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Abstract

A new approach to structural equation modeling based on so-called extended redun-
dancy analysis has been recently proposed in the literature, enhanced with the added
characteristic of generalizing redundancy analysis and reduced-rank regression models for
more than two blocks. In this approach, the relationships between the observed exogenous
variables and the observed endogenous variables are moderated by the presence of unob-
servable composites that were estimated as linear combinations of exogenous variables,
permitting a great flexibility to specify and fit a variety of structural relationships. In
this paper, we propose the SAS macro %ERA to specify and fit structural relationships in
the extended redundancy analysis (ERA) framework. Two examples (simulation and real
data) are provided in order to reproduce results appearing in the original article where
ERA was proposed.

Keywords: extended redundancy analysis, SAS macro, alternating least squares, latent com-
ponents.

1. Introduction

Within the component analysis (CA) framework (Meredith and Millsap 1985; Schonemann
and Steiger 1976), redundancy analysis (RA; Van den Wollenberg 1977) is the simplest type
of structural-equation model between two sets of observed variables, in which latent variables
are intended as components. The aim of RA is to extract a series of linear components from
a set of exogenous variables in such a way that they are mutually orthogonal and successively
account for the maximum variance of a set of endogenous variables. In this framework,
RA may be viewed as a special type of structural-equation model where: (C1) a formative
relationship is always assumed between the unobserved and observed (exogenous) variables,
and (C2) endogenous variables are always observed ones.

http://dx.doi.org/10.18637/jss.v074.c01
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A few attempts have been made to extend RA to more than two sets of variables. However,
they are limited to relationships among three sets of variables (Davies and Tso 1982; Reinsel
and Velu 1998) as well as being limited to particular types of models (Bougeard, Qannari,
Lupo, and Hanafi 2011). Recently, a new method based on so-called extended redundancy
analysis (ERA; Takane and Hwang 2005), which generalizes RA for more than two blocks, has
been proposed in the literature. In ERA, the relationships between the observed exogenous
variables and the observed endogenous variables are moderated by the presence of linear
composites (hereinafter LCs): LCs are estimated as exact linear combinations of formative
indicators, and both component weights and component loadings are estimated by consistently
minimizing a single objective function.
Unfortunately, software to estimate ERA models is not available, hence in the present paper a
SAS (SAS Institute Inc. 2011) macro to specify and fit ERA models is proposed. The paper is
organized as follows: Section 2 describes the ERA framework, Section 3 presents and discusses
the macro %ERA, Section 4 illustrates two studies (empirical and simulative) to assess if the
proposed macro is able to reproduce the results of ERA as given in the original paper where
the method was proposed, Section 5 offers conclusions.

2. The ERA model: Specification and fitting
The ERA model can generally be stated as follows. Let Y denote an n× p matrix consisting
of p observed endogenous variables on n subjects. Let X denote an n × q matrix consisting
of q observed exogenous (formative) variables. Assume that the columns of the matrices are
mean centered with variance scaled to unit. Hence, the model can be expressed as

Y = XWA> + E = FA> + E, rank(WA>) = D ≤ min{q, p}, (1)

where W denotes a q×D matrix of composite weights, A> denotes aD×pmatrix of composite
loadings, E denotes an n × p matrix of residuals, and F (= XW) denotes an n ×D matrix
of composite scores. For identification, F is restricted to be diag(F>F) = ID. To illustrate
further, suppose there are for example three sets of variables: X1 = [x1|x2], X2 = [x3|x4],
and Y = [y1|y2], and suppose a certain relationship among the three sets of variables is
considered, as displayed in Figure 1.
The associated ERA model is:

Y = [X1|X2]
[
w1 0
0 w2

] [
a1 a2
a3 a4

]
+ [e1|e2] = XWA> + E, (2)

where w1 = (w1, w2),w2 = (w3, w4) are composite weights for X1 and X2, respectively,
F = [f1|f2] = [x1w1 + x2w2|x3w3 + x4w4] and E = [e1|e2]. Equation 1 reduces to the
RA model when no variables are shared between X = [X1|X2] and Y, as well as when no
constraints other than on the rank of WA> are imposed on W and A> (e.g., constrained
values such as zeros or ones).
Despite the conditions (C1) and (C2) (given in Section 1 of the CA framework to which ERA
belongs), structural-equation models specified in the ERA framework are quite comprehensive,
enabling us to specify various and complex situations. For example, in Equation 1, let X =
[X1|X2] be a matrix composed of two blocks, that generate an n×2 (= D) matrix of composite
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Figure 1: A basic ERA model.
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Figure 2: An extensive specification of ERA.

scores F = [f1|f2] respectively, and suppose that f1 has also an impact on X2 = [x3|x4], the
formative block of f2; this leads to the following structural equations (as depicted in Figure 2):

X2 = f1a>1 + E2, (3)
Y = f1a>2 + f2a>3 + E1, (4)

where a>1 = (a1, a2), a>2 = (a3, a4), and a>3 = (a5, a6) are composite loadings for f1 on X2,
and for f1 and f2 on Y, respectively, whereas E2 = (e1|e2), and E1 = (e3|e4) are two error
matrices.
Using the rule that when an observed variable block is exogenous as well as endogenous (X2)
it is included in both Y and X (Takane and Hwang 2005), the associated ERA model becomes

Ỹ = [X1|X2]
[
w1 0
0 w2

] [
a1 a2 a3 a4
0 0 a5 a6

]
+ [E2|E1] = XWA> + E, (5)

where Ỹ = [X2|Y] = [x3,x4|y1,y2] is the new matrix of dependent variables and E is the
new (augmented) matrix of errors.
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2.1. Estimation

To estimate parameters, the loss function associated to the model in Equation 1 is

SS[Y−XWA>] = SS[vec(Y)− vec(XWA>)], (6)

where SS[Z] = trace(Z>Z) and vec(X) is the vectorization operator, by which X columns are
stacked one on the other. Notice that W and A> may contain fixed (zero) elements, depending
on the specified model. Unfortunately, unlike statistical methods based on singular value
decomposition (SVD) or generalized SVD, minimization of the loss function in Equation 6
cannot be achieved in a closed form, due to the fixed values in W and A>, containing zeros.
Hence, ERA authors employ an alternating least squares (ALS) algorithm, developed by Kiers
and Ten Berge (1989). In the algorithm, matrices W and A> are alternately updated in a
two-step algorithm until convergence is reached.
To this end the loss function in Equation 6 may be expressed in two alternative versions

SS(Y−XWA>) = SS[vec(Y)− (A⊗X)vec(W)] (7)
= SS[vec(Y)− (I⊗ F)vec(A>)], (8)

where “⊗” is the Kronecker product.
In the first step, W is updated for fixed A> (using Equation 7) and in the second step, A>
is updated for fixed W (using Equation 8). More explicitly, let w be the vector obtained by
eliminating the zero elements of vec(W), and let Ω be the matrix obtained by eliminating
the columns of A⊗X corresponding to the zero elements of vec(W). The LS estimate of w
therefore is

w̃ = (Ω>Ω)−1Ω>vec(Y). (9)
The Moore-Penrose generalized inverse is used if (Ω>Ω) is singular. W is then reconstructed
from w̃ and F is normalized to respect the identification restriction.
In the second step, let a be the vector obtained by eliminating the zero element of vec(A>),
and let Γ be the matrix obtained by eliminating the columns of I ⊗ F corresponding to the
zero elements of vec(A>). The LS estimate of a subsequently is

ã = (Γ>Γ)−1Γ>vec(Y). (10)

The Moore-Penrose generalized inverse is used if (Γ>Γ) is singular. A> is then reconstructed
from a.
The above steps are iterated until convergence. Nonparametric bootstrap was employed to
estimate the standard errors of parameter estimates whereas the critical ratio (CR), i.e., the
parameter estimate divided by its standard error, can be used to test the significance of the
estimates.
Finally, ERA allows the evaluation of the total fit of a hypothesized model, measured by the
total variance of the observed endogenous variables explained by the exogenous variables.
The fit index Ψ is

Ψ = 1− SS[Ỹ−XWA>]
SS[Ỹ]

, (11)

where Ỹ collects all endogenous variables. They may be represented by a single block (see
Equation 2, where Ỹ = Y) or by multiple blocks (see Equation 5, where Ỹ = [X2|Y]). This
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fit index ranges from 0 to 1. The larger the fit value, the more variance of the endogenous
variables is explained by the exogenous variables.
In accordance with the traditional use of CA, the ERA approach is viewed as purely descrip-
tive, without any pretension of inferential aspects. However, beside the overall fit statistic
(Ψ), some other diagnostics and tests on residuals can be used to evaluate the adequacy of the
model. For each dependent variable stored in the Y matrix, residuals can be plotted against
the predicted values. There should be no pattern to these plots if residuals are "white-noise".
As a formal test we can use the White test for assessing residual homoscedasticity (we suggest
this test since it does not require the prior knowledge of the form of heteroscedasticity). Tests
for residual randomness, such as a modified version of the Durbin-Watson test and the run
test (Pratschke 1971) can also be considered. However, unlike the case of time series data,
both tests have limited applicability, since they are affected by subjective choices in ordering
the residuals that may give misleading results. More studies are needed in this context.

2.2. Imposing additional constraints on parameters

A variety of structural hypotheses on model parameters (in W or A>) may be incorporated in
the form of linear constraints by the reparameterization method (Takane and Hwang 2005),
which specifies the space spanned by column vectors of a constraint matrix H on a vector of
parameters α . Let H define the linear constraints on a, incorporated by specifying a = Hα,
for some vector α of unconstrained parameters. After the estimation of α (α∗) obtained by
projecting ΓH on vec(Y), as in Equation 10, the constrained estimate of a (a∗) is estimated
by a∗ = Hα∗. Another possibility to specify constraints (e.g., for a) is in the null-space
form P>a = 0, where P is a matrix incorporating a system of constraints among parameters
(a single constraint is thus incorporated in the vector form p>a = 0). Virtually identical
considerations can be made for w (see Takane and Hwang 2005, for details).

3. The macro %ERA

Excerpts of SAS code will now be given to specify the model of Equation 2 (see Figure 1).

3.1. Path diagram declaration

The structural equations have to be declared in the cards of the first part of the macro. XF
contains the first segment of the path diagram: x1 and x2 form the LC f1, whereas x3 and
x4 form the LC f2. FY contains the second segment of the path diagram: f1 goes towards y1
and y2, f2 does the same.

data XF;
input n vl $50.;

cards;
1 x01/x02
2 x03/x04
;run;

data FY;
input ne vle $50.;
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cards;
1 y01/y02
2 y01/y02
;run;

3.2. Estimation steps

After manipulating this input into the corresponding variable matrices X and Y and param-
eters matrices W and A>, the algorithm can start.

Step 1: W estimate

vwd = vectorise(Wd);
Ad = t(ATd);
omegad = Ad @ X;
i = 1;
do while(i <= nrow(vwd));
if vwd[i] ne 0 | wcon[i] = 1 then i = i + 1;
else do;
vwd = delrow(vwd,i); wcon = delrow(wcon,i); omegad = delcol(omegad,i);
end;
end;
vY = vectorise(Y); x
wupd_c = ((ginv(t(B) * t(omegad) * omegad * B)) * t(B) * (t(omegad))) * vY;
wupd = B * wupd_c;
Wd = update(Wd,wupd,wcon2);
Fd = X * Wd; Fd = normalize(Fd);

Step 2: A> estimate

ad = vectorise(ATd);
Id = I(ncol(ATd));
gammad = Id @ Fd;
i = 1;
do while(i <= nrow(ad));
if ad[i] ne 0 | acon[i]=1 then i = i + 1;
else do;
ad = delrow(ad,i); acon = delrow(acon,i); gammad = delcol(gammad,i);
end;
end;
aupd_c = ((ginv(t(H) * t(gammad) * gammad * H)) * t(H) * (t(gammad))) * vY;
aupd = H * aupd_c;
ATd = update(ATd,aupd,acon2);

Estimated parameters for W and A> (one-shot estimates) are stored in a dataset.



Journal of Statistical Software – Code Snippets 7

3.3. Bootstrap procedure

The algorithm estimates standard errors using bootstrap, firstly replicating B times (the
number of replic in the %ERA macro) the original dataset.

proc surveyselect data=data_nomiss method=urs rate=1 seed=813616000
rep = &replic out = data_boot; run;
/* expands numberhits > 1 */
data data_boot;

set data_boot;
do i = 1 to numberhits;

output;
end;
drop i numberhits;

run;

then for each of the replications, it proceeds to fit the model as specified above

%do rep = 1 %to &replic;
%put EXECUTING REPLICATION &rep OUT OF &replic;
use zdata_boot where (replicate = &rep);

The macro uses the multiple datasets sampled with the surveyselect procedure. Each of
them has an index (replicate), which will be matched to the &rep macro variable to get the
specified bootstrap sample estimates.

3.4. Bootstrap estimates

Using all the stored replications, mean bootstrap estimates, bootstrap s.e. and critical ratios
(one-shot parameters divided by their bootstrap s.e.) can be calculated.

Mean bootstrap estimates

sumW = J(nrow(W), ncol(W) - 2, 0);
sumA = J(nrow(A), ncol(A) - 2, 0);
%do m = 1 %to &replic;
sumW = sumW + W&m;
sumA = sumA + A&m;
%end;
MEAN_W = sumW / &replic;
MEAN_A = sumA / &replic;

Bootstrap standard errors

sumsqdiffW = j(nrow(W), ncol(W) - 2, 0);
sumsqdiffA = j(nrow(A), ncol(A) - 2, 0);
%do m = 1 %to &replic;
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sqdiffW&m = (W&m - MEAN_W) \#\# 2;
sqdiffA&m = (A&m - MEAN_A) \#\# 2;
sumsqdiffW = sumsqdiffW + sqdiffW&m;
sumsqdiffA = sumsqdiffA + sqdiffA&m;
%end;
SE_W = (sumsqdiffW / (&replic - 1)) \#\# 0.5;
SE_A = (sumsqdiffA / (&replic - 1)) \#\# 0.5;

Bootstrap critical ratios

CR_W = j(nrow(W), ncol(W) - 2, 0);
CR_A = j(nrow(A), ncol(A) - 2, 0);
use results_ws;
read all into W_ONESHOT;
use results_as;
read all into A_ONESHOT;
CR_W = (W_ONESHOT / SE_W);
CR_A = (A_ONESHOT / SE_A);

At the end of the %ERA macro execution all outputs are stored in the SAS work directory,
with the following data tables:

• a_est_oneshot, the one-shot estimates for W and A.
• b1_est_boot, the bootstrap average estimates for W and A.
• b2_bias__boot, the bootstrap estimates of bias for W and A.
• b3_corrected__boot, the bootstrap corrected estimates for W and A.
• c_se__boot, the bootstrapped standard errors for the estimates.
• d_cr__boot, the bootstrapped critical ratios for the estimates.
• e_psi_oneshot, the fit index Ψ.
• f_replic_w, all the estimates for each bootstrap replicate, for W.
• f_replic_a, all the estimates for each bootstrap replicate, for A.
• out_era, the output dataset, containing the standardized dataset used for the one-shot

estimation with additional variables such as fitted values (endogenous variables) and
latent composite scores, as well as residuals and leverages.

• zdata__boot, the data table containing all the bootstrap samples.
• The original data table and the data table with only non-missing observations.

3.5. Convergence and initial values

The ALS steps described in Section 2.1 are iterated in the macro until at least one of the
following criteria is met:
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• The difference in absolute value between A> (and W) in the (k− 1)th iteration and in
the k-th iteration is lower than the specified threshold c (the value threshold in the
macro, e.g., c = 0.0001).

• The maximum number M of iterations (the value iter in the macro) is reached.

diffW = abs(Wd - oldWd);
diffAT = abs(ATd - oldATd);
flgw = 1; flgat = 1;

do i = 1 to nrow(diffW);
do j = 1 to ncol(diffW);

if diffW[i,j] > &threshold then flgw = 0;
end;
end;
do i = 1 to nrow(diffAT);
do j = 1 to ncol(diffAT);

if diffAT[i,j] > &threshold then flgat = 0;
end;
end;

ciclo = ciclo - 1;
if ciclo = 0 | (flgw = 1 & flgat = 1) then mustexit = 1;

To ensure faster convergence and to minimize the risk of local minima, as suggested by Takane
and Hwang (2005), starting values for W and A> are chosen as follows:

• The PCA solutions on the X matrix are computed and used as starting values for W,
and the principal coordinates are used to obtain F.

• Given F, LS estimates of F on Y are used as initial values for A>.

Initial values for W

call eigen(eigval, eigvec, t(L&i) * L&i);
feigvec = eigvec[, 1];
vec&i = j(ncol(L&i), 1, 1);
if (&startw = 0 & &starta = 0) then vec&i = feigvec;
else vec&i = vec&i * &startw;

Initial values for A>

AStart = inv(t(F) * F) * t(F) * Y;
if (&startw = 0 & &starta = 0) then
ATd = AT \# AStart;
else ATd = AT * (&starta);

3.6. Imposition of linear constraints

Restrictions on parameters can be applied, as shown in Section 2.2, by declaring the matrices
of linear constraints B and H (for W and A> respectively), for example by imposing the
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constraint w4 = 0 (and no constraint on A>) in the path of Figure 1. This leads to the
following constraint matrices:

B =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 , H =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
The code below specifies B and H.

Constraints w = Bv, B matrix declaration

data con_w;
input w01-w04;

cards;
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
;run;

Constraints a = Hc, H matrix declaration

data con_a;
input a01-a04;

cards;
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
;run;

The estimation procedure thus incorporates these two matrices into the steps of the algorithm.

w estimate, with B matrix embedded

wupd_c = ((ginv(t(B) * t(omegad) * omegad * B)) * t(B) * (t(omegad))) * vY;
wupd = B * wupd_c;

a estimate, with H matrix embedded

aupd_c = ((ginv(t(H) * t(gammad) * gammad * H)) * t(H) * (t(gammad))) * vY;
aupd = H * aupd_c;

3.7. Macro invocation

The code below invokes the macro.
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%macro ERA(dataset, iter, replic, threshold, startw, starta);

The macro parameters are:

• dataset: The input SAS dataset to be used for the model, including the library path
(e.g., lib.data with lib as the SAS library).

• iter: The maximum number of iterations M of the ALS algorithm. Must be integer
and greater than 1 (e.g., M = 100). This parameter is essential to stop the macro if
convergence is not reached inM ALS iterations. An output alert message will be shown
in the SAS log window if convergence does not occur.

• replic: The number of Bootstrap replications to be generated to obtain standard errors
and critical ratios for the estimates. Must be integer and greater than 1 (e.g., B = 100).

• threshold: The convergence threshold c for the estimates. Must be between 0 and
1 (e.g., c = 0.0001). This parameter has higher priority than iter: If convergence
is reached before the maximum number M of ALS iterations the algorithm can stop.
However, both parameters must be properly declared in the macro.

• startw and starta: Optionally inputed starting values for W and A>. If both values
are zero, PCA and LS are performed to obtain initial values for the matrices. If one of
the two values is zero, but not the other, the macro exits with error. If both values are
numerical and not zero, they are chosen as initial estimates for all the non-zero values
of the matrices. For example, if startw = 0.3 and starta = 0.7, given the model in
Figure 1, the starting matrices will be

W =


0.3 0
0.3 0
0 0.3
0 0.3

 , A =
[
0.7 0.7
0.7 0.7

]
.

3.8. User-defined functions

To succesfully implement the ERA algorithm, several functions have been used in the script:

• delrow(x, i), that deletes the i-th row from a generic matrix X.
• delcol(x, i), that deletes the i-th column from a generic matrix X.
• vectorise(x), that applies the vectorization operator to a generic matrix X.
• normalize(x), that transforms a generic matrix X so that diag(X>X) = I.
• update(X, y, c), that reconstructs the original matrix X to which row/column elim-

ination has been previously applied.

4. Application of the macro %ERA

To assess the %ERA macro performance, it will be used in two empirical studies that the authors
performed in the paper where the ERA model was proposed. An attempt to replicate the same
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results will be made, firstly in an empirical application using the World Health Organization
(WHO) data, and secondly in a simulation study where the authors analyzed the small sample
behavior of ERA.

4.1. The WHO data application
As far as the empirical study is concerned, Takane and Hwang (2005) selected 51 nations from
the 1999 World Health Report, published by the World Health Organization in the United
Nations, for which the data were non-missing for the following variables: infant mortality rate
(IMR), maternal mortality ratio (MMR), – both considered as endogenous variables – and
the following as exogenous variables: real gross domestic product (GDP) per capita adjusted
for purchasing power parity, expressed in 1985 US dollars, the average number of years of
education given for females aged 25 years and above (FEDU), the percentage of children
immunized against measles in 1997 (Measles), and total health expenditures as a percentage
of GDP in 1995 (HealthExp). The authors identify two components for the last four observed
exogenous variables. One component called "social and economic factor" (SE) was defined as
a linear combination of GDP and FEDU, and the other called "health services factor" (HS)
composed of Measles and HealthExp. The specified two-component model (Equation 2) is the
same of that presented in Figure 1, where X1 = [GDP, FEDU], X2 =[Measles, HealthExp],
Y = [IMR, MMR] and F = [SE, HS]. With the %ERA macro this model was fitted to the data,
using the same specification as in the original paper, such as to use 100 bootstrap samples to
estimate standard errors and critical ratios.

data XF;
input n vl $50.;

cards;
1 GDP/FEDU
2 measles/HEXP
;run;

data FY;
input ne vle $50.;
cards;
1 IMR/MMR
2 IMR/MMR
;run;

%ERA(dataset = who, iter = 100, replic = 100, threshold =
0.0001, startw = 0, starta = 0);

Table 1 reports the original ERA results (thereby called “H-T”, the initials of the authors)
and those reproduced by the macro %ERA, for the unconstrained model specified in Figure 1,
as well as for the constrained model. In the latter we assumed the component weight for
Healthexp to be zero (w4 = 0) by imposing the constraint matrix

B =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 .
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Unconstrained Constrained
Path coefficient Est. (S.E.) Est. (S.E.) Est. (S.E.) Est. (S.E.)

%ERA H-T %ERA H-T
GDP → SE (w1) 0.50 (0.18) −0.50 (0.17) 0.49 (0.17) −0.49 (0.16)
FEDU → SE (w2) 0.58 (0.17) −0.57 (0.16) 0.58 (0.16) −0.57 (0.16)
Measles → HS (w3) 0.98 (0.16) −0.96 (0.12) 1.01 (0.00) −1.00 (0.00)
HealthExp → HS (w4) 0.12 (0.22) −0.13 (0.24) 0.00 0.00
SE → IMR (a1) −0.58 (0.11) 0.58 (0.10) −0.61 (0.10) 0.61 (0.11)
SE → MMR (a2) −0.44 (0.11) 0.43 (0.10) −0.47 (0.10) 0.47 (0.13)
HS → IMR (a3) −0.42 (0.12) 0.41 (0.09) −0.40 (0.11) 0.40 (0.11)
HS → MMR (a4) −0.45 (0.14) 0.45 (0.11) −0.44 (0.13) 0.43 (0.15)
FIT (Ψ) 0.6597 0.6512 0.6579 0.6491

Table 1: Parameters estimates (Est.) and standard errors (S.E.) of the macro ERA (%ERA)
and those reported in the original ERA paper (H-T) for the WHO dataset.

Unconstrained estimates Constrained estimates
Path coefficient Mean bootstrap Bias corrected Mean bootstrap Bias corrected
GDP → SE (w1) 0.50 0.49 0.48 0.50
FEDU → SE (w2) 0.57 0.58 0.58 0.58
Measles → HS (w3) 0.94 1.01 1.01 1.01
HealthExp → HS (w4) 0.14 0.10 0.00 0.00
SE → IMR (a1) −0.60 −0.55 −0.63 −0.58
SE → MMR (a2) −0.47 −0.41 −0.50 −0.44
HS → IMR (a3) −0.40 −0.43 −0.38 −0.43
HS → MMR (a4) −0.43 −0.47 −0.41 −0.46

Table 2: Mean bootstrap estimates and bias corrected estimates of the macro ERA, for the
WHO dataset.

In Table 1 bootstrapped standard errors are obtained with 100 bootstrap samples, for both
the unconstrained and constrained model. To fit the constrained model, before the macro in-
vocation of the unconstrained model (and after the input of both path diagrams) the following
additional code must be inserted:

data con_w;
input w01-w04;
cards;
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
;run;

%ERA(dataset = who, iter = 100, replic = 100, threshold = 0.0001,
startw = 0, starta = 0);

Differences between the estimates are quite negligible and are probably due to technical details
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in the macro such as convergence thresholds or different numerical methods for approxima-
tion used by the authors. Moreover, as additional results, Table 2 reports the mean of the
bootstrap estimates and the “bias corrected” versions of estimated parameters.
For what concerns diagnostics in the unconstrained model, Figure 3 reports, for each depen-
dent variable, the plot between residuals and predicted values. Homoscedasticity is clearly
rejected at a 0.05 significance level, since p = 0.02 for IMR and p = 0.03 for MMR. The result
is also confirmed by Figure 3.
Finally, to complete the picture of diagnostics, Figure 4 reporting, for each dependent variable,
studentized residuals versus leverages, does not suggest any influential observation, but only
few outliers and unusual observations.

4.2. The simulation study

The same simulation study which appeared in the original paper of Takane and Hwang (2005)
is conducted with the macro %ERA. Specifically the model in Equation 2, detailed in Figure 1,
is chosen with the following parameter values:

W =


0.6 0
0.6 0
0 0.6
0 0.6

 , A =
[
0.2 0.2
0.2 0.2

]
.

For the generation of X and Y, normality assumption was taken, with X ∼ N (0,Θ) and
E ∼ N (0,Σ), where Θ and Σ are

Θ =


1

0.3 1
0.1 0.1 1
0.1 0.1 0.3 1

 , Σ =
[

1
0.1 1

]
.

The sample sizes considered for this Monte Carlo simulation consisting of N = 1000 samples
are n = 100, 200, 400, with X generated only once for each sample size. Furthermore, the
initial values of the parameters used in the algorithm are indeed the true values, to ensure a
faster convergence to the global minimum.
To measure the degree of recovery of the population parameters the mean congruence coeffi-
cient between real parameters (θ) and estimates (θ̂) stacked vectors is used

φ = θ>θ̂√
(θ>θ)(θ̂>θ̂)

.

For the simulation the %ERA macro has been slightly modified in terms of input handling and
output datasets. Details are not provided since it is out of the scope of this paper.
A deep look at the results of Table 3 also indicates two main considerations:

• When n ≥ 200 the %ERA loadings as a group appear less biased than those of H-T, (with
unclear pattern when n < 200) whereas standard errors are always higher than those of
H-T.



Journal of Statistical Software – Code Snippets 15

14:19 Thursday, May 7, 2015 114:19 Thursday, May 7, 2015 1

-1 0 1 2

IMR Fitted Values

-2

0

2

4

R
es

id
ua

ls

Studentized ResidualsStandardized ResidualsRaw Residuals
14:19 Thursday, May 7, 2015 114:19 Thursday, May 7, 2015 1

-1 0 1 2

MMR Fitted Values

-2

0

2

4

R
es

id
ua

ls

Studentized ResidualsStandardized ResidualsRaw Residuals

Figure 3: Residuals (raw, standardized and studentized) against fitted values, for each de-
pendent variable.
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Figure 4: Studentized residuals against leverages, for each dependent variable. The red
vertical line represents the threshold for unusual observations.
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n = 100 %ERA macro H-T results
Par. Value Est. S.E. Est. S.E.
w1 0.6 0.576 0.364 0.592 0.335
w2 0.6 0.571 0.380 0.558 0.341
w3 0.6 0.598 0.362 0.586 0.319
w4 0.6 0.570 0.376 0.550 0.334
a1 0.2 0.199 0.111 0.200 0.102
a2 0.2 0.193 0.109 0.214 0.101
a3 0.2 0.193 0.109 0.206 0.100
a4 0.2 0.190 0.108 0.219 0.099
Congruence φ = 0.83 φ = 0.87

n = 200 %ERA macro H-T results
Par. Value Est. S.E. Est. S.E.
w1 0.6 0.606 0.238 0.629 0.255
w2 0.6 0.622 0.248 0.561 0.265
w3 0.6 0.602 0.247 0.592 0.255
w4 0.6 0.611 0.230 0.587 0.265
a1 0.2 0.193 0.072 0.181 0.072
a2 0.2 0.189 0.075 0.184 0.069
a3 0.2 0.194 0.072 0.193 0.069
a4 0.2 0.195 0.074 0.192 0.069
Congruence φ = 0.94 φ = 0.92

n = 400 %ERA macro H-T results
Par. Value Est. S.E. Est. S.E.
w1 0.6 0.593 0.169 0.596 0.169
w2 0.6 0.614 0.164 0.605 0.170
w3 0.6 0.605 0.169 0.630 0.162
w4 0.6 0.608 0.166 0.566 0.169
a1 0.2 0.198 0.051 0.189 0.047
a2 0.2 0.198 0.051 0.194 0.047
a3 0.2 0.197 0.051 0.193 0.048
a4 0.2 0.197 0.052 0.200 0.047
Congruence φ = 0.97 φ = 0.96

Table 3: True parameter (Value), estimate (Est.), standard error (S.E.) and congruence
coefficient by sample size (n) for the macro ERA (%ERA macro) and those reported in the
original ERA paper (H-T results).

• When n ≥ 200, the %ERA weights standard errors are generally lower than those of H-T,
whereas there is not a clear pattern concerning the bias.

Trying to explain this trade-off between bias and standard errxor for loading (at least for the
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%ERA macro), simulation results for sufficiently large samples confirm a direct relation between
reduction of biases (at 2n with respect to n) and reduction of standard errors: Components
loadings, exhibiting lower bias reduction, also demonstrate a lower reduction of standard
errors. Moreover, the fact that at different n the best approach (%ERA and H-T) in term of
bias does not outperform the other in term of standard errors may reflect that ERA, and
ALS algorithms in general, are prone to the problem of local minima, especially for loading
parameters.

5. Conclusion
Extended redundancy analysis is a data-analytical technique for complex structural models
in a component analysis framework. The ERA estimates component weights and component
loadings by minimizing an overall model fit, such as the sum of squares of discrepancies be-
tween the observed endogenous variables and their predicted counterparts from the exogenous
without any explicit distributional assumptions. Although ERA has potential application in
diverse areas within and outside the behavioral sciences, its use is hampered by a main issue:
Easily accessible software for estimating ERA models is lacking so far. In this paper, we ad-
dress this issue, presenting the %ERA macro, which was built in SAS. Two possible extensions
can be proposed in future works: The first is the inclusion of external covariates which do
not belong to formative LC indicators, but instead may have an impact on these LCs and a
direct effect on the endogenous variables too; the second extension is linked to a specification
of structural links between an exogenous and an endogenous LC that, at present, must be
mediated by the formative indicators of an endogenous LC. Potential candidates to accom-
modate both issues may be found in more general methods, such as Generalized redundancy
analysis, which may offer promising results (Lovaglio and Vittadini 2014).
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