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ABSTRACT 
PROC MIXED provides a very flexible environment in which to model many types of repeated measures data, 
whether repeated in time, space, or both. Correlations among measurements made on the same subject or 
experimental unit can be modeled using random effects, random regression coefficients, and through the specification 
of a covariance structure. PROC MIXED provides a large variety of useful covariance structures for modeling 
covariation in both time and space, including discrete and continuous increments of time and space. MANOVA tests 
are available for some model specifications, and degrees of freedom adjustments are available to provide better 
approximations to the distributions of the test statistics than for standard between- or within-subject methods. The 
%GLIMMIX macro, available in the SAS/STAT sample library, extends the mixed model technology of PROC MIXED 
to generalized linear mixed models, while the %NLINMIX macro, also available in the SAS/STAT sample library, 
provides a similar framework for non-linear mixed models. Likelihood and information criteria are available to aid in 
the selection of a model when the model structure is not known a priori. 

INTRODUCTION 
Repeated measures data are encountered in a wide variety of disciplines including business, behavioral science, 
agriculture, ecology, and geology. What generally distinguishes repeated measures data from time series data is that 
multiple subjects are involved, and the number of measurements per subject is generally not very large. The amount 
of literature on repeated measures analysis is now quite large (see the references section for some recent books on 
the topic), partly as a result of advances in statistical computing that permit the use of methods that are often quite 
computational in detail. The reason for the large number of publications and software solutions is that there is no 
simple methodology that accommodates all facets of repeated measures experiments and surveys. For example, 
repeated measures experiments may measure each subject at each of a designated set of equally spaced times, 
while another experiment may result in the number of measurements per subject as a random variable with 
measurements made at irregularly spaced times. Other experiments may have drop outs while the experiment 
progresses. The drop outs may be random, or may be a result of the treatment that the subject receives. In some 
experiments, the repeated measures factor can be randomized, while in others, the repeated measures factor is time 
or space and cannot be randomized. In addition, the response variable or variables may be continuous, discrete, or a 
combination of the two, leading to different possibilities for making inference from the experiment or survey. 
 
PROC MIXED in the SAS System provides a very flexible modeling environment for handling a variety of repeated 
measures problems. Random effects can be used to build hierarchical models correlating measurements made on 
the same level of a random factor, including subject-specific regression models, while a variety of covariance and 
correlation structures can be specified for residuals. The random effects and covariance structures are specified in 
the RANDOM and REPEATED statements, respectively. 

RANDOM STATEMENT 
The RANDOM statement specifies the random effect terms that are to be included in the model, along with a 
covariance structure (TYPE= option) to specify how the random effects are related to each other. More than one 
RANDOM statement can be used to define a PROC MIXED model. This is useful when you have some random 
effects that are correlated, while there are others that need to be independent of those, as in hierarchical models. The 
SUBJECT= option can be used to specify different hierarchies. 

REPEATED STATEMENT 
The REPEATED statement controls the covariance structure imposed upon the residuals or errors. In procedures 
such as GLM and REG, the errors are assumed to be independent, while PROC MIXED has a rich variety of 
structures to specify relationships among the errors. In repeated measures models the SUBJECT= optional statement 
parameter is used to define which observations belong to the same subject, and which belong to different subjects, 
where different subjects are independent. The TYPE= optional statement parameter specifies the model for the 
covariance structure of the errors. The GROUP= optional statement parameter permits different levels of the GROUP 
effect to have different structure parameters, though the structure TYPE remains the same. Only one REPEATED 
statement is permitted in a PROC MIXED model. 

RANDOM EFFECTS 
Example 1 is taken from Lindsey (1993:86) and concerns the visual acuity of eyes and lens strength. Response times 
in msec of seven subjects were measured after a light is shown into each eye under each of 4 lens powers, 6/06, 
6/18, 6/36, and 6/60, where the power is the perception of the object by the eye at 6 feet when it is actually positioned 
at 6, 18, 36, or 60 feet, respectively. The question of interest is whether response time varies with lens strength. 
Assume that the 8 lens/eye combinations are completely randomized separately for each subject, and that there is no 
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carryover effect. A carryover effect would be present if the response time of a measurement depended upon the 
treatment previously applied.  

PAIRED MEASUREMENTS 
If we were to analyze the data only for the 6/06 lens power with an interest in comparing the left eye with the right eye, 
then we would have 2 measurements made on each subject – one on the left eye and one on the right eye. 
Measurements made on the same subject are likely to be correlated, while it seems reasonable to believe that the 
response observed on one subject is independent of that observed on another subject. A typical analysis of this data 
would be with a paired t-test (or a non-parametric analog). In the paired t-test, we are estimating the population mean 
difference of left- and right-eye responses, L Rµ µ− , using the sample mean difference, L RY Y− . The variance of 

this difference of means is 

 ( ) 2 2Var 2L R L R LRY Y σ σ σ− = + −  (1) 

where 2
Lσ , 2

Rσ , and LRσ  are the variances and covariance of the left and right eyes. Unlike the two-independent 
samples problem, the covariance term is present and measures the linear dependence between the left and right-eye 
measurements. An experimental design model that results in this same variance of the difference of means is the 
randomized block design (RBD) model. This model can be written as 

 ij i j ijY Bµ τ ε= + + +  (2) 

where ijY is the response measured on the ith eye, i=[Left, Right], on the jth subject, µ is the overall mean, τ is the 

mean effect of eye, B is the random subject effect, ε  is the error, and ( )20,j BB N σ∼ , ( )20,ij N εε σ∼ , and 

jB and ijε  are independent. This model can be fitted in a straightforward way using PROC MIXED. The MODEL 

statement will be used to specify the ,iτ  while the RANDOM statement will be used to specify that the jB are to be 

included and used to estimate 2
Bσ .  The model defaults to include an intercept term, µ , and errors ijε . 

 
Proc Mixed Data=Vision; 
 Where LensStrength="6/06"; 
 Class Subject Eye; 
 Model ResponseTime = Eye; 
 Random Subject / V VCorr; 
 LSMeans Eye; 
Run; 
 

The random effects are estimated to be 3.9048 and 32.9762 for the subject and error, respectively. The V and 
VCORR options of the RANDOM statement produce tables showing the estimated covariance and correlation 
matrices of the responses. These matrices for the first two subjects only are given in the tables below. 
 

Table 1. Covariance matrix for subjects 1 and 2. 

R o w C o l 1 C o l 2 C o l 3 C o l 4 
    

1 36 .881 3.905  
2 3 . 9 0 5 36.881  
3   36.881 3.905
4   3 .905 36.881

Table 2. Correlation matrix for subjects 1 and 2. 

Row Col1 Col2 Col3 Col4 
  

1 1.000 0.106  
2 0.106 1.000  
3  1.000 0.106
4  0.106 1.000

 
In these tables Col1 and Col2 refer to measurements made on subject 1, while Col3 and Col4 refer to the 
measurements made on subject 2. Further Col1 and Col3 correspond to the left eye and Col2 and Col4 to the right 
eye. We observe here that measurements made on the same subject are allowed to be correlated (r=0.106), while 
measurements between different subjects are independent (absence of covariances and correlations). However, we 
note that this model requires that the variances of the left and right eyes be equivalent, which does not quite match 
the variance of the differences of the mean model proposed earlier. To match that formula for the variance of the 
difference of the means, we'll need to permit the variance associated with the left eye measurements to differ from the 
variance associated with the right eye measurements. The following PROC MIXED code can accomplish this. 
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Proc Mixed Data=Vision; 
 Where LensStrength="6/06"; 
 Class Subject Eye; 
 Model ResponseTime = Eye; 
 Random Subject / V VCorr; 
 Repeated / Group=Eye; 
 LSMeans Eye; 
Run; 
 

You might notice that the observed test statistic and the variance of the difference of the means is equivalent for 
these two analyses. Because there are two balanced groups (eyes), the average of the two residual variances in the 
second analysis is equivalent to the residual variance in the first model leading to these equivalences. As we build 
more complex models, however, this may not generalize. 

BLOCKS OF MEASUREMENTS 
Now let's look at the lens strength aspect of these data and focus on using just the left eye measurements. Now we 
have 4 measurements made on each subject. Let's fit the RBD model with homogeneous variance to these data. 
 

Proc Mixed Data=Vision; 
 Where Eye="Left ";  
 Class Subject LensStrength; 
 Model ResponseTime = LensStrength; 
 Random Subject / V VCorr; 
 LSMeans LensStrength / PDiff; 
Run; 

 

Table 3. Estimated covariance matrix of 
responses on the same subject for the 4 lens 
strengths, with lens powers 6/06, 6/18, 6/36, and 
6/60, respectively. 

Row C o l 1 C o l 2 C o l 3 C o l 4 
    

1 28.869 5.397 5.397 5.397 
2 5.397 28.869 5.397 5.397 
3 5.397 5.397 28.869 5.397 
4 5.397 5.397 5.397 28.869 

Table 4. Estimated correlation matrix of  
responses on the same subject for the 4 lens 
strengths, with lens powers 6/06, 6/18, 6/36, and 
6/60, respectively. 

Row Col1 Col2 Col3 Col4 
 

1 1.000 0.187 0.187 0.187
2 0.187 1.000 0.187 0.187
3 0.187 0.187 1.000 0.187
4 0.187 0.187 0.187 1.000

 
The covariance and correlation matrices are given in Tables 3 and 4, and note that the correlation between any pair 
of lens powers is constrained to be the same by using this RBD model. If we are able to randomize the order that 
each subject receives the lens power treatments, then on average, equi-correlated responses would be expected.  
 
Next, consider permitting the variances of the responses associated with the different lens strengths to differ by using 
the GROUP= option on the REPEATED statement. 
 

Proc Mixed Data=Vision; 
 Where Eye="Left ";  
 Class Subject LensStrength; 
 Model ResponseTime = LensStrength / DDFM=KenwardRoger; 
 Random Subject / V VCorr; 
 Repeated / Group=LensStrength; 
 LSMeans LensStrength / PDiff; 
Run; 

 
When we examine the covariance and correlation matrices of responses, we find that the responses are no longer 
equi-correlated. Further, we observe that one estimated variance is almost an order of magnitude greater than 
another. This is due to an outlying observation that could be excluded, and certainly its effects on the inferences 
should be investigated before drawing conclusions. 
 
A major difference between this and the previous model is that the estimated variances of the differences of the least 
squares means now depend upon which pair of means is being compared (Table 7). Because of the unequal 
variances, the Kenward-Roger approximation to the degrees of freedom for the reference distribution is 
recommended (see Schabenberger and Pierce 2002: 430-431, 438-446). 
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Table 5. Estimated covariance matrix of 
responses on the same subject for the 4 lens 
strengths, with lens powers 6/06, 6/18, 6/36, and 
6/60, respectively, for the heterogeneous variance 
model. 

Row C o l 1 C o l 2 C o l 3 C o l 4 
    

1 13.248 8.192 8.192 8.192
2 8.192 10.800 8.192 8.192
3 8.192 8.192 82.902 8.192
4 8.192 8.192 8.192 17.111

Table 6. Estimated correlation matrix of  
responses on the same subject for the 4 lens 
strengths, with lens powers 6/06, 6/18, 6/36, and 
6/60, respectively, for the heterogeneous variance 
model. 

Row Col1 Col2 Col3 Col4 
 

1 1.000 0.685 0.247 0.544
2 0.685 1.000 0.274 0.603
3 0.247 0.274 1.000 0.218
4 0.544 0.603 0.218 1.000

 

Table 7. Differences of Least Squares Means for the heterogeneous variance RBD model. 

 Lens _Lens Standard  
Effect Strength Strength Estimate Error DF t Value Pr > |t| 

    
LensStrength 6/06 6/18 -0.714 1.046 4.67 -0.68 0.5272
LensStrength 6/06 6/36 2.714 3.376 6.56 0.80 0.4495
LensStrength 6/06 6/60 -3.857 1.413 7.97 -2.73 0.0259
LensStrength 6/18 6/36 3.429 3.324 5.99 1.03 0.3421
LensStrength 6/18 6/60 -3.143 1.283 6.99 -2.45 0.0442
LensStrength 6/36 6/60 -6.571 3.456 6.96 -1.90 0.0993

CORRELATED ERRORS 
Let's now consider an alternative strategy for modeling the data of example 1. Again, we'll focus first on the paired 
data of lens power 6/06. Since two measurements are recorded on each subject, the set of responses on a subject 
form a multivariate response. A standard technique for asking questions concerning linear combinations of the 
responses (here, differences of left versus right eye means), is profile analysis (see e.g., Johnson and Wichern 2002). 
This type of analysis can be conducted readily using PROC GLM and its REPEATED statement, but PROC MIXED 
can also perform this analysis using a correlated errors model. The correlated errors model can be written as 

 ij i ijY µ τ ε= + +  (3) 

but now where  

 ( ) ( )
2

2Cov , Cov ,
i j

ij ii
ij i j ij i j

ii
Y Y

σ σ
ε ε

σ σ
′

′
′ ′

′

 
= =  

  
. (4) 

Measurements made on different subjects are still assumed to be independent. To fit the model in PROC MIXED, the 
REPEATED statement is used to specify the repeated measures factor, the subject variable identifying observations 
that are to be correlated, and a covariance or correlation structure. For the multivariate profile analysis, the 
unstructured covariance matrix is specified using the TYPE=UN optional parameter. 
 

Proc Mixed Data=Vision; 
 Where LensStrength="6/06"; 
 Class Subject Eye; 
 Model ResponseTime = Eye; 
 Repeated Eye / Subject=Subject Type=UN R RCorr; 
 LSMeans Eye / PDiff; 
Run; 
 

Note that the RANDOM statement is not used in this model. The estimated covariance parameters are given in Table 
8. The variance of the difference of the left and right-eye means is again the same as for the previous two models, 
and the observed test statistic for comparing the left and right eyes is also the same as for the previous analyses.   
 
A correlated errors model can also be fit to the left eye data by removing the RANDOM statement and inserting the 
appropriate REPEATED statement to the PROC MIXED code given earlier. The four responses measured on a 
subject under the 4 lens strengths form the multivariate vector of correlated observations. 
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Table 8. Covariance parameter estimates for the unstructured multivariate correlated errors model. 

Cov Parm Subject Estimate 
   

UN(1,1) Subject 12.476 
UN(2,1) Subject 3.905 
UN(2,2) Subject 61.286 

 
 

Proc Mixed Data=Vision; 
 Where Eye="Left ";  
 Class Subject LensStrength; 
 Model ResponseTime = LensStrength / DDFM=KenwardRoger; 
 Repeated LensStrength / Subject=Subject Type=UN R RCorr; 
 LSMeans LensStrength / PDiff; 
Run; 

 
The estimated covariance and correlation matrix of the measurements differs somewhat from that obtained using the 
random effects model. In fact, the unstructured covariance matrix has permitted a negative association (r=-0.251) 
between lens strengths 6/06 and 6/30. 

Table 9. Estimated unstructured covariance  
matrix of errors for subject 1 for the correlated 
errors model for the left eye data. 

Row C o l 1 C o l 2 C o l 3 C o l 4 
    

1 12.476 9.262 -7.810 4.952
2 9.262 12.619 10.571 6.524
3 -7.810 10.571 77.476 8.881
4 4.952 6.524 8.881 12.905

Table 10. Estimated unstructured correlation 
matrix of errors for subject 1 for the correlated 
errors model for the left eye data. 

Row C o l 1 Col2 C o l 3 Col4 
 

1 1.000 0.738 -0.251 0.390
2 0.738 1.000 0.338 0.511
3 -0.251 0.338 1.000 0.281
4 0.390 0.511 0.281 1.000

 
Now, if the order of lens strengths was randomized for each subject, then we might believe that the measurements 
should be equi-correlated. Using the correlated errors model, but rather than letting the covariance matrix be 
unstructured, we might wish to impose an equi-correlated structured on the covariances. This can be done using the 
TYPE= option of the REPEATED statement. Here, we'll specify compound symmetry (CS) to get the equi-correlated 
covariance matrix. 
 

Proc Mixed Data=Vision; 
 Where Eye="Left ";  
 Class Subject LensStrength; 
 Model ResponseTime = LensStrength / DDFM=KenwardRoger; 
 Repeated LensStrength / Subject=Subject Type=CS R RCorr; 
 LSMeans LensStrength / PDiff; 
Run; 

 
An alternative is to fit the heterogeneous variance compound symmetry (CSH) covariance structure. 
 

Proc Mixed Data=Vision; 
 Where Eye="Left ";  
 Class Subject LensStrength; 
 Model ResponseTime = LensStrength / DDFM=KenwardRoger; 
 Repeated LensStrength / Subject=Subject Type=CSH R RCorr; 
 LSMeans LensStrength / PDiff; 
Run; 

MODEL SELECTION 
All of these models are potential models for analyzing the data for the left (or right) eye. Because it is the most 
general of the structures, the multivariate model could be argued as the best (i.e., it makes no structural 
assumptions). However, the error degrees of freedom for testing for a lens strength effect using this multivariate 
model is 4 (F=4.56, P>F=0.0883), while for the homogeneous variance RBD model it is 18 (F=3.10, P>F=0.0529). 
Some authors have proposed using information criteria, such as AIC or BIC, for choosing among potential models 
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(see e.g., Moser and Macchiavelli 2002). Since we are using REML estimation to compare among models, all models 
in the set must have the same fixed-effects model. This is the case for our lens strength analysis of the left eye data. 
Table 11 contains the model fit results of these analyses. Here, the model that is selected as "best" using any of the 3 
information criteria is the RBD model with heterogeneous variances. This model requires estimation of 5 covariance 
parameters (half that of the multivariate model), but permits heterogeneous variances and the correlations among 
pairs of measurements are not required to be equi-correlated. 

Table 11. Model fit criteria for 5 random effects/correlated errors models fit to the left eye data. 

Model -2LogL Parms AIC AICc BIC
Random Subject/Homogeneous Variance 155.5 2 159.5 160.1 159.4
Random Subject/Heterogeneous Variance 141.9 5 151.9 155.2 151.6
Correlated Errors/Unstructured 134.2 10 154.2 171.1 153.7
Correlated Errors/CS 155.5 2 159.5 160.1 159.4
Correlated Errors/CSH 144.4 5 154.4 157.7 154.1

 

TWO WITHIN-SUBJECT FACTORS 
To complete the analysis of this example, we'll consider both of the within-subject factors, eye and lens strength, in a 
single analysis. A mixed model for two within-subject factors corresponds with a strip-plot design model (see e.g., 
Schabenberger and Pierce 2002:493-503). The random effects define the three different-sized "experimental units" in 
this model, allowing covariances to vary due to the subject, eye, and lens strength. This will result in covariances 
among each of the 8 measurements for a given subject, though different subjects are still assumed to be 
independent. The PROC MIXED code follows with estimated covariance matrix given in Table 12 and correlation 
matrix in Table 13. 
 

Proc Mixed Data=Vision; 
 Class Subject Eye LensStrength; 
 Model ResponseTime = Eye | LensStrength / DDFM=KenwardRoger; 
 Random Subject Eye(Subject) LensStrength(Subject) / V VCorr; 
 LSMeans Eye*LensStrength / PDiff; 
Run; 
 

Table 12. Estimated covariance matrix of the 8 responses for the strip-plot, two within-subject factors model. 
Row/Columns 1-4 correspond to left eye lens strength measurements, 5-8 with right eye lens strength 
measurements. 

Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 
1 48.83 31.97 31.97 31.97 24.31 20.29 20.29 20.29
2 31.97 48.83 31.97 31.97 20.29 24.31 20.29 20.29
3 31.97 31.97 48.83 31.97 20.29 20.29 24.31 20.29
4 31.97 31.97 31.97 48.83 20.29 20.29 20.29 24.31
5 24.31 20.29 20.29 20.29 48.83 31.97 31.97 31.97
6 20.29 24.31 20.29 20.29 31.97 48.83 31.97 31.97
7 20.29 20.29 24.31 20.29 31.97 31.97 48.83 31.97
8 20.29 20.29 20.29 24.31 31.97 31.97 31.97 48.83

Table 13. Estimated correlation matrix of the 8 responses for the strip-plot, two within-subject factors model. 
Row/Columns 1-4 correspond to left eye lens strength measurements, 5-8 with right eye lens strength 
measurements. 

Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 
     

1 1.000 0.655 0.655 0.655 0.498 0.416 0.416 0.416
2 0.655 1.000 0.655 0.655 0.416 0.498 0.416 0.416
3 0.655 0.655 1.000 0.655 0.416 0.416 0.498 0.416
4 0.655 0.655 0.655 1.000 0.416 0.416 0.416 0.498
5 0.498 0.416 0.416 0.416 1.000 0.655 0.655 0.655
6 0.416 0.498 0.416 0.416 0.655 1.000 0.655 0.655
7 0.416 0.416 0.498 0.416 0.655 0.655 1.000 0.655
8 0.416 0.416 0.416 0.498 0.655 0.655 0.655 1.000
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The multivariate, correlated errors model can also be specified using the REPEATED statement with the UN 
structure. Unfortunately, there are not enough subjects to provide degrees of freedom to estimate the errors. When 
there are a large number of repeated measurements relative to the number of subjects, the unstructured model may 
not be feasible. This is one of the reasons that alternative models for repeated measures are needed. As an 
alternative, PROC MIXED permits direct product structures that are very flexible for two within-subject factors, but do 
not require as many parameters as the UN structure (for the model below it is 4 versus 36 covariance parameters for 
the UN multivariate model). By including a random subject effect we can fit a fairly flexible covariance structure. 
 

Proc Mixed Data=Vision; 
 Class Subject Eye LensStrength; 
 Model ResponseTime = Eye | LensStrength / DDFM=KenwardRoger; 
 Random Subject / V VCorr; 
 Repeated Eye LensStrength / Subject=Subject Type=UN@CS R RCorr; 
 LSMeans Eye*LensStrength / PDiff; 
Run; 
 

This particular structure is permitting an unstructured matrix (UN) for the levels of eye, and a compound symmetry 
(CS) structure among the levels of lens strength. The direct product of the UN with the CS structure along with the 
subject random effect produces the estimated covariance matrix of responses given in Table 14. The corresponding 
correlation matrix is given in Table 15. 

Table 14. Estimated covariance matrix of responses for a subject using the direct product UN@CS 
covariance structure along with a random subject effect. 

Row C o l 1 C o l 2 C o l 3 C o l 4 C o l 5 C o l 6 C o l 7 C o l 8 
     

1 66.290 45.955 45.955 45.955 33.635 30.393 30.393 30.393 
2 45.955 66.290 45.955 45.955 30.393 33.635 30.393 30.393 
3 45.955 45.955 66.290 45.955 30.393 30.393 33.635 30.393 
4 45.955 45.955 45.955 66.290 30.393 30.393 30.393 33.635 
5 33.635 30.393 30.393 30.393 50.015 38.199 38.199 38.199 
6 30.393 33.635 30.393 30.393 38.199 50.015 38.199 38.199 
7 30.393 30.393 33.635 30.393 38.199 38.199 50.015 38.199 
8 30.393 30.393 30.393 33.635 38.199 38.199 38.199 50.015 

Table 15. Estimated correlation matrix of responses for a subject using the direct product UN@CS 
covariance structure along with a random subject effect. 

Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 
     

1 1.000 0.693 0.693 0.693 0.584 0.528 0.528 0.528
2 0.693 1.000 0.693 0.693 0.528 0.584 0.528 0.528
3 0.693 0.693 1.000 0.693 0.528 0.528 0.584 0.528
4 0.693 0.693 0.693 1.000 0.528 0.528 0.528 0.584
5 0.584 0.528 0.528 0.528 1.000 0.764 0.764 0.764
6 0.528 0.584 0.528 0.528 0.764 1.000 0.764 0.764
7 0.528 0.528 0.584 0.528 0.764 0.764 1.000 0.764
8 0.528 0.528 0.528 0.584 0.764 0.764 0.764 1.000

 

REPEATED MEASURES IN TIME 
When time is the repeated measures factor, then we have additional restrictions with respect to randomization. In the 
case of the lens powers example, the order that each person was measured at each lens power could have been 
randomized. Averaging over a large number of subjects in the study, the correlations, after adjusting for any mean 
differences, among any pair of measurements made at different lens powers should be about equal. However, when 
time is the factor, we are unable to randomize the order of time itself. There is a strong tendency for measurements 
on the same subject made near in time to be more highly associated than measurements made further apart in time. 
Example 2 consists of pig weights measured the same day of each week over a 9-week period (Diggle et al., 
1994:35). The ordering of the weeks cannot be randomized so measurements made nearer in time even after 
adjusting for the growth trend would be expected to be more alike than measurements made further apart in time. 
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CORRELATED ERRORS 
The multivariate unstructured covariance matrix model of correlated errors would be a reasonable model to try with 
these data. All pigs are measured at the same times and there are enough pigs in the study to permit estimation of 
the covariance matrix. Unfortunately, we will have to estimate 9x10/2=45 covariance parameters. On the other hand, 
this matrix will give us clues for simpler covariance structure models that we might investigate. We will begin by 
putting WEEK, the week at which the weight measurement is taken, in the model as a classification variable. This 
may overfit the trend in growth with time, but should give us a reasonable first look at the covariance matrix with the 
growth trend adjusted out, since this would be the saturated means model. The PROC MIXED code to fit this model 
looks like: 
 

Proc Mixed Data=Pigs Update; 
 Class Week; 
 Model Weight = Week / DDFM=KenwardRoger; 
 Repeated Week / Subject=Pig Type=UN HLM R RCorr RI; 
 LSMeans Week; 
Run; 

 
The diagonals of Table 16 are the estimated variances of the errors associated with each week's measurements. 
Note that they consistently increase from 6.10 at week 1 to 40.14 at week 9. This observation is consistent with most 
growth data, and so covariance structure models that we consider for these data should accommodate 
heterogeneous variance with time. The correlation matrix of errors, Table 17, should also be studied to determine 
other potential covariance structures to try. 

Table 16. Estimated multivariate unstructured covariance matrix of errors for the saturated means pig growth 
model. 

Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9 
      

1 6.10 6.31 7.01 7.34 8.39 7.75 8.04 8.38 8.73 
2 6.31 7.79 9.02 9.47 11.15 10.37 10.77 10.80 11.74 
3 7.01 9.02 12.56 12.68 14.92 14.29 14.87 15.70 17.26 
4 7.34 9.47 12.68 13.95 16.29 15.50 16.12 16.80 18.59 
5 8.39 11.15 14.92 16.29 20.57 18.60 19.27 19.94 22.57 
6 7.75 10.37 14.29 15.50 18.60 19.80 21.32 22.40 25.07 
7 8.04 10.77 14.87 16.12 19.27 21.32 24.73 25.86 28.89 
8 8.38 10.80 15.70 16.80 19.94 22.40 25.86 29.42 33.32 
9 8.73 11.74 17.26 18.59 22.57 25.07 28.89 33.32 40.14 

Table 17. Estimated multivariate unstructured correlation matrix of errors for the saturated means pig growth 
model. 

Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9 
     

1 1.000 0.916 0.802 0.796 0.749 0.705 0.655 0.626 0.558 
2 0.916 1.000 0.912 0.908 0.881 0.835 0.776 0.713 0.664 
3 0.802 0.912 1.000 0.958 0.928 0.906 0.844 0.817 0.769 
4 0.796 0.908 0.958 1.000 0.962 0.933 0.868 0.829 0.786 
5 0.749 0.881 0.928 0.962 1.000 0.922 0.855 0.810 0.786 
6 0.705 0.835 0.906 0.933 0.922 1.000 0.963 0.928 0.889 
7 0.655 0.776 0.844 0.868 0.855 0.963 1.000 0.959 0.917 
8 0.626 0.713 0.817 0.829 0.810 0.928 0.959 1.000 0.970 
9 0.558 0.664 0.769 0.786 0.786 0.889 0.917 0.970 1.000 

The correlation matrix does indicate that the nearer in time that measurements are made, the higher the correlation 
between them. Thus, we might try the heterogeneous variance autoregressive and antedependence structures for 
these data. Note that these structures will estimate a separate variance for each week. In order to use the ARH(1) 
and TOEPH structures, the time intervals between all successive pairs of measurements need to be equal. Methods 
to deal with unequally spaced intervals will be considered later.  
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Table 18. Covariance parameter estimates for the heterogeneous variance first-order autoregressive 
structure for the saturated means model. 

Cov Parm Subject Estimate 
  

Var(1) Pig 7.6605 
Var(2) Pig 9.7202 
Var(3) Pig 14.3295 
Var(4) Pig 14.4184 
Var(5) Pig 20.5870 
Var(6) Pig 18.7938 
Var(7) Pig 21.7207 
Var(8) Pig 24.7070 
Var(9) Pig 33.4050 
ARH(1) Pig 0.9468 

Table 19. Covariance parameter estimates for the 
heterogeneous variance general-order toeplitz 
structure for the saturated means model. 

Cov Parm Subject Estimate 
   

Var(1) Pig 7.9282 
Var(2) Pig 10.0145 
Var(3) Pig 14.4798 
Var(4) Pig 14.4616 
Var(5) Pig 20.5005 
Var(6) Pig 18.6084 
Var(7) Pig 21.2504 
Var(8) Pig 24.1216 
Var(9) Pig 32.9290 
TOEPH(1) Pig 0.9465 
TOEPH(2) Pig 0.8947 
TOEPH(3) Pig 0.8409 
TOEPH(4) Pig 0.7844 
TOEPH(5) Pig 0.7271 
TOEPH(6) Pig 0.6568 
TOEPH(7) Pig 0.6059 
TOEPH(8) Pig 0.5287 

Table 20. Covariance parameter estimates for the 
first-order antedependence structure for the 
saturated means model. 

Parm Subject Estimate 
 

Var(1) Pig 6.0953
Var(2) Pig 7.7862
Var(3) Pig 12.5611
Var(4) Pig 13.9464
Var(5) Pig 20.5655
Var(6) Pig 19.8004
Var(7) Pig 24.7323
Var(8) Pig 29.4228
Var(9) Pig 40.1373
Rho(1) Pig 0.9156
Rho(2) Pig 0.9118
Rho(3) Pig 0.9582
Rho(4) Pig 0.9621
Rho(5) Pig 0.9219
Rho(6) Pig 0.9633
Rho(7) Pig 0.9586
Rho(8) Pig 0.9695

 
The PROC MIXED code to estimate the heterogeneous variance first-order autoregressive structure for the saturated 
means model is: 
 

Proc Mixed Data=Pigs Update; 
 Class Week; 
 Model Weight = Week / DDFM=KenwardRoger; 
 Repeated Week / Subject=Pig Type=ARH(1) R RCorr RI; 
 LSMeans Week; 
Run; 

 
The estimated variances for each of the weeks given in Table 18 for the heterogeneous variance first-order 
autocorrelation structure are indicated by Var(*), while ARH(1) is the correlation between pairs of measurements 
made on the same pig one time interval apart. If you want to compute the correlation for a different interval of time, 
raise the correlation to the power of the desired interval. For example, the correlation between measurements made 2 
weeks apart would be 0.94682=0.8964.  
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The heterogeneous toeplitz structure permits a general-order autoregressive model to be fit. Not only will there be 
separate variance estimates for each week, but there will be a correlation parameter estimated for each time interval 
that measurements can be separated by (Table 19). This structure is specified by replacing the TYPE=ARH(1) with 
TYPE=TOEPH in the REPEATED statement of the saturated means model. The first-order antedependence structure 
is specified by TYPE=ANTE(1). Like the ARH(1) structure, ANTE(1) models first-order dependence, but permits that 
dependence to depend upon which pair of adjacent weeks are being referenced. These first-order structures are also 
models for conditional independence because any pair of measurements made on the same subject that are further 
apart than one time interval are conditionally independent given the intervening time measurements (Macchiavelli and 
Moser 1997). This can be more readily observed by noticing the zeros present in the concentration matrix, or inverse 
of the covariance matrix (Table 21). Thus, we might think also about studying the concentration matrix for the 
unstructured covariance model (Table 22). It tends to have larger (absolute) values along the first minor diagonal 
band as we expect for a first-order model, but there are some other elements in the matrix that suggests that some 
higher-order dependence is present. 

Table 21. Estimated concentration matrix or inverse of the covariance matrix for the first-order 
antedependence structure for the saturated means model. An empty cell indicates that the value is zero. 

Row C o l 1 C o l 2 C o l 3 C o l 4 C o l 5 C o l 6 C o l 7 C o l 8 C o l 9 
     

1 1.015 -0.822   
2 -0.822 1.428 -0.547  
3  -0.547 1.365 -0.885  
4   -0.885 1.768 -0.763  
5    -0.763 0.929 -0.305  
6    -0.305 0.987 -0.604  
7    -0.604 1.019 -0.438  
8    -0.438 0.950 -0.469 
9    -0.469 0.414 

Table 22. Estimated concentration matrix for the unstructured covariance model for the saturated means 
model. 

Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9 
     

1 1.34 -1.42 0.18 -0.14 0.09 0.19 0.26 -0.55 0.21
2 -1.42 2.44 -0.61 -0.14 -0.14 -0.11 -0.48 0.74 -0.20
3 0.18 -0.61 1.24 -0.65 -0.05 -0.09 0.25 -0.35 0.11
4 -0.14 -0.14 -0.65 1.96 -0.65 -0.44 0.10 -0.11 0.10
5 0.09 -0.14 -0.05 -0.65 0.79 -0.26 0.02 0.25 -0.16
6 0.19 -0.11 -0.09 -0.44 -0.26 1.64 -0.75 -0.15 0.02
7 0.26 -0.48 0.25 0.10 0.02 -0.75 1.13 -0.70 0.15
8 -0.55 0.74 -0.35 -0.11 0.25 -0.15 -0.70 1.53 -0.72
9 0.21 -0.20 0.11 0.10 -0.16 0.02 0.15 -0.72 0.51

 
Again, the information criteria could be used to help select a covariance structure to use in modeling these data. 
Table 23 shows that the antedependence model has the best fit of these 4 models based upon the AIC and AICC 
criteria, while the ARH(1) structure fits best if you use the BIC criterion. Once a covariance structure is selected, then 
models for the trend can be explored in greater detail. 

Table 23. Model fits of the covariance structures using the saturated means model. 

Structure -2RLogL  AIC   AICC   BIC  
   

UN          1505.6 1595.6 1606.6 1679.8
ARH(1) 1576.2 1596.2 1596.7 1614.9
TOEPH 1567.2 1601.2 1602.7 1633.0
ANTE(1) 1553.1 1587.1 1588.7 1619.0
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Consider the model where we now use a first-order antedependence covariance structure, but model mean pig weight 
as a straight-line function of time. We can specify this model for PROC MIXED as: 
 

Proc Sort Data=Pigs; 
 By Pig Week; 
Run; 
 
Proc Mixed Data=Pigs Update; 
 Model Weight = Week / DDFM=KenwardRoger; 
 Repeated / Subject=Pig Type=ANTE(1) R RCorr; 
Run; 
 

To insure that measurements are correctly matched to the appropriate week, say if you had missing values, you could 
alternatively specify the model using week as both categorical and continuous by creating a copy of the week 
variable: 
 

Data Pigs; 
 Set Pigs; 
 Week1=Week; 
Run; 
 
Proc Mixed Data=Pigs Update; 
 Class Week; 
 Model Weight = Week1 / DDFM=KenwardRoger; 
 Repeated Week / Subject=Pig Type=ANTE(1) R RCorr; 
Run; 

 
A plot of the observed and predicted values (Figure 1) indicates a high degree of individual variability about the 
predicted line. A technique to fit subject-specific growth models might be useful, especially for making predictions 
about pigs currently in the study. Random coefficient regression models can address this need. 

Figure 1. Observed pig weight growth profiles with fitted linear growth model (dotted line). 
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RANDOM COEFFICIENTS 
A random coefficient regression model can be used to fit subject-specific models about a population-averaged model. 
Consider a simple linear regression model to model the weekly pig weights, but permit both the intercept and slope to 
have a bivariate normal distribution with marginal means describing the population-average growth model. The model 
can be written as 

 0 0 1 1( ) ( )ij i i ij ijY b b tβ β ε= + + + +  (5) 

where 0 1( )ij ijE Y tβ β= + is the linear population-averaged growth model, and 0ib and 1ib are random effects with 

zero mean and covariance matrix 

 ( ) 0 0 1

0 1 1

2

0 1 2
Cov , b b b

i i

b b b

b b
σ σ

σ σ
=
 
 
  

. (6) 

The population-averaged parameters 0β and 1β , and the parameters of the random effects covariance matrix along 
with the residual variance are to be estimated. This can be accomplished using PROC MIXED via the code: 
 

Proc Sort Data=Pigs; 
 By Pig Week; 
Run; 
 
Proc Mixed Data=Pigs Update; 
 Model Weight = Week / Solution OutPM=PAFit OutP=SSFit; 
 Random Intercept Week / Solution Subject=Pig Type=UN G GCorr V VCorr; 
 Estimate "Week 1 Ave Weight" Intercept 1 Week 1; 
 Estimate "Week 9 Ave Weight" Intercept 1 Week 9; 
Run; 

 
The SOLUTION option in the MODEL statement will list the population-averaged regression coefficients, described in 
the output as the fixed effects solution (Table 24), while the covariance parameter estimates section and the G option 
of the RANDOM statement will list the variance components (Table 25). The OUTPM= and OUTP= data set options 
on the MODEL statement produce data sets of the predicted means (population-averaged model) and individual 
predicted values (subject-specific model). The ESTIMATE statements can be used to predict the population mean 
value for specific times. The subject-specific and population-averaged fits are plotted in Figure 2. Compare these fits 
with the observed growth profiles given in Figure 1. 

Figure 2. Subject-specific and population-averaged model fits for the random coefficient regression model of 
pig weights. 
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Table 24. Solution of the fixed effects for the random coefficient regression model. 

Effect Estimate Standard 
Error 

DF t Value Pr > |t| 

   
Intercept 19.3556 0.4039 47 47.93 <.0001 
Week 6.2099 0.09204 47 67.47 <.0001 

Table 25. Estimated G matrix or covariance matrix of the random effects for the random coefficient 
regression model. 

Row Effect Subject Col1 Col2 
   

1 Intercept 1 6.9865 -0.1034
2 Week 1 -0.1034 0.3800

 
When the estimated covariance matrix of weight measurements is computed (Table 26), the matrix is observed to 
have properties that we desire, i.e., the variance of weights increases with time, and when the correlations are 
computed they show that observations measured near in time are more highly correlated than those measured further 
apart in time. Thus, we have a fairly simple model that captures some of the qualities of the variability of this data. 
 
The SOLUTION option of the RANDOM statement produces a table of the EBLUPs (empirical best linear unbiased 
predictors) associated with the random effects, and these correspond with the 0ib and 1ib in the random coefficient 
regression model. A portion of this output is displayed in Table 27. The EBLUPs, together with the solution for the 
fixed effects, can be used to compute the subject-specific equations. Note that this technique has a lot of applicability 
to repeated measures problems where subjects are measured at different, irregular, and unequally-spaced intervals 
of time. Also, random coefficients can be easily extended to nonlinear models. 
 

Table 26. Estimated covariance matrix of weights of pigs for the 9 weeks of measurement based upon the 
random coefficient regression model. 

Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9 
    

1 8.76 7.44 7.71 7.99 8.27 8.54 8.82 9.10 9.37
2 7.44 9.69 8.75 9.41 10.06 10.72 11.38 12.03 12.69
3 7.71 8.75 11.38 10.82 11.86 12.90 13.93 14.97 16.01
4 7.99 9.41 10.82 13.84 13.66 15.07 16.49 17.91 19.32
5 8.27 10.06 11.86 13.66 17.05 17.25 19.05 20.84 22.64
6 8.54 10.72 12.90 15.07 17.25 21.02 21.60 23.78 25.96
7 8.82 11.38 13.93 16.49 19.05 21.60 25.76 26.72 29.27
8 9.10 12.03 14.97 17.91 20.84 23.78 26.72 31.25 32.59
9 9.37 12.69 16.01 19.32 22.64 25.96 29.27 32.59 37.50

 

Table 27. Solution to the random effects or empirical best linear unbiased predictors for the random 
coefficient regression model for the first 3 pigs. 

Effect Subject Estimate Std Err Pred DF t Value Pr > |t| 
   

Intercept 1 0.2402 0.9239 336 0.26 0.7950
Week 1 -0.3964 0.1747 336 -2.27 0.0239
Intercept 2 -1.5915 0.9239 336 -1.72 0.0859
Week 2 0.5114 0.1747 336 2.93 0.0036
Intercept 3 -3.5375 0.9239 336 -3.83 0.0002
Week 3 0.3218 0.1747 336 1.84 0.0663
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CORRELATED ERRORS – CONTINUOUS TIME/CONTINUOUS SPACE 
Consider now that the pig weights are measured irregularly for each pig, such that the time intervals between 
measurements would be more or less unique to each pig. Under these circumstances we will need a continuous-time 
model to describe the covariances among the errors. The spatial data covariance structures provided in PROC 
MIXED can be used for this purpose. The distance used in these functions will be the continuous time between 
measurements. As an example the spatial power covariance function has the form 

 ( ) 2Cov , iid
ij i j εε ε σ ρ ′

′ =  (7) 

where iid ′  is the distance in time between weeks i  and i′ , and ρ is a correlation parameter that measures the linear 
association between the errors measured 1 unit of distance (here, time) apart. Note that when the time intervals are 
integers, this model reduces to the first-order autoregressive model AR(1). The PROC MIXED code to fit this 
structure to the pigs data follows. In addition to correlated errors, a random slope coefficient will also be included to 
permit the variance of the weights to vary with time. 
 

Proc Sort Data=Pigs; 
 By Pig Week; 
Run; 
 
Proc Mixed Data=Pigs Update; 
 Model Weight = Week / Solution OutPM=PAFit OutP=SSFit; 
 Random Week / Solution Subject=Pig V VCorr; 
 Repeated / Subject=Pig Type=SP(POW)(Week) R=1 RCorr=1; 
Run; 

 
Note the optional “=1” added to both the R and RCORR options on the REPEATED statement. If the subjects are 
truly measured at irregular intervals and have unequal numbers of measurements per subject, then the covariance 
matrix reported will depend upon the subject. Thus you can specify the particular subject or subjects that you would 
like listed. Since the pigs are measured equally and at the same times, any one of the subjects in this example will 
provide the covariance matrix of interest. The estimate of ρ  is 0.8385 (Table 28) and corresponds with the first-order 
autocorrelation parameter. The estimated covariance matrix for the weights does indeed have a non-constant 
variance with time (Table 29), and so is consistent with the observed data in this regard. 
 
In Table 30 the model fits of the first-order antedependence correlated errors model (ANTE(1)), random intercept and 
slope coefficient regression model (RC), and random slope plus spatial power correlated errors model (POW+RC) are 
compared. These models all assumed a straight-line (linear) model for the trend. Using the AIC criteria the ANTE(1) 
model is selected as best of the 3, while the BIC criterion selects the POW+RC model as best of the 3. 
 
If the repeated measurements are repeated in space, then the spatial covariance structures can be directly applied. If 
there are many spatial measurements per subject, then spatial data techniques should be considered (see e.g., 
Schabenberger and Pierce 2002:561-625), including the use of PROC VARIOGRAM. A PARMS statement should 
also be used so as to provide a search region that can help insure that the final iteration is at the maximum of the 
likelihood. For the pigs example there are 3 parameters (Table 28) for which values will need to be supplied if the 
PARMS statement is used. The order of the parameters matches the covariance parameter estimates table as in 
Table 28. 
 

Proc Mixed Data=Pigs Update; 
 Model Weight = Week / Solution OutPM=PAFit OutP=SSFit; 
 Random Week / Solution Subject=Pig V VCorr; 
 Repeated / Subject=Pig Type=SP(POW)(Week) R=1 RCorr=1; 
 Parms (0.2 To 0.8 By 0.1) (0.5 To 0.9 By 0.1) (4 To 8 By 2); 
Run; 

 
For the power spatial structure, starting parameter values are not difficult as ρ  is a correlation. For other spatial 
structures, however, a working knowledge of spatial variograms is very useful (Moser and Macchiavelli 1996, 
Schabenberger and Pierce 2002). 
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Table 28. Covariance parameter estimates corresponding to the spatial power covariance structure coupled 
with a random slope coefficient model. 

Cov Parm Subject Estimate 
   

Week Pig 0.3930 
SP(POW) Pig 0.8385 
Residual  6.3258 

Table 29. Estimated covariance matrix of weight measurements corresponding to the spatial power 
covariance structure coupled with a random slope coefficient model.  

Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9 
      

1 6.72 6.09 5.63 5.30 5.09 4.98 4.95 4.99 5.08 
2 6.09 7.90 7.66 7.59 7.66 7.84 8.12 8.49 8.92 
3 5.63 7.66 9.86 10.02 10.34 10.80 11.38 12.05 12.81 
4 5.30 7.59 10.02 12.61 13.16 13.88 14.73 15.70 16.77 
5 5.09 7.66 10.34 13.16 16.15 17.09 18.20 19.45 20.81 
6 4.98 7.84 10.80 13.88 17.09 20.47 21.81 23.31 24.95 
7 4.95 8.12 11.38 14.73 18.20 21.81 25.58 27.31 29.21 
8 4.99 8.49 12.05 15.70 19.45 23.31 27.31 31.48 33.60 
9 5.08 8.92 12.81 16.77 20.81 24.95 29.21 33.60 38.16 

 

Table 30. Model fits for 3 linear growth models fitted to the pig weight data. ANTE(1) is a first-order 
antedependence correlated errors model, RC is a random intercept and slope coefficient model, and 
POW+RC is a random slope with a power spatial covariance correlated errors model. 

Structure -2RLogL AIC AICC BIC 
   

ANTE(1) 1603.6 1637.6 1639.1 1669.4
RC 1740.9 1748.9 1749.0 1756.4
POW+RC 1645.5 1651.5 1651.5 1657.1

 

EXTENSIONS TO GENERALIZED LINEAR MODELS 
Diggle et al. (1994:13-14) present data from a study on 59 epileptics, where the number of seizures is recorded over 
a baseline period, then subjects are randomized to either receive progabide, an anti-epileptic drug, or a placebo. The 
number of seizures is then recorded for each subject over 4 consecutive two-week periods. The age of each subject 
is also included in the data set. The response variable is a non-negative discrete (integer) random variable. If we had 
counts for only a single time period, then we might consider a generalized linear model analysis of these data (e.g., 
PROC GENMOD). With repeated measurements, we could use the generalized estimating equations approach 
provided through the REPEATED statement of PROC GENMOD, or we could use the generalized linear mixed model 
approach provided through the %GLIMMIX macro (Littell et al. 1996:423-460, Kuss 2002). This macro, available in 
the SAS/STAT sample library in the SAS installation directory tree, or at the SAS support web site 
(http://ftp.sas.com/techsup/download/stat/glmm800.html), permits fitting of generalized linear models but with the 
added features of PROC MIXED, specifically the RANDOM and REPEATED statements. The %GLIMMIX macro 
uses a quasi-likelihood approach that iteratively passes pseudo-data as adjusted by the quasi-likelihood approach to 
the MIXED procedure (Littell et al. 1996:423-460, Kuss 2002).  
 
Consider a Poisson generalized linear model for the epileptic fits data where a log link function relates the Poisson 
mean to a linear function of the baseline measurement, patient’s age, treatment, period of measurement, and the 
interaction of the treatment with period. Since there are 4 measurements made on each person, include a random 
subject effect in the model and specify a covariance structure on the errors. The random effect will not only permit 
association among the measurements, but will account for some of the overdispersion in the data. By default, 
%GLIMMIX will include a single parameter for overdispersion.  
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The code for one possible overdispersed Poisson mixed model with correlated errors is: 
 

%Include "glimmix.sas"; 
 
%Glimmix(Data=EpilepticFits, 
  Stmts=%Str( 
       Class Treatment Period Subject; 
       Model NumberOfFits = Age BaseLine Treatment Period Treatment*Period 
                          / DDFM=KenwardRoger; 
       Random Subject(Treatment); 
       Repeated Period / Subject=Subject(Treatment) Type=AR(1); 
   ), 
   Error=Poisson, 
   Link=Log, 
   Out=PoissonResults 
) 
Run; 

 
Note that the program code given as the argument to the STMTS= parameter matches code contained within a 
PROC MIXED call. In addition the distribution and link function are specified. Omission of both the RANDOM and 
REPEATED statements in the above code would fit a model that ignores the dependence among the repeated 
observations, and would lead to an inference of a highly significant treatment effect (P<0.0001) and significant period 
effect (P=0.0192). When the code above is used to model the dependence among measurements made on the same 
subject, neither the treatment (P= 0.1224) nor period (P= 0.1882) effects are significant. These latter values better 
account for the variation in the data, and adjust the degrees of freedom for the number of subjects in the study. Note 
that the random coefficient and continuous-time covariance structure models can work with the %GLIMMIX macro as 
well. Diggle et al. (1994) fit alternative models to these data that you might try. 

EXTENSIONS TO NONLINEAR MODELS 
Diggle et al. (1994:5-7) report data on the size growth of Sitka spruce trees grown under either an ozone enriched 
environment or a control environment. Trees are measured at irregularly spaced intervals, and tree size is 
constructed as the product of diameter squared with height. Trees are grown in growth chambers with 2 chambers 
assigned to each treatment. Trees are followed for 2 growing seasons. In the following example growth data for the 
control group of 25 trees, up to the beginning of the second growth phase, will be used. The raw growth profiles are 
shown in Figure 3 and suggest that an asymptotic growth model might describe growth through the first phase. The 
von Bertalanffy or Mitscherlich growth model (Schabenberger and Pierce 2002:229) could be used to model the size 
growth through this phase. It has the form 

 ( )( )01 exp (ij ij ijY A k t t ε= − − − +  (8) 

where ijY is the size of the ith tree at the jth time, ijt  is the number of days of growth of the ith tree at the jth time, A is 

the asymptotic size parameter, k is a growth rate controlling parameter, and 0t  is an intercept adjustment parameter 
for the time when size=0. Note that the asymptotes for the individual trees vary considerably, so a non-linear, random 
coefficient regression model with random asymptotes might be a good first model. In addition, a correlated errors 
model will be considered so as to account for additional variation due to repeated measurements. 
 
The %NLINMIX macro permits fitting of non-linear mixed models and makes use of the features in PROC MIXED. 
This technology is described in Littell et al. (1996:461-489), and the macro is available in the SAS/STAT sample 
library in the SAS installation directory tree, or at the SAS support web site 
(http://ftp.sas.com/techsup/download/stat/nlmm800.html). To incorporate the random asymptote in the growth model, 
the asymptote parameter is rewritten to have a population-averaged parameter and a subject-specific parameter, 

 ( ) ( )( )01 exp (ij i ij ijY A b k t t ε= + − − − +  (9) 

where ib  will be the subject-specific amount by which the ith tree's asymptote deviates from the population averaged 
asymptote. The macro actually uses pseudo-data constructed from the original data that it passes to PROC MIXED in 
an iterative process to estimate the parameters. Thus the covariance structures are not placed directly on the errors 
of equation (9), but on the errors of the pseudo-data.  
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The code for fitting the above random coefficient model with a spatial power correlated errors structure is: 
 

%NLINMix(Data=Season1, 
   Response=Size, 
   Subject=Tree, 
   Model=%Str( 
      expr1=exp(-k*(Time-t0)/400); 
   expr2=1-expr1; 
      Pred = (A+b1)*(expr2); 
   ), 
   Derivs=%Str( 
      D_A  = expr2; 
      D_k  = (A+b1)*(Time-t0)/400*expr1; 
      D_t0 = -(A+b1)*k/400*expr1; 
   D_b1 = D_A; 
   ), 
   Parms=%str( 
      A =1000 
      k =3  
      t0=100), 
   Random=b1, 
   Expand=EBLUP, 
   RType=SP(POW)(Time), 
   RSub=Tree 
) 
Run; 

 
Unlike the %GLIMMIX macro, the %NLINMIX macro has statements that match PROC NLIN syntax, but has 
parameters such as RANDOM=, RTYPE=, and RSUB= that are used with the calls to PROC MIXED. The solution to 
the fixed effects (Table 31) gives the parameter estimates for the population-averaged model, while the solution to the 
random effects (Table 32) gives the EBLUPs that can be used to obtain the subject-specific estimated growth curves 
that are plotted in Figure 4. 
 

Table 31. Solution for the fixed effects for the von Bertalanffy growth curve model fitted to the Sitka spruce 
trees data. Note that derivative names of the parameters are given in the table. 

Effect Estimate Standard Error DF t Value Pr > |t| Alpha Lower Upper 
   

D_A 430.08 46.4128 148 9.27 <.0001 0.05 338.36 521.8
D_K 4.1195 0.2389 148 17.24 <.0001 0.05 3.6474 4.5916
D_T0 131.19 2.2311 148 58.8 <.0001 0.05 126.78 135.6

 

Table 32. Solution for the random effects for the first 5 trees for the von Bertalanffy growth curve model fitted 
to the Sitka spruce trees data. Note that the derivative name of the parameter is given in the table. 

Effect _subject Estimate Std Err Pred DF t Value Pr > |t| 
   

D_B1 1 -110.9 52.064 148 -2.13 0.0348
D_B1 2 348.4 52.223 148 6.67 <.0001
D_B1 3 -145.7 52.077 148 -2.80 0.0058
D_B1 4 54.0 52.050 148 1.04 0.3016
D_B1 5 -6.2 52.046 148 -0.12 0.9050
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Figure 3. Raw growth profiles of the Sitka spruce trees grown under the control conditions through the first 
growth phase. 
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Figure 4. Predicted growth profiles of the Sitka spruce trees grown under the control conditions through the 
first growth phase using a random coefficient asymptote and a spatial power correlated errors model. 
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CONCLUSION 
As a part of my consulting mission at the University I am working with a graduate student who is studying root growth 
of a marsh plant grown under varying experimental conditions in rhizotrons, a device that permits direct, 
nondestructive observation of root growth. Periodically, but not at equally spaced intervals of time, roots are counted 
at 4 different depths below the surface of soil in each rhizotron. Further each counted root is characterized into 1 of 3 
size classes. Thus there are repeated measurements made in both time and space on each rhizotron, the response is 
a discrete random variable, the roots may transition from one size class to another through time, and the number of 
rhizotrons is small compared with the large number of measurements. Further, the plants are growing, and so the 
trend in roots counts may follow a non-linear trajectory. Flexible repeated measures modeling approaches available 
through software such as PROC MIXED are essential for capturing the many facets to experiments such as this one. 
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This paper has not dealt with the many diagnostic analyses that should be incorporated into the use of this repeated 
measures technology. There are many graphical aids to explore repeated measures data. Residuals and EBLUPs 
could be examined for appropriateness of the normal distribution model. The effects of influential observations and 
outliers on inference should also be considered. For non-linear models, including generalized linear mixed models, 
the NLMIXED procedure should also be considered as an alternative to the %GLIMMIX and %NLINMIX macros for 
repeated measurements data. Users that want to analyze repeated measures with PROC MIXED, should consult the 
references that follow as these will describe many of the graphical and diagnostic aids omitted in this paper, along 
with the necessary background information and alternative modeling strategies. Additional SAS code for repeated 
measures is given in Kuss (2002), Littell et al. (1996), Schabenberger and Pierce (2002), and Verbeke and 
Molenberghs (2000). 
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