret as NS5 calibration, in analogy

with (4.4). In the next two subsections we use the duality transformations discussed in

section 3 to test this interpretation.

Let us first find a potential for the NS5 brane. Consider the equation of motion for

the NSNS three-form H:

d(e−2φ ∗H)− 1

2
(F, F )8 = 0 , (4.7)

where recall (A,B)d ≡ (A∧λ(B))d. Using also the property (A,B)d = (−)d(d−1)/2(B,A)d,

we can rewrite (F, F )8 = −d(F,C)7 and therefore (4.7) reads

d

[
e−2φ ∗H +

1

2
(F,C)7

]
= 0. (4.8)

This means that we can locally define the NS5 potential B̃ such that:

dB̃ = e−2φ ∗H +
1

2
(F,C)7. (4.9)

Let us use (4.9) in (2.25b):

d
(
e−2φΩ

)
= −e−2φιK ∗H + (e−φΦ, F )6 = −ιKdB̃ +

1

2
ιK(F,C)7 + (e−φΦ, F )6 . (4.10)

By recalling (2.25a), we can manipulate (e−φΦ, F )6 a little bit so as to get

d
[
e−2φΩ + (e−φΦ, C)5 − ιKB̃

]
= −1

2
(ιKF,C)6 −

1

2
(ιKC,F )6 − (ιKF,C)6

=
1

2
d((ιK + K̃∧)C,C)5 .

(4.11)

4The analogy between (4.5) and (4.4) is more explicit in terms of generalized complex geometry, i.e.

considering ιK + ω∧ as a generalized Killing vector (instead of ιK alone) as in [20].
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In the first line we have chosen the gauge LKB̃ = 0, while in order to go to the second line

we have used the identity {dH , ιK + K̃∧} = LK and chosen the gauge LKC = 0 for the

RR potentials.

Thus as promised (with the help of (2.25a)) we have rewritten (2.25b) in the form (4.6),

with

ϕNS5 = e−2φΩ + (e−φΦ, C)5 − ιKB̃ −
1

2
K̃ ∧ (C,C)4 −

1

2
(ιKC,C)5 . (4.12)

Given the appearance of the NS six-form potential B̃, it is natural to interpret (4.12) as

calibration for a NS5-brane. This interpretation will be confirmed by exploiting the duality

relations with other calibrations.

4.2 NS5 calibration in IIB from S-duality

It is well known that type IIB S-duality relates NS5-branes to D5-branes, which have

well defined effective actions and calibrations. We can then use S-duality to check our

interpretation of (4.12) as calibration for IIB NS5-branes. S-duality is a subgroup of the

SL(2,Z)-duality group (3.1) generated by the element(
0 −1

1 0

)
. (4.13)

This S-duality transformation should then transform the D5-brane calibration to the

NS5 one.

We recall that the complete calibration for D-branes is actually given by the sum

of forms (4.5) of various (even/odd) degrees, which allow to describe the energetics of D-

branes supporting non-trivial fluxes [8, 9, 20, 37] and/or forming networks [38]. By duality,

we expect the same to be true for NS5-branes as well but, for simplicity, in the following

we will consider just isolated NS5-branes and D5-branes on which the world-volume flux

can be consistently set to zero. In such a case, we can restrict our attention on the highest-

rank contribution to the complete D5-brane calibration, which is given by ϕD5 as defined

in (4.5). By expanding Φtw ≡ e−B ∧Φ and Ctw ≡ e−B ∧C and straightforwardly applying

the transformation rules of section 3.1 and appendix C.1 to the SL(2,Z) duality (4.13), one

can explicitly check that ϕD5 is mapped to ϕNS5 as defined in (4.12). Details are provided

in appendix C.1. This is a non-trivial consistency check for the interpretation of (4.12) as

NS5 calibration, at least in the IIB case.

It would be interesting to derive (4.12) directly from the SL(2,Z) covariant actions

of [39, 40], but we will not try to do it in the present paper. In particular, by S-duality, we

expect (4.12) to combine with the lower-rank calibrations for D3, D1 branes and F1-strings,

as it happens for the complete calibration [20] for D5-branes, whose (electric and/or mag-

netic) world-volume field-strength can induce lower-dimensional D3, D1 and F1 charges.

4.3 NS5 and D4 calibrations from M-theory

In order to check our interpretation of (4.12) as NS5 calibration in type IIA too, we use the

fact that it should uplift to a calibration for M5-branes in M-theory. In turn, by reducing
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back to IIA along a direction longitudinal to the M5-brane, the M5 calibration should give

the calibration for D4-branes.

The interpretation of the M-theory supersymmetry conditions (3.24) in terms of cal-

ibration conditions has been already considered in [41]. It is easy to rewrite (3.24a) as

dϕ̂M2 = 0 with

ϕ̂M2 ≡ Ω̂ + ι
K̂
Â , (4.14)

being the M2-brane calibration. Similarly, from (3.24b) one can identify the following M5

calibration

ϕ̂M5 ≡ Σ̂ + ι
K̂
Ĉ + Â ∧ Ω̂ +

1

2
Â ∧ ι

K̂
Â . (4.15)

Here Ĉ is the ‘magnetic’ potential associated with F̂ . It can be defined starting from the

eleven-dimensional equations of motion of F̂

d∗̂F̂ +
1

2
F̂ ∧ F̂ = d

(
∗̂F̂ +

1

2
Â ∧ F̂

)
= 0 , (4.16)

so that

dĈ = ∗̂F̂ +
1

2
Â ∧ F̂ . (4.17)

We can now reduce (4.15) to IIA by applying the dimensional-reduction dictionary

identified in section 3.3. The only necessary additional relation is

∗̂F̂ = −e−2φ ∗H − F6 ∧ C1 + F6 ∧ dx10 , (4.18)

which, combined with (4.17) and (4.9), gives also

Ĉ = −B̃ − 1

2
C5 ∧ C1 + C5 ∧ dx10 − 1

2
B ∧ C3 ∧ dx10 . (4.19)

After a straightforward computation, ϕ̂M5 splits as follows

ϕ̂M5 = ϕNS5 − ϕD4 ∧ dx10 (4.20)

where ϕNS5 is the (type IIA) NS5-calibration introduced in (4.12) and ϕD4 is the D4

calibration, as defined in (4.5).

The equation (4.20) is indeed expected from the usual relation between M5-branes in

M-theory and NS5- and D4-branes in IIA. Hence, it provides a non-trivial check of the mu-

tual consistency between the corresponding calibrations. It would be interesting to motivate

the M-theory and IIA NS5 calibrations from the world-volume effective actions [42–44].

As an additional consistency check, we prove in appendix C.2 that also the longitudinal

part of the NS5 calibration in IIA and IIB are T-dual to each other.
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4.4 NS9-branes

An analysis of the central charges of type II theories reveals the existence of a nine-brane

called NS9 [45, section 6]. In type IIB we can also think of it as the S-dual of a D9; in fact

in type IIB we should then have a (p, q) 9-branes.5 Just like a D9, the NS9 does not source

any field strength, but it carries a ten-dimensional potential.

A nine-brane is extended along all of spacetime; so a calibration would not tell us where

it should sit. Nevertheless, in IIB we can extend formally the calibrations for Dp-branes

to p = 9, and use S-duality to infer a similar nine-form for an NS9. From (3.10f) we can

see that the S-dual of the D9 calibration condition is the first equation of (D.3)

d(e−2φ ∗ K̃) = 0, (4.21)

which we get in both IIA and IIB theories looking at the ten-form part of equations (2.35)

and (2.42). Therefore e−2φ ∗ K̃ may be interpreted as the NS9 calibration for type IIB.

To check if this conclusion is valid also for IIA, we perform a T-duality. Imposing a

U(1) isometry and using the decomposition of (C.18) we get

d(e−2φ ∗ K̃) = e−Cd(e−2φ+C ∗ k̃1) ∧ Ey + e−2φ+C ∗ k̃1 ∧ dA1 − d(e−2φk̃0) ∧ ∗91. (4.22)

We can notice that the last two terms are zero because they are ten-forms on a nine-

dimensional subspace, so we have just

d(e−2φ+C ∗ k̃1) = 0 , (4.23)

which is invariant under T-duality as one can check from (C.19). So d(e−2φ ∗ K̃) = 0 in

IIB transforms in the same equation in IIA and vice-versa. Therefore e−2φ ∗ K̃ can indeed

be interpreted as NS9 calibration for both IIA and IIB.

5 KK5-monopoles

We will now turn to the third equation in the system (2.25c). We will argue that the form

on the left-hand side can be interpreted as a kind of calibration form for the KK5-monopole.

A KK5-monopole is a supersymmetric solitonic solution of type II theories [46], ob-

tained as R6× a four-dimensional Gibbons-Hawking space. It appears for example by

T-dualizing a stack of N NS5-branes along the Hopf isometry of its transverse S3, or by

lifting a stack of N D6-branes to M-theory and reducing along another direction. Just

like for NS5-branes, these solutions do not involve RR-fields and cannot be interpreted in

terms of open strings; thus there is no simple way to derive a world-volume effective action.

This issue is made even sharper for the KK5 by the fact that the N = 1 case (a single

monopole) is actually even completely smooth, and it is not even clear on which submani-

fold the putative world-volume action should be based. However, since the KK5-monopole

charge appears in the superalgebra and in the BPS bound of every theory d ≥ 5 [45], we

expect that a concept of calibration should exists also for this object.

5[39] actually claims the existence of a SL(2,R) quadruplet of nine-branes, leading to (p, q, r, s) bound

states.
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To address this, we will start by considering in section 5.1 a toy model in which central

charges are defined using calibrations in purely gravitational terms. In section 5.2, we

will see that the speculations on our toy model are actually valid in M-theory and can

be generalized also to the central charges given by KK5-monopoles. In this case it is less

obvious which calibration condition corresponds to the conservation of the central charges.

However, the M-theory/IIA dictionary of section 3.3 will allow us to guess at least the

bispinorial part of the KK5 calibration.

5.1 Gravitational calibrations

At the beginning of section 4 we introduced the concept of generalized calibration. In

this section we will add some details to that discussion which aim at generalizing, at least

schematically, the argument for the string calibration given in [20, section 3] to the case

of a general p-brane in a d-dimensional spacetime. Let us suppose that the action of

the brane wrapping a (p + 1)-dimensional surface S is the sum of a Nambu-Goto and a

Wess-Zumino term

Sp = −µp
∫
S

dp+1ξ
√
−detg|S + µp

∫
S
C , (5.1)

where ξα = (τ, σi) are the coordinates on S; and that the supersymmetry of the background

imposes the differential condition (4.2). Now consider a space-like (d − 1)-surface M and

the space-like p-surface Σ = S ∩M. Following [20] the BPS bound can be algebraically

derived from the κ-symmetry operator and it reads

−KMPMdpσ ≥ ω|Σ , (5.2)

where we have introduced the world-volume (or gauge-invariant) momentum conjugated

to xM :

PM = −
√
−hhτα∂αXM , h ≡ g|S . (5.3)

Now one can notice that the quantity

−
∫

Σ
KMPMdnσ −

∫
Σ
ω ≥ 0 (5.4)

doesn’t look like the BPS bound (4.3), even if it can be shown to be a conserved charge

related to the K isometry [20, section 3.2]. This is due to the fact that PM is not the

canonical momentum, since it is obtained from the Legendre transformation of the Nambu-

Goto part of the action only. Considering also the Wess-Zumino term, along the line

of [20, section 3.4], we get that the canonical momentum is given by PM = PM + ιMC|Σ
and therefore (5.4) becomes exactly (4.3). This allows us to interpret the right-hand side

of (4.3) as a central charge:

Z =

∫
Σ

(ω − ιKC) =

∫
M

(ω − ιKC) ∧ δS , (5.5)

where δS is a delta-like d− (p+ 1) form localized on S.
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Up to now the p-brane was regarded as a probe, meaning that we were considering a

regime where the back-reaction can be neglected. Now, let us take δS as a source for the

flux F , that we suppose to satisfy the usual equation of motion

d ∗ F = (−)pδS . (5.6)

Then, by using the bulk equation (4.2), we can write the r.h.s. of (5.5) as:∫
M

(ω − ιKC) ∧ d ∗ F = (−)p
∫
B

(ω − ιKC) ∧ ∗F (5.7)

where B = ∂M. Therefore we are left with the following identification of the brane central

charge

Z = (−)p
∫
B
ϕ ∧ ∗F (5.8)

with ϕ as defined in (4.4). Notice that the integral is evaluated not on the brane world-

volume but on the space boundary. This has been possible by the promotion of the brane

from probe to back-reacting. Assuming that S ∩B = 0, the integrated quantity is invariant

under deformations of the boundary B. More generally, we may assume fixed boundary

conditions such that this continues to hold.

The idea is to take (5.8) as definition of central charge, carried by the flux F , that

is associated with the brane charge. We can then consider more general backgrounds

with somehow fixed boundary conditions so that (5.8) makes sense more generally, even in

absence of branes, and does not change under deformations preserving the boundary condi-

tions. The above argument starts from a back-reacting brane. In the following subsections,

we will re-derive our conclusions from purely gravitational arguments in M-theory.

5.2 Gravitational BPS bound in M-theory and central charges

Let us focus on a family of backgrounds in M-theory with certain boundary conditions

fixed as in [45] admitting a spinor ε and defining an asymptotic Killing vector KM = ε̄ΓM ε.

We are using the conventions of section 3.3, but for simplicity we omit all hats, since in

the present section we just consider M-theory quantities and no confusion should arise.

Furthermore, one should select some asymptotic configuration g(0), A(0) such that

D(0)
M ε|B = 0 ; (5.9)

we refer to [45] for all the details concerning how this asymptotic configuration must be cho-

sen and we restrict ourselves to a more formal discussion. For more general configurations,

we have

DM ε|B = (DM −D(0)
M )ε|B ≡ TM ε|B , (5.10)

where TM ≡ DM − D(0)
M is some linear combination of tensors contracted with gamma

matrices.

By following [45, 47], the supercharge associated with a Killing spinor ε takes the form

Q[ε] =

∫
B

dxM ∧ ε̄Γ(8)ψM (5.11)
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and, up to normalization, we can write

{Q(ε),Q(ε)}=

∫
B

dxM∧ε̄Γ(8)DM ε=

∫
B

dxM∧ε̄Γ(8)TM ε=

∫
B

dxM∧(TM ·εε)8 . (5.12)

The quantum mechanical realization of the l.h.s. of (5.12) implies, as usual, the positivity

condition {Q(ε), Q(ε)} ≥ 0. The idea is now to manipulate (5.12) and try to deduce from

{Q(ε), Q(ε)} ≥ 0 a BPS bound of the form

P[K]−
∑
a

Za ≥ 0 (5.13)

where Za are central charges as defined in the previous section, with corresponding cali-

brations ϕa and “fluxes” Fa, obtained by expanding TM .

Let’s check this. By using the eleven-dimensional gamma-matrices properties, we can

write the bulk supersymmetry condition in the form

∇M ε−
1

12
ιM (∗F + 2F ) ε = 0 . (5.14)

Therefore the TM defined in (5.10) reads

TM =
1

4
∆ωM −

1

12
ιM (∆ ∗ F + 2∆F ) , (5.15)

where ∆F ≡ F − F (0), and ∆ωM ≡ (ωABM − ωAB (0)
M )γAB (a difference of connections, and

hence a tensor at the boundary). Notice that ∆ ∗ F in (5.15) is not a closed form: indeed

it satisfies

d∆ ∗ F + F ∧∆F = 0 , (5.16)

where we considered just the leading order at the boundary (in other words, the first order

in ∆F ). We could instead introduce a closed (gauge-dependent) field-strength

∆G ≡ ∆ ∗ F +A ∧∆F (5.17)

whose flux along the boundary measures the M2 Page charge.

Plugging (5.15) into (5.12) and using (A.1) repeatedly together with (5.17), we obtain

{Q(ε), Q(ε)} =
1

4

∫
B
∗(dxAB ∧K)∧∆ωAB +

1

4

∫
B

[
Ω∧∆G− (Σ + Ω∧A)∧∆F −∗Σ∧∆ω

]
.

(5.18)

Σ and Ω were defined in (3.23) (recall that in this section we are omitting hats), and we

have introduced the three-form ∆ω ≡ 1
2∆ωMABdxM ∧EA∧EB.6 Here, all the Hodge-duals

are meant with respect to the eleven-dimensional metric.

The first term is exactly the ADM momentum P [K] as defined in [45, (3.2)], which we

interpret as the equivalent of our gauge-invariant momentum (as one can see from the ab-

sence of form potentials). The BPS bound obtained by imposing {Q(ε), Q(ε)} ≥ 0 in (5.18)

6This is a three-form; it does depend on the choice of vielbein, but ultimately when we go back to (5.18),

where only differences appear, this does not matter.
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is then similar to (5.4). This bound can also be partially rewritten in the form (5.13): we

can clearly isolate the contribution of the M2 and M5 central charges,

ZM2 =

∫
B
ϕM2 ∧∆G , ZM5 = −

∫
B
ϕM5 ∧∆F , (5.19)

defined in analogy with (5.8), where ϕM2 and ϕM5 are the (closed) M2 and M5 calibrations

introduced in (4.14) and (4.15) (with the addition of the hats).

The last term on the r.h.s. should be associated with KK6-monopoles. Indeed, follow-

ing [45], we can interpret ∆ω as ‘geometric’ flux sourced by the KK6-monopoles, since its

integral corresponds to the NUT charge in the case of a Taub-NUT solution. We are then

led to identify ∗Σ with (part of) the calibration for KK6-monopoles in M-theory. How-

ever, we have not been able to write down a clean corresponding topological central charge

of the form (5.19). This is due to the purely gravitational nature of the KK6-monopole,

which appears to be mixed with the ADM momentum in the BPS bound (5.18). So, taking

into account these subtleties, we will refer to ∗Σ as a KK6 calibrating form, in order to

distinguish it from the more standard calibrations. In the following subsection we will see

that this interpretation is consistent with the reduction to IIA, which relates M-theory

KK6-monopoles to IIA KK5-monopoles and D6-branes. This will allow us to identify the

analogous IIA KK5 calibrating forms.

5.3 Type II KK calibrating forms from dualities

We now revisit the above conclusions from the IIA point of view, by using the general

relations discussed in section 3.3. Let us reintroduce the hat to distinguish M-theory

quantities, as in that section. Then, the M-theory KK6 calibrating form ∗̂Σ̂ decomposes

as in (3.28), while the associated geometric flux ∆ω̂ reduces to

∆ω̂ = e−
2
3
φ∆ω10 −

1

2
e

4
3
φ∆F2 ∧ (dx10 − C1) (5.20)

By identifying x10 ' x10 + 1, we conclude that the last term in (5.18) reads∫
B̂
∗̂Σ̂ ∧∆ω̂11 =

∫
B

(
e−2φΩ̃ ∧∆ω10 +

1

2
e−φΦ6 ∧∆F2

)
, (5.21)

where we have integrated of the S1 of the M-theory nine-dimensional boundary B̂ ' S1×B.

Both terms on the right-hand side of (5.21) are expected. In the last term in (5.21), e−φΦ6

is gauge-invariant contribution to the D6 calibration ϕD6, see (4.5). This can be completed

to give an associated topological central charge ZD6 as we did in the previous section. On

the other hand, in analogy with the M-theory case, we are led to identify e−2φΩ̃ with the

type IIA KK5 calibrating form.

The analogous KK5 calibrating form for IIB can be obtained from T-duality. A trans-

verse T-duality maps a KK5-monopole into a NS5-brane and vice-versa, while under a

longitudinal one both KK5 and NS5 remain invariant. Using (3.19), we see that the lon-

gitudinal part of e−2φΩ becomes proportional to e−2φΩ̃ after a T-duality transformation.

Since we saw that e−2φΩ is part of the NS5-calibration, it is natural to identify e−2φΩ̃ with

the KK5 calibration in IIB as well.
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6 Ansatz for AdS2 horizons

Supersymmetric solutions with a timelike Killing vector are suitable to describe static

space-times, and in particular can be used to study black holes. We present here an

application of our system to this problem. Instead of looking at a full black-hole solution,

we restrict ourselves to the near horizon geometry which can be viewed as an AdS2 ×M8

vacuum solution where M8 is typically a fibration of a compact manifold M6 over S2.

Classifications of black hole horizons in a similar spirit were given in [48, 49].

6.1 Spinor Ansatz

In general, a solution describing an AdS2 vacuum is not the near-horizon of a black hole,

so we have to be particularly careful about finding a proper Ansatz for the supersymmetry

parameters. Moreover, not every Ansatz leads to the timelike case; for example, if we start

from spinors like the ones in [16] we will get a solution which is light-like and to which

therefore we can not apply our system.

For these reasons we will derive our Ansatz starting from the black-hole background

in [50], which is an uplift of the Cacciatori-Klemm solution [51] to M-theory with a regular

Sasakian internal manifold S7. In the near-horizon limit we have an AdS2 with coor-

dinates t, r and a compact space M9, which can be seen as a U(1) fibration over an

eight-dimensional Kähler manifold K8 which contains both the horizon S2 and the Kähler

K6 ⊂ S7 (even if this distinction is not important in our discussion). The vertical vector

∂ψ is called Reeb vector. The eleven-dimensional supersymmetry parameter ε̂ defines, via

its bilinears, an SU(5) structure on every constant-time surface [2], which is determined by

the differential forms

K̂ = ∂t , ∆(Er ∧ Eψ + JK8) , ∆
5
2 (Er + iEψ) ∧ ΩK8 , (6.1)

already decomposed according to [50]. (3.23a) and (3.23b) are respectively the two-form

and the real part of the five-form in (6.1). Eψ and Er are the vielbein one-forms associated

to the coordinate ψ, r respectively; ∆ is a warping function; JK8 and ΩK8 are the real

two-form and holomorphic four-form of the K8. Since K̂ points in the time direction, when

we perform the dimensional reduction to recover type IIA the Killing vector K will be

timelike, and then our system will apply.

Now let us see which eleven-dimensional spinor defines the bilinears (6.1) via Clif-

ford map. This spinor has a particularly simple form with the following choice of eleven-

dimensional gamma matrices

Γ1 = Γr = σ1 ⊗ 12 ⊗ 12 ⊗ 12 ⊗ 12 , Γ2 = Γψ = σ2 ⊗ 12 ⊗ 12 ⊗ 12 ⊗ 12

Γ3 = σ3 ⊗ σ1 ⊗ 12 ⊗ 12 ⊗ 12 , . . . , Γ0 = Γt = iσ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 .
(6.2)

In this basis, we reproduce (6.1) by taking

ε̂ =
1√
2

(
|+ + + ++〉+ | − − −−−〉

)
. (6.3)
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The black hole solution we are considering has a U(1) R-symmetry which is gener-

ated by the Reeb vector; it produces a fibration of the internal manifold over the horizon

S2. Since the spinors that live on S2 are twisted with respect to this connection, the R-

symmetry action on one spinor produces another one and thus the solution has a multiple

of two supercharges. However, since the R-symmetry does not involve the time and the

radial direction, from the perspective of an AdS2 vacuum we just have N = 1.

When we perform the dimensional reduction to IIA we have to be careful to preserve

the Reeb direction in order not to break supersymmetry. We decide to reduce along the

coordinate x10, which parametrizes a (generic) direction of K8. In ten dimensions, it is

convenient to choose a representation of gamma matrices such that the chiral operator is

given by

Γ = σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 . (6.4)

We then see that we cannot identify Γ with Γ10 appearing in (6.2), as usual in dimensional

reduction. Rather, we have Γ = −iΓ0.7 Thus we have to change spin representation by

finding an operator O which defines a new set of gamma matrices Γnew
M = OΓold

M O−1 such

that the new Γ10 coincides with Γ in (6.4). A useful choice is

O =
1

2
(132 − iQ2)(132 − iQ1) (6.5)

where

Q1 = σ1 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 , Q2 = 12 ⊗ 12 ⊗ 12 ⊗ 12 ⊗ σ1 , (6.6)

so that

Γnew
0 = iΓold

2 , Γnew
2 = Γold

10 , Γnew
10 = −iΓold

0 , Γnew
i = Γold

i i 6= 0, 2, 10 . (6.7)

Notice that with such a choice the new Γ0 and Γ1 act only on the first spin- 1
2 factor of the

usual tensorial decomposition of the ten-dimensional spinors. Splitting the rotated spinor

Oε̂ in two chiralities we get the supersymmetry parameters for IIA:

ε1 =
1

2

(
|+ + + ++〉 − i| − − −−+〉

)
+ Maj. conj. ,

ε2 =
1

2

(
− i|+ + + +−〉+ | − − −−−〉

)
+ Maj. conj.

(6.8)

This decomposition suggest the following, more general, spinor Ansatz for near-horizon

geometries

ε1 = α+ ⊗ η1 + + α− ⊗ η1− = P+(α⊗ η1)

ε2 = α+ ⊗ η2∓ + α− ⊗ η2± = P∓(α⊗ η2)
(6.9)

where α = α+ + α− is a real Killing spinor on AdS2, P± are the chiral projectors and

ηi = ηi+ + ηi− are Majorana spinors on M8, that we can take to be real.8 Notice that the

presence of just one Killing spinor ensures the correct amount of supersymmetry.

7This choice was important in [50] because the SU(5) structure defined by J and Ω in (6.1) lives in the

space directions.
8In the particular case we were considering in (6.8) we have η1+ = (| + + + +〉 − i| − − − −〉), η1− =

−i| − − −+〉 − |+ + +−〉, η2+ = | − − −−〉 − i|+ + + +〉 and η2− = −i|+ + +−〉 − | − −−+〉.
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6.2 Bispinors on AdS2 × M8

Having determined the spinor Ansatz, in this subsection we will compute the ten-

dimensional bilinears to plug in (2.25).

To preserve the isometry of AdS2, we will split the metric as usual as

ds2
10 = e2Ads2

AdS2
+ ds2

M8
. (6.10)

This suggests the gamma-matrix decomposition

Γµ = eAσµ ⊗ 116 µ = 0, 1 ,

Γm = σ3 ⊗ γm m = 2, . . . , 9 ,
(6.11)

where σ0 = iσ2 and A is a function of M8.

All possible choices of the AdS2 Killing spinor α are equivalent, since our solution must

be invariant under SO(2, 1). For definiteness we will take

α = er/2 (|+〉+ |−〉) , ds2
AdS2

= e2rdt2 + dr2 . (6.12)

Its bilinears read

α⊗ α = −e2rdt+ e2rdt ∧ dr , σ3α⊗ α = −er + erdr . (6.13)

Thus α by itself already defines a vielbein (i.e. an identity structure) on AdS2.

On the other hand, the spinors on M8 are not enough to define an identity structure

so we will simply rename their bilinears as:

ω1 = η1η
t
1 ω2 = η2η

t
2 ω = (ω1 + ω2)/2 ω̃ = (ω1 − ω2)/2

ωγ1 = γ η1η
t
1 ωγ2 = γ η2η

t
2 ωγ = (ωγ1 + ωγ2 )/2 ω̃γ = (ωγ1 − ω

γ
2 )/2

ψ = η1η
t
2 ψγ = γ η1η

t
2

(6.14)

where γ is the chiral operator on M8. In particular, to keep the analogy with the ten-

dimensional notation, we will give special names to the zero and one-form part:

a = (ω)0 ã = (ω̃)0 aγ = (ωγ)0 ãγ = (ω̃γ)0

k1 = (ω1)1 k2 = (ω2)1 k = (ω)1 k̃ = (ω̃)1

(6.15)

where the subscript 0 and 1 indicates to take the zero and one-form part only.

Now we are ready to explicitly write the ten-dimensional bilinears of section 2.1 in

terms of two and eight-dimensional ones. We will report here the calculation for K1 in all

the details, while for the other bilinears one can proceed by analogy:

32K1 = (α⊗ η1)tP t+Γ0ΓMP+(α⊗ η1)EM = (α⊗ η1)tΓ0ΓMP+(α⊗ η1)EM

= (α⊗ η1)tΓ0ΓM (α⊗ η1)EM + (α⊗ η1)tΓ0ΓMΓ(α⊗ η1)EM

=
eA

2

(
ηt1η1 ασµα e

µ + ηt1 γ η1 ασµσ3α e
µ
)

+
1

2
ασ3α(16k1) ,

(6.16)
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where eµ is the vielbein on AdS2. Using (6.13) we get:

32K1 = −er+A(ηt1η1e
0 − ηt1 γ η1e

1)− er(16k1) . (6.17)

We can perform the same steps for K2

32K2 = −er+A(ηt2η2e
0 + ηt2 γ η2e

1)− er(16k2) (6.18)

and from these expressions we can calculate K (considered as a one form) and K̃:

K = −e
r+A

2

(
ae0 − ãγe1

)
− er

2
k , K̃ = −e

r+A

2

(
ãe0 − aγe1

)
− er

2
k̃ . (6.19)

Following a similar logic for Ω and Ω̃ we get:

Ω = −e
r

2

(
(ω)5 + eAe0 ∧ (ω)4 − eAe1 ∧ (ω̃γ)4 − e2Ae0 ∧ e1 ∧ (ω̃γ)3

)
,

Ω̃ = −e
r

2

(
(ω̃)5 + eAe0 ∧ (ω̃)4 − eAe1 ∧ (ωγ)4 − e2Ae0 ∧ e1 ∧ (ωγ)3

)
,

(6.20)

and, finally, Φ reads:

Φ = P+(α⊗ η)(α⊗ η)P+ =
[
P+(α⊗ η)(α⊗ η)

]
+

= −e
r

2

[
(ψγ)+ − eAe0 ∧ (ψγ)− + eAe1 ∧ (ψ)− − e2Ae0 ∧ e1 ∧ (ψ)+

]
,

(6.21)

where the subscripts + and − indicate to take the even or the odd forms degree respectively.

6.3 Supersymmetry conditions

In the previous subsection we showed how bilinears decompose under our Ansatz of sec-

tion 6.1. The fluxes must also be decomposed and if we want to preserve AdS2 they have

to be singlet under the action of its isometry group:

H = H3 + e2Ae0 ∧ e1 ∧H1 , ∗H = ∗8H1 + e2Ae0 ∧ e1 ∧ ∗8H3 ,

F = f + e2Ae0 ∧ e1 ∧ ∗8λ(f) .
(6.22)

Now we can derive the supersymmetry conditions just by plugging the expressions for

the fluxes (6.22) and the ones for the bispinors in section 6.2 in (2.25). The first three

equations in (2.25) will split in four equations each, one for every independent form on

AdS2. This abundance is in part due to the fact that our system contains some redundancy,

unlike the system in [17]. However we expect that specializing the Ansatz on M8 a little

more, some equations turn out to be dependent.

We will now show the AdS2 ×M8 supersymmetry conditions. From (2.25a) we get:

dH3(e−φψγ)+ = −(k̃ + ιk)f , (6.23a)

dH3(eA−φψγ)− = eA(ãf + ãγ ∗8 λ(f)) , (6.23b)

dH3(eA−φψ)− = −eA(aγf − a ∗8 λ(f))− (e−φψγ)+ , (6.23c)

dH3(e2A−φψ)+ = e2A(k̃ + ιk) ∗8 λ(f) + 2(eA−φψγ)− −H1 ∧ (e2A−φψγ)+ , (6.23d)
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from (2.25b)

e2φd(e−2φω)5 = −ιk ∗8 H1 + (eφψγ , f)6 , (6.24a)

e2φ−Ad(e−2φ+Aω)4 = −ãγ ∗8 H3 − eφ(ψγ , f)5 , (6.24b)

e2φ−Ad(e−2φ+Aω̃γ)4 = −a ∗8 H3 − eφ(ψ, f)5 + e−A(ω)5 , (6.24c)

e2φ−2Ad(e−2φ+2Aω̃γ)3 = ιk ∗8 H3 + eφ[(ψ, f)4 + (ψγ , ∗8λ(f))4]− 2e−A(ω)4 , (6.24d)

and in the end from (2.25c)

e2φd(e−2φω̃)5 =−ι
k̃
∗8H1−

eφ

2
(ψmγ ,fm)6 , (6.25a)

e2φ−Ad(e−2φ+Aω̃)4 =−aγ∗8H3−
eφ

2
[(ψmγ ,fm)5−(ψ,∗8λ(f))5] , (6.25b)

e2φ−Ad(e−2φ+Aωγ)4 =−ã∗8H3−
eφ

2
[(ψm,fm)5+(ψγ ,∗8λ(f))5]+e−A(ω̃)5 , (6.25c)

e2φ−2Ad(e−2φ+2Aωγ)3 = ι
k̃
∗8H3−

eφ

2
[(ψm,fm)4+(ψmγ ,∗8λ(f)m)4]−2e−A(ω̃)4 . (6.25d)

Now we are left to deal with the last line of (2.25). In this case we have a scalar and a

ten-form equation, so we will get just one equation on M8 for each of them

Lkφ = 0 , e−2Ad(e2A ∗8 k̃) = 2e−AaγVol8−
eφ

4
[(ψγ , (3− deg) ∗8 λ(f))− (ψ, (5− deg)f)] .

(6.26)

As usual, these equations are equivalent to setting the supersymmetric variations of the

fields to zero. Recall that for a solution one also has to impose the Bianchi identities (2.46)

and one equation between (2.51) and (2.52).

7 4d type IIB vacua and SL(2,Z)-duality

In section 3.1 we have derived a system of necessary and sufficient conditions for super-

symmetry in the timelike case which is invariant under the SL(2,Z) symmetry of type IIB

supergravity. We can easily extend this result to the light-like case for AdSd ×M10−d or

Minkd ×M10−d solutions, for d =4, 5, 6 or 7.

Indeed in [17] it is shown that, in these cases, equation (2.25a) together with the

string calibration condition dK̃ = ιKH and the Killing spinor equation LKg = 0 are

enough to impose the supersymmetry of the solution. One can then just look at the

SL(2,R)-covariantization of (2.25a) alone. In the language of section 3.1, this is composed

of the equations

LKgE = 0 , (7.1a)

dQΘ1 −
i

2
eφdτ ∧Θ1 + i ιKG3 = 0 , (7.1b)

dΘ3 + ιKF5 + Re
(
Θ1 ∧ G3

)
= 0 , (7.1c)

dQΘ5 +
i

2
eφdτ ∧Θ5 + Θ3 ∧ G3 − iιK(∗E G3) + iΘ1 ∧ F5 = 0 , (7.1d)

d ∗E Θ3 +
1

2
Re (G3 ∧Θ5 − ∗E G3 ∧Θ1) = 0 (7.1e)
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which must be supplemented with the algebraic constraint:

G3 ∧Θ5 −Θ1 ∧ ∗EG3 + 2eφιK ∗E dτ + 2ieφdτ ∧ ∗EΘ3 = 0 . (7.2)

7.1 Application to four dimensions

Now we will provide an application of (7.1) to four-dimensional N = 1 vacuum solutions,

where as usual the metric is decomposed as d s2
10 = e2A d s2

4+d s2
M6

, the RR flux decomposes

as F = f + e4Avol4 ∧ ∗6λ(f) with f an internal form, and H is a three-form on M6 only.

The spinor Ansatz for this case is

εi = ζ+ ⊗ ηi+ + ζ− ⊗ ηi− , ζ+ = ζ∗− , ηi+ = ηi ∗− . (7.3)

Using standard notation of [17, section 4.1.1], we have the four-dimensional bispinors

ζ+ ⊗ ζ+ = v + i ∗4 v , ζ+ ⊗ ζ+ = v ∧ w (7.4)

where v is a real null vector while w = w1 + iw2 is complex, and the six-dimensional

bispinors:

η1
+η

2
+ = φ+ , η1

+η
2
− = φ− ,

ηi+η
i †
+ = (1− i ∗6 λ)(ωi0 + iωi2) , ηi+η

i †
− = ωi3 + i ∗6 ωi3

(7.5)

where φ± are complex self-dual forms while ωik are real k-forms. We again give names to

the sum and the difference of the forms generated by the same spinor:

ωk =
ω1
k + ω2

k

2
, ω̃k =

ω1
k − ω2

k

2
. (7.6)

Given the four and the six-dimensional bilinears, we can calculate, following [17], how

the ten-dimensional ones decompose:

Φ = 2Re
(
(eAv + ie3A ∗4 v) ∧ φ+ + e2Av ∧ w ∧ φ−

)
,

K = 2e−Aω0∂v , K̃ = 2eAω̃0v ,

Ω̃ = 2Re
(
−eAv ∧ ∗6ω̃2 − e3A ∗4 v ∧ ω̃2 + e2Av ∧ w ∧ ω3

)
.

(7.7)

As we have seen in section 3.1, to make more explicit the SL(2,R)-invariant structure

of the supersymmetry conditions it is convenient to express all the bilinears in terms of the

Einstein metric

gE = e2AEg4 + g6 E , gE = e−
φ
2 g = e−

φ
2
(
e2Ag4 + g6

)
, (7.8)

and to organize the components of the six-dimensional bilinears in terms of their U(1)D
charges. In particular we have five real neutral forms

α0 = e−
1
4
φIm(φ+)0 , α2 = e−

3
4
φRe(φ+)2 , k0 = e−

1
4
φω0 , α1 = e−

1
2
φφ− , (7.9)

and three complex forms

θ0 = e−
1
4
φ(ω̃0 + iRe(φ+)0) , θ2 = e−

3
4
φ(ω̃2 + iIm(φ+)2) , θ3 = e−φ(ω3 + iRe(φ−)3) ,

(7.10)
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fields U(1)D-charge

α0, α1, α2, k0, f5 0

θ0, θ2, θ3 1

Table 2. U(1)D charges of relevant fields on the internal manifold.

whose of U(1)D charge equal to +1. The ten-dimensional multiplets in terms of the six-

dimensional ones read:

Θ1 = 2eAEθ0v ,

Θ3 = 2
(
eAEv ∧ α2 − e3AE ∗4 vα0 + e2AEv ∧ w1 ∧ Reα1 − e2AEv ∧ w2 ∧ Imα1

)
,

Θ5 = 2
(
−eAEv ∧ ∗Eθ2 − e3AE ∗4 v ∧ θ2 + e2AEv ∧ w1 ∧ θ3 − e2AEv ∧ w2 ∧ ∗Eθ3

) (7.11)

where ∗E is a shorthand for ∗6 , E . We apply the same logic also to redefine fluxes:

G = f3 − ie−φH , τ = C0 + ie−φ , F5 = f5 + e4AEVol4 ∧ ∗Ef5 . (7.12)

The U(1)D charges for the new forms are given in table 2.

Now it is enough to substitute (7.11) in (7.1) to get the SL(2,R) invariant conditions

for four-dimensional vacua. Since the four-dimensional spinor must be a Killing spinor in

order to preserve the isometry of the vacuum, its behavior under the action of the external

derivative can be computed (see for example [52, (2.13)]):

dv = 2µ v ∧ w1 , d(v ∧ w) = −3iµ ∗4 v , d ∗4 v = 0 , (7.13)

where µ is related to the cosmological constant by Λ = −3|µ|2.

Now we can show the supersymmetry conditions, which are the generalization of [23]

to the case θ0 6= 0 is allowed.9 For an AdS4 ×M6 solution (µ 6= 0) they read

θ0 = 0 , k0 = c+e
AE , (7.14a)

d(e2AEReα1) + 2µeAEα2 = 0 , (7.14b)

d(e3AEα0)− k0e
3AE ∗E f5 + 3µe2AEImα1 = 0 , (7.14c)

dQ(eAE ∗E θ2) +
i

2
eφ+AEdτ ∧ ∗Eθ2 + eAEα2 ∧ G = 0 , (7.14d)

dQ(e2AEθ3) +
i

2
eφ+2AEdτ ∧ θ3 + e2AEReα1 ∧ G − 2µeAE ∗E θ2 = 0 , (7.14e)

dQ(e2AE ∗E θ3) +
i

2
eφ+2AEdτ ∧ ∗Eθ3 + e2AEImα1 ∧ G = 0 , (7.14f)

dQ(e3AEθ2) +
i

2
eφ+3AEdτ ∧ θ2 − e3AEα0G + ie3AEk0 ∗E G + 3µe2AE ∗E θ3 = 0 , (7.14g)

d(e2AE ∗E Imα1) +
e2AE

2
Re(θE ∧ G) + 2µeAE ∗E α0 = 0 , (7.14h)

d(e2AE ∗E Reα1)− e2AE

2
Re(∗Eθ3 ∧ G) = 0 , (7.14i)

d(e3AE ∗E α2)− e3AE

2
Re(θ2 ∧ G)− 3µe2AE ∗E Reα1 = 0 , (7.14j)

9Since Reθ0 is the difference of the norms of the two spinors, θ0 6= 0 corresponds to allowing spinors

with not-equal norm.
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while for Mink4 ×M6 solutions (µ = 0)

dQ(eAEθ0)− i

2
eφ+AEθ0dτ = 0 , k0 = c+e

AE , (7.15a)

d(eAEα2)− eAERe(θ0G) = 0 , d(e2AEα1) = 0 , (7.15b)

d(e3AEα0)− k0e
3AE ∗E f5 = 0 , (7.15c)

dQ(eAE ∗E θ2) +
i

2
eφ+AEdτ ∧ ∗Eθ2 + eAEα2 ∧ G + ieAEθ0f5 = 0 , (7.15d)

dQ(e2AEθ3) +
i

2
eφ+2AEdτ ∧ θ3 + e2AEReα1 ∧ G = 0 , (7.15e)

dQ(e2AE ∗E θ3) +
i

2
eφ+2AEdτ ∧ ∗Eθ3 + e2AEImα1 ∧ G = 0 , (7.15f)

dQ(e3AEθ2) +
i

2
eφ+3AEdτ ∧ θ2 − e3AEα0G + ie3AEk0 ∗E G = 0 , (7.15g)

d(e2AE ∗E Imα1) +
e2AE

2
Re(θE ∧ G) = 0 , (7.15h)

d(e2AE ∗E Reα1)− e2AE

2
Re(∗Eθ3 ∧ G) = 0 , (7.15i)

d(e3AE ∗E α2)− e3AE

2
Re(θ2 ∧ G) = 0 . (7.15j)

As said before, this equations must be supplemented with the algebraic constraint (7.2)

which, in terms of the internal-space forms, reads:

θ3 ∧ G + 2ieφdτ ∧ ∗EImα1 = 0 ,

∗Eθ3 ∧ G − 2ieφdτ ∧ ∗EReα1 = 0 ,

θ2 ∧ G − 2ieφdτ ∧ ∗Eα2 − 2eφk0 ∗E dτ = 0 .

(7.16)

At first sight the systems (7.14) and (7.15) seem to contain a huge amount of equations

compared to pure spinor equations of [6], which are just three. However this is due to the

fact that to write the system in SL(2,Z)-invariant form we had to write all form degrees

separately. In fact the total number of equations is actually the same as in [6].

Acknowledgments

We would like to thanks N. Macpherson and A. Zaffaroni for useful discussions. We are

supported in part by INFN.

A Some properties of spinors

In this section we will review some properties of ten-dimensional spinors.

The Clifford multiplication of a single gamma matrix γM with Ck, defined as in (2.3),

can be rewritten in terms of some familiar operations on the corresponding forms:

−→γ MCk = γM Ck = (dxM ∧+ιM )Ck ,
←−γ MCk = Ck γ

M = (−)k(dxM ∧−ιM )Ck (A.1)

where ιM indicates contraction along direction M .
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We can also combine these operators with the action of γ in (2.5):

−→γ M−→γ = −−→γ −→γ M , ←−γ M−→γ = −→γ←−γ M . (A.2)

It follows that

dxM ∧ −→γ = −−→γ ιM , ιM−→γ = −−→γ dxM . (A.3)

From the definition of λ just below (2.5) we also get

λ(dxM∧Ck) = (−)kdxM∧λ(Ck) , λ(ιMCk) =−(−)kιMλ(Ck) , λ(γM Ck) =λ(Ck)γ
M .

(A.4)

The generalization of (2.2) to any bispinor C reads:

C =

10∑
k=0

1

32k!
tr(C γMk...M1

) γM1...Mk . (A.5)

In particular, for C = ε⊗η, by cyclicity of the trace one gets

ε⊗ η =

10∑
k=0

1

32k!
(η γMk...M1

ε) γM1...Mk , (A.6)

and, by imposing η = ε, we get back to (2.2).

The Chevalley-Mukai pairing between two forms A and B defined in (2.26) is also

related to a bispinor trace by

(A,B) = −(−1)deg(A)

25
tr(∗AB) . (A.7)

B Sufficiency of the main system

In this appendix we will describe the proof of the sufficiency of (2.25) for supersymmetry.

We will work only with IIB theory; the discussion for IIA is analogous.

In the notation of [17], the supersymmetry conditions read(
DM −

1

4
HM

)
ε1 +

eφ

16
F γM ε2 = 0 ,

(
D − 1

4
H − ∂φ

)
ε1 = 0 , (B.1a)(

DM +
1

4
HM

)
ε2 +(−)|F |

eφ

16
λ(F ) γM ε1 = 0 ,

(
D +

1

4
H − ∂φ

)
ε2 = 0 , (B.1b)

where the sign (−)|F | = (−)deg(F ) is the only difference between IIA and IIB. Acting with
−→γ M on the two equations on the left and subtracting the ones on the right side we also

obtain the original dilatino equations:(
∂φ− 1

2
H

)
ε1 +

eφ

16
γM F γM ε2 = 0 (B.2a)(

∂φ+
1

2
H

)
ε2 +(−)|F |

eφ

16
γM λ(F ) γM ε1 = 0 . (B.2b)

During calculations we will also need the transposed version of these equations.
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B.1 Structure groups and intrinsic torsion

We first review some spinorial geometry in ten dimensions, following [17] (especially sec-

tion 2 and appendix B there), to which we refer for details.

A spinor leads to a reduction of the structure group of the tangent bundle to its

stabilizer. Let us determine the structure group defined by a spinor ε of chirality +. For

convenience, we choose a frame in which K = e− is part of the vielbein:

e+ · e− =
1

2
, e± · e± = 0 , e± · eα = 0 , eα · eα = 1 , (B.3)

with α = 1, . . . , 8. This choice of indices suggests to decompose the Clifford algebra as

Cl(1, 9) ' Cl(1, 1)⊗ Cl(0, 8), so that we can rewrite

ε = | ↑ 〉 ⊗ η , (B.4)

in terms of a two-dimensional | ↑〉 and of an eight-dimensional Majorana-Weyl spinor η.

We can now look at the infinitesimal action of a Lorentz transformation on ε to compute

its stabilizer:

δ ε = ωMN γ
MN ε , ωMN γ

MN ∈ spin(1, 9) . (B.5)

Since K ε = γ− ε = γ+ ε = 0, we have that γ+α annihilates ε. Moreover the eight-

dimensional spinor η is annihilated by 21 out of 28 of the eight-dimensional gamma matrices

γαβ ; so we can write:

stab(ε) = span{ω21
αβ γ

αβ , γ+α} . (B.6)

The elements ω21
αβ γ

αβ are in the adjoint representation of Spin(7). Moreover because

[γαβ , γ
+δ] = 2δδ[α γ

+
β] we have that

Stab(ε) = Spin(7) nR8 = ISpin(7) , (B.7)

where ISpin is the inhomogeneous spin group, in analogy with ISO(n) for inhomogeneous

SO(n) groups.

We expect that the same structure group can be deduced also by using the forms

generated by ε. Let’s start from the stabilizer of K; since K is null

Stab(K) = ISO(8) = SO(8) nR8 . (B.8)

(2.13)–(2.14) tell us that the four-form Ψ contains only components which are orthogonal

to K different from K itself; i.e., in the basis (B.3), only α components. If we restrict

our original spinor ε to this eight-dimensional subspace we obtain the eight-dimensional

Majorana-Weyl spinor η defined in (B.4), which is known to give rise to a Spin(7) structure.

In fact Ψ is nothing but the four-form that describes this Spin(7) structure which we can

find in the eight-dimensional bispinor η⊗ηt. The local Lorentz transformations that leaves

Ψ invariant reduce SO(8) to Spin(7) and then we have again

Stab(K,Ω) = ISpin(7) . (B.9)
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The stabilizer (B.6) of the infinitesimal action of a Lorentz transformation on ε is 29

dimensional. The orbit of the Lorentz group action, which is given by all spinors that can

be written as γMN ε, has the dimension of Spin(9, 1) minus the dimension of the isotropy

group, which is 45 − 29 = 16. Since the space of Majorana-Weyl spinors with the same

chirality is 16-dimensional,

{γMN ε} (B.10)

is a basis for the space of spinors with the same chirality as ε. For Majorana-Weyl spinors

with opposite chirality, we can find a basis by picking a particular spinor with negative

chirality and acting on it with γMN . A natural choice for this spinor is γ+ ε, and hence

our basis for spinors with chirality opposite to ε is

{γMN γ+ ε} . (B.11)

Type II theories actually contain two fermionic parameters ε1,2. Each one of them

defines an ISpin(7) structure. To evaluate the stabilizer of ε1,2 in SO(1, 9) we have to

look at the intersection of the two copies of ISpin(7). Various possibilities exist for this

intersection and for the G-structure on M10; for details see [17, section 2.2]. In fact the

common stabilizer of ε1,2 may change from a point to another even for a single solution.

However, in the spirit of generalized complex geometry, we can try to define the com-

mon stabilizer on the generalized tangent bundle TM10⊕T ∗M10. Considering the bilinears

defined by ε1,2 as spinors on this generalized tangent bundle, we are able to define a struc-

ture group as a subgroup of O(10, 10). The action of Cl(10, 10) can be decomposed as

two copies of ordinary Cl(9, 1) gamma matrices acting from the left and from the right

of a bispinor as in (A.1). For example, the presence of a metric and a B field on M10

restricts the structure group to o(9, 1)× o(9, 1) = span{←−γ MN ,−→γ MN}. If moreover we add

as geometric data also the two spinors ε1 and ε2 we have a basis of the type (B.10)–(B.11)

associated to both, we will the use a subscript 1 or 2 to distinguish index relative to ε1
from the index relative to ε2. The common stabilizer therefore reads:

stab(g,B, ε1, ε2) = span{ωα1β1
21
−→γ α1β1 ,

−→γ −1α1 , ω
α2β2
21
←−γ α2β2 ,

←−γ −2α2} = ispin(7)× ispin(7) .

(B.12)

Now let’s evaluate the stabilizer of our bilinears, it is easy to see that:

stab(Φ) = span

{
ωα1β1

21
−→γ α1β1 ,

−→γ −1α1 , ω
α2β2
21
←−γ α2β2 ,

←−γ −2α2 ,
−→γ −1+1 +←−γ −2+2

−→γ −1
←−γ α2 ,

−→γ −1
←−γ +2 ,

−→γ α1
←−γ −2 ,

−→γ +1
←−γ −2 ,

−→γ −1
←−γ −2

}
,

stab(εi εi) = span

{
ωαiβi21

−→γ αiβi ,
−→γ −iαi , ω

αiβi
21
←−γ αiβi ,

←−γ −iαi ,
−→γ −i+i +←−γ −i+i−→γ −i

←−γ αi ,
−→γ −i
←−γ +i ,

−→γ αi
←−γ −i ,

−→γ +i
←−γ −i ,

−→γ −i
←−γ −i

}
.

(B.13)

In the timelike case, since K2 = 1
2K1 · K2 6= 0, we are allowed to choose e+1 ∼ K2 and

e+2 ∼ K1 and therefore the common stabilizer reads:

stab(Φ,Ω1,Ω2) ⊆ span{ωα1β1
21
−→γ α1β1 , ω

α2β2
21
←−γ α2β2} = spin(7)× spin(7) (B.14)

where we considered Ωi instead of εi εi since in the timelike case Φ alone is enough to

determine K1 and K2. So we discovered that in the timelike case the differential forms we
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have in (2.25) contain enough information to define the metric, the B field and two spinors.

However, to prove the sufficiency we must find a way to count the independent components

of the supersymmetry equations. Along the lines of [24, section A.4] we can define:(
DM −

1

4
HM

)
ε1 = Q1

MNP γ
NP ε1 ,

(
D − 1

4
H − ∂φ

)
ε1 = T 1

MN γ
MN γ+1

ε1 ,(
DM +

1

4
HM

)
ε2 = Q2

MNP γ
NP ε2 ,

(
D +

1

4
H − ∂φ

)
ε2 = T 2

MN γ
MN γ+2

ε2 .

(B.15)

There is no assumption so far: the left hand sides are spinors that can be expanded on

our basis and the Q’s and T ’s are coefficients of this expansion. They can be viewed as

intrinsic torsion coefficients. Notice that some elements of the expansion are trivially zero

because belong to the stabilizers of ε1 and ε2, so we can put to zero the corresponding

intrinsic torsion components:

QaMαa+a = 0 , ωαaβa21 QaMαaβa = 0 , T aαa−a = 0 , ωαaβa21 T aαaβa a = 1, 2 . (B.16)

For the same reason, we can assume that the Q’s are antisymmetric in their last two indices

while the T ’s are totally antisymmetric. Now, tensoring two copies of (B.10)–(B.11), we

can produce a basis for the space of bispinors from the spinors one:

γMN ε1 ε2 γPQ , γMN γ+1
ε1 ε2 γ+2

γPQ , γMN γ+1
ε1 ε2 γPQ , γMN ε1 ε2 γ+2

γPQ .

(B.17)

In IIB, the first two sets of generators are a formal sum of odd forms while the second two

are a sum of even ones. F is sum of odd forms and furthermore it is self dual: γ F = F .

This tells us that it will be a linear combination of the first set of generators:

F = RMNPQ γ
MN ε1 ε2 γ

PQ , (B.18)

and moreover we also have that

λ(F ) = RMNPQ γ
QP ε2 ε1 γ

MN . (B.19)

Replacing (B.18) and (B.19) in (B.1) and, comparing them with (B.15), we get:

Q1
MNP = 4 eφRNPM−2 , T 1

MN = 0 ,

Q2
MNP = 4 eφR−1MNP , T 2

MN = 0 .
(B.20)

These are the supersymmetry equations rewritten in terms of intrinsic torsion components.

For what follows, it is also useful to rewrite (B.2): combining equations (B.15) we get(
∂φ− 1

2
H

)
ε1 = Q1

MNP γ
M γNP ε1−T 1

MN γ
MN γ+1

ε1 , (B.21a)(
∂φ+

1

2
H

)
ε2 = Q2

MNP γ
M γNP ε2−T 2

MN γ
MN γ+2

ε2 . (B.21b)
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B.2 Intrinsic torsion for form equations

We will now rewrite all the equations derived in the previous subsection in the language

of the intrinsic torsion components Q and T . The intrinsic torsion components for equa-

tion (2.25a) were derived in [17]:

Q1
MNα1

= 4 eφRNα1M−2 (M 6= +2) , T 1
α1β1 = 0 , (B.22a)

Q2
MNα2

= 4 eφR−1MNα2 (M 6= +1) , T 2
α2β2 = 0 , (B.22b)

Q1
α2+1−1

+ T 2
α2+2

= 4 eφR+1−1α2−2 , T 2
+2−2

= −2Q1
−2+1−1

, (B.22c)

Q2
α1+2−2

+ T 1
α1+1

= 4 eφR−1α1+2−2 , T 1
+1−1

= −2Q2
−1+2−2

. (B.22d)

In order to prove sufficiency of (2.25) for supersymmetry, we have to show that the last

three equations of the system contain the intrinsic torsion equations that appear in (B.20)

and do not appear in (B.22).

Let’s start from the six-form equations first, (2.25b), (2.25c) (recall that we are looking

at IIB). Since the intrinsic torsion components inside the equations for dΩ and dΩ̃ is the

same as the one we will find evaluating dΩ1 and dΩ2 separately, we can directly start from

the latter. Replacing (B.15) and (B.21) inside (2.30) we get:

2 e2φ d(e−2φ ε1 ε̄1) + 2ιH ε1 ε̄1

= 2T 1
MN

(
γMN γ+1

ε1 ε̄1 + ε1 ε̄1 γ+1
γMN

)
(B.23)

−Q1
MNP

(
γM ε1 ε̄1 γ

NP + γNP ε1 ε̄1 γ
M + γM γNP ε1 ε̄1 + ε1 ε̄1 γ

NP γM
)
.

Notice that the terms in the first bracket are independent, because they are tensor products

of spinors with different chirality.

The situation is a little more complicated for the second bracket in (B.23). First of all,

since γ+1 annihilates ε1 and commutes with all the γα1 , the components of Q1
MNP with

Q1
+1α1β1 (B.24)

are absent from it. Moreover, the bracket contains tensor products of spinors with the

same chirality which can therefore add up to zero: indeed{
γM γNP ε1 = c γM ε1
γNP ε1 = c ε1

(B.25)

has solution for γNP = γ+1−1 and c = 2. So in fact also the components

Q1
M+1−1

(B.26)

are absent.

(B.23) gives independent equations for the remaining components of Q1
MNP and for

T 1
MN . In other words, no choice of indices in Q1

MNP and in T 1
MN multiply the same

bispinor. If we focus on tensor products of spinors with −+ chirality, we need to compare

the first T 1
MN term (γMNγ+1ε1ε1) with the first and third Q1

MNP terms (γM ε1ε1γ
NP and
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γMγNP ε1ε1). If we want to sum the first T 1
MN term with the first and third Q1

MNP terms

we have to choose NP to be such that γNP ε1 = ε1, which has solution for NP = +1−1;

but in this case the first and third Q1
MNP terms actually cancel. We can have that the first

T 1
MN term can sum with the second Q1

MNP term, but in this case the first Q1
MNP term

multiplies a different bispinor and implies a separate equation.

If we now replace (B.18) and (B.19) in (2.31) and use ε̄2 γ
PQ γS ε2 = 64K

[P
2 δ

Q]
S we have

2 e2φ d(e−2φ ε1 ε̄1) + 2ιH ε1 ε̄1 = 4 eφRMN−2Q

(
γQ ε1 ε̄1 γ

MN + γMN ε1 ε̄1 γ
Q

+ γQ γMN ε1 ε̄1 + ε1 ε̄1 γ
MN γQ

)
.

(B.27)

Comparing (B.23) and (B.27) we can extract the content of (2.31) in terms of intrinsic

torsion:

Q1
MNP = 4 eφRNPM−2 with MNP 6= +1α1β1 , M +1 −1

T 1
MN = 0 .

(B.28)

A similar procedure can be applied to (2.33) and leads to

Q2
MNP = 4 eφR−1MNP with MNP 6= +2α2β2 , M +2 −2

T 2
MN = 0 .

(B.29)

Notice that (B.28)–(B.29) are not yet the intrinsic torsion component for the equations

for dΩ1,2 because we still have to project (2.31) and (2.33) on the six-form part (they include

also a two-form and a ten-form part). It may happen that projecting on the six-form part

makes one lose some intrinsic torsion equations in (B.28)–(B.29). In other words, at this

point some of those equations might be actually due to the two-form and ten-form, rather

than to the six-form part we’re interested in.

Moreover, (2.25b)–(2.25c) does not help us find anyway all the missing component

of (B.22). First of all some components are missing from both systems; for example we

never get Q1
+2+1−1

. More troubling still, in the new intrinsic equations (B.28)–(B.29) the

missing Q1
MNP components are written with the first index being of 1 type, whereas in all

the equations in (B.22) the missing components of Q1
MNP are written with the first index

being of 2 type. In the most general case, we cannot even compare the two types of indices.

In the light-like case, for example, +1 is equal to +2; in the timelike case, this is no longer

true, and +1 might even be taken to be −2.

All this suggests that we simplify the problem by restricting ourselves to one case; for

reasons that will become clear, we have found it easier to work with the timelike case,

which as we explained in the introduction is actually generic.

B.3 Intrinsic torsion in the timelike case

In this case, K1 and K2 are two different null vectors: we can choose them to define the

+ and − indices respectively, and we can define the remaining eight indices α to be the

directions orthogonal to them. In other words:

e+1 = e−2 , e−1 = e+2 , eα1 = eα2 ≡ eα . (B.30)
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We stress that K1 and K2 are not equal but just proportional to the vielbein vectors since

in general K1 ·K2 6= 1
2 . However, since all the computations in this section are algebraic,

this difference doesn’t really matter and we are free to ignore this normalization.

We can now go back to the problem of taking the six-form part of (B.28)–(B.29).

Starting from

2 e2φ d(e−2φ Ω1) + 2ιK1 ∗H = 2T 1
MN

(
γMN γ+1 ε1 ε̄1 + ε1 ε̄1 γ+1 γ

MN
)

6

−Q1
MNP

{
γM ,

{
γNP , ε1 ε̄1

}}
6

;
(B.31)

we will try to see if it contains equations for the components of Q and T that appear

in (B.20) and not in (B.22).

We will start from the T components for which we would like to have an equation,

namely T 1
α+1

and T 1
+1−1

. The first, T 1
α+1

, appears in (B.31) multiplying(
γα+1 γ+1

ε1 ε̄1 + ε1 ε̄1 γ+1
γα+1

)
6

= 2 (γα ε1 ε̄1 − ε1 ε̄1 γα)6

= 4 dxα ∧ Ω1 = 4 dxα ∧Ψ1 ∧K1 .
(B.32)

Ψ1 is the Spin(7) four-form associated to the spinor ε1 via (2.14); it is not annihilated by

the wedge product with any one-form. So the components T 1
α+1

do appear in (B.31). As

for T 1
+1−1

, it appears in (B.31) multiplied by

(
γ−1+1 γ+1

ε1 ε̄1 + ε1 ε̄1 γ+1
γ−1+1

)
6

=
(
γ+1 ε1 ε̄1 + ε1 γ+1 ε1

)
6

= 2K2 ∧ Ω1 6= 0 ,
(B.33)

so also T 1
+1−1

does appear in (B.31).

Now let us consider the Q terms. This time we are interested in the components Q1
−1αβ

,

Q1
−1−1α. For the first, Q1

−1αβ
, we see that it appears in (B.31) with{

γ−1 ,
{
γαβ , ε1 ε̄1

}}
6

= 2ιK2

{
γαβ , ε1ε̄1

}
7

= 2γ
[
K2 ∧

{
γαβ , ε1ε̄1

}
3

]
= 2γ

[
K2 ∧K1 ∧

{
γαβ , η1η

t
1

}
2

]
,

(B.34)

where η1 is the eight-dimensional part of ε1 (as in (B.4)). Now, the bispinor
{
γαβ , η1η

t
1

}
only has a two-form and a six-form part. (This can be seen for example by writing it as

η̃1η
t − η1η̃

t.) Moreover, it is invariant under left multiplication by the eight-dimensional

chiral matrix, so it is self-dual; thus the six-form part is the eight-dimensional Hodge dual

of the two-form part. We thus conclude that (B.34) is zero if and only if
{
γαβ , η1η

t
1

}
= 0.

This could only happen if

γαβ η1 = cη1 (B.35)

for some real c. Contracting this from the left by ηt1 however gives c = 0. Another way of

seeing this is that, as seen above (B.6), γαβ η is non-zero only for seven linear combinations;

and those are independent from η, since they form with it a basis for eight-dimensional

spinors. Since those seven combinations are the only ones that matter in QMαβ , see (B.16),
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we conclude that the components Q1
−1αβ

are all present in (B.31). For Q1
−1−1α we can

proceed similarly: it multiplies{
γ−1 ,

{
γ−1α, ε1 ε̄1

}}
6

= 2γ
[
K2 ∧

{
γ−1α, ε1ε̄1

}
3

]
= 4(K1 ·K2) γ (ιαΨ1 ∧K2) , (B.36)

where in the last step we have used that {γMN , ·} = 2(dxM ∧ dxN + ιM ιN ) on even forms

(which follows from (A.1)). (B.36) is always nonzero because the Spin(7) four-form Ψ is

never annihilated by any single contraction.

We have shown that T 1
α+1

, T 1
+1−1

, Q1
−1αβ

, Q1
−1−1α are present in (B.31); they occur

multiplying (B.32)–(B.36). Now we also observe that those forms are all independent; to

see this, it is enough to look at the way the Ki appear. Thus, (B.31) gives equations for

all of these components. Moreover, once we assume (B.22a), in fact T 1
α+1

, T 1
+1−1

, Q1
−1αβ

,

Q1
−1−1α are the only intrinsic torsions appearing in (B.31). So there is also no danger of

them mixing with anything else.10 In other words, after assuming (B.22a), the left-hand

side of (B.31) consists of the four terms (B.32)–(B.36), multiplied by T 1
α+1

, T 1
+1−1

, Q1
−1αβ

,

Q1
−1−1α respectively. Since (B.31) follows from supersymmetry, we conclude that it gives

us the equations (B.20) for these components.

Going back to (B.22c), we now also obtain (B.20) for Q1
α2+1−1

, Q1
−2+1−1

.

The same steps can be used also for Q2, T 2. We then conclude that the five-form equa-

tions (2.25b), (2.25c) have all the missing components of (B.22) except Q1
+2+1−1

= Q1
−1+1−1

and Q2
+1+2−2

= Q2
+1−1+1

.

These however can be found in (2.25d). Multiplying (B.21a) on the left by ε1
and (B.21b) by ε2 we get from the sum:

1

64
(ε̄1∂φ ε1 +ε̄2∂φ ε2) = Q1M

M−1
− T 1

−1+1
+Q2M

M−2
− T 2

−2+2
= 0 . (B.37)

The left-hand side is nothing but LKφ. Since we have proven that all the T component

are zero, we have

Q1M
M−1

= −Q2M
M−2

. (B.38)

Let us now see the intrinsic torsion of the second in (2.25d). From (B.15) we get

DMK̃
M =− 1

64

(
Q1
MPQ ε1

[
γPQ,γM

]
ε1−Q2

MPQ ε2
[
γPQ,γM

]
ε2
)

=−2Q1M
M−1

+2Q2M
M−2

;

(B.39)

on the other hand, using (B.18),

DMK̃
M = −4 eφ

322
ε1 γM F γM ε2 = −4 eφ

322
RRSPQ

(
ε1 γM γRS ε1 ε2 γ

PQ γM ε2
)

= −16 eφR−1MN−2 .

(B.40)

Therefore, (2.25d) overall gives the two conditions

Q1M
M−1

= −Q2M
M−2

= 4 eφR M
−1 M−2

. (B.41)

10Indeed we also observed that the equations in (B.22a) which mixed Q and T always contains a term

like QiM+i−i
, for which we proved that it cannot appear in the 6-form equations. Therefore we will never

have the same mixed component, which means that the Q and T intrinsic torsion is always decoupled.
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Since in fact we have obtained equations for all the Q components except Q1
+2+1−1

=

Q1
−1+1−1

and Q2
+1+2−2

= Q2
+1−1+1

, only these two components survive in the sum, and

then we get the desired missing equations.

This completes the proof that (2.25) is sufficient for supersymmetry.

C Dualities

In this appendix we collect some details about S- and T-duality.

C.1 S-duality

First of all let us summarize the SL(2,R) formalism of type IIB supergravity. Given a

general element

Λ =

(
α β

γ δ

)
∈ SL(2,R) , (C.1)

the following transformation is a symmetry of the action:

τ ′ =
ατ + β

γτ + δ
, F ′5 = F5, g′ = |γτ + δ|g ,

(
C ′2
B′

)
=

(
α β

γ δ

)(
C2

B

)
, (C.2)

where τ = C0 + ie−φ. From these rules we can derive how potentials transform. From

F ′5 = F5 we get

dC ′4 = dC4 − dB ∧ C2 + dB′ ∧ C ′2
= dC4 + βδB ∧ dB + βγ(B ∧ dC2 + dB ∧ C2) + αγC2 ∧ dC2

(C.3)

and thus

C ′4 = C4 + βγB ∧ C2 +
1

2
(αγC2 ∧ C2 + βδB2 ∧B2) . (C.4)

Moreover, performing an S-duality on the equation F7 = − ∗ F3 we get:

d(C ′6) = − ∗′ dC ′2 + C ′0 ∗′ H ′ +H ′ ∧ C ′4 . (C.5)

Under conformal transformation g → α2g the Hodge dual of a k-form Ωk transforms as

∗Ωk → αD−2k ∗ Ωk. Using this, we can explicitly evaluate (C.5):

d(C ′6) = γe−2φ∗H+(C0γ+δ)dC6−γC0C4∧dB+γC4∧dC2+
1

2
(βδ2B2∧dB

+βγδB2∧dC2+βγδB∧C2∧dB+βγ2B∧C2∧dC2+αγδC2
2∧dB+αγ2C2

2∧dC2)

= γ dB̃+δdC6+
1

2

(
γ(C0 dC6+dC0∧C6+C4∧dC2+dC4∧C2)+βδ2B2∧dB

+βγδB2∧dC2+βγδB∧C2∧dB+βγ2B∧C2∧dC2+βγ2C2
2∧dB+αγ2C2

2∧dC2

)
(C.6)

From the last line one can check that the correct transformation rule for C6 is

C ′6 = γB̃ + δC6 +
γ

2
(C0C6 + C4 ∧ C2 + βB ∧ C2 ∧ (δB + γC2)) +

1

3

(
βδ2B3 + αγ2C3

2

)
.

(C.7)
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Another important ingredient we need is how the bilinears transform under SL(2,R).

The spinors transform under a U(1)D subgroup of the original SL(2,R) symmetry, indeed

the transformation rule reads(
ε′1
ε′2

)
= |γτ + δ|

1
4

(
cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

)(
ε1
ε2

)
(C.8)

where θ = arg(γτ + δ). Therefore we have that K,Φ3, Ω̃ are singlets:

K ′ = |γτ + δ|K , Φ′3 = |γτ + δ|2Φ3 , Ω̃′ = |γτ + δ|3Ω̃ . (C.9)

The other bilinears are components of a doublet:

(K̃ + iΦ1)′ = |γτ + δ|eiθ(K̃ + iΦ1) = (γτ + δ)(K̃ + iΦ1) ,

(Ω + iΦ5)′ = |γτ + δ|3eiθ(Ω + iΦ5) = |γτ + δ|2(γτ + δ)(Ω + iΦ5) .
(C.10)

For completeness, we also give the transformation rule for the other fluxes:

F ′1 =
|γτ + δ|2 dC0 − 2γ2e−φ(e−φ dC0 − (C0 + δ/γ) d e−φ)

|γτ + δ|4
,

F ′3 =
(γC0 + δ)F3 − γe−2φH

|γτ + δ|2
, H ′ = (C0γ + δ)H + γF3 ,

F ′7 = (γC0 + δ)F7 + γe−2φ ∗H , (e−2φ ∗H)′ = e−2φ (γC0 + δ) ∗H − γF7

|γτ + δ|2
.

(C.11)

As an application of what we have just seen, we can check that the D5 calibration (4.5)

gives the NS5 one (4.12) after a simple S-duality (4.13). In this particular case the trans-

formation rule reads:

C ′0 = − C0

|τ |2
, e−φ

′
=
e−φ

|τ |2

C ′2 = −B , B′ = C2 , C ′4 = C4 −B ∧ C2 ,

C ′6 = B̃ +
1

2
(C0C6 + C4 ∧ C2 − C2 ∧ C2 ∧B) .

(C.12)

The D5 calibration is more explicitly given by

ϕD5 =
(
e−B ∧ (e−φΦ− (ιK + K̃∧)C)

)
5
. (C.13)

We expand e−B and transform the resulting terms one by one. We begin with the B2 term:(
1

2
B2 ∧

(
e−φΦ1 − ιKC2 − K̃C0

))′
=

1

2
C2

2 ∧ (K̃ + ιKB) . (C.14)

Notice that e−φΦ1 − ιKC2 − K̃C0 is the D1 calibration, while K̃ + ιKB is the calibration

for a fundamental string, in agreement with the S-duality. Next we transform the term

linear in B:(
−B∧

(
e−φΦ3−ιKC4−K̃∧C2

))′
= −C2∧

(
e−φΦ3−ιK(C4−B∧C2)+(C0K̃−e−φΦ1)∧B

)
,

(C.15)
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and finally(
e−φΦ5 − ιKC6 − K̃ ∧ C4

)′
= e−2φΩ̃ + e−φC0Φ5 − ιKB̃

− 1

2
ιK(C0C6 + C4 ∧ C2 − C2

2 ∧B)− (C0K̃ − e−φΦ1) ∧ C4 + (C0K̃ − e−φΦ1) ∧ C2 ∧B .

(C.16)

Summing up we find(
e−B ∧ (e−φΦ− (ιK + K̃∧)C)

)′
5

= e−2φΩ̃ + e−φC0Φ5 − e−φC2 ∧ Φ3 + e−φΦ1 ∧ C4

− C0K̃ ∧ C4 +
1

2
C2 ∧ C2 ∧ K̃ − ιKB̃ −

1

2
(C0ιKC6 + C4 ∧ ιKC2 − ιKC4 ∧ C2) = ϕIIB

NS5 ,

(C.17)

which is exactly what we were looking for.

C.2 Flat-index T-duality

In this section, following [53], we will revisit the T-duality formalism of section 3.2 using

flat-index notation. The benefits of this formulation are that the transformation rules of

fields and bilinears assume a simpler form, especially for the five-form (3.19). This makes

particularly easy to check that the longitudinal part of (2.25b) and (2.25c) is invariant;

however, we will partially lose the explicit O(d, d) interpretation we had in section 3.2.

We again assume that we can define a compact and isometric direction ∂y. We decom-

pose the fields as:

d s2
10 = d s2

9,A + e2C(d y +A1)2, B = B2 +B1 ∧ d y , F = F⊥ + F‖ ∧ Ey ,

Φ = Φ⊥ + Φ‖ ∧ Ey , K = k1 + k0E
y , K̃ = k̃1 + k̃0E

y ,

Ω = ω5 + ω4 ∧ Ey , Ω̃ = ω̃5 + ω̃4 ∧ Ey , Ey = eC(d y +A1) .

(C.18)

Using section 3.2, one can perform a T-duality from IIB to IIA, which in this case transforms

the components of fields and bilinears as:

d s2
9,B = d s2

9,A , φB = φA − CA , CB = −CA ,
BB

2 = BA
2 +AA1 ∧BA

1 , AB1 = −BA
1 , BB

1 = −AA1 ,

FB⊥ = eC
A
FA‖ , FB‖ = eC

A
FA⊥ , ΦB

⊥ = ΦA
‖ , ΦB

‖ = ΦA
⊥ ,

kB1 = kA1 , kB0 = kA0 , k̃B1 = k̃A1 , k̃B0 = k̃A0

ωB5 = ω̃A5 , ωB4 = ωA4 , ω̃B5 = ωA5 , ω̃B4 = ω̃A4 ,

(C.19)

where superscripts A,B denote in which theory the field is sitting. For what it follows, it

is convenient to rewrite H as

H = dB2 − dB1 ∧A1 + e−C dB1 ∧ Ey , (C.20)

where we can notice that dB2 − dB1 ∧A1 is a T-duality invariant.
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Let us now decompose (2.25b) and (2.25c) according to (C.18). The longitudinal

parts read:

d(e−2φ+Cω4) = e−2φ+Cιk1 ∗9 (dB2 − dB1 ∧A1) + e−φ+C((Φ‖, F⊥)6 − (Φ⊥, F‖)6) ,

d(e−2φ+C ω̃4) = e−2φ+Cι
k̃1
∗9 (dB2 − dB1 ∧A1)− e−φ+C

2
((Φm
‖ , F⊥m)6 − (Φm

⊥ , F‖m)6) ,

(C.21)

where m runs from 0 to 8. Using (C.19) it is immediate to see that these equations are

invariant, which is what we should expect from the calibration conditions of the NS5-brane

and the KK5-monopole, since the corresponding objects are invariant when they lie along

the T-duality direction. However, it is also easy to see that the transverse part of the KK5-

monopole equation (2.25c) does not transform in the transverse part of the NS5-brane

equation (2.25b), as it is required from the duality properties of these objects. This leads

us to think that, to make the T-duality working, the KK5-monopole equation requires

some improvement or a better interpretation in the future.

D More differential-form equations

In this appendix we will derive some form equations that do not appear in (2.25). We

will see that in most cases we will manage to arrange all the components in compact

expressions. For this purpose, we define the following bracket which is an analogous to the

Chevalley-Mukai pairing

{A,B}d =
(
A ∧ λ[(d− 2deg)B]

)
d

(D.1)

with opposite symmetry: {A,B}d = −(−)d(d−1)/2{B,A}d. For example, we can see that

the 2-form part of (2.34) and (2.39) for both IIA and IIB reads:

e2φd(e−2φK) = ∗
(
H ∧ Ω +

eφ

4
{Φ, F}8

)
,

e2φd(e−2φK̃) = ∗
(
H ∧ Ω̃ +

eφ

8
{ΦM , F

M}8
)
,

(D.2)

while from the 10-form part we have:

d
(
e2φ ∗ K̃

)
= 0 d

(
e2φ ∗K

)
= 0 . (D.3)

Some new equations can be obtained by using the two supersymmetry conditions on

the left of (B.1):

d(ε1 ε1) =
1

2

[
γM ,DM (ε1 ε1)

]
=

1

2

[
γM ,

1

4
[HM , ε1 ε1]+(−)|F |

eφ

16
(FγMλ(Φ)+ΦγMλ(F ))

]
=HM∧ιM ε1 ε1+(−)|F |

eφ

32
(γMFγMλ(Φ)+γMΦγMλ(F )−FγMλ(Φ)γM−ΦγMλ(F )γM )

(D.4)
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and

d(ε2 ε2) = −HM ∧ ιM ε2 ε2 + (−)|F |
eφ

32

(
− γMλ(F )γMΦ

− γMλ(Φ)γMF + λ(F )γMΦγM + λ(Φ)γMFγ
M
)
.

(D.5)

Taking the sum and the difference of these last two equations we get:

d

(
ε1 ε1 ± ε2 ε2

2

)
= HM ∧ ιM

(
ε1 ε1 ∓ ε2 ε2

2

)
+ (−)|F |

eφ

64

(
[γMFγ

M , λ(Φ)]±

+ [γMΦγM , λ(F )]± − [F, γMλ(Φ)γM ]± − [Φ, γMλ(F )γM ]±

) (D.6)

where [ , ]− indicates the usual commutator while [ , ]+ is the anticommutator. Analogously

to what we have seen in section 2.4, the result is different depending on whether we are

considering IIA or IIB. From the sum in IIB we get

d

(
ε1 ε1 + ε2 ε2

2

)
= HM ∧ ιM

(
ε1 ε1 − ε2 ε2

2

)
− eφ

4

(
{Φ1, F3}+ {Φ3, F1}

− {Φ3, F5} − {Φ5, F3}+ {Φ7, F1}+ {Φ1, F7}
) (D.7)

and from the difference

d

(
ε1 ε1 − ε2 ε2

2

)
= HM ∧ ιM

(
ε1 ε1 + ε2 ε2

2

)
+
eφ

4

(
4[Φ1, F1] + 2[Φ1, F5]

− 2[Φ5, F1] + 2[Φ9, F1]− 2[Φ3, F3] + [Φ7, F3]− [Φ3, F7]
)
,

(D.8)

while for IIA:

d

(
ε1 ε1+ε2 ε2

2

)
=HM∧ιM

(
ε1 ε1−ε2 ε2

2

)
+
eφ

4

(
−{Φ2,F0}+{Φ2,F4}+3{Φ2,F8}

−3{Φ6,F0}−{Φ6,F4}+{Φ4,F2}−5{Φ10,F0}−3{Φ0,F6}−{Φ0,F2}
)
,

d

(
ε1 ε1−ε2 ε2

2

)
=HM∧ιM

(
ε1 ε1+ε2 ε2

2

)
+
eφ

2

(
[Φ6,F2]−[Φ2,F6]

)
. (D.9)

Splitting the various degrees and massaging a little bit the expressions we get the 2-form

conditions:

dK̃ = ιKH , dK = ι
K̃
H − eφ

2
∗ (Φ, F )8 , (D.10)

where the first one is nothing but the F1 calibration condition. From the 6-form part we get

dΩ̃ = HM ∧ΩM − eφ

4

{
ΦM , F

M
}

6
, dΩ = HM ∧ Ω̃M − eφ

4

(
{Φ, F}+

1

4
{ΦMN , F

MN}
)

6

.

(D.11)

We need not write the ten-form part, since it was derived in section 2.4.

– 45 –



J
H
E
P
0
4
(
2
0
1
9
)
1
0
9

Notice that these equations can be used as a different definition for the exterior deriva-

tive of the bilinears, or they can be combined with the old definitions to get algebraic con-

straints. For example combining the first of (D.2) with the second of (D.10), and (D.11)

with the equation for the KK5-monopole in IIB (2.25c), we get the following relations that

turn out to be useful in section 3.1:

2F1∧Φ7−F3∧Φ5−e−φH∧Ω+e−φK̃∧∗H+Φ1∧F7+2ιK ∗de−φ = 0 ,

e−φHM∧ΩM+F3M∧ΦM
5 −ιΦ1F7+e−φι

K̃
∗H+2de−φ∧Ω̃−2F1MΦM

7 = 0 .
(D.12)

We can provide some others algebraic equations that can be obtained from (B.2). Since we

will mainly use this result in section 3.1, we will perform all the computations for type IIB.

However pure algebraic equations impose strict constraints, so we hope these equations to

be useful also for the classification of complicated cases (e.g. vacuum solutions with high

supersymmetry).

We first take the tensor product of (B.2a) with ε2 and of the transpose of (B.2b)

with ε1: (
∂φ− 1

2
H

)
Φ +

eφ

2
(2F1 + F3) ε2 ε2 = 0 ,

Φ

(
∂φ− 1

2
H

)
− eφ

2
ε1 ε1(2F1 + F3) = 0 .

(D.13)

Taking the difference of these two expressions:

0 =−2Φ∧de−φ+e−φH∧Φ−e−φ γ(HM∧ΦM )+2ιF1

ε1 ε2+ε2 ε2
2

−2F1∧
ε1 ε2−ε2 ε2

2

−F3∧
ε1 ε2−ε2 ε2

2
+FM3 ∧ιM

ε1 ε2+ε2 ε2
2

+γ

(
FM3 ∧ιM

ε1 ε2−ε2 ε2
2

)
+ιF3

ε1 ε2+ε2 ε2
2

.

(D.14)

(We recover the sum by taking γ times the difference.) The most interesting equations

come from the ten-, eight-, four- and zero-form components. They read:

2 d e−φ ∧ Φ9 + e−φH ∧ Φ7 − 2K̃ ∧ F9 = 0 , (D.15a)

2 d e−φ ∧ Φ7 + e−φH ∧ Φ5 − e−φΦ1 ∧ ∗H − 2ιKF9 − F3 ∧ Ω− K̃ ∧ F7 = 0 , (D.15b)

2ιd e−φΦ7 + e−φιΦ1 ∗H + e−φHM ∧ ΦM
5 + 2F1 ∧ Ω̃ + ι

k̃
F7 − FM3 ∧ ΩM = 0 , (D.15c)

ιKF1 = 0 . (D.15d)

where we have taken the Hodge dual of the four-form part.
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[14] D. Lüst, P. Patalong and D. Tsimpis, Generalized geometry, calibrations and supersymmetry

in diverse dimensions, JHEP 01 (2011) 063 [arXiv:1010.5789] [INSPIRE].

[15] D. Prins and D. Tsimpis, IIB supergravity on manifolds with SU(4) structure and generalized

geometry, JHEP 07 (2013) 180 [arXiv:1306.2543] [INSPIRE].

[16] D. Rosa, Generalized geometry of two-dimensional vacua, JHEP 07 (2014) 111

[arXiv:1310.6357] [INSPIRE].

[17] A. Tomasiello, Generalized structures of ten-dimensional supersymmetric solutions, JHEP 03

(2012) 073 [arXiv:1109.2603] [INSPIRE].

[18] E.J. Hackett-Jones and D.J. Smith, Type IIB Killing spinors and calibrations, JHEP 11

(2004) 029 [hep-th/0405098] [INSPIRE].

[19] J.M. Figueroa-O’Farrill, E. Hackett-Jones and G. Moutsopoulos, The Killing superalgebra of

ten-dimensional supergravity backgrounds, Class. Quant. Grav. 24 (2007) 3291

[hep-th/0703192] [INSPIRE].

[20] L. Martucci, Electrified branes, JHEP 02 (2012) 097 [arXiv:1110.0627] [INSPIRE].

– 47 –

https://doi.org/10.1016/0550-3213(86)90286-5
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B274,253%22
https://doi.org/10.1088/1126-6708/2003/04/039
https://arxiv.org/abs/hep-th/0212008
https://inspirehep.net/search?p=find+EPRINT+hep-th/0212008
https://doi.org/10.1093/qjmath/54.3.281
https://arxiv.org/abs/math/0209099
https://inspirehep.net/search?p=find+EPRINT+math/0209099
https://arxiv.org/abs/math/0401221
https://doi.org/10.1088/1126-6708/2004/08/046
https://arxiv.org/abs/hep-th/0406137
https://inspirehep.net/search?p=find+EPRINT+hep-th/0406137
https://doi.org/10.1088/1126-6708/2005/11/020
https://arxiv.org/abs/hep-th/0505212
https://inspirehep.net/search?p=find+EPRINT+hep-th/0505212
https://doi.org/10.1088/0264-9381/22/12/010
https://arxiv.org/abs/hep-th/0501177
https://inspirehep.net/search?p=find+EPRINT+hep-th/0501177
https://doi.org/10.1088/1126-6708/2005/11/048
https://arxiv.org/abs/hep-th/0507099
https://inspirehep.net/search?p=find+EPRINT+hep-th/0507099
https://doi.org/10.1088/1126-6708/2008/01/047
https://arxiv.org/abs/0710.5530
https://inspirehep.net/search?p=find+EPRINT+arXiv:0710.5530
https://doi.org/10.1007/BF02392726
https://doi.org/10.1016/S0370-2693(99)00878-3
https://arxiv.org/abs/hep-th/9902034
https://inspirehep.net/search?p=find+EPRINT+hep-th/9902034
https://doi.org/10.1103/PhysRevD.60.106006
https://arxiv.org/abs/hep-th/9905156
https://inspirehep.net/search?p=find+EPRINT+hep-th/9905156
https://doi.org/10.1088/1126-6708/2008/11/021
https://arxiv.org/abs/0807.4540
https://inspirehep.net/search?p=find+EPRINT+arXiv:0807.4540
https://doi.org/10.1007/JHEP01(2011)063
https://arxiv.org/abs/1010.5789
https://inspirehep.net/search?p=find+EPRINT+arXiv:1010.5789
https://doi.org/10.1007/JHEP07(2013)180
https://arxiv.org/abs/1306.2543
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.2543
https://doi.org/10.1007/JHEP07(2014)111
https://arxiv.org/abs/1310.6357
https://inspirehep.net/search?p=find+EPRINT+arXiv:1310.6357
https://doi.org/10.1007/JHEP03(2012)073
https://doi.org/10.1007/JHEP03(2012)073
https://arxiv.org/abs/1109.2603
https://inspirehep.net/search?p=find+EPRINT+arXiv:1109.2603
https://doi.org/10.1088/1126-6708/2004/11/029
https://doi.org/10.1088/1126-6708/2004/11/029
https://arxiv.org/abs/hep-th/0405098
https://inspirehep.net/search?p=find+EPRINT+hep-th/0405098
https://doi.org/10.1088/0264-9381/24/13/010
https://arxiv.org/abs/hep-th/0703192
https://inspirehep.net/search?p=find+EPRINT+hep-th/0703192
https://doi.org/10.1007/JHEP02(2012)097
https://arxiv.org/abs/1110.0627
https://inspirehep.net/search?p=find+EPRINT+arXiv:1110.0627


J
H
E
P
0
4
(
2
0
1
9
)
1
0
9

[21] U. Gran, J. Gutowski and G. Papadopoulos, The G2 spinorial geometry of supersymmetric

IIB backgrounds, Class. Quant. Grav. 23 (2006) 143 [hep-th/0505074] [INSPIRE].

[22] B. Heidenreich, L. McAllister and G. Torroba, Dynamic SU(2) Structure from Seven-branes,

JHEP 05 (2011) 110 [arXiv:1011.3510] [INSPIRE].

[23] B. Heidenreich, SL(2,R) covariant conditions for N = 1 flux vacua, JHEP 10 (2011) 057

[arXiv:1107.3163] [INSPIRE].

[24] M. Graña, R. Minasian, M. Petrini and A. Tomasiello, A Scan for new N = 1 vacua on

twisted tori, JHEP 05 (2007) 031 [hep-th/0609124] [INSPIRE].

[25] P. Koerber and D. Tsimpis, Supersymmetric sources, integrability and generalized-structure

compactifications, JHEP 08 (2007) 082 [arXiv:0706.1244] [INSPIRE].
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