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Abstract. Information Extraction (IE) is a process focused on
automatic extraction of structured information from unstruc-
tured text sources. One open research field of IE relates to
Named Entity Recognition (NER), aimed at identifying and as-
sociating atomic elements in a given text to a predefined cat-
egory such as names of persons, organizations, locations and
so on. This problem can be formalized as the assignment of a
finite sequence of semantic labels to a set of interdependent vari-
ables associated with text fragments, and can modelled through
a stochastic process involving both hidden variables (semantic
labels) and observed variables (textual cues). In this work we
investigate one of the most promising model for NER based
on Conditional Random Fields (CRFs). CRFs are enhanced in
a two stages approach to include in the decision process logic
rules that can be either extracted from data or defined by do-
main experts. The problem is defined as a Resource Constrained
Maximum Path Problem (RCMPP) associating a resource with
each logic rule. Proper resource Extension Functions (REFs)
and upper bound on the resource consumptions are defined in
order to model the logic rules as knapsack-like constraints. A
well-tailored dynamic programming procedure is defined to ad-
dress the RCMPP.

1 Introduction

Information Extraction (IE) is a task of Natural Language Processing aimed
at inferring a structured representation of contents from unstructured textual
sources. In this field, Named Entity Recognition (NER) has gained the atten-
tion of researches for identifying and associating atomic elements in a given
text to a predefined category (such as names of persons, organizations and lo-
cations). Considering a text as sequence of tokens x = x1, . . . , xN , the goal is
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to classify each token xi as one of the entity labels yj ∈ Y for originating a tag
sequence y = y1, . . . , yN .

Nowadays, the state-of-the-art model for tackling the NER task is rep-
resented by linear chain Conditional Random Fields (CRFs) [3], which is a
discriminative undirected graphical model able to encode known relationships
among tokens (observations) and labels (hidden states). In order to efficiently
enhance the description power of CRFs, two main research directions have
been investigated to enlarge the information set exploited during training and
inference: (1) relaxing the Markov assumption [6] to include long distance de-
pendencies and (2) introducing additional domain knowledge in terms of logical
constraints [2, 5]. Considering that the relaxation of the Markov assumption
implies an increasing computational complexity, in this paper we focused on
the second research direction by formulating the inference task as an Integer
Linear Programming problem. In particular, the standard CRFs inference pro-
cess is enhanced by two main contribution: (1) introducing “extra knowledge”
related to semantic constraints about the token labels, and (2) modelling the
label assignment problem as a Resource Constrained Maximum Path Problem
(RCMPP).

2 Conditional Random Fields

2.1 Background

A CRF [3] is an undirected graphical model that defines a single joint distri-
bution P (y|x) of the predicted labels (hidden states) y = y1, ..., yN given the
corresponding tokens (observations) x = x1, ..., xN . Linear Chain CRFs, in
which a first-order Markov assumption is made on the hidden variables, define
the following conditional distribution:

p(�y|�x) = 1

Z(�x)
exp

( N∑
t=1

K∑
k

ωkfk(yt, yt−1x, t)
)

(1)

where fk(yt, yt−1x, t) is an arbitrary real-valued feature function over its
arguments and ωk is a learned weight that tunes the importance of each feature
function. In particular, when for a token xt a given feature function fk is active,
the corresponding weight ωk indicates how to take into account fk: (1) if ωk > 0
it increases the probability of the tag sequence y; (2) if ωk < 0 it decreases the
probability of the tag sequence y; (3) if ωk = 0 has no effect whatsoever. Once
the parameters ωk have been estimated, usually by maximizing the likelihood
of the training data [4], the inference phase can be addressed.

2.2 Inference: finding the most probable state sequence

The inference problem in CRF corresponds to find the most likely sequence of
hidden state y∗, given the set of observation x = x1, ..., xn. This problem can
be solved by determining y∗ such that:

y∗ = argmax
y

p(�y|�x) (2)
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Figure 1. Layered acyclic directed graph.

Given a number m of possible states and n possible input tokens, a layered
acyclic directed graph D can be constructed for addressing the inference prob-
lem. The graph D is composed of n + 1 layers. Layer 0 corresponds to the
entry layer, n+1 is the ending layer, the other n layers represent the elements
of the sequence. Arcs from each state yi, i = 1, . . . ,m belonging to each layer t
exists for each state yi, i = 1, . . . ,m belonging to layer t+ 1, t = 0, . . . , n. We
denote as N the set of nodes containing 2+n×m elements, that is, the states
yi, i = 1, . . . ,m associated with all layers t = 1, . . . , n and two additional states
named start state yp and final state yf . The set A contains the arcs (t, yi, y

′
i),

t = 0, . . . , n, i = 1, . . . ,m. Arc (t, yi, y
′
i) denotes the link of state yi associated

with layer t with the state y′i associated with layer t+ 1.
A value αt

yi,y′
i

is associated with each arc (t, yi, y
′
i) ∈ A. The parameter

αt
yi,y′

i
is proportional to the probability of passing from state yi at layer t to

state y′i at layer t+ 1. Figure 1 shows the graph D with n = m = 3.
Given a layered acyclic directed graph denoting both observed tokens and

labels to be assigned, the objective is to find the heaviest path in the graph D
starting from yp and ending at the state yf . Given the variables etyi,y′

i
assuming

value equal to 1 if arc (t, yi, y
′
i) is included to the optimal path, 0 otherwise,

the problem can be formulated as follows.

max
∑

(t,yi,y′
i)∈A

αt
yi,y′

i
etyi,y′

i
(3)

s.t. ∑
(t−1,yi,y′

i)∈A

et−1
yi,y′

i
−

∑
(t,y′

i,yi)∈A

ety′
i,yi

= 0, ∀y′i ∈ N \ {yp, yf},

1 ≤ t ≤ n (4)∑
(0,yp,yi)

e0yp,yi
= 1 (5)

∑
(n,yi,yf )

enyi,yf
= 1 (6)
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(a) feasible path.

Figure 2. Feasible paths for constraints (8).

The following constraints, opportunely instantiated according to the domain
knowledge, could be introduced in the model:

• Adjacency: if the token at time t− 1 is labelled as A, then the token at time
t must be labelled as B

∑
yi∈N

et−1
yi,A

− etA,B ≤ 0, t = 1, . . . , n− 1. (7)

• Precedence: if the token at time t+ z is labelled as B, then a token at time
t must be labelled as A

∑
yi∈N

et−1
yi,A

−
n−t−1∑
z=1

∑
yi∈N

et+z
B,yi

≥ 0, t = 1, . . . , n− 1. (8)

• Begin-end position: if the sequence of tokens starts with label A, then the
sequence must end with label B

e0yp,A − enB,yf
≤ 0. (9)

To guarantee constraints (7) it is sufficient to modify the graph (D) by removing
all the edges (t, yi, B). Examples of feasible paths satisfying constraints (8) are
depicted in figure 2. Figure 3 shows an infeasible path for the same constraints.

3 Resource constrained model

The problem can be modelled as a Resource Constrained Maximum Path Prob-
lem (RCMPP). It is possible to define proper Resource Extension Function
(REF ) in order to introduce knapsack-like constraints for each typology of
logic rule, that is, precedence and begin-end conditions. The reader is referred
to [1] for more details on resource constrained path problems.
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Figure 3. Unfeasible path for constraints (8).

3.1 Precedence Constraint

Let consider PB be the set of predecessor states of state B. The path from
yp to B has to contain all states yī ∈ PB . We assume a resource consumption
rp
i,̄i

associated with each state yī, for each yi of the network, defined in what
follows:

rp
i,̄i

=




1, if yi ≡ B;

−1, if i = ī;

0, if i �= ī, yi �≡ B.

(10)

The REF associated with the precedence constraints is defined in Eq. (11).
{
wp

yp ,̄i
= 0, ∀yī ∈ PB ;

wp
j,̄i

= wp
i,̄i

+ rp
j,̄i
, ∀(t, yi, yj) ∈ A, yī ∈ PB ∪ {B}.

(11)

The resource limit WPB
is set equal to 0. The set of knapsack-like con-

straints that define the precedence constraints assume the following form:

wp
j,̄i

≤ WPB
, ∀j ∈ N , ∀yī ∈ PB . (12)

Figure 4 shows the resource constrained instance when precedence con-
straints are considered.

Considering feasible paths in figure 2, the resource consumption is either
0 or −1 for each label of both paths. The path in Figure 3 has resource
consumption equal to 1 at state B, thus it is infeasible for Eq. (12).

It is worth observing that the resource at states can be viewed as resource on
arcs. Indeed, the resource consumption of an arc is the resource consumption
of the head node.

3.2 Begin-end Constraint

Here we define resource constraint for the begin-and condition. We assume a
resource consumption rbe(t,yi,yj)

associated with each arc (t, yi, yj) ∈ A.

4
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Figure 4. Resource constrained graph with the precedence constraint PB = {A}.

rbe(t,yi,yj)
=




1, if t = 0, yi = yp, yj = A;

−1, if t = n, yi = B, yj = yf ;

0, for all other cases.

(13)

The REF associated with begin-and constraint is defined in equation (14).
{
wbe

yp
= 0;

wbe
j = wbe

i + rbe(t,yi,yj)
, ∀(t, yi, yj) ∈ A.

(14)

Assuming a resource limit Wbe = 0, the resource constraint modelling begin-
end condition is expressed by equation (15).

∑
(t,yi,y′

i)∈A

etyi,y′
i
rbe(t,yi,y′

i)
≤ Wbe. (15)

Figure 5 shows the resource graph associated with the begin-end condition.
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Figure 5. Resource constrained graph with begin-end condition.

4 Sketch of dynamic programming
Let lti be a label associated with state yi at layer t. The label lti maintains infor-
mation related to the objective function (αt

i) and to the resource consumption
(wp

i,̄i
, wbe

i ). A path πt
i is associated with each label lti(αt

i, w
p
i,̄i
, wbe

i ). Since there
may exist several paths to state yi, the index h is used to indicate the id of a
given path. Thus, label lti(h) is associated to the h − th path πt

i(h). Starting
from the initial label l0yp

(0, 0, 0), the dynamic programming explores the state-
space in order to reach the final labels lnyf

(h)(·). Among all labels lnyf
(h)(·), that

with maximum value of α is associated with optimal path. The state-space is
reduced by considering only feasible and non-dominated labels.

Definition 4.1 (Feasibility). A label lti(h) is feasible if and only if wp
i,̄i
(h) ≤

WPB
, ∀yī ∈ PB and wbe

i (h) ≤ Wbe, with i ≡ yf .

Definition 4.2 (Dominance). Given two labels lti(h) and lti(h
′), the first dom-

inates the second if the following conditions hold

αt
i(h) ≥ αt

i(h
′); (16)

wp
i,̄i
(h) ≤ wp

i,̄i
(h′); (17)

wbe
i (h) ≤ wbe

i (h′); (18)

and at least one inequality is strictly satisfied.

Let L be the list of labels with the potential to generate an optimal solution
and ND i be the set of non-dominated labels associated with yi. The labelling
approach to solve to optimality the problem is depicted in Algorithm 1.

Algorithm 1 . DP scheme
Step 0 (Initialization Phase)
Set: L = {l0yp (0)}.

Step 1 (Label Selection)
Select and delete from L a label lti(h).

Step 2 (Labels Generation)
for all yj : (t, yi, yj) ∈ A do

Compute αt+1
j , wp

j,̄i
, ∀yī ∈ PB , and wbe

j .

if Label lt+1
j (αt+1

j , wp

j,̄i
, wbe

j ) is feasible then
if Label lt+1

j is not dominated by any labels in NDj then
Add label lt+1

j to NDj and L.
Remove from NDj all labels dominated by lt+1

j .
end if

end if
end for

Step 3 (Termination check)
if L = ∅ then

STOP
else

Go to Step 1.
end if

5 Conclusion
In this paper, the problem of Named Entity Recognition is addressed by in-
vestigating the inference task on Conditional Random Fields. In particular,

6
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Compute αt+1
j , wp

j,̄i
, ∀yī ∈ PB , and wbe

j .

if Label lt+1
j (αt+1

j , wp

j,̄i
, wbe

j ) is feasible then
if Label lt+1

j is not dominated by any labels in NDj then
Add label lt+1

j to NDj and L.
Remove from NDj all labels dominated by lt+1

j .
end if

end if
end for

Step 3 (Termination check)
if L = ∅ then

STOP
else

Go to Step 1.
end if

5 Conclusion
In this paper, the problem of Named Entity Recognition is addressed by in-
vestigating the inference task on Conditional Random Fields. In particular,
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a mathematical programming formulation based on a Resource Constrained
Maximum Path is presented to include some background knowledge during the
labelling phase of a text source. Three types of background knowledge con-
straints have been presented, together with a dynamic programming approach
for determining the optimal sequence of labels. Concerning the future work,
additional long distance dependencies are planned to be automatically discov-
ered from the data (as hidden patterns) and enclosed into the mathematical
problem formulation.
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