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Ideal thermoelectric materials should possess low thermal conductivity j
along with high electrical conductivity r. Thus, strategies are needed to im-
pede the propagation of phonons mostly responsible for thermal conduction
while only marginally affecting charge carrier diffusion. Defect engineering
may provide tools to fulfill this aim, provided that one can achieve an adequate
understanding of the role played by multiple morphological defects in scat-
tering thermal energy carriers. In this paper, we study how various mor-
phological defects such as grain boundaries and dispersed nanovoids reduce
the thermal conductivity of silicon. A blended approach has been adopted,
using data from both simulations and experiments in order to cover a wide
range of defect densities. We show that the co-presence of morphological de-
fects with different characteristic scattering length scales is effective in
reducing the thermal conductivity. We also point out that non-gray models
(i.e. models with spectral resolution) are required to improve the accuracy of
predictive models explaining the dependence of j on the density of morpho-
logical defects. Finally, the application of spectral models to Matthiessen’s rule
is critically addressed with the aim of arriving at a compact model of phonon
scattering in highly defective materials showing that non-local descriptors
would be needed to account for lattice distortion due to nanometric voids.
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INTRODUCTION

The thermal conductivity j of a crystalline mate-
rial depends upon several factors, including point
defects,1 surface scattering,2 and isotopic distribu-
tion.3 Thermal conductivity may be also signifi-
cantly reduced by the introduction of morphological
defects such as dislocations, grain boundaries, pre-
cipitates, pores, and other extended (1D, 2D, and

3D) defects. In the development of high-perfor-
mance thermoelectric materials, it is of paramount
importance to optimize the efficiency of scatterers*,
that, in principle, should be selected so as to
decrease j while marginally impacting the electrical
conductivity r. This has been shown to be feasible in
several instances. Possibly the most dramatic dis-
play was provided in the case of silicon nanowires,4,5

where a proper choice of nanowire wall roughness
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*Here we deal with materials where heat carriers are mainly
phonons.
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led to a more than tenfold decrease of j while
retaining r values close to those of bulk single-
crystalline silicon. It is therefore not surprising that
over the last few years, a large number of papers
have appeared proposing more sophisticated theo-
retical approaches to the analysis of phonon scat-
tering. A key question they addressed was
regarding the contributions of optical and acoustic
phonons to the macroscopic thermal conductivity,
and how they were suppressed by morphological
defects.

In lithographically defined single-crystalline sili-
con membranes, it was shown that the introduction
of cylindrical pores with diameters ranging from 1.9
to 10.9 lm leads to a reduction of j depending on the
pore diameter up to room temperature.6 This is a
non-trivial observation if one considers that in the
gray model (i.e. using a single, effective phonon
frequency to describe the contribution of all phonon
modes), the phonon mean free path (mfp) at room
temperature in bulk silicon is around 0.2 lm.7 A
recent experiment carried out in p-type polycrys-
talline silicon films8 reported a decrease of j with
the hole radius, ranging from 120 nm down to 30
nm, in periodic structures with a fixed period of 300
nm. Grain sizes were widely distributed, extending
from 10 nm to 100 nm, thus overlapping with hole
radii. Analysis led to the conclusion that thermal
conductivity was controlled by volume reduction,
sensibly through the heat capacity. However, a
more detailed evaluation of the scattering mecha-
nisms was not possible.

The analysis of the reduction of thermal conduc-
tivity due to grain boundaries (GBs) and porosity
also motivated a revision of the standard kinetic
model. Dames et al.9 showed that below the Debye
temperature HD, the thermal conductivity of
nanocrystalline silicon pellets obtained by spark
plasma sintering followed a quadratic (rather than
cubic) dependence on temperature. This suggested
an x-dependent mfp, with K / x�1. Hua and Min-
nich10 refined the model using Monte Carlo simu-
lations, and confirmed a frequency-dependent
phonon transmissivity at grain boundaries. Simu-
lations showed that up to � 60% of the total heat is
carried by phonons with mfp longer than the grain
size. A similar temperature dependence at T <HD

was also reported in porous silicon. Silicon inverse
opals11 displayed j � T1:8 while mesoporous
nanocrystalline silicon thin films12 reported
j � T2. In the former case, the low-temperature
jðTÞ was explained by invoking a quadratic fre-
quency dependence of the scattering rate at grain
boundaries due to coherent phonon reflection, while
in mesoporous silicon, the quadratic increase of j
with T was explained using the minimum thermal
conductivity model derived by Cahill and Pohl in
1988 for amorphous or strongly defective crystals.13

No frequency-dependent transmissivity at pore sur-
faces was proposed.

The impact of the x dependence on the mfp at
room temperature or above is still unclear in
polycrystalline materials. According to Wang
et al.9 the spectral dependence of the mfp is of
practical relevance with respect to the thermal
conductivity only at low temperatures. On the other
hand, Hua and Minnich10 as well as Jiang et al.14

have noted the importance of accounting for the
frequency dependence of the mfp over the whole
temperature range.

This state of affairs provides evidence that there
is still an open issue about the best physically sound
model to describe the effect of morphological defects
on the mean free path of microscopic heat carriers.
The question is whether it is better to treat the full
phonon spectrum through effective concepts or,
rather, if it is necessary to treat each single mode
individually, since defects operate differently at
different frequencies.15,16 Hereafter we will refer to
the first kind of model as gray, while addressing
each mode independently depending on its fre-
quency as non-gray. This issue also impacts the
actual usability of the adopted model. Simplified,
effective models characterized by ease of implemen-
tation and by a reduced computational workload
may enable computational analyses of materials of
high structural complexity. On the contrary, a
rigorous model treating each frequency mode inde-
pendently may be practically applicable only to
smaller systems, disallowing structurally accurate
simulations of micromorphologically complex solids.

This paper addresses the usability of the gray
model to model phonon scattering in defective solids
around and above room temperature by exploring
the dependence of the thermal conductivity on the
size and density of morphological defects (MoDs).
First, single-crystalline and polycrystalline silicon
films, both porous and non-porous, were simulated
to compute j. Second, thermal conductivity was
experimentally measured for polycrystalline silicon
films which were Heþ-implanted and thermally
processed to promote the formation of pores.17 By
keeping the characteristic length scale of grains
approximately fixed in both the computational and
experimental investigations, we were able to isolate
the effects of the pores on phonon filtering.

We chose silicon as the material in which to study
these effects due to its well-characterized intrinsic
thermal properties, which have been extensively
studied both experimentally18–21 and computation-
ally22 in thin films and in bulk single crystals.23

Additional motivation stems from the renewed
interest for thermoelectric applications of silicon
and Si-based systems using either bulk materi-
als24–26 or thin films.27–30 It should be remarked,
however, that nanovoids have also been shown to
positively impact the thermoelectric properties of
other materials. Decrease of thermal conductivity
was reported in porous filled skutterudites31 and,
very recently, in unfilled skutterudites as well.32
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PHONON SCATTERING IN MULTI-SIZED
DEFECTIVE CRYSTALS

Background

The standard kinetic model relates the lattice
thermal conductivity at temperature T to phonon
mean free path Kðx; s;TÞ and velocity vðx; sÞ, both
quantities depending on phonon frequency x and on
polarization s:

jðTÞ ¼ 1

3

X

s

Z 1

0

Cðx; s;TÞvðx; sÞKðx; s;TÞdx ð1Þ

where Cðx; s;TÞ is the spectral specific heat of the
material and the sum runs over all polarizations. In
addition to phonon–phonon and phonon–electron
scattering, the phonon mfp is limited by the pres-
ence of defects, which have different scattering
capabilities depending on x and on a typical length
scale ‘ associated with the defect itself. In single
crystals, phonons are uniquely labeled by their
wavevector q and by their polarization s, namely
x ¼ xðq; sÞ. For the thermal conductivity to be
described in the mfp (direct) space, it was sug-
gested7 that the mfp K of a phonon might also be
labeled using the same four scalars, i.e. K ¼ Kðq; sÞ.
Under the (widely verified) assumption that both
x ¼ xðq; sÞ and K ¼ Kðq; sÞ be at least locally mono-
tonic functions of qx, qy, and qz, one may then invert
Kðq; sÞ so that x ¼ xðK; sÞ. Thus, an mfp spectral
function of the thermal conductivity may be defined

KðK;TÞ ¼ �
X

s

1

3
CðK; s;TÞvðK; s;TÞK dK

dx

� ��1

ð2Þ

where both CðK; s;TÞ and vðK; s;TÞ are here written
as a function of the mfp. Thus

jðTÞ ¼
Z 1

0

KðK;TÞdK ð3Þ

The normalized thermal conductivity accumulation
function aðK;TÞ is further defined as

aðKa;TÞ ¼
1

j

Z Ka

0

KðK;TÞdK ð4Þ

In the presence of a single MoD, thermal conduc-
tivity scales as

jMoDðTÞ ¼
Z 1

0

KbðKb;TÞBMoD
b ðKb; ‘MoDÞdKb ð5Þ

where ‘b’ refers to the MoD-free material and
BMoD

b ðKb; ‘MoDÞ � KMoD=Kb is some function of the
ratio Kb=‘MoD that depends on the type of defect.

In the construction of the B term, an important
role is played by the way different scatterers
contribute to set the mfp. Although B is in no way
constrained to any specific rule of mfp combination,
in practice, the use of Matthiessen’s rule has almost

no alternative, in spite of the increasing number of
papers noting its limits.33–35 Matthiessen’s rule
assumes that in the presence of several scattering
events, each characterized by a scattering time si,
an effective scattering time s may be defined as

s�1 ¼
X

i

s�1
i ð6Þ

or, equivalently, it is assumed that there is no
interplay among scattering mechanisms. Thus,

K ¼ 1
P

i K
�1
i

ð7Þ

We will refer to this implementation of Matthiessen’s
rule as the integral Matthiessen’s rule. As known, its
proposal moves from the gray hypothesis, namely
that adominant phonon mode of frequencyxG exists,
so that Eq. 1 reduces to its simplified kinetic form
j ¼ 1=3cvKG, where c is the (integral) specific heat at
constant volume. It is instead well known (Ref. 36, p.
307) that phonon modes are not independent, so that
scattering events mix up modes both by normal and
Umklapp processes.

An alternate way to estimate the mfp in the
presence of several scattering phenomena is to use
the spectral Matthiessen’s rule. An effective specific
scattering time sðx; sÞ is defined for each phonon
mode of frequency x and polarization s as

sðx; sÞ�1 ¼
X

i

siðx; sÞ�1
ð8Þ

(where siðx; sÞ is the scattering time for phonon
modes of frequency x and polarization s due to the i-
th scattering event) so that, since
Kiðx; sÞ ¼ vðx; sÞsiðx; sÞ,

Kðx; sÞ ¼ vðx; sÞ
P

i siðx; sÞ
�1

¼ 1
P

i Kiðx; sÞ�1 ð9Þ

It should be noted that not even the spectral
Matthiessen’s rule provides a rigorous way to
compute the effective mfp Kðx; sÞ as it also neglects
mode mixing. Nonetheless, it does not rely upon the
dominant mode assumption, so that it may be more
properly and consistently used when non-gray mfp
models are introduced.

Spectral Functions

In what follows, we will make use of two mfp
spectral functions KbðKb;TÞ. For the gray model, we
will consistently assume that

KðKbÞ ¼ jbdðKb � Kb;GÞ ð10Þ

with Kb;G ¼ 205 nm at room temperature for sili-
con.7 In the gray model, Kb;G is the x-independent
mfp of phonons that is set by scattering from
extended defects (Ref. 36, p. 316). For the non-gray
models, we will use instead the mfp spectral
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function obtained by complementing computational
data by Esfarjani et al.37 and Jiang et al.14

COMPUTATIONAL PROCEDURE

Sample Preparation

In this work, using computer simulations, we
generated three different prototypical silicon struc-
tures, namely: (a) samples containing both a ran-
dom and an ordered distribution of pores, but no
GBs; (b) samples containing a GB network as well
as a random distribution of pores; and (c) samples
where pores are pinned at GBs. The generation of
such a library of samples required two distinct
procedures for pores and GBs, respectively.

The pores are created by randomly selecting a
suitable number of lattice sites and removing all
atoms within a distance dp. This generates pores
and since they are randomly distributed, the prob-
ability of creating a pore is adjusted to achieve a
target porosity /p, defined as

/p � Xp=X ð11Þ

where Xp is the volume pertaining to the pores while
X is the medium volume. Further iterations are
carried out until the desired porosity is obtained
within a certain tolerance. As the simulation protocol
requires a uniform mass distribution along the
transport direction (see the following subsection),
the generation of pores is similarly applied within
sequential regions of the sample, so as to obtain a
uniform porosity. Following this procedure, samples
with suitable pore density have been generated, with
diameter ranging from 0.47 nm to 2.6 nm, resulting
in an overall porosity of /p ¼ 0:005. A similar
procedure has been applied to obtain ordered pore
distributions, with the only difference that the pore
seeds were placed according to a cubic lattice. In this
case, two porosity values /p ¼ 0:028 and /p ¼ 0:005
have been considered. All samples required an accu-
rate structural optimization protocol. The potential
energy was at first minimized by means of conjugate
gradient optimization. Next, a simulated annealing
process was applied, heating the samples up to 900 K
and cooling them back to room temperature for a total
simulation time of 900 ps, with a final equilibration
time of 400 ps at 300 K. Further information about
this procedure can be found elsewhere.38

The generation of GBs required an ad hoc multi-
step computational protocol: a crystalline sample
with dimensions Lx ¼ 2:72 nm, Ly ¼ 27:15 nm and
Lz ¼ 135:76 nm (containing as many as 5 � 105

atoms) was fully amorphized following a standard
quenching-from-the-melt approach. Then, Ng sites
were selected at random in the yz plane and around
each of them a cylindrical region (passing across the
full Lx dimension of the simulation box) was created
in order to replace the amorphous matter with a
crystalline cylinder, randomly rotated in the yz plane.

The resulting structures (amorphous matrices deco-
rated by crystalline seeds) were annealed at constant
T ¼ 1200 K for 3.0 ns. In this way, seed grains could
grow until a nanocrystalline silicon system was
eventually created. The number Ng of initial seeds
was chosen in order to fill the yz plane with grains of
average size D ¼ 25:0 nm. A detailed description of
this protocol is reported in Refs. 39 and 40.

By combining the above two procedures, a num-
ber of systems were obtained, differing in atomic-
scale nanostructure while keeping the same holey
polycrystalline morphology, as shown in Fig. 1.

A third kind of holey polycrystalline sample was
realized, where pores were pinned at GBs. For this
purpose, pore generation was slightly modified. It is
known that atoms in an amorphous structure are
characterized by a higher configurational energy,
with respect to atoms in a crystalline lattice.
According to the environment-dependent interac-
tion potential (EDIP) adopted in this work,41 the
average energy for a crystalline silicon atom is
hEc�Sii ¼ � 4:6 eV; thus, a further requirement for
the generation of pores was to involve only atoms
with energy greater than hEc�Sii. We remark that
this interaction scheme has been adopted since it is
accurate in describing non-crystalline forms of
silicon, as well as in predicting the thermal trans-
port properties of disordered silicon forms, e.g.,
amorphous and nanocrystalline ones.38,40,42,43

Holey polycrystalline samples of categories (b)
and (c) are characterized by porosity values
/p ¼ 0:005, with 0:47 � dp � 2:6 nm.

Computational Details

Thermal conductivity j was calculated at room
temperature in periodically repeated simulation
cells during the system’s approach to equilibrium,
proceeding from an initial nonequilibrium configu-
ration where the two similar portions of the simu-
lation cell were set at temperature T1 ¼ 400 K and
T2 ¼ 200 K, respectively. By computing on the fly

Fig. 1. (color online) Illustration of the atomic-scale structure of a
holey polycrystalline sample with randomly distributed pores. Dif-
ferent colors represent differently oriented crystalline grains; darker
areas identify defect-rich pockets, e.g. amorphous spots or grain
boundaries. Two relevant morphological features are discussed in
the paper, dp and D, are shown. The picture shows a 0.9-nm-thick
longitudinal section, corresponding to just � 1=3 of the overall
sample thickness. We remark that the simulation cell is as thick as
2.72 nm and, therefore, matter is in fact not discontinuous, although
some atoms seem to be unbound.
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the evolving temperature difference TðtÞ ¼ hT1ðtÞi�
hT2ðtÞi (where h. . .i indicates the average separately
taken in the two portions), we determined j from
Ref. 42

DTðtÞ ¼ hT1i � hT2i ¼
X1

j¼1

sje
�a2

j
tj=c ð12Þ

The coefficients

sj ¼ 8ðT1 � T2Þ
½cosðajLz=2Þ � 1�2

a2
j L

2
z

ð13Þ

and aj ¼ 2j=Lz are obtained for a system of length Lz

initially prepared in the configuration described
above. An extensive explanation of this method, its
validation, and several successful applications to Si-
based systems can be found in Ref. 42.

The equations of motion have been integrated by
the velocity Verlet algorithm with time steps as
short as 2 fs. Simulations were performed using the
LAMMPS44 package. The typical approach-to-equi-
librium run lasted for as many as 3 � 105 timesteps,
thus allowing a careful fit of the calculated DTðtÞ by
Eq. 12.

Since present thermal conductivity data for
nanocrystalline porous samples are calculated for
finite-sized simulation cells, the actual normalizing
value jsc corresponding to pristine silicon was eval-
uated for a system with the same length along the
direction of thermal transport as nanocrystalline
porous ones, similarly to previous investigations.45,46

Since this length in the present case was as short as
162.92 nm, the corresponding conductivity of pristine

silicon was set to 45:4 	 0:2 W m�1K�1, as obtained
by the present simulations.

RESULTS

In this section we will systematically analyze the
thermal conductivity of silicon upon introduction of
one or more morphological defects. Expressions for j
in the gray and non-gray models will be obtained
and compared to experimental data and/or to
numerical simulations. This will enable an evalua-
tion of the suitability of the gray approximation and
of Matthiessen’s rule, either spectral or integral, to
explain the dependence of the thermal conductivity
upon the characteristic defect size. We will show as
well how in an already defective material further
introduction of MoDs affects the thermal conduc-
tivity only when typical MoD sizes differ widely
from each other.

Single Morphological Defects in Silicon

Polycrystals

It is quite natural to assume that GBs in poly-
crystalline materials limit the phonon mfp to the
grain size D so that K�1

P � K�1
b þ K�1

GB ¼ K�1
b þD�1.

However, such an assumption is possibly too clear-

cut. First, more than a single scattering event may
be needed to fully thermalize phonons. Further-
more, phonons may be scattered with different
efficiencies by grain boundaries depending on the
misorientation of adjacent grains. Even in a gray
model, grain boundaries may be assumed to trans-
mit phonons with variable transmissivity T G

depending upon the grain pair misorientation. Both
factors suggest that we write

KGB ¼ b
1

T G
� 1

� ��1
* +

D � bcGD ð14Þ

with b (� 1) counting the average number of
scattering events needed by phonons to recover
their equilibrium distribution, while cG (� 1) scales
the effective grain size by the grain boundary
transmissivity. The use of b, which accounts for
the difference between scattering and relaxation
times, is reminiscent of the approach developed by
Das Sarma and Stern for the analysis of electron
scattering.47 Therefore, within the limits of validity
of the integral Matthiessen’s rule, the gray model
leads to

K�1
P;G ¼ K�1

b þ ðbcGDÞ�1 ð15Þ

where the subscript ‘P’ labels the polycrystalline
material. Thus, one gets

BP;G
b ¼ 1 þ Kb

bcGD

� ��1

ð16Þ

In view of Eq. 5, this leads immediately to

jP;G ¼ jb

Z 1

0

dðKb � Kb;GÞ 1 þ Kb

bcGD

� ��1

dKb

¼ jb 1 þ Kb;G

bcGD

� ��1
ð17Þ

which is the sought expression of the thermal
conductivity in the gray approximation.

From an alternate perspective, following Wang
et al.9 and Hua and Minnich,10 phonons may be
transmitted by GBs with a transmissivity T ðxÞ

T ðxÞ ¼ 1

cx=xmax þ 1
ð18Þ

where c is a fitting parameter and xmax is the
maximum phonon frequency. Therefore,
KGBðxÞ ¼ c�1ðxmax=xÞbD, namely GBs are transpar-
ent to phonons in the long-wavelength limit. Thus,
the non-gray model predicts, still within the limits of
validity of the spectral Matthiessen’s rule, that

K�1
P;NG ¼ K�1

b þ ðc=bÞðx=xmaxÞD�1 ð19Þ

where the subscript ‘NG’ refers to the non-gray
model.

The use of Eq. 19 is less straightforward as the
mfp depends explicitly upon x. This implies that
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BP;NG
b ¼ 1 þ cx

bxmax

Kb

D

� ��1

ð20Þ

For the most common bulk scattering
mechanisms,48

Kb ¼ AðTÞx�n ð21Þ
where n is a non-negative integer depending on the
dominant scattering mechanism, and A(T) is inde-
pendent of x. In the whole numerical analysis
carried out in this paper, phonon impurity scatter-
ing is assumed to dominate scattering in bulk
(single-crystalline) silicon due to the high doping
level. Independent of the phonon dispersion rela-
tion, it was shown37,48,49 that setting n ¼ 4 in Eq. 21
leads to a satisfactory description of the bulk mfp.
Then, one may write

BP;NG
b ¼ KP;NG

Kb
¼ 1 þ c=b

xmax

Kb

D

Kb

A

� ��1=4
" #�1

ð22Þ

so that

jP;NG ¼
Z 1

0

KbðKbÞ 1 þ c=b
xmax

Kb

D

Kb

A

� ��1=4
" #�1

dKb

ð23Þ

which states the dependence of the thermal conduc-
tivity in polycrystalline silicon is according to the
non-gray model.

Figure 2 displays the fits** of Eqs. 17 and 23 to
experimental data reported by Wang et al.9 for
microcrystalline silicon and by Claudio et al.25 for
nanocrystalline silicon. Both models are in good
agreement with data for nanocrystalline silicon,
although the non-gray model fits them more closely.
Instead, only the non-gray model returns an accept-
able fit for microcrystalline silicon. Setting
xmax ¼ 12 THz9,52 we get A ¼ ð5:3 	 1:2Þ � 1050 lm
s�4 for both sets of data, along with c=b values of
2:39 	 0:07 and 0:28 	 0:02, respectively.

Holey single-crystalline silicon

Holey semiconductors, namely single-crystalline
semiconductors containing nanopores, have been
widely studied both computationally and experi-
mentally. A model for the mfp was proposed by some
of the present authors.38 In short, the presence of

single-sized pores with diameter dp in a medium
leads to two concurrent effects on the phonon mfp
and and on the thermal conductivity. For any pore
size, the effective medium approximation predicts,
through the Maxwell–Garnett–Eucken (MGE)
model,53 that

jH;P ¼ jb

1 � /p

1 þ
/p

2

ð24Þ

Bearing in mind that CHðx;TÞ ¼ Cbðx;TÞð1 � /pÞ
(where the subscript ‘H’ labels holey systems), one
may easily verify that the pertinent mfp KMGE

relates to porosity and boundary mfp as

1=KMGE ¼ ð/p=2Þð1=KbÞ ð25Þ

This is only the effect of macroscopic pores and
results from the reduction of the filled volume in the
medium.

An additional component arises for micro-/nano-
pores, that relates instead to the density of scatter-
ing centers at the pore–solid interface. As reported
in Ref. 38, the number of collisions per travelled
distance Ncoll is given by the ratio between the
projected pore cross section and the system volume.
If np is the pore density, then

Ncoll ¼ nppðdp=2Þ2 ð26Þ
In view of Eq. 11, one may also write that

/p ¼ np
4p
3
ðdp=2Þ3 ð27Þ

so that replacing np from the previous equation into
Eq. 26, one gets

Fig. 2. (color online) Fitting of the normalized experimental values
j=jsc versus grain size in polycrystalline silicon to the gray (dashed
lines) and non-gray (full lines) models. Experimental data are from
Wang et al.9 (square box, microcrystalline silicon) and from Claudio
et al.25 (open circle, nanocrystalline silicon). Thermal conductivity jsc
of single-crystalline silicon was, respectively, 142 and 87.3 W m�1

K�1.

**Here and in the whole paper, fitting of the experimental or
simulated data f. . . ; ðxj; yjÞ; . . .g to model equations
y ¼ f ð. . . ;ak; . . . ; xÞ was carried out using a Levenberg–Mar-
quardt algorithm50 validated by simulated annealing,51 ensuring
that the minimizer Wð. . . ;ak; . . .Þ ¼

P
jðf ð. . . ;ak; . . . ; xjÞ � yjÞ2 had

converged to an absolute minimum. Therefore, no equivalently
accurate (or better) fitting (same or lower W values) may be fac-
tually achieved with a distinct set of fitting parameters
ð. . . ;ak; . . .Þ. Fitting sensitivity to each parameter is displayed by
their standard deviations.
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Ncoll ¼
3/p

2dp
ð28Þ

and the spacing between scattering centers reads

‘p ¼ 1

Ncoll
¼ 2dp

3/p
ð29Þ

Thus, we may take the gray scattering length to
sum up through the integral Matthiessen’s rule,
yielding

1=KH;G ¼ ð/p=2Þð1=KbÞ þ 1=ðb‘pÞ ð30Þ
where b counts the number of scattering events
needed to fully thermalize phonons. Therefore

1

KH;G
¼ 1

Kb
þ

/p

2Kb
þ

3/p

2bdp

� �
ð31Þ

and

BH;G
b ¼ KH;G

Kb
¼ 1 þ

/p

2
1 þ 3Kb

bdp

� �� ��1

ð32Þ

so that finally

jH;G ¼ jb

Z 1

0

dðKb �Kb;GÞ 1þ
/p

2
1þ3Kb

bdp

� �� ��1

dKb

¼ jb 1þ
/p

2
1þ3Kb;G

bdp

� �� ��1

ð33Þ

which is the expression for j in the presence of
nanopores and in the gray approximation.

For the non-gray model, we need to account for
the probability that phonons are elastically reflected
at the pore surface. Actually, phonon transmissivity
through a vacuum gap is exactly zero, while even at
the nanoscale, the near-field thermal radiation
contribution may be easily verified to be negligi-
ble.54 Using the so-called Ziman formula,36 reflec-
tivity R at pores reads

RðxÞ ¼ exp �
16p3d2

px
2

v2

 !
ð34Þ

Thus,

BH;NG
b ¼ KH;NG

Kb
¼ 1 þ

/p

2
þ

3/pKb

2bdp
1 �RðxÞ½ �

� ��1

ð35Þ
that, using again Eq. 21, leads to the explicit
expression for jH;NG:

jH;NG ¼
Z 1

0

KbðKbÞ 1þ
/p

2
þ

3/pKb

2bdp

�

� 1 � exp �
16p3d2

p

v2

Kb

A

� ��1
2

" #( )!�1

dKb

ð36Þ

which is the needed formula for j in holey silicon in
the non-gray model. Note that in the gray model,
where the mfp spectral function is a Dirac delta

function, Eq. 34 would lead only to an additional
constant factor in the third term of the right-hand
side of Eq. 31.

Fitting of Eq. 33 to computed data (Fig. 3) reports
an excellent agreement of the gray model with
simulations. When pores sit on a cubic lattice, one
obtains b ¼ 4:9 	 0:5 for / ¼ 0:028 and b ¼ 7:6 	 1:4
for /p ¼ 0:005. Instead, for randomly distributed
pores, b ¼ 6:8 	 1:2 for /p ¼ 0:005. Also, the non-
gray (reflective) model (Eq. 36) shows a more-than-
fair agreement with computational data. One
obtains A ¼ ð4:6 	 2:0Þ � 1050 lm s�4 independently
of pore distribution and porosity. The fitting process
returns b values of 12:6 	 2:5 and 51:7 	 11:0 for
/p ¼ 0:028 and 0.005 with ordered pore distribu-
tions; and b ¼ 46:6 	 12:4 at /p ¼ 0:005 for ran-
domly distributed pores.

It should be noted that, beyond their agreement
with computational data, the two models predict a

Fig. 3. (color online) Fitting to gray (dashed lines) and non-gray (full
lines) scattering models of the normalized values of jðdpÞ obtained
by simulating (a) an ordered pore distribution and (b) a random
distribution of pores in holey single-crystalline silicon.
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completely different behavior of jðdpÞ for dp ! 0 at
constant /p. Thermal conductivity in the gray model
tends to zero for vanishing pore diameters while it
recovers the single-crystal value in the non-gray
model, as physical intuition would actually suggest.

Multiple morphological defects in silicon:
Holey polycrystalline silicon

Multiple defects impact thermal conductivity by
introducing two classes of scattering bodies in
addition to the scattering entities natively present
in single-crystalline media. In the gray model, one
may use the integral Matthiessen’s rule, immedi-
ately obtaining from Eqs. 15 and 31 that

jHP;G ¼ jb
2bcGdpD

cGD½bdpð/þ 2Þ þ 3Kb/p� þ 2dpKb
ð37Þ

Instead, in the non-gray model, the spectral
Matthiessen’s rule leads to�

jHP;NG ¼
Z 1

0

KbðKbÞ 1 þ
/p

2
þ

3/pKb

2bdp

�

� 1 � exp �
16p3d2

p

v2

Kb

A

� ��1
2

 !" #

þ cKb

bxmaxD

Kb

A

� ��1
4

)�1

dKb

ð38Þ

Figure 4 directly compares the experimental and
computed thermal conductivities, both normalized
to the thermal conductivity of single-crystalline Si.

A value of jsc ¼ 120 W m�1K�1 was used, which is
appropriate for sub-micrometric thin films.55 For
computer simulations, a clearly better agreement is
found using the non-gray model, reporting
b ¼ 30:0 	 0:1 and 27:4 	 4:2 for pores at GBs only
or randomly distributed, respectively, and values of
c ¼ 4 	 1 and A ¼ ð3:00 	 0:99Þ � 1051 lm s�4 in
both cases. The gray model returns instead
b ¼ 1:85 	 0:59 and cG ¼ 1:00 	 0:36 when pores sit
at GBs only; and b ¼ 1:90 	 0:51 and
cG ¼ 1:00 	 0:31 for randomly distributed pores.

Experimental data from Dunham et al.17 on Heþ-
implanted nanocrystalline thin films56,57 are fitted
instead with b ¼ 1:0 	 0:5 and cG ¼ 0:5 	 0:3 in the
gray model, and with b ¼ 1:0 	 0:6, c ¼ 7:0 	 3:9,
and A ¼ ð2:29 	 1:31Þ � 1046 lm s�4 in the non-gray
model. Note that, since the experimental thermal
conductivity was measured cross-plane, grain size
used in the fitting referred to the grain height,
namely D ¼ 150 nm. It should also be remarked how

the gray model predicts an almost constant j for
d>5 nm, in good agreement with with gray Monte
Carlo simulations reported previously.17

DISCUSSION

Comparison of fits to both experimental and
computed data suggests that non-gray models are
more accurate than gray ones. This is not com-
pletely obvious, as it is reported that relevant
differences between gray and non-gray models
should be observed mostly at low temperatures.9

Instead, even around room temperature and in the
presence of a single MoD, it is evident that,
although the gray model may provide an accept-
able quantitative prediction of the thermal conduc-
tivity,17,35 a more precise analysis of
morphologically limited thermal conductivity
requires relaxing the assumption of a single dom-
inant phonon mode governing heat transport.

Fig. 4. (color online) (a) Fitting of gray (dashed lines) and non-gray
(full lines) scattering models to normalized values of jðdpÞ obtained
by simulating random distributions of pores in holey polycrystalline
silicon. (b) Fitting of gray (dashed lines) and non-gray (full lines)
scattering models to normalized values of jðdpÞ measured in Heþ-
implanted nanocrystalline silicon. Experimental data from Ref. 17.

�In Eq. 38, we used the same b for both scattering mechanisms as
the effectiveness of a specific type of scattering event is already
accounted for by R for the pores and by c=xmax for the grains.
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However, in spite of its ability to describe the
dependence of j upon the density of the pertinent
MoD, the non-gray model also raises questions
when applied to holey crystals. Specifically, con-
cerns may be raised about its physical soundness in
the description of j dependence on dp over the whole
range of pore sizes. Gray and non-gray models,
while mostly showing the same expected decrease of
j with decreasing dp, dramatically differ from each
other in the zero-size limit. We note that, while in
holey single-crystalline silicon this difference occurs
at pore sizes comparable to the size of a single
vacancy, in holey polycrystalline silicon the depar-
ture between the two models shows up instead for
dp � 1 nm, i.e. when pores are well-defined,
extended morphological defects. The gray model
predicts a vanishing thermal conductivity, while the
non-gray model predicts a recovery of j to the pore-
free value. Such a difference is clearly explained by
inspection of Eqs. 32 and 35. In both cases, the mfp
is dominated by phonon scattering at pores. How-
ever, the gray model considers all scattering events
as effective while the non-gray model accounts for
the probability that phonons are elastically reflected
at pore surfaces. In the latter case, when both dp

and ‘p tend to zero (as needed to keep /p constant),
no collision remains effective, so that the material
recovers the conductivity pertaining to the pore-free
material. However, both predictions are question-
able. In the gray model, the assumption that all
collisions are effective (namely that in no case
phonons may be elastically reflected at pore sur-
faces) sensibly overestimates the effectiveness of
pores as scattering centers. Conversely, Eq. 34
provides an oversimplified description of the actual
reflectivity at internal surfaces36 that in turn
underestimates scatter efficiency in the low dp limit.
A more fundamental limitation of both models
arises when considering non-local effects. Since for
dp ! 0 at fixed /p the pore density abruptly
increases, one may expect lattice distortions due to
pores to extend over a larger portion of the crystal, a
feature that is not accounted for in either gray or
non-gray models. At high porosity, this should lead
to an increase of positional disorder, up to a quasi-
amorphization of the solid. Thus, j may be expected
to approach the Casimir limit. At low porosity,
instead, pores will degenerate into a collection of
sparsely distributed vacancies, imparting a negligi-
ble increase of lattice disordering and simply
increasing the vacancy density. Thus, j should
almost recover its pore-free value: neither gray nor
non-gray models are adequate at accounting for the
effect of pores at any porosity, as neither of them
properly encompasses non-local effects due to pore-
related lattice disorder. Non-gray models possibly
better qualify in the current case because of the
relatively small /p considered in this study. One
would then draw the conclusion that while the non-
gray model is a more appropriate choice even at

non-cryogenic temperatures, it is the use of Mat-
thiessen’s rule (either integral or spectral) which
determines the limits of applicability for either
model. We have shown that MoD-related scattering
lengths (‘p and cGD) sensibly depend not only on the
distribution of scattering centers within the med-
ium but also on the medium itself. Thus, non-local
descriptors accounting for the lattice distortion
around MoDs are needed.

Finally, concerning the usability of more MoDs to
tailor the thermal conductivity, we found that the
addition of a morphological defect to an already
defective material causes a further decrease of its
thermal conductivity if the two sets of defects have
different characteristic sizes. Experimental results
show the conductivity to drop by about 30%, with
smaller decreases (� 10 %) being reported by sim-
ulations. We may then conclude that the use of a
variety of MoDs to control a material’s thermal
conductivity may be safely planned by the use of
non-gray models and of the spectral Matthiessen’s
rule. This result is consistent with the conclusions of
previous publications17,56,57 and further stresses
how the introduction of pores in heavily boron-
doped nanocrystalline silicon showing enhanced
power factors28,29,58 may lead to large thermoelec-
tric efficiencies in a fairly geo-abundant material.

SUMMARY AND CONCLUSIONS

In this paper, we analyzed the effect of morpho-
logical defects on the thermal conductivity of silicon.
We found that further reduction of the thermal
conductivity may be achieved by introducing more
sets of defects with different characteristic sizes.
This is a relevant point as heavily doped nanocrys-
talline silicon has been reported to display large
thermoelectric power factors, so that additional
reduction of its thermal conductivity might impart
to it very large thermoelectric figures of merit in
excess of one even around room temperature.

Using the Yang–Dames formalism, we have also
shown how j can be effectively modelled using the
spectral Matthiessen’s rule, thus providing an effi-
cient tool to guide defect engineering. However,
physical inconsistencies of the model were singled
out in the range of very low pore sizes, suggesting
that changes in the structure of the BMoD

b ðKb; ‘MoDÞ
are needed beyond Matthiessen’s rule to more
properly account for non-local effects related to
lattice disordering induced by pores over a wider
range of porosities.
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