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ABSTRACT: We find a family of AdSs x My supersymmetric solutions of the six-dimensional
F(4) gauged supergravity coupled to one vector multiplet that arises as a low energy de-
scription of massive type IIA supergravity on (warped) AdSg x S%. My is either a Kéhler-
Einstein manifold or a product of two Riemann surfaces with a constant curvature metric.
These solutions correspond to the near-horizon region of a family of static magnetically
charged black holes. In the case where My is a product of Riemann surfaces, we suc-
cessfully compare their entropy to a microscopic counting based on the recently computed
topologically twisted index of the five-dimensional A" =1 USp(2N) theory with Ny funda-
mental flavors and an antisymmetric matter field. Furthermore, our results suggest that the
near-horizon regions exhibit an attractor mechanism for the scalars in the matter coupled
F(4) gauged supergravity, and we give a proposal for it.
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1 Introduction

Recently there has been some progress in understanding the microscopic origin of the
Bekenstein-Hawking entropy of supersymmetric asymptotically anti-de Sitter (AdS) black
holes. In particular, the microscopic entropy of certain four-dimensional static, dyonic,
BPS black holes [1-5], which can be embedded in AdS4 x S7, has been reproduced by
a field theory calculation based on the topologically twisted index [6] of the dual ABJM
theory in the large N limit [7-9]. These black holes have an AdSs x Xj near-horizon
geometry, where ¥ is a Riemann surface of genus g. The topologically twisted index is
the partition function of the dual field theory on ¥4 x § 1 partially topologically A-twisted
along 4. Specifically, the index Z(pr, Ar) is a function of a set of magnetic charges pr and
complexified chemical potentials A for the global symmetries of the theory. The statistical
entropy Spp of the black holes with purely magnetic charges is then obtained by evaluating
Z(pr, Af) at its critical point Aj:

Tscrr(pr, Ar) =log Z(pr, Ar) = Seu(pr) - (1.1)

This procedure was dubbed Z-extremization in [7]. These results have been generalized to
different black holes in four dimensions and black strings in five dimensions [10-21]. For
other interesting progresses in this context see [22-31].

The five-dimensional topologically twisted index, which is the partition function of a
five-dimensional N' = 1 theory on My x S' with an Abelian topological twist along My,
has been recently computed when My is a toric Kéhler manifold [32] or the product of
two Riemann surfaces [32, 33]. Therein, the A" =1 USp(2N) gauge theory with Ny hyper-
multiplets in the fundamental representation and one hypermultiplet in the antisymmetric



representation of USp(2N), arising on the worldvolume of D4-branes near D8-branes and
orientifolds [34], has been analyzed in the large N limit. With some assumptions on the
relevant saddle-point, the large IV limit of the index for My = ¥4 x ¥, has been eval-
uated as a function of magnetic charges and chemical potentials for the Cartan subgroup
of the SU(2)ys global symmetry of the theory [32].! This result provides a prediction for
the entropy of a family of AdSg magnetically charged black holes in massive type IIA su-
pergravity. This prediction has been successfully tested for the only existing black hole
solution, the so-called universal one [35, 36] with a particular value of the magnetic charge,
using the results for the entropy given in [37]. It is the purpose of this paper to find new
black hole solutions, explicitly depending on a set of magnetic charges, and show that their
entropy is correctly accounted by the topologically twisted index.

To this end, we will consider a six-dimensional truncation of the supersymmetric
warped AdSg x S* background of massive type ITA supergravity [38] dual to the USp(2N)
theory. This truncation is described by an F(4) gauged supergravity coupled to vector
multiplets [39-42]. Furthermore, we will restrict ourselves to one vector multiplet corre-
sponding to the Cartan subgroup of the SU(2),; global symmetry of the five-dimensional
superconformal field theory (SCFT).

As a warm-up, and to test the consistency of the truncation, we consider the back-
ground AdS, x ¥y which corresponds to a twisted compactification of the five-dimensional
field theory on X4. We successfully compare the free energy of the solution with the field
theory computation in [33] and the ten-dimensional gravity computation in [43].

We then find new black hole horizon geometries of the form AdSs x g, x Ey,. We
turn on an Abelian gauge field inside the SU(2) R-symmetry that performs the topological
twist by cancelling the spin connection, and two magnetic fluxes p; and ps (one along each
Riemann surface) for the U(1) gauge field in the additional vector multiplet. We thus have
a two-parameter family of magnetically charged black holes. We compare the entropy with
the value of the topologically twisted index Z(p1,p2,A) that also depends on a chemical
potential for the U(1) C SU(2); symmetry and we find that the statistical entropy Spy of
the black holes as a function of the magnetic charges is obtained by evaluating Z(p1, p2, A)
at its critical point A:

IscrT(p1,p2, A) = log Z(p1,p2, A) = Su(p1,p2) - (1.2)

With a convenient democratic parameterization? for the fluxes and chemical potentials the
explicit form of the index can be written as [32]

42 N5/2 2 82(A1A2)3/2

S
15 8_Nf”:1” PINGIY

Iscrr (s, tr, Ar) = (1.3)

' A different proposal was discussed in [33]. In this paper we use the proposal in [32] that nicely matches
the entropy of the black holes.

2The Ay, I = 1,2, parameterize the Cartan of the SU(2) g and the SU(2)as symmetry of the USp(2N)
theory. They satisfy the constraint (5.11). Similarly, one can introduce a redundant, but democratic, param-
eterization for the fluxes as in (5.7). With such a choice, the topologically twisted index is a homogeneous
function of Az, sr and t;. See [32] for details.



This structure is reminiscent of an analogous result for AdSs black holes [7-10, 17, 18].
This analogy and the relation to other interesting field theory quantities like the S° free
energy and the effective twisted superpotential of the partial compactification on one of
the Riemann surfaces, were discussed in detail in [32].

We also obtain AdSy x My horizon geometries where My is a four-dimensional Kéhler-
Einstein manifold depending on a magnetic flux along M4. We find a simple and intriguing
expression for the entropy suggesting that the computation in [32] could be generalized to
this case too. We leave this for future work.

In gravity, the field theory chemical potential A can be associated with the horizon
value of the vector multiplet scalar field ¢3. With a convenient parameterization, we
find that the functional Zscpr(p1, p2, A) coincides with the area of the horizon divided by
4Gy, where Gy is the six-dimensional Newton’s constant, as a function of ¢3. This is the
attractor mechanism in six-dimensional gauged supergravity: after expressing all the fields
in the gravity multiplet in terms of vector multiplet scalars using the BPS equations, the
remaining BPS equations are equivalent to the extremization of the area of the horizon
as a functional of vector multiplet scalars, and the critical value of this functional is the
entropy. We see that the Z-extremization principle is equivalent to the attractor mechanism
in six-dimensional gauged supergravity,® thus generalizing what was found for AdS, black
holes in [7-9, 17, 18].

More explicitly, we find that a central role is played by the quantity (3.4)

1
Tads,(XT) = ———(X'x?%)3/2 1.4
Adse (X7) 37rGN( )=, (1.4)
where X7(¢3) (I = 1,2), defined in (2.12), are the gravity counterpart of A; in (1.3).
This six-dimensional quantity is reminiscent and can be thought of as the analogue of the
prepotential Fyygra(X 7y in four-dimensional A" = 2 gauged supergravity. Indeed, we will
find that the attractor equations for AdS, vacua correspond to extremizing

2
8 0T aqss(XT)

Tads, (XI) =97 ZEIT ) (1.5)
I=1

and attractor equations for black holes correspond to extremizing

vol(My) < 0T pas, (X1)

IAng(XI) = T8 Z 515JW, (1.6)
I,J=1

for M4 being a Kéhler-Einstein manifold, and to extremizing

2
471‘2 8QIAdSG (XI)

- t _ -“*vMor 7
97 SN ToXToxT
1,0=1

Tads,(X!) = (1.7)
for My =34, x ¥g,. Here s and t; are the magnetic charges — see (4.6), (5.7) and (6.6).
This is similar to the attractor mechanism in four-dimensional N' = 2 gauged supergrav-
ity [1, 2]. We thus expect that, in more general F(4) gauged supergravites coupled to vector

3For the attractor mechanism in six-dimensional ungauged supergravity, instead, see e.g. [44, 45] and
references therein.



multiplets, the attractor equations for AdS solutions supported by magnetic fluxes are given
by extremizing expressions of the form (1.4)(1.7) with a suitable function Zqg,(X’), ho-
mogeneous of degree three.

The structure of this paper is as follows. In section 2 we discuss general aspects of
the F(4) gauged supergravity coupled to vector multiplets. In section 3 we discuss the
AdSg vacuum and an interesting partially off-shell version of its free energy that we relate
to its field theory counterpart. In section 4 we consider the background AdS, x X, with
a topological twist on ¥; and we successfully compare the free energy of the solution
with the field theory computation in [33] and the ten-dimensional gravity computation
in [43]. In section 5 we obtain a two-parameter family of black hole horizons AdSy X
Y4, X Xg, and successfully reproduce their entropy using the topologically twisted index.
In section 6 we find a one-parameter family of black hole horizons AdSs x My where My
is a four-dimensional Kahler-Einstein manifold. Our conventions and some useful formulae
are collected in appendix A.

Note added: while we were writing this work, we became aware of [46] which has some
overlaps with the results presented here.

2 Matter coupled F(4) gauged supergravity

We consider a six-dimensional truncation of the supersymmetric warped AdSg x S* back-
ground of massive type ITA supergravity [38] described by an F(4) gauged supergravity
coupled to vector multiplets. The minimal F(4) gauged supergravity was written in [40]
and coupled to matter in [41, 42]. F(4) is the relevant superalgebra for five-dimensional
superconformal field theories and its bosonic subalgebra is SO(5,2) x SU(2)g.

The bosonic part of the six-dimensional gravity multiplet consists of the metric g,
four vectors A%, a = 0,1,2,3, a two-form B, and the dilaton o. It is useful to split o =
(0,7) where r = 1,2,3 is an index in the adjoint representation of SU(2)g. The fermionic
components are a gravitino wf and a spin one-half fermion x4, A = 1,2, transforming in
the fundamental representation of SU(2) .

The vector multiplet in six-dimensions contains a gauge field A, four scalars ¢, and
a spin one-half fermion A 4. With ny vector multiplets, the 4ny scalar fields parameterize

the coset space
SO(4, nv)

SO(4) x SO(ny)

It is convenient to encode the scalar fields into a coset representative LAE € SO(4,nv),

(2.1)

where indices are split as follows A = (o, I) with I =1,...ny. A subgroup SU(2)g x G of
dimension 3 + ny of SO(4,ny) can be gauged.
The bosonic Lagrangian reads [42]*
1 1 _
E = — ZR — ge
1

o R 1
— aeﬂ”f’WB,w (nAgFlﬁ},Fﬁ +mByo FY. + 3mQBpUB>\T> ,

P 3 1
NS Fyp 51 4 e Hy o H' + 00,0 — S 1 Proy =V
(2:2)

“We follow the conventions of [42]. Notice that [42] employs the unusual convention F = F},,dz* A dz”
for the components of a form. In particular, for them Fj, = 1 (0, A, — 0, Ay).



where
A A AO
Foo=F,, —md "By,
Naz = L\*(L Naxz = Ly (L7 Y s, (2.3)
Pé = (L_I)IA (dLAa - fF AHAFLHQ) 3
with fAHF the structure constants of the gauge group SU(2)g x G. Here, g is the gauge

coupling constant and m is the mass parameter of the massive type IIA supergravity [47].
The supersymmetry variations of the fermions are given by

7 1 _ 7.
Ohay = Vyuea — iggﬁBAmGB +1g¢ 7 [T[AB]VA’W - T(AB)V)\:| (7,/” - 65,11’7’\) e’

? 14 14
+ 5820 wAP VT (% » 35M7Ap) ea+ Sapvue”

i i
dxa = 57“3MUGA +16¢ 7 [T[AB}VA’W + T(AB)V)\} v eP (2.4)

1
* §€2UHVAP77')’V)\'O€A + Nage”,
I

. , (.
O\, = ZPTI#JQBV“EB - ZP({#GABv?’y“eB + ¢ T ea + MigeP

where we suppressed the quadratic terms in fermions, o™

have defined

p are the Pauli matrices, and we

Tiapa = €aBLoA B\ Tiapywr = capLiy Foy Tron = LiAFL . (2.5)

In all the above formulae the indices A, II, T, ... are raised and lowered with the SO(4, ny)
invariant metric nay, = diag{1,1,1,1,—1,...,—1} and the indices A, B, ... with the SU(2) g
tensor €4p5. We refer to the appendix for conventions, for the explicit form of the potential
V, and the fermion mass matrices Sap, Nag, M} appearing in (2.4).

The five-dimensional superconformal field theory dual to the warped background
AdSg x S* has a gauge group USp(2N), N ¢ hypermultiplets in the fundamental repre-
sentation and one hypermultiplet in the antisymmetric representation. The theory has an
SU(2)r x SU(2)a x SO(2Ny) x U(1); symmetry [34].> The global SU(2)y acts on the
antisymmetric field, SO(2Ny) on the fundamentals and U(1); is the conserved instanton
current.

We thus just consider a supergravity containing one vector multiplet, ny = 1, cor-
responding to the U(1) subgroup of the global SU(2),,. We will consistently set to zero
all gauge fields except AZ:3 in SU(2)gr and Aﬁzl that are needed for the twisting and to
provide magnetic charges for the black holes. We will also require the scalar fields in the
vector multiplet ¢,, a = 0,1, 2,3, to be neutral under AZZS and this restricts the nonzero
components to ¢y and ¢3. For purely magnetic black holes we can find solutions with
¢° = 0 and we further restrict to this case. A convenient parameterization of the scalar

5This is non-perturbatively enhanced to SU(2)r x SU(2)m X Enj+1.
50ne can think of the ¢o = 0 as analogous to the vanishing of the axions for the AdS; magnetic black
holes [1-3].



coset is given by [48-50]

100 0 0
010 0 0
*y=1001 0 0 (2.6)
0 0 0 cosh(¢s3) sinh(¢s)
0 0 0 sinh(¢3) cosh(¢s
The kinetic terms for the vectors can then be written as
100 0 0
010 0 0
Ms=1[001 0 0 , (2.7)
000 cosh(2¢3) —sinh(2¢3)
0 0 0 —sinh(2¢3) cosh(2¢3)
and the quantities in the fermionic variations read
i —30
Sap = 1 (g cosh(pz)e” +me™) eap
1
Nyp = 1 (g cosh(¢gsz)e? — 3me_3°') €AB, (2.8)

Map = —2gsinh(¢p3)e’ o’ 5.

The other fields that are turned on are the metric, the dilaton o and the two-form B, . It
is consistent to set H,,» = 0 but By, is not in general zero and its value can be found by
solving its equations of motion [37].

We believe that after all this simplification the theory is a consistent truncation of
massive type ITA supergravity on the warped background AdSg x S*. We give evidence for
this in section 4 where we match the ten-dimensional result found in [43].

We finish the discussion of the matter coupled theory with an argument about the
definition of the R-symmetry for all asymptotically AdSg solutions in the theory. Let us
first recall that the detailed match between supergravity and field theory for asymptotically
AdS, black holes was facilitated by the gravitational answer for the R-symmetry along the
holographic renormalization group (RG) flow [7], telling us explicitly how the R-symmetry
mixing is parametrized by the values of the scalar fields. In four-dimensional gauged su-
pergravity the R-symmetry was carefully derived via the Dirac bracket of the supercharges
Q obtained from the Noether procedure [51, 52]. Following rigorously all these steps in six
dimensions is out of our scope here; however, we can still provide some solid arguments
and derive the expected gravitational R-symmetry as an explicit scalar dependent combi-
nation of the two U(1)’s mixing along the flow, F/~ 3and F L]W: l=F é‘f‘*. This proposal
is strongly backed up by the agreement with the field theory results we provide in the
following sections.

It is reasonable to expect that, in analogy to the four-dimensional arguments in [51, 52],
the anti-commutator between two supercharges for asymptotically AdSg solutions is given



by a surface integral”
(0,0} x / A5, PNy Biea, (2.9)
ov

where €4 is the Killing spinor preserved by AdSg, and the super-covariant derivative D
includes all terms on the right hand side of the gravitino variation in (2.4), i.e. 0¢4, =
ﬁue 4. The above anti-commutator is the explicit field dependent realization of the abstract
AdSg superalgebra, F(4), generating a combination of different asymptotic bosonic charges
of the SO(5,2) xSU(2) g generators. We are interested in the term in the gravitino variation
in (2.4) proportional to T( 4 g), which precisely enters in the definition of the conserved SU(2)
R-charge. We are further breaking the R-symmetry down to U(1) so we only need to look
at the part proportional to JE‘ g cf. (2.5). We are then led to the following formula for the

conserved U(1) R-symmetry charge of a given solution,

Ry o /av dX,. G*U(L*I)T:3|A(FA)“” . (2.10)

Note that we are only interested to know the R-symmetry at a given radial slice of the
spacetime (that when interpreted as a holographic RG flow becomes a measure of how the
R-symmetry changes along the flow), not at the value of the asymptotic conserved charge.
Therefore, we can extract a normalized version of the integrand that we hope to match with
the R-symmetry mixing in field theory. Considering that ngl = cosh(¢3), L3_41 = —sinh(¢3)
and that the democratic choice of U(1)’s corresponds to taking Fi,, = F3 ., + Fiuw,
Fs . = F3 4, — Fy y, we finally define

RsugraEX1F1+X2F2, (211)

where the mixing of the democratic U(1) symmetries Fj o is given by the scalar dependent

quantities
Xl X2 Xl 1/2
7 = 1 =+ tanh(gf)g) y 7 = ]. — tanh(<b3) y 6¢3 = <X2> . (212)

3 The AdSg vacuum

The F(4) supergravity discussed in the previous section has an AdSg vacuum if we set
g = 3m [40-42]. Indeed, considering a background with metric

4
ds? = e2f(r) (dt2 —dr? - Z dxf) , (3.1)
i=1

"We are evaluating the Dirac bracket of two conserved asymptotic supercharges. Therefore, the resulting

surface integral is defined on a space-like slice of the asymptotic AdS boundary OV and the standard
notation is

d¥,, o« €uvporysdx” A dx® Adz? A dz? .

_1
det(guw)



a nontrivial scalar profile for o(r) and ¢3(r), and setting all other fields to zero, the BPS
equations (2.4) reduce to®

1
0=e¢7Tf + 3 (g cosh(pz)e” +me %) ,

1
0=e'o' — 5 (g cosh(epz)e” — 3m673") , (3.2)
0=e /¢y —2gsinh(¢s)e?

where prime denotes the derivative of the function with respect to the radial coordinate r.
With g = 3m, the AdSg background corresponds to e 2/ =2 and 0 = ¢3 = 0. We have
further set m = 1/2 so that the AdSg radius is normalized to one.

A more suggestive way of solving the above equations is by taking the Ansatz ¢2/(") =
e2fo /r%, and o, ¢3 independent of r. We can write the BPS equations in an alternative
form by using the parameterization (2.12). The BPS equations for the fields in the gravity
multiplet in terms of X2 can be solved as

1
e’ = W(XlXQ)l/g, efo =37 (3.3)
T

The on-shell supergravity action is given by
m2etfo 1

Iy _ _ _ 1v2)3/2
Taase(X) 30n 37Cn (X X7)>-. (3.4)

We then see that the BPS equation for ¢3, which implies ¢35 = 0, is equivalent to extremizing
Zadsg With respect to X1

The function Zaqs,(X?) has a natural field theory interpretation. The S° free energy
of the USp(2N) theory reads [53]

9v2r N°/?
5 N/S—Nf

This can be generalized to the case where a mass parameter is turned on for U(1l) C
SU2)ur [54]°

Fgs = —

(3.5)

9v2 N°/2
5 BN
where Ay + Ay = 27 and the extremal value is recovered for Ay = Ay = 7. Upon using

the standard AdSg/CFT5 dictionary [53]

Fgs(Ag) = (A A3 (3.6)

5w 8 — Ny
27v/2 N°/2 7
80ne can derive these equations by taking the ultraviolet limit of the more general flow equa-

tions (4.5), (5.6), or (6.5).
9What we denote as chemical potentials here are actually mass parameters for the antisymmetric matter

GN

(3.7)

field in the S° free energy. Comparing to [64] we have A1 =7 (1 + %mas), No=m (1 — %mas).



and identifying X! = Ay, we find that
Fgs(Ar) = Taass (X)) (3.8)

Interestingly, as shown in [32], the same quantity is also related to the Seiberg-Witten
prepotential of the five-dimensional theory on R* x S which can be written as
F(Af) = g (Af) = i, (x1) (3.9)
1) = =5 Fss(Ar) = =5 Tads . .
As discussed in the introduction, the function Zagg, (X ) in six dimensions plays a role
similar to the prepotential of four-dimensional N' = 2 gauged supergravity. In the AdS,
black hole story, the supergravity prepotential is similarly related both to the twisted
superpotential and to the S3 free energy of the dual field theory [7, 10, 17].1°

4 The AdS4 X 34 solution

The F(4) gauged supergravity has also an AdSy4 x ¥4 solution corresponding to the twisted
compactification of the five-dimensional SCFT on a Riemann surface ¥, of genus g. In the
infrared the field theory flows to a three-dimensional SCFT.

We consider the following Ansatz for the metric

ds? = &2/ (dt* — dr® — def — d23) — e%(r)ds%g , (4.1)
and for the gauge fields U(1) x U(1) C SU(2)g x U(1):

Fr=3 = gmol(zg), FI=t = gpvol(Eg), (4.2)

g
with ¢ = 41. There is a nontrivial profile for the scalars o(r), ¢3(r) and all other fields are
set to zero. Here, ¥ is a Riemann surface with metric normalized as R, = kg, with
k=1 for S?, k =0 for T?, and k = —1 for g > 1. With this normalization vol(X,) = 2mn,
with ng = 2|g— 1| for g # 1 and 1y = 1 for g = 1. The U(1) C SU(2)r gauge field is chosen
in order to cancel the spin connection while the magnetic flux p parameterizes a family of
three-dimensional SCFTs.
If we choose spinors satisfying

’)/346A = —iCaiBeB, (4.3)

where the frame indices 3,4 refer to the Riemann surface, the U(1) C SU(2)r gauge field
cancels the spin connection along 4. This is precisely the topological twist. Requiring in
addition that

Nlea = —ieq, (4.4)

OFor black holes in AdSs x S7 the prepotential is proportional to the function v X1X2X3X% with
>4, X' = 27 and for massive type ITA black holes to (X' X?X?%)?/3 with 329_, X' = 2r.



where # is a frame index along the radial direction, the BPS equations (2.4) reduce to'!

0=eTf - 81960% (k cosh(¢3) — psinh(¢3)) +

0=ecTH + 83g€_0_2h (k cosh(¢sz) — psinh(¢s)) +

(g cosh(¢sz)e’ + me*BU) ,

(g cosh(¢s)e” + me_sa) ,
(4.5)
(g cosh(gs)e” — 3me_30) ,

N = N N =

0= e_fO', + Slge_U_Qh (l{ COSh(¢3) - pSlnh(¢3)) -
0= ¢T84 5o (poosh(ss) — ksinb(ég)) — 2gsin(G)e”

We choose the parameterization of the scalar field ¢3 as in (2.12) and, in addition, we
introduce a redundant but democratic parameterization for the flux

5151—g+%p, 5251—9—%19, (4.6)
with 51 + 592 = 2(1 — g). We look for AdS, x %y vacua where /(") = efo/r and h(r),o(r)
and ¢3(r) are constant. Using the BPS equations (4.5), the fields in the gravity multiplet
can be solved in terms of the X!’s as

1/4 1 (_5 X2 _ g X1)1/2
o _ 1y2y1/8 h_ L 2 o fo— 30 (47
e <37r> (X X9)/°, e e (X1X2)i/A e’ e e, (4.7)

where we set ¢ = 3m and m = 1/2. The on-shell supergravity action can be written as

me2fot2hyol(B,) 4
2GN - 27Gn

Taas,(XT) = (XTX2)V2 (52X 45, X2) . (4.8)
It turns out that the BPS equation for ¢3 — last line of (4.5) — is equivalent to the
extremization of Zags, (X 1) with respect to X!. The previous expression can be more
elegantly rewritten as

2 3/2

8 0 (XtX?
IAdS4(XI) = _81GN ZEI ( 8XI) : (49)
I=1

As expected, using (3.7) and identifying X! = A;, we find that
Fgaysy, (A7) = Taas,(X7), (4.10)

where Fgs,x is the 53 x ¥4 free energy of the same theory, as a function of R-charges,
computed in [33]2

8y2 N3/2 iﬁ O(A1A)3/2
I .

F Ar)=-—
SSXEQ( I) 1571' S*Nf 8A[

(4.11)

"Here we correct a numerical factor in the gaugino variation in [48].
12Comparing to [33] we have 51 = (1—g)(1+aar), 52 = (1—g)(1—Anr), A1y = 7(1+Tas), Az = 7(1—Vas).

~10 -



Here, A; + Ag = 27. Moreover, as noticed in [32], this expression is also related to the
effective twisted superpotential W of the theory compactified on Xy x § L.

Iy Iy
W(A[) = ?FS3><EG(AI) = §IAd84(X])- (4.12)

The extremization of Fgs,x_(As) with respect to A; determines the exact R-symmetry
of the three-dimensional field theory that is obtained by twisted compactification on .
The critical value of Fgs ng(AI) is the free energy of the theory and coincides with the
value derived directly in ten-dimensional massive type ITA supergravity in [43]. This is
an evidence that the gauged supergravity provides a consistent truncation of the ten-
dimensional theory.

5 The AdS; X ¥g, X ¥, solution

Now we search for black hole horizon solutions of the form AdSs x X3, x Xg,. We consider
the following Ansatz for the metric

ds? = e2/(7) (dt? — dr?) — thl(’ﬂ)ds%gl — thQ(’ﬂ)ds%92 , (5.1)

and the gauge fields

Fr=3 = gm vol(Xg,) + gﬁgvol(Egz) , FI=t = gpl vol(Xg,) + gpgvol(Egz) . (5.2)

with ¢ = +1 and the previous conventions for Riemann surfaces. The U(1) C SU(2)gr
gauge field is chosen in order to cancel the spin connection and p; and po are magnetic
charges, one for each Riemann surface. There is as usual a nontrivial profile for the scalars
o(r), ¢3(r). This time the two-form B, cannot be set to zero. Assuming H,,» = 0, the
equations of motion require that

e 27 m*Nop B + %e“”TﬂAUnAEFTApFEJ =0, (5.3)
which is solved by
By = — (Plp;ﬂ;;;@)e%wfzhl%z . (5.4)
With the spinor projections
’)/12€A = —iCUiBeB, 7346,4 = —iCaiBeB, ’}/72614 = —i€q, (5.5)

where the frame indices 1, 2 refer to the first Riemann surface and 3,4 to the second, the
U(1) € SU(2) g gauge field cancels the spin connection, and the BPS equations (2.4) reduce

- 11 -



to

1
O=e/f - 876707%1 (11 cosh(¢3) — p1 sinh(¢3))
g
1
- @6_"_2}’2 (k2 cosh(z) — p2 sinh(¢3))
1 . o 30\ 3(P1D2 — K1K2) 5 _on, _on
+ 5 (g cosh(¢s)e” +me %) — 32—mg2€ 1=2hy
0=e'h) + ;67072]11 (k1 cosh(¢s) — p1 sinh(¢s))
g
1
- @6_0_%2 (K2 cosh(pz) — p2 sinh(¢3))
1 o —30 (p1p2 — K1k2) o—2h1—2hs
+ 5 (g COSh(d)g)e + me ) + 32—”1926 s
1
0=eThl, — —e 772" (K cosh(¢s) — p1 sinh(¢s))
% (5.6)
5 )
+ QB_U_WZQ (Iig COSh(QZ)g) — P2 Sinh(gf)g))
1 _ (P1P2 — K1K2) o on,—on
- h o 3o o 1 2
+ 5 (gcos (¢3)e” + me ) + T 3omg? e ,
1
0=c¢ 7o' + ge_"_%l (k1 cosh(¢s) — p1 sinh(¢s))
1
+ @6_0_2@ (12 cosh(¢3) — pa sinh(¢3))
1 o —30 (p1p2 — K1k2) o—2h1—2hs
-5 (g cosh(¢s3)e’ — 3me ) — 32mg? e ,

1 .
0=e '+ %6_0_2}” (p1 cosh(¢3) — k1 sinh(¢3))

+ 21960%2 (p2 cosh(¢s) — ria sinh(¢s)) — 2 sinh(¢s)e” .

We choose the parameterization (2.12) for the scalar field ¢3 and a democratic parameter-
ization for the fluxes

5151—914-%[)1, sgzl—gl—%pl,
. . (5.7)
1151—92+%p27 f251—92—$p2,

with §1 + 52 = 2(1 — g1) and t; + to = 2(1 — g2). To have a black hole horizon AdSy x
Yo X Ngy we set ef () = efo/r and hy(r), ha(r),o(r) and ¢3(r) constant. Using the BPS
equations (5.6), the fields in the gravity multiplet can be solved in terms of X I as

e’ = <X1X2)1/8 <

x1x2 1/2
efo = 7( ) e 7,

3

(51X2 +52X1)(t1X2 + ’thl) + 2X1X2(52t1 + 51t2) 1/4
37['(51X2+52X1)(f1X2—|—’£2X1) ’
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h1 1 (—51X2 —52X1)1/2

g

1 (X2 — gux1)Y2
e = (=t 2X) e (5.8)

/37792 (X1X2)1/4

where we set g = 3m and m = 1/2. One can find families of regular horizons, with fluxes
satisfying all the quantization conditions, whenever k1 = —1 or ko = —1. The Bekenstein-
Hawking entropy can be written as

2t 2havol(Sy x Bg,) A i o, (x1x2)%?

T X1 = = g7
Ads; (X7) 4Gx 81Gx | oxTox7J

(5.9)

as a function of X7. It is quite remarkable that the BPS equation for ¢3 — last line of (5.6)
— is equivalent to the extremization of Zaqs,(X!) with respect to X!. This is the attractor
mechanism in six-dimensional gauged supergravity: once the fields in the gravity multiplet
are expressed in terms of the scalars in the vector multiplet, the entropy is obtained by
extremizing the functional Zaqg, (X I ).

We can now compare the entropy of the six-dimensional black holes with the prediction
of the topologically twisted index computed in [32]. The index, at large N, is given by [32]

42 N2 SN (AN
- T N
15 1/8_Nf s 6A18AJ

The index depends on a chemical potential A for the U(1) subgroup of the SU(2) global
symmetry. As in [32], we find it convenient to use a pair of redundant but democratic

Zscrr(Ar) = (5.10)

parameters

A=A, Ay=21—A, (5.11)

with Ay + Ag = 27, In the spirit of the microscopic counting for magnetically charged
AdS black holes in four dimensions, we expect that the entropy is obtained by extrem-
izing Zgcr(As) with respect to Ay, This was called Z-extremization principle in [7, 8].
Using (3.7) and identifying X! = A;, we find that

Zscrr(Ar) = Taas, (X7), (5.12)

and we see that the field theory Z-extremization precisely corresponds to the attractor
mechanism in supergravity.

6 The AdS, X M, solution

It is easy to find more general black hole horizons with Abelian twists. We consider the
following metric

ds? = e2/(7) (dt? — dr?) — e2h(T)d83\4 (6.1)

4
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where My is a Kéhler-Einstein manifold with metric normalized as R, = kg, (k = £1,0),
and gauge fields

Fr=3 — ‘g"i (612 + 634)872h(r) , FI:l — jp (612 + 634)672h(r) ’ (62)

where €?, i = 1,2,3,4, are vierbeins in the directions corresponding to the manifold M.
The reduced holonomy group on the manifold, U(2), splits into U(1) that we choose to
correspond to the selfdual part of the spin connection, w™, and SU(2) for the anti-selfdual
part, w™. As in the previous section, there is a nontrivial profile for the scalars o(r), ¢3(r)
and the two-form

(p2 - 52) 20+2f—2h1—2h
By = _78m2g2 e 1mahz (6.3)
With the spinor projections
7126A = —iCUiBeB, ’)/346A = —iCUiBeB, ’yfeA = —i€y, (6.4)

the U(1) € SU(2)r gauge field cancels the w™ spin connection, while the w™ part drops
out of the Killing spinor covariant derivative, since (6.4) imply v'23*¢4 = —e4. The BPS
equations (2.4) reduce to

0=eff— 41!16—0—2’1 (ki cosh(s) — psinh(es))
3(p2 — HZ) o—4h

1
+ = (g cosh(¢s)e” + me_?"’) T 32mg? ,

2

1
0=c /0 + 4—6_0_% (k cosh(¢ps) — psinh(¢ps))
g
1 o —30 (p2 — HZ) o—4h
+ B (g cosh(¢ps)e? + me ) + We , (6.5)

1
0=c'o' + @6_”_% (k cosh(¢s) — psinh(¢s))

(p2 - H2)60_4h
32mg? ’

0=e/oh+ ;e”h (pcosh(@s) — rsinh(¢s)) — 2g sinh(¢s)e” .

- % (g cosh(epz)e” — 3me_30) -

We choose the parameterization (2.12) for the scalar field ¢3 and a democratic parameter-
ization for the fluxes

S1=k+0p, So=kK—p, (6.6)
with s1 + 5o = 2x. To have an AdS,; x My horizon topology we set ef(r) = efo/r and
h(r),o(r) and ¢3(r) constant. Using the BPS equations (6.5), the fields in the gravity
multiplet can be solved in terms of X' as

51X2 +52X1)2 + 4X1X25152 1/4
371'(51X2 +52X1)2 ’

L1 (X2 s x Y L (X2

V6 (xxa o C ST T

e’ — (X1X2)1/8 <(

(&
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where we set ¢ = 3m and m = 1/2. One can find regular horizons only for k = —1 for
sufficiently small p.'> The Bekenstein-Hawking entropy is then obtained by extremizing

e*hvol(My) _ vol(My) 22: s 0?2 (X1X2)3/2
4Gx 82rGy A= " OXToXT

)

Tads,(XT) = (6.8)
with respect to X!. Remarkably, the extremization of (6.8) is equivalent to the BPS
equation for ¢3 — last line of (6.5). This formula is very simple and suggests that the
computation in [32] could be generalized to this case too. It is also reminiscent of similar
expressions for AdSs black holes (see [32] for a discussion).
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A Conventions

We collect here few relevant conventions and formulae used in [42]. We refer to that paper

for everything missing or forgotten. Indices A, B, ... in the fundamental representation
of SU(2)R are raised and lowered as T4 = eABTp and Ty = TPepa. Indices A, X, ...
of SO(4,nvy) are raised and lowered with nxs, = diag{1,1,1,1,—1,...,—1}. Spinors are

ABth 2 6

pseudo-Majorana with (¢4)™7" = ¢ and 77 = i799192~y34%45~6. The potential V and

the fermionic shifts are constructed using the quantities
A=Ky, B'=¢"Kpo, Ci=¢"Krs, Dn=EKon, (A1)

where l ; Ik
Krsoz - gﬁlan r(Lil)sana + g,CIJKL r(Lil)s L R
(L™Y,"L" + g'Crox L"(L71) T L*, .

Here, Cyx are the structure constants of the gauge group G C SO(ny). For us Crjx = 0.

(A.2)
Ka[t = gelanl

«

We then have the following fermionic shifts entering the BPS equations (2.4):

¢ —30 (7 — L 3o -
SAB = ﬂ (AGU + 6me 3 (L 1)00) €EAB — g(Bte — 2me 3 (L 1)2’0)’770{43,
1 30 (7 — 1 o 35,7 —
Nap = 21 (Ae” — 18me 7 (L™ )go) €ap + g(Bte 4+ 6me 37 (L Y)i0)y ol (A.3)
Mg = (—C’tI + 2i77D,{) e“olyg —2me (L Y)Y A eap .

13Since fluxes must be quantized, this condition puts some restriction on the choice of M.
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Finally, the scalar potential reads

_l’_

A%?  B'B;, CLcC;
_ 20 [ T ) tY It
Vi=r-e <36 T 4

9 :
+ DItD[t> + m26760./\/'()0 —me™ % <3AL0() — QBZLZ‘0> .
(A1)
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