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ABSTRACT

Inroads have been made in our understanding of the risks posed to human health and the
environment by nanoparticles (NPs) but this area requires continuous research and monitoring.
Machine learning techniques have been applied to nanotoxicology with very encouraging
results. This study deals with bridging physicochemical properties of NPs, experimental exposure
conditions and in vitro characteristics with biological effects of NPs on a molecular cellular level
from transcriptomics studies. The bridging is done by developing and implementing Bayesian
Networks (BNs) with or without data preprocessing. The BN structures are derived either auto-
matically or methodologically and compared. Early stage nanotoxicity measurements represent
a challenge, not least when attempting to predict adverse outcomes and modeling is critical to
understanding the biological effects of exposure to NPs.

The preprocessed data-driven BN showed improved performance over automatically structured
BN and the BN with unprocessed datasets. The prestructured BN captures inter relationships
between NP properties, exposure condition and in vitro characteristics and links those with cel-
lular effects based on statistic correlation findings. Information gain analysis showed that expos-
ure dose, NP and cell line variables were the most influential attributes in predicting the
biological effects. The BN methodology proposed in this study successfully predicts a number of
toxicologically relevant cellular disrupted biological processes such as cell cycle and proliferation
pathways, cell adhesion and extracellular matrix responses, DNA damage and repair mechanisms
etc., with a success rate >80%. The model validation from independent data shows a robust
and promising methodology for incorporating transcriptomics outcomes in a hazard and, by
extension, risk assessment modeling framework by predicting affected cellular functions from
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experimental conditions.

Introduction

The term nanoparticles (NPs) covers particulates
with one or more dimensions in the sub-100nm
size range which can differ widely in composition,
size, shape and solubility as well as other physico-
chemical properties. They are not a single entity
and the diversity in properties is only matched by
the range of possible biological interactions associ-
ated with such NP properties. This creates a signifi-
cant challenge for pro-active risk characterization
for the adequate prevention of human and/or envir-
onmental health effects whilst still reaping the

societal benefits of nanotechnology. This is further
compounded by the rate of development in nano-
technologies and their increasingly widespread use
in commercial products such as electronic devices,
food packaging and health care.

Human and environmental exposure to NPs is a
current issue and can be both incidental
(e.g. occupational exposure) or deliberate (e.g. cos-
metics). NPs can enter the human body via a number
of routes including inhalation, ingestion or skin
absorption where they themselves can become modi-
fied and may also cause biological perturbations. The
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Figure 1. A systems toxicology paradigm. The pathway aims to extrapolate all available toxicological information to humans using
a combination of in silico methods and toxicokinetics modeling. Molecular level analysis provides toxicological information preced-
ing cellular and physiological manifestation of effects. In vitro methods investigate cellular effects of direct exposure to a sub-
stance. In vivo studies provide an examination of a variety of tissues in controlled environments. Human studies require
biomonitoring, sampling and tissues/fluids analysis. Population level effects is the culmination of this extrapolation with support-
ing evidence typically requiring longitudinal observations and large-scale data gathering.

toxicity of different NPs has already been docu-
mented by a number of studies (Ajdary et al. 2018;
Cao 2018; Gerber et al. 2013; Stensberg et al. 2011)
utilizing both in vitro and in vivo models showing a
broad range of property dependent effects from rela-
tively minor (e.g. oxidative stress) to the more serious
(e.g. mutagenicity). This variation in toxicity demon-
strates that not all NPs are toxic and not all NPs are
nontoxic, thereby stressing the need for efficient and
predictive approaches to hazard characterization of
different NPs.

Systems toxicology (Figure 1) extrapolates short-
term observations to long-term outcomes, integrating
information from experimental systems (molecular, cel-
lular and macroscopic) with potential risks to humans
(phenotypic and population level studies) (Belcastro
et al. 2018; Boué et al. 2017). Omics technologies
(Figure 1 left) study the changes in epigenome, tran-
scriptome, proteome and metabolome induced by a
substance. Integration of omics with the toxicity of a
substance is called toxicogenomics and bridges
molecular and cellular effects (NRC 2005; Sahu et al.
2015; George et al. 2010). Capturing dysfunctions at a
molecular level allows omics technologies to trace
adverse effects at low doses including early and sub-
clinical effects that traditional in vitro and in vivo stud-
ies may overlook (Kawata, Osawa and Okabe 2009; Bai
et al. 2017). Toxicokinetics models (Figure 1, center)

such as Physiologically Based Pharmaco-Kinetic models
(PBPK) and Physiologically Based Dose Response
(PBDR) models enable in vitro-to-in vivo and in vivo-to-
human extrapolation of observations (Judson et al.
2011; Li and Reineke 2012; Raies and Bajic 2016;
Carlander et al. 2016). Findings from human exposure
and epidemiological studies (Figure 1 right), supple-
mented by experimental studies, provide the informa-
tion needed for substance safety regulation.

Adverse outcome pathways (AOPs) systematically
address the organization and gathering of systems of
toxicology information for specific substances. AOPs
have been developed as identifiable event chains
that link the effects at molecular level to human level
(OECD 2017). Although recent trends in toxicology
focus on toxicity pathways, mode of actions and
AOPs (Raies and Bajic 2016; NRC 2007; Shukla et al.
2010; Nel et al. 2013), definite AOPs have not yet
been established for specific NPs or classes of NPs
(e.g. poorly soluble, low toxicity NPs) due to toxicity
data gaps (Gerloff et al. 2017), although there are
areas of advancement (Vietti, Lison and van den
Brule 2016). Increasingly, omics data have become
more widely available given the increase in high-
throughput and high content screening methods.
However, the development of state-of-the-art know-
ledge that integrates such data from these various
methods with more traditional animal and



epidemiological information, is still a developing pro-
cess (Stagljar 2016; Labib et al. 2016; Buesen et al.
2017; Sauer et al. 2017).

Although toxicity has been observed with a variety
of NPs to variable extents and outcomes, how the
specific physicochemical properties of different NPs
and cellular properties of exposed systems relate to
adverse effects is not comprehensively understood.
The availability of data surrounding the interaction
between biological systems and NPs is still relatively
limited as compared to other chemical compounds
(Bai et al. 2017). Dealing with the variety of NPs physi-
cochemical properties, routes of exposures, dosimetry,
and their multiple effects on biological systems means
that Machine Learning (ML) tools are particularly well
suited toward the prediction of biological effects
based on NPs properties (Winkler et al. 2013; Marvin
et al. 2017; Sizochenko et al. 2014). Furthermore, com-
putational models are fast and cheap and as they rely
on information inputs rather than physical test materi-
als, they can be used to predict the impact of materi-
als not yet synthesized, thereby contributing to the
development process, particularly in relation to safe-
by-design approaches. This efficient approach assists
in the development of safer Nanomaterials (NMs)
without stifling their commercial development
(Winkler et al. 2014) in the way that iterative proc-
esses of physical material development and in vitro/in
vivo safety testing can through constraints of cost
and time. Most modeling efforts have thus far been
based on Quantitative Structure-Activity Relationships
models (QSAR or nano-QSAR) using nano-descriptors
and physicochemical properties (Napierska et al. 2010;
Choi et al. 2018; Chen et al. 2017). QSAR models do
not provide insights into the toxicity pathways, but
instead predict endpoints from in vivo or in vitro stud-
ies (e.g. carcinogenic or noncarcinogenic) (Jagiello
et al. 2016). Recently, novel models called RASARs
(Read-Across  Structure Activity Relationships) are
being used to define chemical similarity (Luechtefeld
et al. 2018). Another emerging recent approach,
Quantitative Structure-Toxicity Relationships (QSTR)
perturbation models, have been applied to estimate
toxicity and ecotoxicity of NPs for different endpoints
and experimental conditions with remarkable per-
formance (Kleandrova et al. 2014a; Luan et al. 2014;
Kleandrovaet al. 2014b, Gonzalez-Durruthy et al.
2017). QSTR-perturbation models apply moving aver-
age analysis to reconstruct the case descriptors and
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perturbation theory to get the final optimization func-
tion based on differences of case pair combinations.
Whether based on data fusion or approximate meth-
ods such approaches are promising in the field of
nanotoxicology.

Bayesian networks (BNs) are ML probabilistic
graphical models that merge automated probabilistic
analysis and human insight for a wide range of prob-
lem solving. BNs have been used in a plethora of
studies for forecasting complex system outputs,
including risk evaluation, medical diagnosis, skin sen-
sitization and clinical decision-making (Morgan 2005;
Jaworska, Gabbert and Aldenberg, 2010; Jaworska
et al. 2013). They are increasingly relied upon on the
modern, data rich society we find ourselves in and
unsurprisingly are finding a significant role in nano-
safety and have been used to support risk assess-
ment and prioritize NMs hazard assessment (Marvin
et al. 2017; Murphy et al. 2016; Sheehan et al. 2018).

The aim of this study is to develop and apply a
BN classifier that predicts NP-induced cellular effects
using data inputs addressing NP physicochemical
properties, experimental exposure conditions in
vitro characteristics and transcriptomics outcomes.
The study data gathered for output use functional
analysis of the altered genes; investigating which
biological pathways are most disrupted after expos-
ure to a test substance (Romer et al. 2014;
McDermottet al. 2013; Lin and Lane 2017). This rep-
resents a growing field within toxicology because
of its capacity to improve risk assessment (Shukla
et al. 2010; Buesen et al. 2017; Tsiliki, Nymark,
Kohonen, Grafstrom and Sarimveis 2017; Franceschi
et al. 2017). Using this approach, we seek to predict
disruption of biological processes owing to genetic
perturbations generated by physicochemical prop-
erties of NPs. The focus of this study is to determine
the predictive capability of a modeling approach
focused on biological pathways in vitro which align
with AOPs relevant to nanotoxicity.

Materials and methods
Approach

BNs were constructed and evaluated as outlined in
Figure 2 with the input data derived through a
review of the peer reviewed, scientific literature.
The extracted data were then applied either in its
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Figure 2. Workflow of BN construction and evaluation.

unprocessed, raw form (Raw Dataset, RD) or proc-
essed to address imbalance, data gaps, and discret-
ization of values to form the Processed Dataset
(PD). Imbalance issues in the dataset occurs when
one of the outputs has more counts than the other
which in turn can limit classifiers performance (Choi
et al. 2018; Wang et al. 2018).

Data were then analyzed using a Correlation
Feature Selector (CFS) algorithm, which provides
some initial insight into the relationships among
the attributes (inputs and outputs). Based on these
relationships, the BNs were manually crafted into
prestructured networks with the two datasets, RD
and PD, randomly split into training (60%) and val-
idation (40%) sets. The training PD set was enriched
by applying a Synthetic Minority Technique
(SMOTE) to address imbalance issues. For each data-
set, different BNs were constructed; a BN based on
the RD (BN-RD) and another based on the PD (BN-
PD). A third BN with a structure learned from the
data using the K2 algorithm was also applied for
the PD (BN-K2). The K2 algorithm uses a greedy
search with no restriction on the number of parents
a node can have (Lerner and Malka 2011) while BN-
RD and BN-PD have maximum four parents in each
node. All BNs are trained and applied as binary clas-
sifiers individually for each of the nine outcomes
(Furxhi et al. 2018). At the final stage, all BNs were
validated against the training and validation sets
with an additional validation, using a reliability set,
finally used to evaluate the BN performance when
data from new studies are introduced.

Data collection and curation
Toxicity outcomes of the studies gathered

Data from in vitro differential gene expression ana-
lysis studies were gathered from peer-reviewed sci-
entific literature. Omics methods in nanotoxicology

is advocated due their ability to capture different
outcomes. Whole-genome transcriptomics studies
were selected since the use of existing standardized
tests might miss, in principle, novel endpoints
Marchese Robinson et al. (2016). In targeted ana-
lysis, such as targeted genes sequencing using poly-
merase chain reaction (PCR) only the regions of
select set of genes are analyzed. Unexpected
changes outside the examining genes are not
observed such as in whole-genome analysis (Boon
and Faas 2013; Hrdlickova, Toloue and Tian, 2017).
We collected non-targeted analyses carried out for
the complete genome (whole-genome analysis) in
human cell lines using a systematic search strategy
using Boolean logic operators (AND, OR and NOT)
combined with key search terms (e.g. nanopatrticle,
nanomaterial,  transcriptomics, gene
whole-genome) to form defined search strings.
These search strings were applied to various pub-
licly available search engines and databases (Google
Scholar, ScienceDirect, PubMed, NCBI GEO Datasets,
NanoMiner and ArrayExpress). A summary of the
retrieved literature is available at (Furxhi 2019).

Data completeness is a measure of the extent to
which the data which serve to address a specific
need are available (Marchese Robinson et al. 2016).
In our case, the focus was studies that extract
enriched Gene Ontology analysis terms from the
most significant dysregulated expressed genes that
are associated with biological processes. Almost all
studies selected had, as a first minimum require-
ment, to have validated quality and integrity of
RNA extraction prior to microarray analysis. In add-
ition, most of the studies further validate the results
by applying real-time quantitative PCR analysis.
Furthermore, in order to maintain high relevance
for human health effects, all studies gathered here
analyze human cell lines after exposure to NPs
(Marchese Robinson et al. 2016).

expression,



The studies gathered had a considerably variety
of different human cell models including both pri-
mary cells and immortalized cell lines which exhibit
varying responses. In addition, the cellular models
were restricted to human cells to limit uncertainties
related to species-specific biological mechanisms
(Judson et al. 2011; Shukla et al. 2010; Jaworska,
Gabbert and Aldenberg 2010). The use of a broad
variety of cell models was to breadth of biological
interactions arising from a variety of possible NP
exposure routes. For example, the use of type-ll
alveolar epithelial (A549) cells and macrophage cells
(e.g. differentiated monocyte derived macrophages)
to represent inhalation exposure, intestinal cells
(e.g. Caco-2) to represent ingestion route and
gastrointestinal exposure, endothelial cells to reflect
cardiovascular exposure, either deliberate (intraven-
ous delivery) or incidental (translocation).

Toxicity determinants in the studies gathered

Numerous factors can determine the relative toxicity
of substances compounds, such as the route of expos-
ure (e.g. inhalation, oral, dermal), external exposure,
tissue dose, persistence in the biological environment
(duration of biological interaction), as well as physico-
chemical properties of NPs (shape, core size, coating
etc). Furthermore, different tissue types, cell models
and experimental parameters (e.g. particle dispersion
and cell culture conditions) add further data variables.

A challenge associated with defining information
criteria for NPs is that the current understanding of
independent variables, such as physicochemical
properties and other experimental variables, which
contribute most to the outputs of assays is arguably
insufficient (Marchese et al. 2016). The lack of har-
monization in toxicological analysis, NP characteriza-
tion and preparation as well analysis and reporting
within the nanotoxicological literature, driven in part
lack of standard protocols for NP in vitro toxicity
studies (Drasler et al. 2017; Warheit 2018) generates
significant heterogeneity of the literature data.

In this study, we collected all available information
on NP characterization from each study keeping a
minimum requirements check list in order to identify
in silico the physicochemical properties and other
experimental variables that significantly affect the out-
puts of transcriptomics studies. The studies selected
include “priority” properties of interest for NP
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characterization during toxicological assessment as
reported in (Hackley et al. 2013). Besides RNA extrac-
tion quality check, the second minimum requirement
for a study to be considered was reporting NP size
and a traceable origin, i.e., either the synthesis method
of the NP, or product name and manufacturer for
commercially available NPs. Additional physicochemi-
cal parameters (such as surface area) are deemed
important for the data to be considered complete
(Hackley et al. 2013; Marchese Robinson et al. 2016).
Studies missing information for such attributes were
also included when this information could be retrieved
from the NP manufacturing or synthesis information.

Within nanoscience, less attention has been paid
to the question of which additional experimental
details used, need to be recorded ((Marchese
Robinson et al. 2016). In this study, we gathered
experimental and in vitro characteristics, such as
exposure dose and duration and cell line, cell type
and microarray protocol. A third minimum require-
ment for a study to be considered was to report
exposure dose and duration, with one exception,
(Peng et al. 2010) where it was not relevant. Cell
line would have been a fourth requirement but it
was, in any case, always reported.

In general, information on physicochemical prop-
erties was scarce but traceable, whereas, exposure
(dose and duration) and in vitro conditions were
always reported. Supplementary online material
provides a classification of information given in the
selected studies (Furxhi 2019). All studies provide
information for the majority of the toxicity determi-
nants/methods/outputs classes.

For each of the studies reviewed, the combin-
ation of experimental exposure conditions, in vitro
characteristics, such as cell line, cell type and tissue,
physicochemical properties and outcomes are
recorded separately in a datasheet, resulting in
many extractions per study. If, for instance, another
dose is administered during an experiment with all
the other conditions unchanged, this was inserted
as new instance within the dataset.

Biological effects comprising a number of cellular
responses (see Table 1 outputs) were extracted and
used as the outcome of interest to be simulated by
the BN model. Effect occurrence was expressed in
binary manner (Triggered, No effect). The NP is said
to have a toxic effect (Triggered) based on the
conclusions of the relevant study from which the
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Table 1. Processed Dataset (PD) inputs and outputs extracted from literature review and their states (categories)/numerical

ranges and abbreviations used in this study.

Nodes Abbreviations States (categories)
Inputs
NPs Physicoch-emical Properties
Nanoparticle NP 10 categories: Ag, Au, Polymeric NPs, CuO, ZnO, TiO,, SiO,, Fe,0s3,
Polystyrene NPs, CoFe,04 NPs
Core size (nm) Core size 4 discretized ranges: 0 to 10, 10 to 50, 50 to 100, >100
Shape Shape 5 categories: Spherical, Ellipsoid, Unknown, Nanotube, Clusters
Surface coatings Coatings 21 Categories: None, Silica, Citrate, PAH, DMSA, Madelic acid, Lipid
bilayer, Hybrid lipid, Methoxyl, Diethyl glyc, Gluconic acid, Citric
acid, folic acid, chromium, starch, surfactant, polymeric, colloidal,
polyethylenimine, mercaptopropyl trimethoxysilane, carboxyl
Specific Surface Area (m2/g) Surf. area 9 discretized ranges: 0 to 18, 18 to 36, 36 to 54, 54 to 72, 72 to 90,
90 to 126, 126 to 198, 198 to 216, >216
Zeta Potential (mV) Zeta 5 discretized ranges: -30 to -15, -15 to 0, 0 to 15, 15 to 30, >30
Exposure Conditions
Exposure dose (pg/ml) Dose 8 discretized ranges: 0 to 3, 3 to 8, 8 to 12, 12 to 30, 30 to 50, 50 to
75, 75 to 100, >100
Exposure duration (h) Time 5 discretized ranges: 0 to 6, 6 to 12, 12 to 24, 24 to 48, >48
In vitro model characteris-tics
Cell line C. line 22 categories: SH-SY5Y, 293T, A549, CACO-2, HDF, PC3, THP-1,
HEPG2, VSMC, HACAT, HMDM, JURKAT-T, MDDC, MCF-7, IMR-90,
U251, HELA, HMEC 184, EAHY926, SAE, RKO, SK MEL-28
Cell type C. type 2 categories: Cancer or Normal
Tissue Tissue 12 categories: Kidney, Brain, Lung, Intestinal, Skin, Prostate, Liver,
Colon, Cardiovascular, Breast, Cervix, Blood
Microarray Array 4 categories: Genechip_Affymetrix, WHG_Agilent, Beadchip_Illumina,
Superarray_Bioscience
Outputs
Cellular Effects
Cell cycle and Proliferation responses C. cycle Binary mode (Triggered, No effect)
Cell death and Apoptosis responses C. death
DNA damage and Repair responses DNA dam.
Cell adhesion and Extracellular matrix responses C. adhe
Inflammation and Immune responses Inflam.
Unfolded protein responses (UPR) and Endoplasmatic Stress
reticulum (ER) stress
Metal lon Responses Metal ion
Angiogenenesis responses Angiogen.
Cytoskeleton organization responses Cytoskel.

data was derived. The studies analyzed dysregu-
lated genes filtered with a cutoff criteria (p-value or
log2 fold change) in order to identify the most sig-
nificant perturbed genes at in vitro systems after
exposure to NPs. Gene Ontology analysis was then
performed to functionally annotate the candidate
genes with the related biological effect. Triggered
output is defined as the biological effect that cor-
respond to cellular responses of disturbed gene
functions after NP exposure. While ‘No effect’ was
determined were cellular processes were not signifi-
cantly disturbed after exposure to a NP.

Data preprocessing

As such, missing values in the compiled dataset
were not uncommon, with several physicochemical
properties not reported in most of the studies,
most notably composition (presence of impurities in
bulk and coatings) and surface area.

Filing the missing values from articles
‘Supplementary information’, as well as information
gathered directly from the manufacturers’ (e.g. mater-
ial safety data sheets) which resulted in a second
dataset (PD). Density values derived from manufac-
tures information combined with particle size distribu-
tion data (assuming spherical shape and smooth
surface) can be used to calculate the Specific Surface
Area (SSA) (Ha et al. 2018). Furthermore, as well as
data gap filling, discretization was also performed dur-
ing preprocessing. The range of the numeric input
attributes in the PD is discretized and expressed as
nominal equal frequented bins with some input
ranges obtained from literature, such as core size and
zeta potential (Hristozov et al. 2014).

Data analysis

Correlation Feature Selection algorithm (CFS) was
applied to the data to remove irrelevant and
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redundant information allowing a classifier to oper-
ate more effectively (Kohavi and John 1997; Doshi
and Chaturvedi 2014). WEKA (Waikato Environment
for Knowledge Analysis, version 3.8.2), an open-
source Machine Learning workbench was used for
the CFS application and BNs construction. We used
the algorithm to investigate associations between
the variables individually for the two datasets (Hall
and Smith 1998). CFS was applied in 10-fold cross-
validation (out-of-sample testing) which randomly
selects ten equal size subsamples of the dataset for
validation. Of the ten subsamples, a single one is
used as validation set to test the remaining nine,
combining the results to an overall average metric.
We used CFS to estimate correlation between sub-
set of attributes and outcomes, as well as inter-
correlations between the attributes (Karegowda,
Manjunath and Jayaram 2010). Distinguishing the
most important associations provided the basis of
constructing the BN graphical models.

Data split and balancing

The datasets are split into training (60%) and valid-
ation sets (40%) randomly. Most instances in the
training dataset correspond to no effect outcomes
for the majority of the endpoints. Imbalanced data-
sets can limit the performance of most classification
algorithms, making the prediction biased to the
dominant class value (Ha et al. 2018). To avoid this,
we adjusted the relative frequency of triggered/
no effect instances by resampling the second
dataset by applying SMOTE (Synthetic Minority
Oversampling Technique), a supervised instance
algorithm that oversamples the minority instances
using the k-nearest neighbors algorithm (Chawla
et al. 2002).

Bayesian networks

A BN is a directed acyclic graphical model that rep-
resents variables as ‘nodes’ and their connections as
arrows. Each arrow signifies a conditional depend-
ence of the child node to a parent node. The net-
work as a whole represents the joint probability
distribution of included variables and use Bayes’
Rule to update conditional probabilities given new
data (Zabinski et al. 2016; Zabinski, Pieper and
Gibson, 2017; Friedman et al. 2000). The network is
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practically defined by its graphical structure and the
corresponding trained conditional probabilities of
the included variables. The probability distribution
of all nodes P(A) = P(A;, ...,A,) is specified by
the product of all conditional probability tables
(CPTs) in the BN model as shown in Equation (1),
where pa(A)) is parent of node A; and P(A;|pa(A;) a
conditional probability distribution.

P(A) = f[P[(AApa(AJ] (1

CFS results between all variables in the dataset
(input and output) included inter-relationships
between the outputs. A model that would have
outcome-to-outcome links would fail to predict the
outcomes only from new inputs and therefore
would be biased to the prediction of other effects.
Applying CFS for each biological effect of the PD
dataset separately reveals the association (predictive
ability) of each input attribute (all cases of the final
PD dataset) for the specific effect (Figure 3). Based
on that, we constructed the links that associate
input features as parents to the cellular effects ena-
bling the BN model to predict the effects solely
from the inputs.

Another BN structure is derived automatically by
WEKA using the K2 algorithm (Gamez, Mateo and
Puerta 2011). Bayesian rules, such as the K2 algo-
rithm, build a different BN structure for each output
by changing both probabilities and links between
the inputs and the outputs. K2 algorithm is a score-
based algorithm in BN which finds the structure
that maximizes the score (Lerner and Malka 2011).

Model validation

Training sets were used for the internal validation
of the BNs. The internal validation was performed
using a 10-fold cross-validation process which val-
uated the predictive classifiers by partitioning the
original dataset into a ‘training set’ and a ‘test set'.
Cross-validation is a standard way to obtain
unbiased estimates of a model’s goodness of fit. In
our case we used 10 subsamples as training data
where a single subsample is retained as the valid-
ation data. The external validation set (40% of the
whole dataset) was used to evaluate the predictive
performance ability of the trained model (Raies and
Bajic 2016). In addition to the external validation
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dataset, a reliability validation set (four studies) was
used with data from studies that were not included
in the previous training and validation datasets.
Matthews Correlation Coefficient metric is also cal-
culated (Matthews 1975).

Important attribute analysis

Variable (attribute) importance can be measured
relatively, based on information obtained from the
model (Choi et al. 2018). We quantified the import-
ance of a feature for classification using information
entropy (Doshi and Chaturvedi 2014; Nguyen,
Petrovi¢ and Franke 2010; Fan et al. 2011) which is
a measure of uncertainty of a random variable and
defined as:

HX) = = P(X)log2(P(X;)) 2)

where, H(X) is the entropy of variable X and P(X;) is
the prior probabilities for the i value of X. The
entropy of X after observing values of another vari-
able Y is defined as

HIX/Y) = =Y P> P(Xi/y)log2P(Xi/y;)) ()

where, P(X;/y;) is the posterior probabilities of X
when values of Y are given.

The amount by which the entropy of X decreases
reflects an addition of information about X provided
by Y. The reduction of entropy is called information
gain and can be defined as:

IG(X/Y) = H(X) — H(X/Y) 2)

where, IG(X/Y) is the information gain of variable X
due to entropy decrease provided by variable Y.

In order to evaluate the relevant importance of
every input to each output we normalized /G for
each effect using min-max normalization (Priddy
and Keller 2005). The input with the lowest /G, that
is, the one with the least influence on the model
outcome prediction is zeroed and the most influen-
tial attribute scores 1.

Results
Data pre-processing

Information in raw dataset (RD) on the specific sur-
face area (SSA) was not available in 98% of the 245
cases (rows at the datasheet); the presence of
impurities in the bulk form or in the coating was

not defined in approximately 88%. In 29% of cases,
no information about the zeta potential was given,
and in 75% of cases, there were no shape descrip-
tors included. Of the various attributes relevant to
particle toxicity, primary particle size was the only
value consistently reported. More generally, infor-
mation on physicochemical properties was scarce
whereas, exposure (dose and duration) and in vitro
conditions, such as cell line, cell type and micro-
array protocol, were always reported. In relation to
the NPs evaluated in the studies extracted, the
most common were: Ag (16.3%), Au (18.2%), TiO,
(17.1%) and ZnO (47.2%). Other NPs appeared (CuOQ,
Si02, Fe,03, etc.) in less than 2%.

The PD consisted of 245 instances (rows) of 12
inputs and 9 outputs as columns (Table 1).
Processed Dataset (PD) had 8% (RD: 75%) of shape
missing, 9% (RD: 29%) of zeta potential missing and
5% (RD: 98%) of SSA missing. Reliability dataset was
comprised of 19 instances. The PD and reliability
datasets are available at (Furxhi 2019).

Data analysis

The relationships between the inputs in the PD
dataset are shown in Figure 3(A) and the relation-
ships of each outcome individually to the inputs are
shown in Figure 3(B). In both cases, attributes
showing the most robust correlation (association
0.9-1) are selected as parents to the respective vari-
able (node).

These input relationships allow us to manually
construct the part of the model that is fixed for all
outcomes. We build the prediction model by relat-
ing each output to the fixed input structure, exclud-
ing inter-relationship of outputs that would
interfere with the results, which enables the ability
to obtain various toxicological outcomes using one
prediction model.

Bayesian structure

Two BN graphs were constructed on the basis of
the results of the Correlation Feature Selection
(CFS) algorithm which reveals significantly associ-
ated variables that as nodes, can be linked in a
parent-child relationship. We constructed BNs
nodes and links that represent the associations only
between the inputs based on the results of CFS



(A)

Array = ||
Tissve - NN NEEEN

C. type — [ ]
c. line — NN

Zeta —
Coating —-
Shape 7-
Surf. area —
Time —|

Inputs

]
NP "----- | -I

9215 910D -
esoq |
o]

eale ‘ung

adeys -
Bueo) -|
Bez -
aul "D -
adfy 0 -
anssi]
Aeny -

3
o
=
-
w

NANOTOXICOLOGY 835

(B)

B cootion Anglogen .. ......
- u

Outputs

.. Correlation
HE ENE
H Nl

Stress —
C. death—

1
o o0
= 2
5 g

=]
° @

2z|s 8100 —
Bale "ung -
adeysg -~

Inputs

Figure 3. Results of 10-fold cross-validation Correlation Feature Selection algorithm applied in processed dataset. (A) Inter-rela-
tionship of input variables, (B) relationship between the input and output variables.

/

|

CED

Dose

iR

Tissue

N,

Tissue

—

Tissue

AN S

i

Metal ion

Angiogen

. Phy-che Properties . Exposure conditions

In vitro characteristics . Outputs

Figure 4. Graphical structure of the BN-PD model. Center: Structure based on correlation between the inputs. Perimeter: BN-PD

structures based on output prediction ability of inputs.

(Figure 4 center). Each output is linked with the
input nodes (Figure 4 peripheral).

Validation of the BNs

The classification performance of the three models,
BN-PD, BN-RD and BN-K2, are shown in Figure 5-7 as
the classifier accuracy, sensitivity and Matthewss cor-
relation coefficient (MCC). Accuracy shows how many
instances are correctly classified by the model com-
pared to the total number of instances. Sensitivity
demonstrates the classifiers’ ability to predict the trig-
gered instances. MCC is a correlation coefficient

between target and predictions. It varies between —1
and +1, lowest values indicating disagreement
between actuals and prediction. It is frequently used
to measure quality of binary classifications.

MCC is a correlation coefficient between target
and predictions. It generally varies between —1 and
+1. —1 when there is perfect disagreement between
actuals and prediction, 1 when there is a perfect
agreement. It can be more appropriate when nega-
tives actually mean something and it is frequently
used to measure quality of binary classifications.

BN-PD showed the highest accuracy for all but
one of the cellular effects in internal, external and
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Figure 6. Sensitivity of the classifiers.

The validation of the models is carried out for each cellular effect separately. (A) Internal

validation using a 10-fold cross-validation process with the training 60% datasets. (B) External validation using the validation 40%
datasets. (C) Reliability validation using the reliability dataset. BN-PD: BN constructed from pre-processed dataset; BN-K2: BN auto-
mated constructed using K2-algorithm; BN-RD: BN constructed from raw dataset.

reliability validation (Figure 5). Model performance
improved when data preprocessing was imple-
mented in the second dataset (BN-PD versus BN-
RD). BN-PD also had higher performance compared
to the automatically structured BN (BN-K2) in all of
the cases. BN-RD had a higher accuracy in the case
of inflammation (Inflam.) and metal ion responses
in internal validation compared to the other two
classifiers (Figure 5(A)). In addition, it had higher

accuracy in the external validation in the case of
metal ion responses (Figure 5(B)). Regarding the
reliability dataset, BN-PD showed higher predictive
capability than the other classifiers (Figure 5(C)). In
general, data-driven approach structure performed
better compare to BN-RD and BN-K2.

BN-PD showed the highest sensitivity for most of
the cellular effects in internal, external and reliabil-
ity validation (Figure 6) with model performance
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Figure 7. Matthews correlation coefficient of the classifiers. The validation of the models is carried out for each cellular effect sep-
arately. (A) Internal validation using a 10-fold cross-validation process with the training 60% datasets. (B) External validation using
the validation 40% datasets. (C) Reliability validation using the reliability dataset. BN-PD: BN constructed from pre-processed data-
set; BN-K2: BN automated constructed using K2-algorithm; BN-RD: BN constructed from raw dataset.

improved when data pre-processing was imple-
mented in the second dataset (BN-PD). BN-PD also
had higher performance compared to the automat-
ically structured BN (BN-K2) in almost all of the
cases. BN-RD had better sensitivity in cell cycle and
inflammatory responses at internal validation, whilst
BN-K2 had better sensitivity in DNA damage (DNA
dam.), unfolded protein and endoplasmatic reticu-
lum (Stress) responses (Figure 6(A)). BN-RD sensitiv-
ity scored higher compared to BN-K2 in predicting
cell death (C. death), metal ion and cytoskeleton
organization (Cytoskel) responses in the external
validation process (Figure 6(B)). Regarding the reli-
ability dataset, BN-PD showed higher predictive
capability than the other classifiers (Figure 6(C)).
However, as shown in the sensitivity reliability
graph (C), BN-RD predicted the triggered instances
for DNA damage (DNA dam.) responses, while the
other BNs failed to predict any.

BN-PD data-driven approach structure also had
higher MCC performance compared to the BN-K2
and BN-RD (Figure 7). BN-PD outperformed the
other classifiers in MCC metric in internal, external
and reliability validation. BN-RD model had higher
MCC score in the case of inflammation (Inflam.) and
metal ion responses in internal validation (Figure
7(A)) compared to the other two classifiers and
higher MCC in metal ion responses in external valid-
ation (Figure 7(B)). Regarding the reliability dataset,
BN-PD showed higher predictive capability than the
other classifiers (Figure 7(C)). Even for DNA damage
(DNA dam.) responses BN-PD is zero compared to
negative (worse) performance of BN-RD and BN-K2.

In summary, BN-PD that fully accounts for the
CFS correlations had an aggregate predictive per-
formance of >80% in most of the cases and outper-
formed the BNs that do not used either predefined
structure, gap filling or data balancing.

Important attribute analysis

In conducting the important attribute analysis, it
was found that exposure dose was the most influ-
ential attribute (IG = 1) that affected all outcomes
significantly. Unfolded protein and endoplasmatic
reticulum stress responses (Stress) were most influ-
enced by NP which, given the classification of some
NPs, relates to composition. Attributes such as NP
and cell line ranked after dose as important attrib-
utes (0.25-0.82) while coating (0.59) strongly
effected  cytoskeleton  organization  (Cytoskel.)
responses although coating appeared influential in
most of the outcomes. Array and tissue occurred in
top five determinants in four out of nine outcomes.
Exposure duration (time) was influential on cytoskel-
eton organization, angiogenesis (Angiogen.) and
DNA damage and repair (DNA dam.) responses.
(0.14-0.31). Zeta potential appeared only in metal
ion and unfolded protein (Stress) responses scoring
0.12 and 0.44, respectively. Surface area appeared
solely in angiogenesis responses (0.27). Similarly,
cell type occurred only in DNA damage and repair
responses (0.25). Shape had the smallest informa-
tion gain to the outcomes compared to the other
four most influential input attributes. The input
data represented low aspect ratio NPs therefore
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Table 2. Normalized information gain for each model outcome (bold) by input attributes. Only the top five most influential

attributes are shown.

Angiogenesis responses

Metal lon responses

Inflammation and Immune responses

Input attribute Information Gain Input attribute

Information Gain Input attribute Information Gain

Exposure dose 1.00 Exposure dose
Nanoparticle 0.61 Nanoparticle
Microarray 0.37 Zeta potential
Surface area 0.27 Cell line
Exposure duration 0.21 Tissue

1.00 Exposure dose 1.00
0.82 Cell line 0.25
0.12 Coating 0.01
0.03 Shape 0.00
0.02 Tissue 0.00

Unfolded protein responses and
Endoplasmatic reticulum

Cell death and Apoptosis responses

Cell adhesion and Extracellular
matrix responses

Input attribute Information Gain Input attribute

Information Gain Input attribute Information Gain

Nanoparticle 1.00 Exposure dose
Cell line 0.73 Cell line

Zeta potential 0.44 Tissue
Exposure dose 0.42 Coating
Coating 0.08 Nanoparticle

1.00 Exposure dose 1.00
0.24 Nanoparticle 0.45
0.20 Microarray 0.14
0.05 Tissue 0.13
0.03 Coating 0.01

Cell cycle and Proliferation responses

Cytoskeleton organization responses

DNA damage and Repair responses

Input attribute Information Gain Input attribute

Information Gain Input attribute Information Gain

Exposure dose 1.00 Exposure dose
Cell line 0.32 Coating
Nanoparticle 0.28 Nanoparticle
Microarray 0.20 Microarray
Coating 0.15 Exposure duration

1.00 Exposure dose 1.00
0.59 Cell line 0.59
0.42 Nanoparticle 0.43
0.23 Exposure duration 0.31
0.14 Cell type 0.25

cannot address fibre-type NP effects nor can be
used yet to perform a proper evaluation of how
shape differentiates toxicological outputs. Primary
particle size showed relatively insignificant influence
to the prediction of the outcomes.

In summary, dose, NP composition and cell line
had the foremost influences. Array, coating, expos-
ure duration and tissue had notable influences.
Zeta, cell type and surface area influenced some
outcomes distinctively. Shape and core size in the
given set of attributes had the least influence in dis-
criminating the outcome classes. The results of nor-
malized information gain analysis are presented in
Table 2.

Discussion

In this study, we describe the application of a BN
approach to assess the relationship between in vitro
wide-genome transcriptomic outcomes in various
cellular models and exposure to different NPs. This
requires the integration of biological outcomes
(possible markers of toxicity) with physicochemical
NP properties, exposure conditions and in vitro
model characteristics. The BN model predicts a
number of biological effects at cellular level with a

predictive capability exceeding 80% based on data
derived solely from the literature. Given the vaga-
ries of reporting within the literature, this predictive
capability is noteworthy and may be improved fur-
ther with greater harmonization.

Bayesian network constructs can combine expert
knowledge and data-driven modeling (Seixas et al.
2014; Velikova et al. 2013). Using an intermediate
feature selection step before constructing and
applying the BN model provides insight into the
dataset under investigation and guides model
development. Feature selection as a classifier pre-
step analysis has been implemented in several stud-
ies (Hall and Smith 1998; Drugan and Wiering 2010;
Chormunge and Jena 2018; Cinicioglu and
BuyUkugur 2014). In this study, we derive and com-
pare two pre-structure BN based on CFS results
(BN-PD and BN-RD) and show that using pre-proc-
essed data enhances the classifier accuracy (BN-PD).
We compare the CFS-based BN-PD to an automatic-
ally derived BN structure using the K2-algorithm
(BN-K2); the former performs better suggesting,
manual BN structuring based on statistical correl-
ation is optimum. In conclusion, predefined discre-
tized ranges, gap filling and class balancing
improves classifier prediction ability.



Previous studies have listed characteristics for
aggregated hazard ranking of NMs to investigate
the relationship between NMs properties and
adverse effects (Marvin et al. 2017; Choi et al. 2018;
Sheehan et al. 2018). In this study, artificial nodes
of cumulative indices, such as hazard node derived
from all the outputs were not included in the BN
structure. This allows analysis and validation of the
model for each cellular effect individually. In agree-
ment with our findings, Marvin et al. (2017) found
that coating plays a significant role in most bio-
logical effects such as inflammation and genotoxic-
ity (DNA dam.). From a biological perspective, this
would be expected as coating may serve to modify
surface properties (e.g. charge, hydrophobicity) and
biological interactions with poorly soluble particles
occurs at the surface interface. Sheehan et al.
(2018) performed a comparative study investigating
the efficacy of quantitative Weight of Evidence and
Bayesian methodologies in ranking the potential
hazard and found particle size, surface coating,
administration route and surface charge to have
significant influence on the toxicological outcomes
depending on the NP. These are all contributors
also found to have significant impact on the relative
toxicity of particles in a pulmonary inflammation
review of in vivo studies (Braakhuis et al. 2014). In
our study, zeta potential (surface charge) and tissue
(administration route) have a significant influence,
but size does not significantly affect the prediction
of the molecular biological effects compared to the
other attributes. The former is expected as zeta-
potential is associated with respiratory toxicity (Cho
et al. 2012) and different tissues show different sen-
stivities towards NPs. In a study of 15 different
metal oxide NPs, Cho et al. (2012) found that zeta
potential was a key physicochemical influencer of
respiratory toxicity in vivo. How size variation alone
affects the prediction of outcomes can only be seen
if the other effects are filtered out by means of a
sensitivity analysis (out of the scope of this study).
Studies report the effect of particle size on whole-
genome gene expression (Bouwmeester et al. 2011;
van der Zande et al. 2016; Grzincic et al. 2015).
Particle size in terms of agglomeration state and/or
primary particle size may change during a toxicity
test (biological matrices) or during the life cycle
due to dissolution or interaction with test media
(Worth et al. 2017). In principle, the approach
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presented here can correlate different set of proper-
ties, quantitative exposure metrics, including in vitro
characteristics with the toxicity pathways that NPs
may trigger and accounting also for second-
ary effects.

Including exposure conditions, such as dose and
duration, can improve the classification quality as
this information is always reported in toxicological
studies. Aggregating exposure features not readily
comparable in one attribute, for example, exposure
doses for different tissues, could reduce the bio-
logical accuracy of the model. This is compensated
in our study by including tissue as an extra model
input attribute. Exposure dose was identified as the
most important determinant for most effects in the
model, which is in concordance with the corner-
stone of toxicology, the dose-response relationship.
Such findings were also commensurate with QSAR
as Choi et al. (2018) found that dose was the most
important attribute when looking at cell viability
using neural network QSARs. They reported forma-
tion entropy as the second most important attri-
bute which strongly relates to NP in our model.
Exposure dose here was clearly an important deter-
minant for toxicity as it is used as a surrogate of
delivered (tissue) dose. Tissue dose data from in
vitro and in vivo studies could be equivalently com-
bined in the dataset. However, tissue doses are
widely overlooked in both in vivo and in vitro stud-
ies (Schmid and Cassee 2017), and thus, data from
both approaches cannot be readily integrated in
one toxicity classification dataset. Reporting and
use of delivered dose will refine outputs, particu-
larly where in vitro and in vivo data form base data-
sets for wider use in risk assessment.

The relative information gain (IG) analysis also
showed a variety of other output categories which
show agreement in terms of attribute importance
with in vitro and
ized below:

in vivo studies as summar-

e Angiogenesis regulation responses (e.g. disrup-
tion in vascular endothelial growth factor,
sprouting or angiopoietins) depend strongly on
NP, exposure dose and duration (Bartczak et al.
2013; Mukherjee 2018);

e Cell adhesion and extracellular matrix responses
(e.g. disrupted genes involved in cell-cell junc-
tion, morphology, movement, migration or
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structure) are determined by the exposure dose
as also described in (Septiadi et al. 2018), NP
and tissue (Ahmad Khalili and Ahmad 2015;
Engin et al. 2017).

e Cell cycle and proliferation pathway responses
(e.g. disrupted genes involved in cell differenti-
ation, division, growth, mitosis progression or
cytokinesis perturbation) are influenced by NP,
exposure dose and cell line (0.32), in agreement
with other studies (Huang, Cambre and Lee,
2017; Hussain et al. 2014).

e Cell death and apoptosis (e.g. mitochondrial
fragmentation/apoptosis, phosphorylation  of
p53, death receptor, cleavage of caspase and
PARP pathways) processes are highly determined
by exposure dose and in vitro characteristics
such as cell line and tissue (Ma and Yang 2016;
De Stefano, Carnuccio and Maiuri 2012).

e Cytoskeleton organization (e.g. disrupted genes
involved in cell matrix, microtubule, actin poly-
merization, cytokinesis or signal transduction)
responses depend on NP and exposure dose
(Kang et al. 2016; Soenen et al. 2010).

e In vitro characteristics (cell line and cell type)
influence DNA damage and repair (e.g. disrupted
genes involved in oncogenesis, histone or chro-
matin binding, replication, base excision, mis-
match, chromosome damage or segregation)
responses that depend strongly on exposure
dose (Singh et al. 2017).

In terms of accuracy of prediction, BN-PD had
marginally lower accuracy predicting metal ion
responses compared to BN-RD in internal and exter-
nal validation. CFS with the RD revealed that metal
ion response is strongly associated with in vitro
characteristics (data not shown), whereas it has poor
correlation in the PD case (Figure 3). PD CFS and
information gain agree with regards to metal ion
dependencies where NP and zeta inputs have
strong influence whilst BN-RD has higher accuracy
with none of these attributes as parent-inputs to
the class (Furxhi et al. 2018). Biologically one would
anticipate NP to be of primary importance as metal
ion responses are dependent on the presence of
metal ions (i.e. metal or metal oxide NPs) (Saliani,
Jalal and Kafshdare Goharshadi 2016; Poynton et al.
2012). Moreover, cell line/type and tissue would be
expected to show strong associations owing to

varying expression of, for example thiol rich, bind-
ing proteins.

BN-PD had zero MCC score concerning DNA dam.
responses and BN-K2, BN-RD had negative scores.
Reliability dataset has three triggered cases for DNA
dam., corresponding to ZnONPs and A549 cell line.
On the contrary, training dataset has no triggered
cases, to either ZnONPs or A549 cell lines. In BN-PD
(Figure 4) DNA dam. is apparently affected from cell
line, cell type, dose and NP. Cell line and NP infor-
mation gain score was 0.59 and 0.43, respectively
(Table 2). There is no link of the values of these two
significant attributes to triggered DNA dam. in the
training dataset that makes the reliability dataset
triggered cases impossible to predict from BN-PD.
More data would compensate this issue.

Several microarray protocols were followed in
the studies considered yet despite this, intra-labora-
tory microarray results are comparable (Bammler
et al. 2005; Schneider and Orchard 2011).
Microarray protocol (Array node) in a real scenario
does not contribute to the change of the toxicity.
However, the classifier precisely predicts the out-
comes of cell adhesion and extracellular matrix
responses or angiogenesis responses based on array
information gain (0.14 and 0.37, respectively) inter-
relating dose and NP with array through shape at
the Bayesian structure (Figure 4).

A further challenging issue relates to inflamma-
tory and immune responses. Within the analysis,
these outcomes depended strongly on exposure
dose and in vitro characteristics consequently mask-
ing the role of physicochemical properties in inflam-
mation. This is expected when considering that
different cell types (e.g. glioblastoma vs. keratino-
cyte) and cell lines (e.g. primary vs. immortalized)
exposed to the same NP can express markedly dif-
ferent cytokine levels and inflammatory profiles.

NPs can cause very overt signs of toxicity (e.g.
cell death), especially at higher and often non-
physiological doses, that are easy to detect yet they
may also cause much more muted disruption of cel-
lular functions at the molecular level. Such small
perturbations do not necessarily result in adverse
effects in vitro or in vivo (Sauer et al. 2017) or may
be part of a wider sequence of events whereby
small perturbations can produce large, non-linear
effects on a complex system such as an organ or
whole organism (Gonzalez-Diaz et al. 2013). By their



very nature, small perturbations require targeted
forms of analysis to detect, that in itself requires
knowledge of the wider adverse outcome path-
way(s) for which there are still relatively few in
nanotoxicology. Alternatively, high content analysis
such as omics can provide the breadth and sensitiv-
ity to detect small early changes although again
identifying and understanding the link between
small perturbations and complex disease endpoints
remains a challenge for NP. Future studies expand-
ing BN applicability may incorporate differentiated
expression gene values (fold change) to predict the
NP hazard in a quantitative manner by linking
genes probabilistically with apical endpoint (dis-
eases) such as Alzheimer’s (Alexiou et al. 2017), can-
cer (Achcar, Brookmeyer and Hunter 1985) or
diabetes (Sangi et al. 2015). Inclusion of molecular
events, defining states, association assessment and
integration in the BN graph are steps to be consid-
ered in future model development. To date, limited
data exist for proteomics and metabolomics for
NPs. Transcriptomics is a well-established technique
with high intra-array reproducibility (Frohlich 2017)
but provides only a list of genes associated with a
pathway. Future integration of other omics data
(multi-omics) will elucidate the potential causative
changes that lead to an adverse effect and will lead
to an advance in the field of nanotoxicology (Hasin,
Seldin and Lusis, 2017, Shin et al. 2018).

The flexibility of BNs to missing or additional
generated data allows the increase of predictive
ability as the data become available or data quality
increases. In addition, BNs are used in data-poor
environments which fits in our case of a small set
of publicly available microarray gene expression
human in vitro studies. Another advantage is that
BNs are understandable as a result of their graph-
ical representation, thus they are used both as pre-
dictive and descriptive models allowing a great
accessibility to the tool (Murphy et al. 2016). A
detailed comparison of BN advantages with other
modeling approaches in performing classification
may be found in (Zabinski 2017). In this study we
include exposure conditions and in vitro characteris-
tics as model inputs, integrating quantitative met-
rics and study characteristics to biological effects.
As more experimental data becomes available, the
model can be extended to provide additional pre-
dictions. Biological phenotypic outcomes, for
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example based on in vitro or/and in vivo testing
could be incorporated to the model to link inputs
with perturbations (Key Events) and phenotypic
changes (apical effects) (Hasin, Seldin and Lusis,
2017; Banares et al. 2017). Such prediction can be
used to prioritize NPs for further toxicological test-
ing (Chepelev et al. 2015; Labib et al. 2016). Our
data focus on human cell lines to minimize the loss
of relevant biological information. The use of cell
lines does not represent the biological complexity
and thereby cannot represent the full response in
the whole organism (Sahu et al. 2015). However,
the complexity of the in vitro model can be
enhanced by using co-cultures reducing the need
for in vivo models (Bouwmeester et al. 2011,
Snyder-Talkington et al. 2015) or use of organo-
typic models such as precision cut lung slices (Hess
et al. 2016) which combines the complexity of in
vivo systems with the efficiency of in vitro models
and reduced animal number. It is worth to mention
that in vitro models can efficiently capture the com-
plex molecular functions altered in vivo as demon-
strated in (Kinaret et al. 2017; Zhang et al. 2016).
The model proposed here could benefit from
studies that report ‘no observed transcriptomics
adverse effect level’ (NOTEL). For example, Bajak
et al. (2015) found that exposure of 5 and 30nm
Au NPs to Caco-2 cell line for 24 and 72 h respect-
ively did not disturb any gene. Such numeric attrib-
utes, used as a benchmark of effects, would provide
a valuable output in the established model increas-
ing the model precision and applicability to differ-
ent stakeholders. Information on physicochemical
properties was scarce as seen above, thus future
studies should include a detail characterization of
the NPs physicochemical properties that are consid-
ered relevant to hazard identification such as sur-
face properties, chemical composition, shape,
aggregation status etc. Most of the studies gath-
ered tested NPs at an exposure duration of 24 to
48 hours. A longer exposure may show the adaptive
mechanisms at the molecular level and allow the
determination of adverse versus the reversible
effects. Detailed considerations for in vitro testing of
NPs which should increase reliability and relevance
is mentioned elsewhere (Drasler et al. 2017). The
integration of in vitro and in vivo studies in one
dataset poses challenges beyond this study. In vivo
studies were excluded from this study because a
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harmonized exposure metric system is needed to
transpose in vivo exposure dose to a quantity com-
patible to the target tissue dose (biologically effect-
ive dose) of in vitro studies (Riviere 2009; Li and
Huang 2008). A PBPK model can be used to esti-
mate the concentration of NPs in target tissue
(Judson et al. 2011; Li and Reineke 2012), and there-
fore, incorporating a PBPK model to the BN model
framework described here could be investigated to
combine data from in vivo and in vitro studies (in
vitro-to-in vivo extrapolation). Furthermore, using
PBPK model can permit the route-to-route and spe-
cies-to-species (e.g., animal-to-human) extrapola-
tions (Raies and Bajic 2016). A detailed review of
available PBPK models can be found at the supple-
mentary material in the final technical report of
Nanocomput project (Worth et al. 2017).

QSTR-perturbation models have dealt also with
relatively small datasets of cases, while combining
multiple endpoints, experimental conditions and
toxicities/activities (Concu et al. 2017; Speck-
Planche 2015). There are three ways that approach
could be fused to our study: The dataset in this
study can be preprocessed and modeled using the
QSTR-perturbation model of Concu et al. (2017); the
Concu et al. (2017) dataset can go through the CFS
and BN construction and preprocessing stages to
be modeled by BNs; finally, a BN can be used to
model the QSTR final classification function, instead
of the ANN used (Concu et al. 2017).

The BN model approach, as demonstrated here
has enormous potential for the advancement of
prescreening of NPs as part of risk characterization
as well as the wider materials development process.
In a broad context, improved screening can be fore-
seen as the ability to screen large candidate data
sets based on physicochemical data to identify pos-
sible concerns. Considering this approach, BN mod-
els may be employed to screen combination of
attributes to identify which values of the attributes
lead to toxicity. This could be in the form of physi-
cochemical data generated through testing of
actual materials such as is required during regula-
tory activities (e.g. REACH registration) or screening
of candidate designs prior to the development of
prototype materials. The ultimate goal here is to
reduce the burden of toxicological testing, espe-
cially in higher organisms to align with the 3R’s of
toxicological evaluations and improve efficiency

(time and money) between concept and commer-
cial product.

Conclusions

NPs have entered mainstream production supply
chains, while at the same time the risks of these
new materials for humans and for the environment
remains to be fully understood, not least when con-
sidering the long term effects of chronic exposure.
Early-stage nanotoxicity measurements represent a
challenge, not least when attempting to predict
adverse outcomes and modeling is critical to under-
standing the biological effects of exposure to NPs.
In this study, we demonstrate a novel approach to
predict the molecular effects of NPs on human cells
by using a variety of inputs such as physicochemi-
cal properties, exposure conditions and in vitro
characteristics. To this end, we employ a machine
learning algorithm, Bayesian networks, to afford a
better understanding of how these inputs can pre-
dict normal cell function disturbance after exposure
to NPs in vitro. The BN successfully predicted a
number of disrupted biological pathways associated
with NP properties which reflect drivers of toxicity
determined also experimentally, such as zeta-poten-
tial and surface coating, in vitro and in vivo. Model
structure based on statistical associations between
input attributes and outputs has considerable bio-
logical relevance. The results show that appropriate
pre-processing techniques should be applied before
implementing a BN. It allows researchers to obtain
various toxicological outcomes through one predic-
tion concept and prioritize in vitro experimental set-
ups. In summary, BN-PD that fully accounts for the
CFS correlations has an aggregate predictive per-
formance of >80%, in most of the cases and out-
performs the BNs that do not use either predefined
structure, gap filling or data balancing. The biggest
challenge in any model development is the lack of
sufficient homogenous experimental data. BNs pre-
dictability improves with additional data over time.
Future integration of data confirming molecular
events with phenotypic changes will allow the
model presented to quantitatively determine the
risk posed from exposure to NPs which can then be
extrapolated to humans. The model validation
shows a robust and promising methodology for
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incorporating transcriptomic findings in hazard and
risk assessment modeling framework.
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