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1 Introduction

In many string theoretic constructions, the presence of extended sources such as D-branes

or O-planes is a crucial ingredient. In compactifications, for examples, O-planes are thought

to be important to overcome no-go arguments that forbid de Sitter (or even Minkowski

with non-trivial flux) compactifications [1–3]. However, in most cases these sources back-

react on the metric in a way which destroys whatever symmetries were previously present,

and makes it prohibitively hard to find a full solution to the equations of motion.

To overcome this problem, sources are often “smeared” over the internal space: namely,

they are assumed to occur in a continuous distribution with varying positions, much like

the individual electrons on a charged piece of conductor. While this is fine for D-branes, it

is incompatible with the definition of an O-plane, which must in fact lie at the fixed locus

of an involution. When the smearing trick is performed on O-planes, it is usually done

with the hope that it might be a good indicator of whether a non-smeared solution exists.

It is hence interesting to find solutions with localized (i.e. non smeared) sources, even ones

where the cosmological constant is negative. Although there already exists one family of

supersymmetric AdS4 solutions with localized sources, in type IIB supergravity [4], such

examples remain rare.

In this paper, we are going to present a class of infinitely many new supersymmet-

ric AdS4 solutions with localized sources, in type IIA supergravity with Romans mass

parameter F0. As an example:

ds2
10 =

53/2

12
√

2

n2

F0

√
ỹ + 2

[
ds2

AdS4
+

4

5
ds2

Σ3
+

3

10

dỹ2

(1− ỹ)(ỹ + 2)
+

4

5

(1− ỹ)(ỹ + 2)

ỹ2 − 5ỹ + 10
Ds2

S2

]
,

(1.1)

with ỹ ∈ [−2, 1], Σ3 a compact hyperbolic three-manifold, and Ds2
S2 the round S2 metric

fibred over Σ3 in a certain way.1 This has a stack of n2 D6-branes at ỹ = −2, and it

is regular at ỹ = 1, so that the topology of the space M3 described by ỹ and the S2

is that of an S3. We will also present analytic solutions with two D6 stacks, with O6

singularities, and with D8-branes. Moreover, we will present numerical solutions where

Σ3 can be replaced with an S3, and also where sources can even be absent; in particular

we will have a family of completely regular solutions with topology AdS4 × S3 × S3, but

different from the one in [5].

Let us now explain how these solutions came about. Recently, a class of supersym-

metric AdS7 solutions was found [6] where several types of localized sources were present.

In that paper and in the follow-up [7], more attention was given to solutions with only

D8-branes (actually, D8/D6 bound-states), with an eye to the study of their holographic

1The word “fibred” has different meanings in different contexts. In this paper, we will use the topological

meaning of the word. Namely, there is a fibre bundle E5 whose fibre is S2 and whose base is Σ3; the

connection terms in Ds2
S2 (see (2.7), (2.9) below) signal that the bundle is topologically non trivial. The

interval I parameterized by y is not topologically fibred, but it can formally be included in a bigger fibre

bundle with fibre M3 and base Σ3. Sometimes one wants to refine the definition of fibration by including

the metric data; even for a space M1 ×M2 that is topologically a product, one sometimes says that M1

is fibred over M2 if the metric on M1 depends on the coordinates on M2. In this second sense, we should

rather say that the whole fibre bundle E5 is itself fibred over the interval I.

– 2 –



J
H
E
P
0
7
(
2
0
1
5
)
0
7
6

duals. However, solutions with localized D6’s also exist; in [6, section 5.2] one example

was given, where one stack of D6’s was possible. As was hinted there and we will see more

explicitly here, it is also possible to have two stacks (with unequal numbers of D6’s), or

also to have O6’s. Perhaps most striking was the fact that such localized sources were not

hard to find: the system of ODEs got attracted to either D6 or O6 type of singularities,

and it was in fact their absence that required fine-tuning. (Imposing that the number of

D6’s is integer did however require fine-tuning.)

In view of the issues explained above with localized branes, it was then interesting to

ask whether those findings could be somehow transported to four dimensions. (Indeed, in

a series of interesting papers [8–11], an AdS7 ×M3 setup similar to [6] was examined to

understand the differences between localized and smeared branes.) For this, we needed to

somehow replace AdS7 with AdS4 × Σ3, where Σ3 is some new compact three-manifold.

From a holographic point of view, this sounds like compactifying the CFT6 to a CFT3,

on a three-manifold Σ3. This is more commonly done from a CFT6 to a CFT4, thus

replacing AdS7 with AdS5 × Σ2. A famous example is the Maldacena-Nuñez solution [3],

which is dual to a “twisted” compactification of the (2, 0) theory on a Riemann surface.

But it is indeed also possible to compactify on a three-manifold: the solution dual to this

is in fact even older, going back to [12] (later being lifted to eleven dimensions in [13, 14]).

Inspired by [12, 14], we formulated an Ansatz which would be holographically dual

to compactifying the (1, 0) CFT6 on a compact quotient of a maximally symmetric Σ3.

We then used this Ansatz in the generalized complex geometry formalism of [15], where

AdS4 ×M6 solutions of type II supergravity were reformulated in terms of certain “pure

spinor equations”. With the Ansatz we formulated, these equations reduce to five ODEs,

for five functions (the dilaton and warping, and three coefficients of the metric) depending

basically on the coordinate ỹ in (1.1).

We found two classes of solutions to the five ODEs, which we call respectively “natural”

and “attractor” solutions. The “natural” class comes about when we notice that a certain

three-dimensional subspace of the parameter space is left invariant by the flow defined

by the ODEs. In other words, with a certain constraint the ODEs reduce to three; this

requires assuming that Σ3 be hyperbolic,2 but it simplifies the problem quite a bit. In fact,

at this point we recognize that the three ODEs were quite similar to the ones given in [6,

eq. (4.16)] for AdS7 solutions. This allows us to find a one-to-one correspondence between

our natural class of AdS4 compactifications and the AdS7 solutions of [6, 7]. At the level

of the metric, the map reads

e2Ads2
AdS7

+dr2 + e2Av2ds2
S2 →(

5

8

)3/2 [
e2A

(
ds2

AdS4
+

4

5
ds2

Σ3

)
+

8

5

(
dr2 +

v2

1− 6v2
Ds2

S2

)]
,

(1.2)

2Compactifying the (1, 0) theories of [16, 17] on a torus T 3 should also be possible, but presumably

this leads to a solution that looks singular in IIA, and whose more appropriate description is in type

IIB; it should correspond to the solutions in [4], which are dual to CFT3’s obtained from Hanany-Witten

configurations [18].
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where A, v are functions of r, and ds2
S2 is the round metric on the S2, which after the

map gets fibred over Σ3 in a certain way. There are infinitely many AdS7 solutions, with

arbitrary numbers of D8’s, whose numbers and charges can be labeled by two Young

diagrams [7, section 4]. So an immediate consequence of (1.2) is that we have an infinite

number of AdS4 solutions as well. As we mentioned already, there are also AdS7 solutions

with D6’s and O6’s, which were only quickly mentioned in [6]; under the map (1.2), these

become AdS4 solutions which also have those sources.

Moreover, a parallel paper [19] studies compactifications where the AdS7 in [6] is

replaced by AdS5 × Σ2, with Σ2 a Riemann surface — more similarly to the original

Maldacena-Nuñez solution [3]. A version of (1.2) also holds for that case; see [19, eq. (1.3)].

Crucially, in that paper the AdS5 solutions were found analytically. This allows also to find

an analytic expression to the AdS7 solutions of [6, 7], and then using (1.2) to find analytic

expressions for our AdS4 case. This is how we found (1.1).

The holographic duals of the AdS7 solutions in [6, 7] were argued in [7] to be CFT6’s

arising from NS5-D6-D8 brane configurations studied long ago [16, 17]. By construction,

our AdS4 solutions will then be dual to the compactifications of those CFT6’s on hyperbolic

three-manifolds Σ3. It would be interesting to understand what these CFT3’s are; this

might eventually lead to a generalization of the 3d-3d correspondence of [20]. (Notice

however that supersymmetry is lower, namely N = 1.)

We mentioned that a certain constraint reduces the number of ODEs from five to

three; this is what led us to the class of “natural compactifications” we talked about so

far, the ones to which the map (1.2) applies. We are actually also able to make some

numerical progress on the original system of five ODEs, obtaining another class which

we call “attractor solutions”. In this case, life is much harder: the system does not get

attracted automatically to the physically sensible D6 and O6 singularities. Rather, if one

evolves from the equator of M3
∼= S3 towards the poles, in general one ends up with

singularities which appear not to have any physical interpretation. However, with some

inspiration from the natural case, we were able to identify boundary conditions which

correspond to the presence of D6’s and O6’s: these consist in a certain perturbative solution

in terms of fractional powers of the radial coordinate. These boundary conditions leave

some free parameters, and it turns out that for an open set in the space of these parameters

the solution gets attracted in the other pole to a regular point. This works especially well

for Σ3 = S3, in a somewhat opposite fashion to the natural compactifications class.

The paper is organized as follows. We start in section 2 with a review about compact-

ifications of CFT6 and holography; this is background material in order to motivate our

Ansatz in section 3. In that section we also review briefly the pure spinor techniques that

we will use for supersymmetry. We will then analyze the solutions that we called natural

in section 4, and finally (in less detail) the ones we called attractor solution in section 5.

2 CFT6 compactifications in supergravity

As discussed in the introduction, in this paper we are interested in compactifying the (1, 0)

CFT6 of [16, 17], whose AdS7 duals were found in [6]. In order to formulate the correct

– 4 –
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Ansatz to achieve this, we will first review the compactifications of the (2, 0) theory and

of its dual solution AdS7 × S4. This is a widely explored subject that has led to great

improvements in our understanding of the physics of M5 branes.

If one puts a supersymmetric theory on a curved space without modifying its La-

grangian, supersymmetry will usually be broken by the curvature terms. Thus one needs

to be careful about how one defines the theory on a curved space. An old strategy consists

in a partial “twist” of the theory. Roughly speaking, fields with an R-symmetry index are

considered to be sections of a certain R-symmetry bundle E, which is then chosen such that

E ⊗ S (with S the spinor bundle) admits a global section. This global section (which can

then taken to be constant, up to a gauge transformation) is then a preserved supercharge.

For brane theories, often the procedure also has a geometrical interpretation: E can be

interpreted as the normal bundle to the brane [21]. Thus the twisting corresponds roughly

to how one wraps the brane.

Compactifications of the M5 theory on Riemann surfaces Σ2 were studied in [3] and

more recently for example in [22, 23], both on the gravity and on the field theory side. There

exist two possible ways of wrapping the M5s (i.e. two different normal bundle geometries),

which preserve eight or sixteeen supercharges.

Compactifications on hyperbolic three-manifolds Σ3 were studied in [14], lifting an

earlier solution in [12], preserving either four or eight supercharges.3 We will review these

compactifications in section 2.1, and then rewrite them in terms of IIA supergravity in

section 2.2, with an eye to their generalization in presence of Romans mass.

2.1 Compactifications from eleven-dimensional supergravity

In this section we will review (2, 0) compactifications in 11d supergravity, introducing

notation that will be useful later when we will discuss the similar compactifications for

the (1, 0) case. We will discuss the solutions only at the level of the metric. The spinorial

supersymmetry parameters will be discussed in section 3.1.

The (2, 0) theory on the M5 worldvolume is dual to the AdS7 × S4 background:

ds2
11 = R2

(
ds2

AdS7
+

1

4
ds2
S4

)
. (2.1)

Two types of compactifications on three-manifolds of this fully BPS background have been

considered in the literature, preserving N = 1 and N = 2 supersymmetry in four dimen-

sions. The N = 1 solution corresponds to breaking of the SO(5) isometry group of the S4

to SO(4), while in the N = 2 case the subgroup preserved is SO(3)×SO(2). These will be

the isometry groups of the fiber metric; the fact that the S4 is fibred over Σ3 will break

the isometry group further, down to a flavor SU(2) in the N = 1 case and down to SO(2)

(which is then the R-symmetry group) in the N = 2 case.4

3Punctures along Σ3 can also be introduced; they were studied in the probe approximation in [24].
4If E is the total space of an F -fibration over a base space B, the isometries of B are promoted to

isometries of E, but often the isometries of F are not. To see this, write the metric on E as ds2
E =

gFijDx
iDxj + gB , where xi and gFij are the coordinates and metric on F , and Dxi ≡ dxi + Ai; Ai is a

connection on B, which takes values in the space of isometries of F . Now it can be shown that an isometry
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Geometrically, the N = 1 solution can be thought of as arising when one wraps an

M5 stack on a submanifold R3 × Σ3 ⊂ R4× a G2 manifold; supersymmetry demands Σ3

to be an “associative” submanifold. In this case, four of the five scalars transverse to the

M5 span directions in the G2 manifold, corresponding to the SO(4); these scalars will be

“twisted”, meaning that they are really sections of the normal bundle. The remaining scalar

represents the transverse direction inside the R4, and is not fibred. The N = 2 solution,

on the other hand, arises when wrapping an M5 stack on a submanifold R3 × Σ3 ⊂ R5×
Calabi-Yau6; supersymmetry demands Σ3 to be a “special Lagrangian” submanifold. In

this case, three scalars are inside the CY6, and two trivial ones are in the flat directions;

this corresponds to the SO(2)×SO(3).

Accordingly, there are two different coordinate systems on S4 that are appropriate to

describe these two cases.

For the N = 1 compactification, it is convenient to write the S4 as:

ds2
S4 = dα2 + sin2 αds2

S3 . (2.2)

The metric on the S3 can be written in terms of the Maurer-Cartan forms as ds2
S3 = 1

4σ
iσi,

with dσi = 1
2ε
ijkσjk. Alternatively we can choose Hopf coordinates which are appropriate

to study the reduction to ten dimensions:

ds2
S3 =

1

4
ds2
S2 + (dβ +A)2 , (2.3)

where dA = −1
2volS2 . The transformation rules between these two sets of coordinates is

given in detail in appendix A.

After wrapping the M5 on Σ3, which corresponds to replacing AdS7 with AdS4 × Σ3,

the metric of the S4 will be deformed in such a way that the original SO(5) isometry will

be broken to the subgroups mentioned above. Part of the residual symmetry gets mixed

with the local Lorentz group of the three manifold where the M5 is wrapped, meaning that

a subspace of S4 which is left untouched by the supersymmetric deformation gets fibered

over Σ3.

In the N = 1 case, the S4 metric (2.2) gets deformed in such a way as to preserve the

shape of the S3:

ds2
(
S4
N=1

)
= dα2 +

sin2 α

w
Ds2

S3 , w =
5 + 3 cos2 α

8
. (2.4)

Notice that the supersymmetric deformations are encoded into a single “distortion” func-

tion w. The upper case on Ds2
S3 means that the S3 is now fibred over Σ3. In terms of the

Maurer-Cartan forms:

Ds2
S3 =

1

4
µiµi , (2.5)

ξ of F preserves the total metric gE if and only if dξ + [ξ, A] = 0, where the bracket is the Lie bracket of

vectors on F ; in other words, if ξ is a covariantly constant section of the bundle ad(E), the adjoint bundle

associated to E. If F = S1, the Lie bracket vanishes and one can take ξ to be constant over B. With more

complicated F ’s, ad(E) is often non-trivial and does not have a non-trivial global section; thus ξ cannot be

promoted to an isometry of E.
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where µi = σi − ωi, and the ωi are related to the spin connection on the base space Σ3:

ωi =
1

2
εijkωjk . (2.6)

Alternatively, we can switch to Hopf coordinates and write Ds2
3 = Dβ2 + 1

4Ds
2
S2 , where

Ds2
S2 ≡ DyiDyi , (2.7)

and

yi = (sin θ cosϕ, sin θ sinϕ, cos θ) (2.8)

are the ` = 1 spherical harmonics on S2, which can be thought of as “constrained coordi-

nates”: yiyi = 1. Their covariant derivatives are defined as

Dyi ≡ dyi + εijkyjωk , Dβ ≡ dβ +A− 1

2
ykωk , (2.9)

as explained in appendix A. The complete metric describing the N = 1 twist can finally

be rewritten in a very compact form in terms of the function w introduced in (2.4):

m2ds2
11, N=1 = w1/3

[
ds2

AdS4
+

4

5
ds2

Σ3
+

2

5
ds2

(
S4
N=1

)]
, (2.10)

where the three manifold Σ3 is constrained by supersymmetry to be a (compact quotient

of) a maximally symmetric space of negative curvature, with Ricci scalar R normalized to

−6. (The constant m will be fixed in the next subsection.)

The N = 2 compactifications can be studied using “topological joint” coordinates on

the S4:

ds2
S4 = dα2 + sin2 α dβ2 + cos2 α ds2

S2 , (2.11)

Morally, β is the angular coordinate inside the two transverse directions inside the R5, while

the S2 are the angular directions inside the three transverse directions inside the CY6. In

this case the twisting amounts to fibering the S2 over Σ3 and the resulting supersymmetric

deformation of the S4 metric takes the form:

ds2
(
S4
N=2

)
= dα2 +

sin2 α

2w2
dβ2 +

cos2 α

4w2
Ds2

S2 , w2 =
1 + sin2 α

2
. (2.12)

The S2 is fibered over Σ3 according to (2.7), (2.9). The complete eleven-dimensional

metric can again be expressed nicely in terms of the warping function w2 that measures

the deformation of the S4 metric in this coordinate system. We get5

m2ds2
11, N=2 = w

1/3
2

[
ds2

AdS4
+ ds2

Σ3
+

1

2
ds2

(
S4
N=2

)]
. (2.13)

Again, a supersymmetric solution exist only for Σ3 of negative curvature.

5Notice that we adopted a slightly different normalization with respect to [14], which amounts to choosing

the Ricci scalar to be R = −6 and the integration constant β = 1/2. Our normalization allows to get the

same radius for AdS4 and Σ3, which is indeed the case for the original solution found in 7d maximal gauged

supergravity [12].
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This solution is less interesting for our purposes, since it cannot be reduced to ten

dimensions without breaking supersymmetry. Indeed, given that ∂α is not an isometry and

that we also want to preserve the twisted S2 factor in (2.12) as it is, the only possibility

would be reducing along the β coordinate. However in this case the U(1) transformation

β → β+δβ coincides with the R-symmetry of the solution, meaning that all the components

of the Killing spinor η will depend on this coordinate. Hence imposing the condition

∂βη = 0 would break all supersymmetry.

On the other hand, the N = 1 solution (2.10) has no R-symmetry so we can reduce it

to ten dimensions along the β direction without breaking any further supersymmetry.

2.2 Compactification from IIA supergravity

The metric for a warped AdS7 solution in ten dimensions reads

ds2
10 = e2Ads2

AdS7
+ ds2

M3
. (2.14)

Supersymmetry requires the presence of SU(2) R-symmetry; this implies that M3 must

contain an S2. It was shown in [6] that indeed M3 is an S2-fibration over an interval:

ds2
M3

= dr2 +
(1− x2)

16
e2Ads2

S2 . (2.15)

Here, x and A are functions of the coordinate r; at the extrema of the interval we have

x → ±1, so that topologically M3
∼= S3. Notice that r is different from the coordinate α

we used in eleven dimensions; of course the two are related by a radial diffeomorphism.

The simplest solution within this class is the massless one, which of course corresponds

to the reduction to ten dimensions of the AdS7 × S4 background (2.1) and can be given

analytically as:

x = cosα , e2A =
R3

2
sinα , e2φ =

R3

8
sin3 α . (2.16)

A careful analysis of the ten-dimensional geometry reveals that we are in presence of a

D6 (anti-D6) singularity at the two poles. This analysis was done in [6], where it is also

shown how to reduce from eleven to ten dimensions along the Hopf fiber parametrized by

β in (2.2). Supersymmetry is partially preserved imposing the condition ∂βη = 0 on the

S4 Killing spinor, which amounts to projecting out half of its components.

It is now crucial to notice that the same coordinate system is also appropriate to

describe the reduction of the N = 1 AdS4 background (2.10), which ends up being an

N = 1 solution in ten dimensions as well. The resulting ten-dimensional metric can be

written in the following form:

ds2
10 =

(
5

8

)3/2

e2A

(
ds2

AdS4
+

4

5
ds2

Σ3

)
+ ds2

M3
, (2.17)

where the internal space metric can be expressed as in (2.4) in terms of a deformation

function w and reads:

ds2
M3

=

(
5

8

)1/2(
dr2 +

1− x2

16w
e2ADs2

S2

)
, w =

5 + 3x2

8
, (2.18)
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where the radial coordinate r and the two functions A, x entering the last two formulas were

defined in AdS7 by (2.16). The choice to express the AdS4 metric (2.17), (2.18) in terms of

the quantities entering the AdS7 metric (2.14), (2.15) is in order to highlight the similarity

between the two formulas, and turned out to be the key ingredient in the formulation of

the universal map described in section (4.3). In writing (2.18), we have also expressed the

constant m we had in (2.10) in terms of the AdS7 radius as m3R3 =
(

8
5

)2
; this will be

convenient for flux quantization, to be discussed later in section (4.4).

(2.17) provides a first example of N = 1 AdS4 solution in type IIA supergravity that

can be interpreted as compactification of an AdS7 solution — namely of the massless

reduction to IIA of AdS7 × S4, which was worked out in [6, section 5.1].

The goal of this paper is finding more general solutions adding a massive perturbation

F0 to this background, solutions which would in turn correspond to compactifications of

the massive AdS7 solutions (2.14). Our Ansatz for the metric will consist in keeping the

same terms as in (2.17) and (2.18), but with different functions f = f(r), g = g(r):

ds2
10 = e2Ads2

AdS4
+ g2ds2

Σ3
+ dr2 + f2Ds2

S2 . (2.19)

In other words we assume the metric to be invariant under a simultaneous SO(3) local

Lorentz transformation on Σ3, and an identical SO(3) rotation acting on the S2. This

“diagonal” SO(3) acts on the vielbein ei of Σ3 and on the yi in (2.8)

ei → Oijej , yi → Oijyj . (SO(3)D) (2.20)

This “twisted symmetry” will play a crucial role in formulating our Ansatz for supersym-

metry in the next section.

3 Technology for AdS7 to AdS4 compactifications

As anticipated in the introduction, we will deal with supersymmetry using generalized

complex geometry techniques. These allow to reformulate all the data of a given vacuum

into a pair of polyforms on the internal space M6, the so-called pure spinors Φ±. In

other words, generalized complex geometry provides a way of getting rid of the spinors

and rewriting the supersymmetry conditions only in terms of forms, which are simpler

to handle.

Nevertheless we still have to formulate a good Ansatz for the pure spinors Φ±. This

will have to reflect that for us M6 will be a fibration of M3 over Σ3:

M3
� � // M6

��
Σ3 .

(3.1)

To warm up, we will analyze the supersymmetric spinors for the solutions reviewed in

the previous section.
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3.1 Twisted spinors

Let us start by looking at the supercharges in AdS7 for the maximally supersymmetric

eleven-dimensional background (2.1). They can be written as:

ε11 =

4∑
a=1

ζa ⊗ ηa + c.c. , (3.2)

where ζ is the Killing spinor on AdS7 and η the one on S4, the corresponding gamma

representation being: Γ
(7+4)
µ = γ

(7)
µ ⊗ γ , Γ

(7+4)
m+6 = 1⊗ γm .

Let us first focus on η, which in our coordinate system (2.2) reads [6, appendix B]

ηS4 = exp

[
α

2
γγ1

]
exp

[
θ

4
γ12 +

θ − π
4

γ34

]
exp

[
β + ϕ

4
γ13 +

β − ϕ
4

γ24

]
η0 . (3.3)

θ and ϕ are the coordinates on S2, and β parametrizes the Hopf fiber in (2.2); η0 is a

constant spinor. In order to reduce this spinor to ten dimensions along the β direction,

we have to impose the condition ∂βη = 0, which is easily achieved imposing the projec-

tion (γ13 + γ24)η0 = 0, which is equivalent to γη0 = −η0. This projection keeps only

half of the components, those with negative chirality, so that the solution is half BPS in

ten dimensions.

We now choose the following decomposition for the 4d gamma matrices: γi = σ̂i ⊗
σ1, γ4 = 1 ⊗ σ3, where σ̂i = {σ3, σ1, σ2} and σi are the Pauli matrices. The condition

γη0 = −η0 is easily solved by η0 = (χ0 ,−iχ0). With some more effort, the full S4 Killing

spinor (3.3) turns out to admit a natural decomposition in terms of an S2 Killing spinor:

ηS4 =

 e−
iδ1
2
σ3
χS2

ie
iδ2
2
σ3
χS2

 . (3.4)

The S2 Killing spinor can be written explicitly as χS2 = exp
[
iθ
2 σ

1
]

exp
[ϕ

2σ
12
]
χ̃0, for a

new constant spinor which is related to the old one by a simple unitary transformation:

χ̃0 = 1
2(1−iσ1)(1+iσ3)χ0. After the reduction to ten dimensions, the spinor dependence on

the coordinate α gets factorized in an overall unitary transformation, which is parametrized

by two angles that are related to α by: δ1 = α+ π
2 , δ2 = δ1 + π.

The gamma matrix representation we have chosen is already appropriate for the re-

duction from eleven to ten dimensions. Indeed, chirality in ten dimensions is given by the

eigenvalues of γ4, which in our basis is γ4 = 1⊕−1. The spinor η decomposes as (χ1, χ2),

or equivalently as η = χ1⊗ v+ +χ2⊗ v−, where v± are σ3 eigenvectors and the two spinors

on M3 are given by

χ1 = e−
iδ1
2
σ3
χS2 , χ2 = ie

iδ2
2
σ3
χS2 . (3.5)

We end up with the following two supercharges with opposite chirality in type IIA super-

gravity:

ε1+ = ζ χ1v+ + c.c. , ε2− = ζ χ2v− + c.c. . (3.6)

The corresponding gamma matrices representation is given by: Γ
(7+3)
µ = γ

(7)
µ ⊗ 1 ⊗ σ2,

Γ
(7+3)
i+6 = 1⊗ σ̂i ⊗ σ1, Γ(7+3) = 1⊗ 1⊗ σ3.
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Eq. (3.6) is also the spinor decomposition given in [6] for the AdS7 ×M3 solutions in

massive type IIA supergravity. The SU(2) isometry of the S2 is preserved by the massive

deformations, and it is in fact the R-symmetry of the solution. This is implemented by

having
(
ζ
ζc

)
transform as a doublet, and at the same time the internal spinors:

χ1a ≡

(
χ1

χ1c

)
∈ 2 , χ2a ≡

(
χ2

−χ2c

)
∈ 2 . (3.7)

This is indeed also the case for the massless case (3.6) we just discussed. This was initially

not assumed in [6], but it is indeed a consequence of supersymmetry, as can be checked

from the bispinors given there.6 In other words, massive deformations do not alter the

transformation properties of χ1 and χ2 under SU(2). One can actually even check from [6,

eq. (4.23)] that the spinors χ1 and χ2 of the massive AdS7 solutions are given again by (3.5),

replacing however α with ψ ≡ arccosx, an angle whose role will become clear later in

this section.

We now want to further decompose the AdS7 spinor in a way which is appropriate to

describe an AdS4 compactification. This is easily accomplished with ζAdS7 → ζAdS4 ⊗ χ̃,

where χ̃ is a complex spinor on the three manifold Σ3 and the Killing spinor on AdS4 is

a real non chiral spinor that we can write as: ζAdS4 = ζ + ζ∗. The corresponding gamma

matrices decomposition is: γ
(7)
µ = γ

(4)
µ ⊗1 , γ

(7)
i+3 = γ(4)⊗ σ̃i, with charge conjugation matrix

B(7) = 1⊗ iσ2.

If we now plug this decomposition into the ten dimensional gamma matrices we im-

mediately realize that a change of basis is needed in order to get a proper 10 = 4 + 6

representation. We thus rotate the ten-dimensional spinors accordingly to ε → Oε, where

the change of basis is parametrized by a matrix of the form: O = 1√
2
(1 + iρ), where ρ2 = 1

in such a way that O−1 = O∗ = 1√
2
(1 − iρ). The corresponding transformation law for

the gamma matrices is Γ → OΓO−1, which amounts to: Γ → Γ if Γ and ρ commute,

and to: Γ → iρΓ if Γ and ρ anticommute. The charge conjugation matrix transforms as

B → OB(O∗)−1.

A proper choice is ρ = γ(4) ⊗ 1 ⊗ 1 ⊗ σ2, which leads to our final 4 + 3 + 3 gamma

matrices representation:

Γ(4+3+3)
µ = iγ(4)γ(4)

µ ⊗ 1⊗ 1⊗ 1 ,

Γ
(4+3+3)
i+3 = γ(4) ⊗ σ̃i ⊗ 1⊗ σ2 , (3.8)

Γ
(4+3+3)
i+6 = γ(4) ⊗ 1⊗ σ̂i ⊗ σ3 ,

where the index i = {1, 2, 3} runs over both the manifold Σ3 where the branes are wrapped

and on M3. In this basis chirality and charge conjugation are represented as: Γ = γ(4) ⊗
1⊗ 1⊗ (−σ1) , B = 1⊗ iσ2 ⊗ iσ2 ⊗ σ3.

The resulting transformed supercharges are:

ε1+ = ζ+(χ̃χ1 + χ̃cχ1c)w+ + c.c. , ε2− = ζ+(χ̃χ2 − χ̃cχ2c)w− + c.c. , (3.9)

where w± are eigenvectors of −σ1, namely w± = 1√
2
(v+ ∓ v−).

6The spinors for the AdS7 solutions in [6] were obtained by I. Bakhmatov in unpublished work. We

thank him for sharing his work with us.
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As we anticipated in the previous section, it is very convenient to rewrite our spinor

Ansatz in such a way as to make the twisted symmetry manifest. We already know

from (3.7) the transformation properties for χ1 and χ2, and we also know that the AdS4

spinor ζ has to be invariant. Therefore it looks natural to assume that the spinor χ̃ living

on Σ3 transforms under local Lorentz transformation on Σ3 in such a way as to compensate

the variation of χa under S2 isometry. This is the analogue in our case of the discussion

about wrapped M5-branes at the beginning of section 2, except that of course our solutions

will not originate from wrapped M5s, but morally from wrapping the NS5-D6-D8 systems

of [16, 17].

We can thus introduce a new SU(2) doublet χ̃a ≡
(
χ̃
χ̃c

)
transforming in the 2̄.7 At this

point it is crucial to notice that both χ̃ and its conjugate carry a spacetime spinor index

α, or in other words assuming that they also transform as a doublet amounts to imposing

a condition on them, the twisting condition

U∗abχ̃bα = χ̃aβUβα , (3.10)

where we have introduced a spinor index α = {1, 2} on Σ3. This constraint is solved by

choosing the twisted spinor to be equal to the epsilon tensor:8

χ̃aα = εaα =

(
0 1

−1 0

)
. (3.12)

This is indeed the explicit form for the twisted spinor which is given in the AdS4 × Σ3

solutions of seven-dimensional gauged supergravity in [12].

To summarize this long discussion about spinors, we achieved the goal of rewriting

the two six dimensional internal spinors in a form which is manifestly invariant under the

twisted SU(2) symmetry:

η1
+ = χ̃aχ1aw+ , η2

− = χ̃aχ2aw− . (3.13)

This is also consistent with the four dimensional spinor ζ being a singlet. We finally have

a good SU(2)D invariant spinor Ansatz and we can proceed in our analysis of the internal

space structure.

7Of course the SU(2) representations 2 and its conjugate 2̄ are equivalent. What we want to highlight

here is that if χa transform as χa → Uabχb then χ̃a has to transform as χ̃a → U∗abχ̃b in such a way to

make the product χ̃aχa invariant.
8We can be a bit more explicit by choosing a representation for the gamma matrices on the tangent

space to Σ3 to be: σ̃i = −(σi)∗. We then define the spinor rotation matrix with respect to the euclidean

rotation matrix in the following way:

Oijσj = U†σiU , Oij σ̃j = UT σ̃iU∗ . (3.11)

This identity implies that the spinor χ̃, which is defined with respect to the generators in the σ̃i repre-

sentation, transforms under local Lorentz transformation as χ̃α → (UT )αβχ̃β . We also want χ̃ and its

conjugate to transform as a doublet under the same symmetry: χ̃a → U∗abχ̃b. Then the full spinor along

Σ3 is represented by a 2× 2 matrix χ̃aα, which gets constrained by setting the two transformation laws to

be equivalent; this leads to (3.10).
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3.2 Twisted forms

We now discuss the fibration of M3 over Σ3 from the point of view of forms. We will

focus our attention on those that are invariant under the diagonal SO(3)D in (2.20). As

we mentioned there, this action is a symmetry of the metric (2.19), whose internal part we

repeat here:

ds2
M6

= g2eiei + dr2 + f2Ds2
S2 , (3.14)

where Ds2
S2 is the fibred S2 metric defined in (2.7), (2.9), and we have written the metric

on Σ3 in terms of its vielbein {ei}; their Cartan structure equation reads, in terms of (2.6),

dei = εijkejωk. We also demand

Rij =
R

6
ei ∧ ej , (3.15)

where Rij = 1
2R

ij
µνdx

µν ; this appears in the derivative of the spin connection dωi =
1
2ε
ijk(ωjk+Rjk). Eq. (3.15) is valid on a compact quotient of a maximally symmetric space.

We can construct only two SO(3)D invariant one-forms: {dr, yiei}. A third possible

candidate is vanishing: yiDyi = 0. It is easy to see that d(yiei) = Dyiei, which suggests

that the subspace of invariant forms is closed under derivation, which will indeed turn out

to be true.

Moving on to two-forms the structure becomes richer as there are five SO(3)D invariant

combinations living on M6 that are given by:9

ω1 =
1

2
εijkyiDyjk , ω2 = eiDyi , ω3 = dryiei ,

ω4 = εjikeiyjDyk , ω5 =
1

2
εijkyiejk .

(3.16)

(Notice that in this section we will omit wedge products to make the expressions more

readable.) Their exterior derivatives read:

dω1 = −R
6
yieiω4 , dω2 = 0 , dω3 = drω2 ,

dω4 = 2yiei
(
ω1 −

R

6
ω5

)
, dω5 = yieiω4 .

(3.17)

In the space spanned by these invariant two-forms ωi, there is only one closed two-form

which is not exact:

ω1 +
R

6
ω5 . (3.18)

This will be relevant in a later discussion regarding the flux quantization.

We now consider four-forms. It is natural to define

ωAB ≡ ωA ∧ ωB . (3.19)

Only five of these are non-vanishing, corresponding to the Hodge duals of the two-forms ωi:

?ω1 = f2g3ω15 , ?ω2 = −2f2g3ω23 , ?ω3 = f2g3ω15 ,

?ω4 = −2f2g3ω43 , ?ω5 = f2g3ω35 ,
(3.20)

9We chose the notation ωi, as is relatively standard for a basis of two-forms. These should not be

confused with the spin connection.
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where the Hodge star on M6 is computed with respect to the volume form vol6 = f2g3ω1∧
ω3 ∧ ω5, which is of course the only non vanishing six form.

Finally it is worth noticing that:

ω22 = ω44 = −2ω15 ; (3.21)

this implies that we have a triplet of two-forms {ω2, ω4, ω1 − ω5} that square to the

same four-form and that are orthogonal to each other. This is exactly the set of algebraic

constraints that define a so called SU(2) structure on M6. This will be useful in defining

the pure spinors in the section 3.4.

3.3 Pure spinors and supersymmetry

We will now give a quick review of the essentials of the pure spinor formalism, which will

allow us to formulate supersymmetry in a very compact fashion. For more details see for

example [25].

A warped AdS4 compactification is a spacetime of the form

ds2
10 = e2Ads2

AdS4
+ ds2

6 , (3.22)

where ds2
6 is the metric on the internal space M6, and A is a function of M6 called warping.

The BPS equations for a string vacuum with this geometry can be rewritten [15] using

the language of generalized geometry in terms of the so called pure spinors, a pair of

polyforms on the internal space. If we take the standard 10 = 6 + 4 decomposition for the

supersymmetry parameters:

ε1 = ζ+η
1
+ + c.c. , ε2 = ζ+η

2
− + c.c , (3.23)

we can define the pure spinors Φ± in terms of the internal parameters as:

Φ− ≡ η1
+ ⊗

(
η2
−
)†
, Φ+ ≡ η1

+ ⊗
(
η2c

+

)†
, (3.24)

where ± denotes even/odd forms. In the generic case the pure spinors can be written in

terms of a so called SU(2) structure on M6, given by a complex one-form z, a complex

two-form ω and a real two-form j, such that

ω ∧ ω̄ = j2 , ω2 = 0 . (3.25)

The parametrization is:

e−bΦ+ = ρ eiθe−iJψ , e−bΦ− = ρ tanψ z ∧ eiωψ , (3.26)

where ψ is the angle between the two spinors η1,2, and ρ is a real number that determines

the norm of the pure spinors. We have also defined the forms:

Jψ ≡
1

cosψ
j +

i

2
z ∧ z̄ , ωψ ≡

1

sinψ

(
Reω +

i

cosψ
Imω

)
, b = tanψImω , (3.27)
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where the real two-form b is called the intrinsic b-field associated to the pair Φ±. One

can always obtain a pure spinor pair with vanishing intrinsic b by the action of a so called

b-transform:

Φ± → Φ0
± = e−b∧Φ± , (3.28)

which turns out to be a symmetry of the pure spinor equations provided that also the

physical NS three-form flux H and the internal10 RR flux F =
∑

k F2k are transformed to

the corresponding auxiliary fluxes given by:

H0 = H − db , F 0 = e−bF. (3.29)

We can now write the pure spinor equations [15, 26]:

dHΦ+ = −2e−AReΦ− , J+ · dH
(
e−3AImΦ−

)
= −5e−4AReΦ+ + F , dHF = δ ,

(3.30)

where dH ≡ d − H∧ and J+ is an algebraic operator associated in a certain way to Φ+.

This operator is reviewed for example [26], and more concretely in [27, section 5]. More

specifically, in [27, section 5.2], (3.30) were analyzed and reduced to the action of a more

concrete operator J−1
ψ x, that consists in contracting with the bivector J−1

ψ whose inverse is

Jψ in (3.27). This operator is analyzed in detail in appendix C. It is now easy to see that

we can equivalently solve the pure spinor equations (3.30) for the set of auxiliary fields(
Φ0
±, F

0, H0
)

and then perform an inverse b-transform (3.28) to get the physical fluxes,

as we anticipated.

3.4 Pure spinors on Σ3 and M3

We will now focus on the particular case of our interest, namely a 6 = 3 + 3 splitting of

the internal space. This requires some extra ingredients of generalized geometry in d = 3.

We will give an Ansatz for the bispinors living on the three manifolds Σ3 and M3 using

the three-dimensional generalized geometry techniques presented in [6]. We will later be

able to express the full six-dimensional pure spinors in terms of the three-dimensional ones.

We already know form the spinor Ansatz (3.9) that there is a crucial difference between

the two three-dimensional factors: namely, we have one single spinor χ̃ on Σ3, while we

have two spinors χ1, χ2 on M3.

We start by defining three-dimensional bispinors in a similar way as (3.24) in six

dimensions. Namely, on M :

ψ1 = χ1 ⊗ χ†2 , ψ2 = χ1 ⊗ χc†2 ; (3.31)

similarly, on Σ3:

ψ̃1 = χ̃⊗ χ̃† , ψ̃2 = χ̃⊗ χ̃c† . (3.32)

10We mean by this the flux with no legs along AdS4; this determines via Hodge duality the external flux,

namely the one with legs along AdS4.
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It is much more convenient to organize the bispinors in the following 2 × 2 matrices:

Ψ ≡

(
χ1

χc1

)
⊗ (χ2 ,−χc2)† =

(
ψ1 ψ2

−(−)deg(ψ2)∗ −(−)deg(ψ1)∗

)
,

Ψ̃ ≡

(
χ̃

χ̃c

)
⊗ (χ̃ , χ̃c)† =

(
ψ̃1 ψ̃2

−(−)deg(ψ̃2)∗ (−)deg(ψ̃1)∗

)
,

(3.33)

where (−)deg acts as ± on even (odd) forms. The advantage of this choice is that now we

can expand these 2× 2 hermitean matrices on the two basis σµ = (1, σi) and σ̃µ = (1, σ̃i),

where σi and σ̃i = −(σi)∗ are the SU(2) generators in the 2 and 2̄ representations.

In the case of Σ3 we have one single spinor χ̃, so we can use the expressions [6, eq. (3.14)]

with ψ = 0, θ1 = 0, θ2 = 0; the result is:

Ψ̃0 = 1 , Ψ̃1 = −ẽiσ̃i . (3.34)

The subscript indicates the degree of the forms; we introduced a tetrad ẽi = gei, with

eiei = ds2
Σ3

. The remaining components of Ψ̃ are determined via Hodge duality as Ψ̃2 =

−i ?3 Ψ̃1, Ψ̃3 = −i ?3 Ψ̃0. Notice that the expressions (3.34) are automatically covariant

under the SO(3) of local Lorentz transformations even before solving the supersymmetry

equations; with some abuse of language, we will say that they are covariant “off-shell”.

Indeed if we perform a local Lorentz transformation ei → Oijej , it is clear that this can

be traded with σ̃i → (OT )ij σ̃j = U∗σ̃iUT , namely the matrix Ψ̃ transforms covariantly as

Ψ̃→ U∗Ψ̃UT .

Things are a bit more complicated on M3 where we have two spinors χ1, χ2. What

happens is that the expression for Ψ is not automatically covariant under the SU(2) that

rotates the S2; in [6], it became covariant only “on shell”, meaning after solving the su-

persymmetry equations. This in effect means that the analysis there started with random

spinors on the S2, and that imposing supersymmetry also required them to be Killing

spinors when restricted to the S2. In this paper, we have no need of proving that our

solutions are the most general in any sense; so we will just assume the SU(2) covariance

from the start. We will simply take the expression for the bispinors [6, eq. (4.23)] and co-

variantize it by replacing dyi with Dyi = dy+εijkyjωk, also substituting the AdS7 warping
1
4e
A
√

1− x2 with the AdS4 one f . We get:

Ψ0 = ix 1 +
√

1− x2 yiσi , Ψ1 =
√

1− x2dr 1 + i
(
xyidr + fDyi

)
σi . (3.35)

Again the remaining components are determined by covariantizing the Hodge duals Ψ2 =

−i ?3 Ψ1 , Ψ3 = −i ?3 Ψ0.

The matrix Ψ now transforms covariantly under the diagonal symmetry in (2.20),

which we can trade for

σi → (OT )ijσj = UσiU † . (3.36)

This implies Ψ→ UΨU †.
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3.5 Assembling the pure spinors on Σ3 and M3

We will now assemble the pure spinors (3.35) and (3.34) that we have found on Σ3 and

M3, and find expression for the six-dimensional pure spinors (3.24).

We start from the odd form Φ−, that we rewrite as:

Φ− = η1
+ ⊗ η

2†
− =

6∑
k=0

1

8k!
η2†
− γMk...M1 η

1
+dx

M1...Mk

=
1

8

3∑
q=0

3∑
k=0

1

q! k!
η2†
− γMq ...M1γM̃k...M̃1

η1
+dx

M̃1...M̃kdxM1...Mq .

(3.37)

We now plug into this formula the spinor Ansatz (3.13), together with the explicit gamma

matrix representation given in (3.8), and get:11

Φ− =
1

2

[(
χ̃b ⊗ χ̃a†

)
+

(
χb1 ⊗ χ

a†
2

)
−

+ i
(
χ̃b ⊗ χ̃a†

)
−

(
χb1 ⊗ χ

a†
2

)
+

]
. (3.38)

Comparing this expression with the 3d bispinor matrices we defined in (3.33), we realize

that we can write more compactly

Φ− =
1

2
tr
(

Ψ̃T
+Ψ− + iΨ̃T

−Ψ+

)
. (3.39)

An analoguous expression can be obtained for the even pure spinor Φ+:

Φ+ = i η1
+ ⊗ (η2c

+ )† =
1

2
tr
(

Ψ̃T
−Ψ− − i Ψ̃T

+Ψ+

)
, (3.40)

where the i factor in the definition is chosen in order to get a real zero form part Φ0. Notice

that the pure spinors Φ± are invariant under the twisted symmetry (2.20), as they should

be. This can be seen by assembling the transformation rules we found for Ψ̃ and Ψ in the

previous section:

Ψ→ UΨU † , Ψ̃→ U∗Ψ̃UT =⇒ Φ± invariant . (3.41)

The next step is plugging into Φ± the explicit expressions for the matrices Ψab and

Ψ̃ab we gave in (3.35) and (3.34). As expected, the pure spinors turn out to be naturally

expressed in terms of the twisted forms that we introduced in section 3.2. In particular

they can be written in the dielectric form (3.26), where

z = dr + g yiei , j = −fg ω4 , ω = −fg ω2 + i(f2ω1 − g2ω5) ; (3.42)

from (3.21) we see that this is an SU(2) structure, (3.25).12 We also get for free the

identification

x = cosψ , (3.43)

11eq. (3.38) is obtained after some manipulations that involve computing the quantity w−σ
q
3σ

k
2w+ , which

is equal to 0 if q + k is even, to 1 if k is even and q is odd, and to i if k is ood and q even.
12There are other linear combinations of the ωi in (3.16) that satisfy (3.25). One can see that the coefficient

of j and ω along ω3 has to vanish; the remaining coefficients describe a set of quadratic equations, which

can be interpreted as describing a frame {Reω, Imω, j} in a four-dimensional space of signature (3, 1). This

might lead to a more general class of solutions, which however would not be interpreted as compactifications

of the AdS7 solutions of [6].
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where ψ is the angle in (3.35). This provides a natural interpretation of the variable x in

terms of the angle between the two six dimensional spinors η1, η2. Finally, we also get

a vanishing phase θ = 0, which means that we are in the special case considered in [27,

section 5.2]. The pure spinor equations were analyzed in detail there; (5.16)–(5.18) in that

paper give the constraints on the geometry and the fluxes in terms of the SU(2) structure

(z, j, ω). Recall that before using the equations in that form we have to transform Φ± to

the corresponding pair Φ0
± with vanishing intrinsic b-field, as in (3.28). We also have to

rescale the pure spinors as Φ± → e3A−φΦ±, which amounts to fixing their norm in (3.26)

to ρ = e3A−φ cosψ as in [27, eq. 2.2]. Using the results of section 3.2 and appendix C, after

some work the supersymmetry equations reduce to a coupled system of ODE’s which we

now proceed to give.

3.6 The system of ODEs

The result of the analysis of this section is a system of five coupled ODE’s in five variables:

the three functions in the metric (f, g, A), the dilaton φ, and the angle between the two

six dimensional spinors x = cosψ. All of these functions depend on the radial coordinate

r only. The system reads(
fg2 e−A

cosψ

)′
=
Rf2 + 6g2

6 eA cos2 ψ
,

(
g e−A

)′
=
eA(Rf2 + 6g2 sin2 ψ)− 12fg2 sinψ

6fg e2A cosψ
,(

f e−φ
)′

=
12fg2(eA sinψ − f)

eA(Rf2 − 6g2 sin2 ψ)
F0 , (3.44)

(
g e3A

)′
=
ge3A cosψ

f
+

12g3e2A+φ(f − eA sinψ)

(Rf2 − 6g2 sin2 ψ)
F0 ,(

g3e3A

f2

)′
=
R

2

ge3A cosψ

f
−

2g3e2A+φ
(
6fg2(cos2 ψ − 3) + eA sinψ(Rf2 + 12g2)

)
f2(Rf2 − 6g2 sin2 ψ)

F0 .

Notice that in the massless limit the first, fourth and fifth equation of this system reproduce

the analogous equations in 11d supergravity given by [14, eq. (9.71)–(9.73)]. The third

fixes the function f in terms of the dilaton and the second is solved imposing the on shell

constraints (4.1).

It so happens that the Bianchi identities for the fluxes are automatically satisfied.

So (3.44) is the complete system we need to satisfy in order to find an AdS4 solution.

Moreover, given a solution of (3.44), one can always find another rescaled solution for

which the curvature and string coupling are both small, so that the supergravity approxima-

tion we are using in this paper is justified. This can be done by using the transformations [7,

eq. (4.2)–(4.3)]; the first is F0 → nF0, φ → φ − log n, which is a symmetry of (3.44); the

second has to be supplemented with transformation law for f and g:

(A, f, g, φ, x, r)→ (A+ ∆A, e∆Af, e∆Ag, φ−∆A, x, e∆Ar) . (3.45)

In the next section we will see that a certain three-dimensional submanifold of the space

of parameters is invariant under (3.44); on that submanifold the system is then reduced
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to a much more manageable system, whose solutions are the main focus of this paper. In

section 5 we will then go back to the general system (3.44), and find more solutions to it,

albeit only numerically.

4 Natural compactifications

In this section we will obtain solutions which generalize to the massive case the N = 1

compactifications reviewed in section 2.

4.1 Reducing the ODE system

In section 3.6 we obtained the system (3.44) of ODEs, which is necessary and sufficient to

find an AdS4 solution within our Ansatz. We are now going to impose a certain constraint

on (3.44), which will simplify it quite a bit.

Originally we found this simplification by noticing empirically that many solutions had

a constant ratio between the functions g and eA in (2.19), which are the “radii” of Σ3 and

of AdS4 respectively. A posteriori this assumption is quite natural, and indeed it was later

found very useful for the AdS5 solutions of [19] as well (where it is called a “compactification

Ansatz”). A rough justification is as follows. The holographic dual of putting a CFT6 on

R3 × Σ3 would consist in replacing ds2
AdS7

= dρ2

ρ2 + ρ2ds2
R6 with dρ2

ρ2 + ρ2(ds2
R3 + ds2

Σ3
). In

the IR, if this leads to a CFT3, one would expect that the ρ2 in front of ds2
Σ3

somehow

disappears; our Ansatz is somehow that it does not also get multiplied by a further function

of Σ3, or worse.

So in practice we assume that ge−A is constant. As usual for a dynamical system, if

one imposes a constraint one needs to worry about possible “secondary constraints”; in

our case, we need to check what happens when we use (3.44) in (ge−A)′ = 0. We do get

a secondary constraint: it turns out that fe−A√
1−x2

needs to be constant as well. In principle

we could get now a third constraint as well, but imposing compatibility with (3.44) of this

second constraint we simply end up fixing both constants. This procedure actually only

works when Σ3 has Ricci scalar R < 0; without loss of generality we then fix R = −6. The

result is then

f =
2

5
eA
√

1− x2 , g =
2√
5
eA . (4.1)

In other words, within the five-dimensional space spanned by the parameters (f, g, A, x, φ),

we have found a three-dimensional subspace that is left invariant by the flow.

The system (3.44) now simplifies quite a bit; after eliminating f and g using (4.1),

it only involves the warping factor A, the dilaton φ and the angle between the two six

dimensional spinors x = cosψ. Moreover, two equations become redundant. The system

then becomes

φ
′

=
1

8

e−A√
1− x2

(
21x− 6x3 + 2(5− 2x2)F0e

A+φ
)
,

x′ =
1

4
e−A

√
1− x2

(
3x2 − 8 + 2xF0e

A+φ
)
, (4.2)

A
′

=
1

8

e−A√
1− x2

(
5x+ 2eA+φF0

)
.
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where the derivative with respect to the radial coordinate r is denoted by ∂r( ) ≡ ( )
′
.

Notice that this system of ode’s looks very similar to the corresponding BPS equations in

AdS7 given in [6, eq. (4.17)]. As we will see in section 4.3, this similarity can be made

more explicit.

4.2 Metric and fluxes

With the constraints (4.1), the full ten-dimensional metric (2.19) becomes

ds2
10 = e2A

(
ds2

AdS4
+

4

5
ds2

Σ3

)
+ dr2 +

4(1− x2)

25
e2ADs2

S2 . (4.3)

Notice the similarity with the AdS7 metric (2.14).

Let us also give the form of the fluxes here. Their general expression will be given in

section 5 below, but for the choice (4.1) they are quite simple:

F2 = fe−φ(ω5 − ω1)− 2F0

5
xfeA ω1 ,

F4 = −2

5
feA−φ(ω23 + xf ω15) , (4.4)

H = −2

5
eA(drω5 + xf yieiω4)−

(
3(x2 − 3)

2
e−A + xF0e

φ

)
volM3 .

Here, the forms ωA were defined in (3.16). We left f in these expressions, even though it

should be thought of as given by (4.1). These expressions are again very similar to the

fluxes for the AdS7 solutions of [6]: there, F2 only had a component along the volume of

the S2, which roughly corresponds to our ω1; H only had a component along the volume

of the internal manifold M3, which for us is volM3 = f2drω1. In studying flux quantization

for these fluxes, a crucial role will be played by the combination

q ≡ fe−φ = radius(S2) e−φ ; (4.5)

using (4.1) we see that it is very similar to the quantity of the same name in [6, eq. (4.41)].

4.3 Supersymmetric maps

We have noticed already a few similarities with the AdS7 solutions of [6]. In particular,

the ODE system (4.17) in that paper looks very similar to our (4.2). Remarkably, the two

systems are mapped into each other by:13

eA →
(

5

8

)3/4

eA , eφ →
(

5

8

)1/4 eφ√
w
,

x→ x√
w
, r →

(
5

8

)1/4

r , F0 → −F0 ,

(4.7)

13The map might be more readable to some as

eA4 =

(
5

8

)3/4

eA7 , eφ4 =

(
5

8

)1/4
eφ7

√
w
, x4 =

x7√
w
, r4 =

(
5

8

)1/4

r7 , (4.6)

with w =
5+3x27

8
. In this paper we prefer to drop the indices 4, 7 that label the dimension of the AdS factor,

just to make the expressions more readable.
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where we defined a warping function

w ≡ 5 + 3x2

8
. (4.8)

Actually the requirement that (4.7) should map (4.2) in [6, eq. (4.17)] leaves one parameter

free, which we fixed by requiring that q in (4.5), which reads q4 = 2
5e
A−φ√1− x2 transforms

into the q of [6, eq. (4.41)], q7 = 1
4e
A−φ√1− x2. As we anticipated, this will play a crucial

role in the study of the flux quantization of section 4.4.

The map (4.7) acts on the full ten dimensional metric as

e2Ads2
AdS7

+dr2 +
1− x2

16
e2Ads2

S2

→
√

5

8

[
5

8
e2A

(
ds2

AdS4
+

4

5
ds2

Σ3

)
+ dr2 +

1− x2

2(5 + 3x2)
e2ADs2

S2

]
,

(4.9)

One can indeed see that the massless metric (2.17) is of this form; however, (4.9) is now

valid also for massive solutions.

The map (4.7) also inspired a similar map for the AdS7 to AdS5 compactifications on

Riemann surfaces [19, section 5.2]. Combining the two maps we get:14

eA →
(

5

6

)3/4

eA , eφ →
(

5

6

)1/4 eφ√
w̃
,

x→ x√
w̃
, r →

(
5

6

)1/4

r , F0 → −F0 ,

(4.11)

where we introduced a new warping function

w̃ ≡ 5 + x2

6
. (4.12)

Again, the transformation law for the full metric is

e2A
(
ds2

AdS5
+ ds2

Σ2

)
+dr2 +

1− x2

9
e2Ads2

S2 →√
5

6

[
5

6
e2A

(
ds2

AdS4
+

4

5
ds2

Σ3

)
+ dr2 +

2(1− x2)

3(5 + x2)
e2ADs2

S2

]
,

(4.13)

Once again the map has one free parameter which is fixed by requiring that q4 =
2
5e
A−φ√1− x2 transforms into q5 = 1

3e
A−φ√1− x2. With this choice q is a universal

quantity for the AdS7 solutions and all of their compactifications:

q4 = q5 = q7 . (4.14)

14Again an alternative way of presenting the map is:

eA4 =

(
5

6

)3/4

eA5 , eφ4 =

(
5

6

)1/4
eφ5

√
w̃
, x4 =

x5√
w̃
, r4 =

(
5

6

)1/4

r5 , (4.10)

with w̃ =
1+5x25

6
, where the indices 4, 5 label the dimension of the AdS factor.
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In summary, the result of this section is that there is a one-to-one correspondence be-

tween solutions of the reduced BPS system (4.2) and solutions of the BPS system for AdS7

solutions in [6, eq. (4.17)]. Moreover, [19, section 5.2] establishes that there is a one-to-one

correspondence of AdS7 solutions with AdS5 × Σ2 solutions, with Σ2 a Riemann surface:

AdS4 × Σ3 ↔ AdS7 ↔ AdS5 × Σ2 . (4.15)

The correspondence to AdS5 will be important for us, because in [19] the BPS system was

solved analytically, as we will review in section 4.6.

However, before we are able to claim that (4.15) is also a correspondence between

solutions, we should also check that flux quantization is respected by it. We will do so

now, and we will then look at concrete analytic solutions.

4.4 Flux quantization

Flux quantization is formally very similar to the discussion in [6, section 4.8] and in [19,

section 5.4]; here we will summarize the results of that discussion, and refer to those papers

for details.

For massive solutions, as usual the Bianchi identity (away from sources) dF2 = HF0

implies that H can be rewritten as H = F2
F0

. As a consequence the B field takes the form:

B =
F2

F0
+ b , (4.16)

where b is a closed two-form to be determined by imposing flux quantization. We can limit

ourselves to considering b of the form

b = b0(ω1 − ω5) , (4.17)

which is indeed closed, as shown in section 3.2 (recall that we have normalized the Ricci

scalar to R = −6). We can thus rewrite the B field as

B =

(
− q

F0
+ b0

)
(ω1 − ω5)− 2

5
qxeA+φω1 . (4.18)

One should also recall that B is not a two-form; it can transform on intersections of open

sets by “large gauge transformations”, namely closed two-forms whose periods are integer

multiples of 4π2.

As for the RR fluxes, the Romans mass satisfies F0 = n0
2π , n0 ∈ Z; also, the

“twisted” fluxes

F̃2 ≡ F2 −BF0 , F̃4 ≡ F4 −B ∧ F2 +
1

2
B ∧BF0 (4.19)

should have integer periods. The two-form is

F̃2 = −bF0 = −b0F0(ω1 − ω5) ; (4.20)

flux quantization now implies

b0 = − n2

2F0
. (4.21)
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The four-form F̃4 can be written as

F̃4 =
1

F0

(
q2 − n2

2

4

)
ω15 −

1

9
dy yieiω2 , (4.22)

or also as F̃4 = dC̃3, where15

C̃3 =
1

2F0

(
q2 − n2

2

4

)
yieiω2 . (4.23)

We made use of the derivation rule d(yieiω2) = 2ω15 which descends from equation (3.17),

and we also inserted the relation d(q2)
dy = −2

9F0, which can be verified using the BPS

equations (4.2) together with the radial change of coordinates dr = 5
18qeA

dy; we will later

find it again in (4.31). Near a regular point, regularity of B and F2 implies that n2 should

be zero, and that q → 0. Moreover, one can see from (4.2) that q starts linearly in the radial

coordinate, so that in the end C̃3 ∼ r2yieiejDyj = xieiejDxj , where now the xi ≡ ryi are

coordinates on R3; so C̃3 is a regular form, and F̃4 has no periods in this case. In presence

of sources, the discussion changes a bit. Flux quantization now requires the flux integrals

to be integer for cycles that do not intersect the sources. We can take such cycles to be

at fixed y; then the only relevant term in (4.22) is ω15 = 1
2volS2εijkyiejk, whose integral

vanishes because
∫
S2 y

i = 0.

We can now start introducing D8-branes, which we will allow to also have D6-charge;

so, across such a brane both fluxes (n0, n2) will jump to new values (n′0, n
′
2). The “slope”

µ 6= ∆n2
∆n0

=
n′2−n2

n′0−n0
is an integer. Imposing that (4.18) be continuous we find the condition

[q]r=rD8 =
n′2n0 − n2n

′
0

2(n′0 − n0)
=

1

2
(−n2 + µn0) =

1

2
(−n′2 + µn′0) , (4.24)

which is formally identical to [6, eq. (4.45)]. We now understand why we chose to have the

map keep q invariant across dimensions, (4.14).

We finally have to understand what happens to flux quantization of H. This is com-

plicated by the fact that in presence of D8’s one might have a region of space where

F0 = 0, where (4.18) does not apply; one then has to use a separate expression for B in

the massless solution. A lengthy discussion [19] (actually obtained by the present authors

in collaboration with the authors of [19]) establishes that

N ≡ − 1

4π2

∫
H = (|µn|+ |µn+1|) +

1

4π
e2A(x=0)(|xn|+ |xn+1|) , (4.25)

refining an earlier analysis in [7]. Here the indices n and n+1 refer to the D8 brane right

before and right after the region where F0 = 0. If that region does not exist, then N =

(|µn|+ |µn+1|), as already remarked in [7].

15It is interesting at this point to compare our fluxes to their AdS5 counterpart in [19]. For example, (4.23)

is formally the same as in [19]; the form yieiω2 = yieiejDyj , if one now declares i to be only 1, 2, becomes

e1e2(y1Dy2 − y2Dy1) = sin2(θ)DψvolΣ2 , which reproduces the expression in [19, section 5.3]. As another

example, in the expression for F2 in (4.4), ω1 is simply the covariantized volS2 , and ω5 = 1
2
εijkyiejk becomes

y3e1e2 = cos(θ)volΣ2 , which reproduces the F2 in [19, section 5.1].
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It can now be checked with some patience that the condition in (4.25) is reproduced

also in AdS4, once one uses the map (4.7). In [19] this is also checked for AdS5 solutions.

In summary, we can conclude that the one-to-one correspondence (4.15) respects flux

quantization. Thus it is a correspondence between string theory solutions, and not just

supergravity solutions.

In the following sections we will start studying concrete analytic solutions, reaping the

rewards of the analysis performed so far.

4.5 Massless solutions

As a warm-up, we will first discuss the massless solution. This can be obtained directly as a

solution of (4.2), or applying the map (4.7) to the AdS7 massless solution 2.16. Either way,

one reproduces the ten-dimensional reduction (2.17) of the eleven-dimensional background

found in [14], which in turn lifts the seven-dimensional gauged supegravity solution found

in [12]. The metric reads

ds2
10 =

(
5

8

) 3
2 R3

2
sinα

[
ds2

AdS4
+

4

5
ds2

Σ3
+

2

5
dα2 +

4

5

sin2 α

3 cos2 α+ 5
Ds2

S2

]
. (4.26)

The same logic as in [6, section 5.1] reveals that at the two poles x → ±1 we have a

D6 and a D6 stack. Indeed near the north pole α = 0 the metric behaves as ds2
M3
∼

α(dα2 + 1
4α

2Ds2
S2) , which can be mapped into the usual metric describing a D6 in flat

space ds2
M3
∼ ρ−

1
2 (dρ2 + ρ2Ds2

S2) via the coordinate transformation ρ = 2−
4
3α2. The

dilaton is given by

e2φ =

(
5

8

) 1
2 R3 sin3 α

5 + 3 cos2 α
. (4.27)

For completeness we also give the expressions for the fluxes, which can be obtained applying

the map (4.7) to the solution (2.16) and substituting the result into (4.4):

F2 =
1

2
(ω5 − ω1) , F4 = −R

3 sinα

32
dα yieiω2 −

R3 cosα sin2 α

8(5 + 3 cos2 α)
ω15 . (4.28)

It is also possible to derive a simple expression for the B field:

B =
R3 cosα

16
ω5 −

R3 cosα(9− cos2 α)

16(5 + 3 cos2 α)
ω1 . (4.29)

We actually used this expression in checking that (4.25) is also the correct flux quantization

condition for AdS4.

4.6 Massive solutions

We will now turn our attention to massive solutions. Thanks to the maps in section 4.3

and to results obtained for AdS5 solutions in [19], we will be able to provide many analytic

solutions. In this section we focus our attention on massive solutions with D6 and O6

sources; solutions with D8-branes will be shown in section 4.7.
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In [19] the BPS system of ODEs was actually solved analytically. We can then use the

map (4.11) to provide a solution to our BPS system (4.2) as well. The solution is

eA =
53/4

6

(
−∂yβ

2y

)1/4

, x =

√
−2y∂yβ

5β − 2y∂yβ
, eφ =

(
5

2

)1/4 (−∂yβ/y)5/4

12
√

5β − 2y∂yβ
,

(4.30)

where y is defined by dr
dy =

(
6
5

)2 e3A√
β

, and β is a solution of the equation

∂y(q
2) =

F0

72
, q =

y
√
β

∂yβ
; (4.31)

the expression of q is obtained from its definition (4.5) and (4.30). This equation can be

easily solved by β
(∂yβ)2 = 1

72F0
y−ŷ0

y2 .

Before showing some examples, let us comment on the regularity of these solutions.

For compactness, we need the S2 in (4.3) to shrink in two points, that we think of as a

“north pole” and a “south pole”. The way this can be done was analyzed in [6] for the

AdS5 solutions; the results can be applied directly to our AdS4 case as well. This can be

read off from the map (4.13); basically, the function 2(1−x2)
3(5+x2)

, multiplying the factor of ds2
S2

after applying the map, goes to the same factor 1/9 as the factor 1−x2

9 before applying

the map. So the leading behavior does not change, and we can copy the results in [19,

section 5.3].

The results can be summarized as follows. The local behavior around a pole is associ-

ated to features of the function β in (4.30):

• A single zero of β corresponds to a regular point.

• A double zero of β corresponds to presence of a stack of D6-branes.

• A square root behavior β ∼ β0 + β1/2
√
y − y0 + . . . corresponds to presence of an

O6-plane.

The O6 case perhaps requires a few more comments. First of all, in that case it is

understood that one needs to mod out the solution by worldsheet parity Ωws times a Z2

involution which acts on the S2 as the antipodal map σ; the O6 will sit at what we called

the pole, which is where the S2 shrinks and σ has a fixed point. To be more precise about

what we mean by the presence of the O6-plane, it is perhaps instructive to look at the O6

in flat space, whose metric reads H−1/2ds2
R6 +H1/2(dr2 + r2ds2

S2), where H = 1− r0
r . One

might be tempted to say that the O6 is located at r = 0, but this would not make sense:

the metric is in fact purely imaginary in the “hole” r ≤ r0. The locus where the S2 shrinks

is in fact r = r0. The square root behavior we described above is the same as around this

r = r0 point in flat space.

It is also worth pointing out that this is really the same behavior as for an O6 in flat

space, and not the one found in [27]. In that paper, the singularity of an O6 in presence

of Romans mass was replaced by a wormhole-like behavior. There is no contradiction: the

geometry of that case was very different, with the parallel directions fibred in a certain
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way over the transverse S2. It was inspired by the solution in [28], for which it meant to

provide a local (but non-smeared) version.

Just like O6’s, also D6-branes can only occur at the north or south pole. For AdS7

solutions, this could simply be explained by the SO(3) symmetry. In our case, one can

explain this through calibrations. Just as in [6], the calibration for a D6 is the variable x.

A D6 can only sit where x = 1 (and an anti-D6 where x = −1). Imagine starting from a

solution with a regular point; in that case it can be seen from (4.1) that

x→ ±1 (4.32)

at the poles. So a probe D6 will want to sit there. It can actually be checked with some

more work that even for solutions where D6’s and/or O6’s are already present x→ ±1 at

the poles.

After these preliminary remarks, let us see some examples of analytic solutions.

4.6.1 Solution with one D6 stack

The first solution we will analyze has a regular south pole, and a stack of D6’s at the north

pole. This corresponds to a β with a double zero and a single zero.

This solution is obtained by applying the map (4.11) to the AdS5 solution in [19,

section 5.5]. We can also obtain it by applying (4.30) and (4.3) to

β =
8

F0
(y − y0)(y + 2y0)2 , (4.33)

which is the simplest analytic solution of (4.31). Given our general analysis, we expect a

regular point at y0, and a D6 stack at −2y0.

The metric reads

ds2
10 =

√
5(y + 2y0)

3F0

[
5

6
ds2

AdS4
+

2

3
ds2

Σ3
+

1

4

dy2

(y0 − y)(y + 2y0)

+
2

3

(y0 − y)(y + 2y0)

y2 − 5y0y + 10y2
0

Ds2
S2

]
, (4.34)

which is valid for F0 > 0 if the new radial coordinate has range y ∈ [−2y0, y0]. The dilaton

is determined to be

e4φ =
15

F 3
0

(y + 2y0)3

(y2 − 5yy0 + 10y2
0)2

. (4.35)

As a cross-check, let us analyze the local behavior of the metric around the poles, which

are defined as the two end points of the interval where the S2 shrinks: {y = y0, y = −2y0}.

• Around y0 the metric is proportional to ds2
M3
∼ dy2

4(y0−y) + (y0 − y)Ds2
S2 , which can

be mapped into the flat space metric dρ2 + ρ2Ds2
S2 with a simple coordinate trans-

formation ρ =
√
y0 − y. In other words the solution is regular around this pole.

• The D6 singularity is still present at the second pole y = −2y0, where the local

behavior of the metric is ds2
M3
∼ dy2
√
y+2y0

+ (y+ 2y0)
3
2Ds2

S2 . Indeed if we define a new

radial coordinate ρ = y + 2y0 we recover the metric describing the neighborhood of

a D6 in flat space: ds2
M3
∼ ρ−

1
2 (dρ2 + ρ2Ds2

S2).
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For completeness it is also worth giving the full expressions for the fluxes:

F2 = q(ω5 − ω1) +
2qy(y + 2y0)

y2 − 5yy0 + 10y2
0

ω1 ,

F4 = −1

9
dy yieiω2 +

2qy(y + 2y0)

F0(y2 − 5yy0 + 10y2
0)
ω15 , (4.36)

H = − 1

9q
dyω5 +

2qy(y + 2y0)

F0(y2 − 5yy0 + 10y2
0)
yieiω4 −

q(y + 2y0)(19y2 + 65yy0 − 90y2
0)

2F0(y2 − 5yy0 + 10y2
0)2

dyω1 ,

which are expressed in terms of the function q = 1
3

√
2F0(y0 − y).

Flux quantization can be analyzed by direct inspection of (4.36), or by applying our

general results in section 4.4. The result is that the parameter y0 is fixed to be

y0 =
3

8

n2
2

F0
; (4.37)

n2 is the number of D6 in our stack at the north pole y = −2y0. Replacing this expression

in (4.34) and defining

ỹ =
y

y0
(4.38)

one recovers the metric (1.1). However, (4.34) also appears as a piece of metrics with D8’s,

and in that case y0 is fixed to a different value, as we shall see.

Meanwhile, from (4.37), (4.34), (4.35), we can also check explicitly that by taking n2 to

be large we can make both the curvature and the string coupling small. This is in agreement

with the general observation made around (3.45); notice that that transformation preserves

the constraint (4.1).

4.6.2 General massive solution

We will now show a more general solution; without D8-branes, this is in fact the most

general one. It can be obtained by applying the map (4.11) to the AdS5 solution in [19,

section 5.6], or by applying (4.30) and (4.3) to

β =
y3

0

b32F0

(√
ŷ − 6

)2 (
ŷ + 6

√
ŷ + 6b2 − 72

)2
, (4.39)

where

ŷ ≡ 2b2

(
y

y0
− 1

)
+ 36 . (4.40)

The parameter b2 has the interpretation of b2 ≡ F0
y0
β2, where β2 is half the second derivative

of β in y0. An alternative expression for (4.39) is

√
β =

√
8

F0

√
y − ỹ0(y + 2ỹ0)− 36

√
y3

0

b32F0
(b2 − 12) , (4.41)

where ỹ0 =
(

1− 18
F0

)
y0. Notice the similarity with (4.33).
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The resulting solution is

e8φ =

(
5
6

)2
b11
2 β

3

ŷ3F 3
0 y

11
0 (4(b2 − 18)2 + 30(b2 − 12)

√
ŷ + (b2 − 18)ŷ + ŷ2)4

, (4.42a)

ds2
M3

=

√
5

6

(
y5

0

28b52F
3
0 ŷ

3β

) 1
4

dŷ2 +

1
9

√
5
6

(
b72β

3F0ŷ

y7
0

) 1
4
Ds2

S2

4(b2 − 18)2 + 30(b2 − 12)
√
ŷ + (b2 − 18)ŷ + ŷ2

,

(4.42b)

The meaning of this solution depends on the parameter b2. Summarizing the analysis in [6,

section 5.6]:

• If b2 < 12, β has two double zeros, so the solution corresponds to two D6 stacks, one

at ŷ =
√
−3 +

√
81− 6b2, one at ŷ = 36.

• If b2 > 12, the solution corresponds to a D6 stack at one pole ŷ = 0 and an O6

singularity at ŷ = 36.

• If b2 = 12, β simplifies to
y3
0

1728F0
ŷ(ŷ − 36)2, which is (4.33) up to coordinate change;

so this case corresponds to a single D6 stack at ŷ = 36.

All this agrees with the qualitative analysis performed in [6] for the AdS7 solutions.

4.7 Massive solutions with D8’s

One can also obtain metrics with arbitrary numbers of D8-branes. These solutions are a

bit more subtle: the Romans mass F0 will jump across the D8-branes are located, and as

a result the expression of the metric will change. Despite the jump in the Romans mass,

the full metric can be made continuous by tuning the parameters properly. In other words

we have to piece together solutions we have already studied. The position of the D8’s is

then fixed by (4.24).

In [19, section 5.7], the procedure was illustrated with two examples, with one and

with two D8-branes. It is now easy to apply the map (4.11) to those solutions.

The solution with one D8 consists of two copies of (4.34), glued exactly as in [19,

eq. (4.42), (4.45)]. We will not repeat it here.

Here is instead a solution with two D8’s, which is the AdS4 compactification of the

AdS7 solution obtained numerically in [6, figure 5]; the analytic expression for the AdS7

solution is also given in [19, section 5.7]. The configuration is symmetric, in the sense

that the flux integers before the first D8 stack are (−n0 < 0, 0), between the two stacks

(0, n2 = −k < 0), and after the second stack (n0, 0). We will assume y0 < 0; the positions
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of the two D8 stacks will be yD8 < 0 and yD8′ = −yD8 > 0. We get:

ds2
M3

=



√
5(y + 2y0)

48F0

(
dy2

(y0 − y)(2y0 + y)
+

8

3

(y0 − y)(2y0 + y)

y2 − 5yy0 + 10y2
0

Ds2
S2

)
,

y0 < y < yD8 ;√
10(92R6 − 322y2)

32

(
322dy2

92R6 − 322y2
+

2(92R6 − 322y2)

5(92R6) + 3(322y2)
Ds2

S2

)
,

yD8 < y < −yD8;√
5(y + 2y0)

−48F0

(
dy2

(y0 − y)(2y0 + y)
+

8

3

(y0 − y)(2y0 + y)

y2 − 5yy0 + 10y2
0

Ds2
S2

)
,

−yD8 < y < −y0 ;

(4.43)

the metric in the middle region is the known massless metric in 4.26 after the change of

coordinate cosα = 32
9R3 y. The parameter R, y0, yD8 are also given in [19, section 5.7]:

R6 =
64

3
k2π2(3N2 − 4µ2) ,

y0 = −9

4
kπ(N − µ) , yD8 = −9

4
kπ(N − 2µ) ,

(4.44)

where µ = k
n0

.

As we mentioned, it is possible to generalize this solution to include an arbitrary

number of D8-branes. It is also possible to include D6’s or an O6 at the north and south

pole, thus mixing the features of this section and of section 4.6.2.

4.8 Summary and field theory interpretation

Let us summarize the solutions in this section, and make a few comments about their field

theory interpretation.

We have found an infinite class of AdS4 ×M6 solutions, where M6 is a fibration of

M3 over Σ3; M3 is topologically ∼= S3, while Σ3 is a compact quotient of hyperbolic space.

These solutions are in one-to-one correspondence (4.7) with the AdS7 solutions of [6]. In

particular, the metric on our M3 is related to the internal manifolds in those AdS7 solutions

in the simple way (4.9). It is a fibration of a round S2 over an interval, and as such it has

SO(3) isometry group.

Our main aim in this paper was to find AdS4 solutions dual to twisted compactifications

of the (1, 0) CFT6 dual to the AdS7 solutions. Because of the fibration structure of our

solutions (which was part of our Ansatz), and of the one-to-one correspondence (which

came out as a result), the solutions we found seem to be exactly what we were looking for.

We can contrast once again our solutions with the known massless ones [14], this time

from a field theory perspective. For the N = 2 solution (2.12), the internal space has

SO(2)×SO(3) symmetry; twisting mixes the SO(3) factor with the SU(2) of local Lorentz

transformations on Σ3, and we are left with only the SO(2) factor, which is in fact the

R-symmetry of the resulting N = 2 theory. For the N = 1 massless solution (2.4), the

internal space has SO(4)= SU(2)L × SU(2)R symmetry, and twisting mixes the SU(2)L
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factor with the SU(2) of Σ3, leaving an SU(2) which is a flavor symmetry. There is no

R-symmetry because the CFT3 is only N = 1 supersymmetric.

For our solutions (and indeed for the ten-dimensional reduction of the massless solution,

studied in section 2.2), the isometry of the internal space is already just SU(2); twisting

mixes it with the SU(2) of Σ3, so that in the end we have no flavor or R-symmetry. (Again

this is in no contradiction with the fact that the CFT3 is only N = 1.) From the point of

view of the gravity solution, the metric (4.3) has an S2 factor, but the fact that it is non-

trivially fibred means that the total space does not have SO(3) isometries: the presence

of the connection breaks it. Even looking at the fluxes (4.4), we see that they contain

the forms (3.16), which break the SO(3) of the S2. We did find the (3.16) by defining the

“twisted symmetry” (2.20), but that cannot be considered an isometry: it is a mix of a local

Lorentz transformation (which happens point by point on Σ3) and of an internal rotation.

Let us also point out however one point about the number of degrees of freedom of the

CFT3, which parallels a similar observation in [19]. One can count the number of degrees

of freedom of a CFTd via the coefficient F0,d in the free energy Fd = F0,dT
dVol, where T

is the temperature. Holographically this evaluates to the integral of e5A−2φ over M3 for

the CFT6, and over M6 for the CFT3. Using the map (4.7), one finds easily that

F0,3 =

(
5

8

)4

F0,6Vol(Σ3) . (4.45)

In other words, the ratio of degrees of freedom is universal. Since the AdS7 solutions are

now analytic, one can evaluate F0,6 explicitly; this is indeed done in [19] for an example.

This might help find the CFT3.

However, the CFT3’s are only N = 1 supersymmetric, and have no flavor symmetry.

For this reason, perhaps our solutions are more interesting as gravity solutions with lo-

calized sources; this was indeed our initial motivation. With this in mind, we will now

return to our original system (3.44), and see if we can find more interesting solutions,

irrespectively of their field theory interpretation.

5 Attractor solutions

In the last section we obtained a very large set of analytic solutions, in one-to-one corre-

spondence with the AdS7 solutions of [6] and the AdS5 solutions of [19]; for this reason we

called them “natural compactifications”. The symmetric space Σ3 needs to hyperbolic.

In this section we will present another set of solutions, which depend on a larger

number of parameters; we call them “attractor solutions”, for reasons that will become

clear. They are only known numerically. They exist for all values (positive, null, negative)

of the curvature of Σ3, although a positive sign appears to be preferred. As stated in the

introduction, this solution does not appear to be the same as the AdS4 × S3 × S3 solution

of [5]. (One might also speculate of some duality to the IIB AdS4×S3×S3 solution of [29],

but we could not find any immediate relationship.)

The first sign that this class will be larger is that we will not impose the constraints (4.1)

any longer. So we will have to revert to the system of five ODEs given in (3.44). It will
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also not be possible any more to simplify the form of the metric like we did in (4.3), and

we will have to keep the original form

ds2
10 = e2Ads2

AdS4
+ g2ds2

Σ3
+ dr2 + f2DyiDyi. (5.1)

5.1 Fluxes

The fluxes will also not be given by (4.4) any more. The general expression is instead

F2 = (−q + pF0) ω1 + (s+ s̃F0) ω5 ,

F4 = u ω23 + (v + ṽF0) ω15 ,
(5.2)

There are no new components in the fluxes with respect to the case (4.4), but two terms

acquire an additive contribution proportional to F0. These extra contributions are propor-

tional to each other:

ṽ = (f2 cotψ)s̃ , (5.3)

and of course they vanish once we impose the constraint (4.1) (and fix R = −6). The other

coefficients are as follows:

p =
f2
(
−12fg2e−A − sinψ(Rf2 + 6g2(1 + cos2 ψ))

)
cosψ(Rf2 − 6g2 sin2 ψ)

,

u = fe−φg2

(
sinψ

f
− 3e−A

)
,

v =
fe−φ(12fg2e−A − sinψ(Rf2 + 6g2))

6 cosψ
,

ṽ = −f
2g2(−12fg2e−A sinψ +Rf2 + 6g2 sin2 ψ)

(Rf2 − 6g2 sin2 ψ)
. (5.4)

Finally, q = fe−φ and s = −R
6 q, as in (4.5) and (4.4).

Even though the fluxes are more complicated, flux quantization works similarly as in

section 4.4. It is still true that F̃2 = −bF0, where now b = − n2
2F0

(ω1 + R
6 ω5).

The four-form flux quantization is also similar to section 4.4. We have F̃4 = uω23 +

f̃15ω15, where f̃15 = v + ṽF0 + (−q + pF0)(s + s̃F0) +
n2

2R
24F0

. Closure implies f̃ ′15 = 2u, so

that we can still write F̃4 = dC̃3, where now C̃3 = 1
2 f̃15y

ieiω2. The coefficient f̃15 reduces

to the 1
F0

(
q2 − n2

2
4

)
of (4.23) when one imposes the constraint (4.1) and fixes R = −6, but

in general it is much more complicated. Nevertheless, upon substituting the local solution

for a regular point in the next section, it still turns out that it starts quadratically in r,

and that C̃3 is regular around it. The rest of the flux quantization argument in section 4.4

also runs in a similar way.

Finally, we are not going to consider solutions with a massless region (where F0 = 0),

so we will not need to work out the analogue of (4.25) for
∫
H; we can simply use the

formula B = F2
F0

+ b. For cases without D8’s, we can simply compute B at the north and

south pole and use Stokes’ theorem. For solutions with D8’s, one can use a logic similar to

the solution with one D8 in [6, section 5.3], or [7, section 4.2].
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5.2 Local Solutions: D6, O6, regular

We will now assume that the internal space M3 must have the topology of a S3, namely

the S2 must shrink at the two extrema of the interval [rN , rS ], corresponding to the north

and south pole. The shrinking of the S2 implies that the function f should vanish.

In the case of natural compactifications of section 4, we discussed around (4.32) that

x takes the values ±1 at the south and north pole. We will assume this to remain true for

the present more general case as well. Since x = cosψ, this means that ψ goes to 0 and π

at the poles.

To complete the boundary conditions we have to specify how the function f should

go to zero at the pole, and this is what distinguish between the three different types of

solution we are interested in.

1. For a regular point, f ∼ r +O(r)2.

2. Near D6, the metric ds2
M3
∼ ρ−1/2(dρ2 + ρ2ds2

S2); taking r = 4
3ρ

3/4 gives ds2
M3
∼

dr2 +
(

3
4r
)2
ds2
S2 . So f ∼ 3

4r.

3. Near an O6, a similar computation gives f ∼ r1/5 +O(r)2/5.

We will now study more precisely these three cases.

Regular point. We want to study the system around the boundary conditions at the

north pole corresponding to a regular point: [ψ = 0, f = r]. Thanks to translational

invariance in r we can assume rN = 0 without any loss of generality and expand the

functions entering the system (3.44) in power series. We determined the local solution up

to order r3. The precise expression was crucial as a boundary condition for the numerical

analysis, but it is not very enlightening; we just summarize it as

eA = eA0 +O(r2) , eφ = eφ0 +O(r2) , g = g0 +O(r2) ,

f = r +O(r3) , cosψ = 1 +O(r2) .
(5.5)

Notice that this expansion only involves odd and even functions in r. The parameter φ0 is

fixed in terms of the other two parameters g0 and A0:

eφ0 =
2g0 −

√
6
√

84g2
0 − 5Re2A0

10g0eA0F0
. (5.6)

So this is consistent if and only if F0 < 0. In total, we have two free parameters in this

boundary condition. One can check that q and p both → 0.

D6 singularity. We now switch to the boundary condition which is appropriate to de-

scribe a D6 singularity: ψ → 0, f ∼ 3/4r. The leading behavior for the other fields can be

inferred from the flat space D6, but it was not entirely clear how to continue the expansion;

we determined it by trial and error, by imposing that the ODEs (3.44) should be satisfied.

We ended up with an expression where the leading behavior of each field is multiplied by an

analytic function of r4/3; for example, f = 3
4r
∑

k fkr
4k/3. We went up to k = 3, obtaining
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again explicit expressions that would not tell the reader much. So as a summary let us just

write

eA = r1/3eA0 +O(r5/3) , eφ = reφ0 +O(r7/3) , g = r1/3g0 +O(r5/3) ,

f =
3

4
r +O(r7/3) , cosψ = 1 +O(r4/3) .

(5.7)

So there are three free parameters in this boundary condition. For flux quantization, it is

useful to compute that q → 3
4e
−φ0 , p→ 0.

O6 singularity. We finally consider an O6 singularity: ψ → 0, f ∼ r1/5. Again by trial

and error, we found this time a power series in r4/5; for example, f = r
∑

k fkr
4k/5. We

went up to k = 2. As a summary:

eA = r−1/5eA0 +O(r3/5) , eφ = r−3/5eφ0 +O(r1/5) , g = r−1/5g0 +O(r3/5) ,

f = r1/5f0 +O(r) , cosψ = 1 +O(r4/5) , (5.8)

where the parameter φ0 is fixed to be

eφ0 = −(2f0)
6g0 +

√
36g2

0 − 6Re2A0

15g0eA0F0
. (5.9)

This is again consistent if and only if F0 < 0. In total, we have three parameters in this

boundary condition too. For flux quantization purposes, it is useful to compute that q → 0,

p→ 4
5
f2
0
F0
e−φ0 .

5.3 Complete solutions

We studied numerically the system (3.44) with all three boundary conditions we discussed in

the previous section, allowing the manifold Σ3 to have positive, null and negative curvature.

In what follows we present the possible solutions corresponding to Σ3 = S3, but the

behavior is essentially the same for T 3 and H3. We expected to have to perform some fine-

tuning in order to obtain a physical solution, arriving at one of the same three boundary

conditions at the other pole. Indeed one often ends up at the other pole with a singularity

that we cannot interpret physically, where numerically one sees f ∼ r1/3, g ∼ r−1/3,

eA ∼ r−1/3.

Even more often, however, one in fact ends up more or less automatically at the other

pole with a regular point. This happens for a large open set in the space of the free

parameters allowed by the boundary conditions of the previous section (two for the regular

boundary condition, three for the D6 and O6). In most other cases, one has instead to

perform a number of fine tunings. In the present case, the regular point appears to be

an attractor. We show some examples of numerical solutions in figures 1 and 2(a). In all

these cases, we started from the left with the relevant perturbative solution (schematically

expressed in (5.5), (5.7) and (5.8)), and continued numerically. The solution then ends by

itself in a point where f = 0 and the other functions go to constant values, which one can

check to be consistent with (5.5), (5.6) — with a minimal modification due to x being −1

rather than 1. Some solutions appear to display one or more mild kinks on the way to the
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2 4
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5

(b)

Figure 1. Massive attractor solutions. In (a) we see a solution with two regular poles, and

n0 = −10 (as usual, F0 = n0

2π ). We plot f (orange), eφ (green), eA (black), g (purple), x = cosψ

(dashed). In (b) a solution with a stack of n2 = 10 D6-branes at the north pole (left), and a regular

point at the south pole (right); again n0 = −10, and N = − 1
4π2

∫
H = −1. In both cases, R = 6,

so Σ3 = S3.

5 10
r

10

20

(a)

2 4 6
r

5

10

(b)

Figure 2. Massive attractor solutions. In (a) we see a solution with an O6 at the north pole (left),

and a regular point at the south pole (right). In (b) a solution with two regular poles with a D8

stack in the middle (which is the sharp kink towards r ∼ 1, most visible in the black and purple

lines). In both cases, R = 6, so Σ3 = S3.

attractor; one might worry about their effect on the curvature, but recall how (3.45) can

be used to make the curvature as small as one wishes.

It also appears to be equally easy to obtain solutions with D8-branes. Their position

is again fixed by (4.24), and the attractor mechanism appears again at the south pole. An

example is given in 2(b).

The O6 case in particular would appear promising to obtain examples with “separation

of scales”. In AdS4 compactifications, the Kaluza-Klein scale mKK is usually of the same

order of the cosmological constant Λ, which is obviously unphysical. One might object that

the negative sign of Λ is even more unphysical. However, sometimes one manages to modify

the AdS vacuum by adding some extra ingredient, which turns the cosmological constant

positive [30]; the lack of separation of scales might then be inherited by the resulting de
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Sitter as well.16 The presence of this phenomenon would also be interesting from the point

of view of the CFT dual, since it would imply the presence of a large gap in operator

dimensions. A few examples have been put forward where the is separation of scales (see

for example [28, 31, 32]), but they usually rely on the smeared O6 we mentioned in the

introduction (although see [33] and the strategy in [34]). With the simplest solution of

figure 2(a), which only has a single O6, we have not been able to achieve separation of

scales, but by combining it with the other ingredients (D8-branes, and perhaps D6-branes

at the other end) it might be possible. It would be interesting to explore this further.
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A S3 to S2 left-invariant forms projection

In this appendix we introduce a formalism which will be useful to reduce the eleven-

dimensional massless solution described in [14, section 9.4]. In particular, we want to

rewrite the S3 metric in Hopf coordinates and reduce it to S2. Our starting point is the

metric: ds2
3 = 1

4µ
iµi, describing an S3 fibered over a three manifold Σ3. The triplet one-

forms µi are defined as: µi = σi−ωi, with σi being the left invariant forms on S3 satisfying

dσi = 1
2ε
ijkσjk, and ωi is the connection of the fiber bundle S3 → Σ3, related to the spin

connection of the base space by ωi = 1
2ε
ijkωjk.

Our goal is to compute the components of the one-forms µi along the S2. This is

achieved by introducing a parallel and orthogonal projectors:

P ij‖ = δij − yiyj , P ij⊥ = yiyj , (A.1)

which satisfy P‖ + P⊥ = 1, where yi are the spherical harmonics that parametrize the

S2, (2.8). The corresponding decomposition for the one-forms µi is the following:

µi = εijkyjDyk + 2yiDβ . (A.2)

β is the coordinate on the Hopf fiber; we introduced covariant derivatives Dyi = dyi +

εijkyjωk and Dβ = dβ + A− 1
2y

kωk. A is the Hopf connection satisfying: dA = −1
2volS2 .

Using the decomposition given in (A.2) we are finally able to rewrite the metric in Hopf

coordinates as:

ds2
3 = Dβ2 +

1

4
DyiDyi . (A.3)

16We thank T. Van Riet for interesting discussions on this point.
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We see that both the S1 parametrized by β and the S2 parametrized by the yi are non-

trivially fibered over Σ3. For later convenience we also write the decomposition of the

following two- and three-forms:

1

2
εijkµjk = yiω1 + 2DyiDβ ,

1

6
εijkµijk = 2Dβ ω1 , (A.4)

where the wedge products are implicit. As defined in (3.16), the two-form ω1 = 1
2ε
ijkyiDyjk

is the covariantized volume form of the S2.

Finally notice that, when we reduce to ten dimensions along the Hopf fiber, the ex-

pression we got for Dβ determines the one-form gauge field to be: C1 = A− 1
2y

kωk. The

resulting RR two-form flux F2 = dC1 is then: F2 = 1
2(ω5 − ω1), which is precisely the

expression given in (4.28).

B From SU(3) to SU(3) × SU(3)

In this section we show how to decompose an SU(3) structure on the internal space M7 to

an SU(3)× SU(3) structure on M6, where M7 has the topology of an S1 fibration over M6

with the circle parametrized by the Hopf coordinate β. This mapping is needed in order to

give a complete proof that our 10d solution described in section 4 coincides in the massless

limit with the reduction of the 11d solution described in [14, section 9.4].

An SU(3) structure on M7 is described by a real two-form J and a complex three-form

Ω, that are given explicitly in reference [14, eq. (9.64)–(9.66)]. In our notation17 these

forms can be rewritten as:

J = e−2φ/3fgµiei ,

ReΩ =
1

6
f2εijkµijk − 1

2
g2εijkµiejk , (B.2)

ImΩ =
1

2
fgεijkeiµjk − e−φg3volΣ3 .

f and g here are the functions entering the 10d metric (2.19), and the reduction from eleven

to ten dimensions is performed as usual: ds2
11 = e−2φ/3ds2

10 + e4φ/3 (dβ + C1)2.

We explained in appendix A how to decompose the forms µi defined on S3 in terms

of forms living on S2 and on the Hopf fiber parametrized by β. In particular, we can use

the relations (A.2), (A.4) and decompose the SU(3) structure in terms of the twisted forms

defined in section 3.2 as:

Ω = e−φ
(
2fDβ + ig yiei

) (
f2ω1 − g2ω5 + ifgω2

)
, J = e−2φ/3fg

(
2Dβ yiei + ω4

)
.

(B.3)

17The eleven-dimensional metric corresponding to (2.19) can be written in ten dimensional language as

ds2
11 = e−

2
3
φ
(
e2Ads2

AdS4
+ g2ds2

Σ3
+ h2dα2 + f2DyiDyi

)
+ e

4
3
φDβ2 , (B.1)

where the explicit expressions for the functions entering the metric can be computed comparing this formula

with (2.10).
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Comparing this formula with (3.42), it is clear that the SU(3) structure living on M7 has

been rewritten in terms of the SU(2) structure on M6 as:

Ω = e−φ
(
2fDβ + ig yiei

)
(Imω − ij) , J = e−2φ/3

(
2fgDβ yiei − Reω

)
. (B.4)

This formula also allows to reduce the eleven-dimensional four-form flux G4 given

in [14, eq. (7.5)]. As usual, G4 = F4 +H ∧Dβ: the resulting RR four-form flux F4 and NS

three-form flux H = dB coincide with the expressions we gave in (4.28).

C J−1
ψ x operator

In [27, section 5.2], the pure spinor equations (3.30) were massaged for the particular case

needed in this paper. All we need now is to compute the action of the J−1
ψ x operator on

the two- and four-forms defined in section 3.2. J−1
ψ is a bi-vector defined as the inverse of

the two-form Jψ entering the dielectric expression (3.26), which for our class of solutions

can be expanded as: Jψ = j2ω2 + j3ω3, with coefficients j2 = − fg
cosψ and j3 = g.

It is natural to choose f i ≡ j2Dyi−j3yidr as basis of one-forms on M3 and the vielbein

ei as basis on Σ3, so that we can write Jψ as:

Jψ = ei ∧ f i . (C.1)

Equivalently, the inverse operator can be expanded on the dual basis of vectors as:

J−1
ψ x= F ixEix , (C.2)

where the basis of forms and dual vectors satisfy:

F ixf j = δij , F ixej = 0 , Eixf j = 0 , Eixej = δij . (C.3)

We now compute the dual vectors to be:

F i =
1

j2
vi − 1

j3
yidr , Ei = Ei0 − εjklvjyk(Ei0xωl) . (C.4)

Ei0 are the dual vectors to ei on the base space satisfying Ei0xe
j = δij . The vectors vi are

given by

v1 = cos θ cosϕ∂θ−
sinϕ

sin θ
∂ϕ , v2 = cos θ sinϕ∂θ+

cosϕ

sin θ
∂ϕ , v3 = − sin θ∂θ ; (C.5)

they satisfy vixDyj = δij − yiyj . (They also happen to be conformal Killing vectors on S2:

LvigS2 = −2yigS2 .)

It is now straightforward to compute the action of J−1
ψ on the set of twisted two-forms:

J−1
ψ xω1 = 0 , J−1

ψ xω2 =
2

j2
, J−1

ψ xω3 =
1

j3
,

J−1
ψ xω4 = 0 , J−1

ψ xω5 = 0 .

(C.6)

We finally compute the action of J−1
ψ on some the four-forms, which are also needed in the

pure spinor equations:

J−1
ψ xω13 =

1

j3
ω1 , J−1

ψ xω15 =
1

j2
ω2 , J−1

ψ xω35 =
1

j3
ω5 . (C.7)
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