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ABSTRACT Anisotropic metallic nanoparticles have been devised as powerful potential tools for in vivo imaging, photothermal
therapy, and drug delivery thanks to plasmon-enhanced absorption and scattering cross sections, ease in synthesis and func-
tionalization, and controlled cytotoxicity. The rational design of all these applications requires the characterization of the nano-
particles intracellular trafficking pathways. In this work, we exploit live-cell time-lapse confocal reflectance microscopy and
image correlation in both direct and reciprocal space to investigate the intracellular transport of branched gold nanostars
(GNSs). Different transport mechanisms, spanning from pure Brownian diffusion to (sub-)ballistic superdiffusion, are revealed
by temporal and spatio-temporal image correlation spectroscopy on the tens-of-seconds timescale. According to these findings,
combined with numerical simulations and with a Bayesian (hidden Markov model-based) analysis of single particle tracking data,
we ascribe the superdiffusive, subballistic behavior characterizing the GNSs dynamics to a two-state switching between Brow-
nian diffusion in the cytoplasm and molecular motor-mediated active transport. For the investigation of intermittent-type trans-
port phenomena, we derive an analytical theoretical framework for Fourier-space image correlation spectroscopy (kICS). At first,
we evaluate the influence of all the dynamic and kinetic parameters (the diffusion coefficient, the drift velocity, and the transition
rates between the diffusive and the active transport regimes) on simulated kICS correlation functions. Then we outline a protocol
for data analysis and employ it to derive whole-cell maps for each parameter underlying the GNSs intracellular dynamics.
Capable of identifying even simpler transport phenomena, whether purely diffusive or ballistic, our intermittent kICS approach
allows an exhaustive investigation of the dynamics of GNSs and biological macromolecules.
INTRODUCTION
The capability of converting the absorbed energy into heat
via nonradiative electron relaxation dynamics and of
inducing localized heating effects (1,2) makes gold nano-
particles (GNPs) widely employed for cancer cell photother-
mal treatments (3–5) or as nanocarriers that can thermally
release loaded molecules (6,7). GNPs of asymmetric shapes,
such as rods, stars, cages, and shells (8–10), are particularly
indicated for photothermal treatments because their major
plasmon resonance absorption band falls in the near-infrared
region of the electromagnetic spectrum (680–900 nm) and is
fine-tunable during the synthesis (1,11–14). This same ab-
sorption band also confers to asymmetric GNPs a large
luminescence signal upon two-photon excitation in the
infrared peak, thereby creating an intrinsic optical tool to
detect them in living systems (14–16). However, a two-
photon setup is not always available in most laboratories,
where a scanning confocal microscope exploiting visible
laser lines is usually present. Nanoparticles labeling with
fluorescent dyes can lead to the dye release in the cytoplasm
or in the acidic environment of lysosomes and endosomes,
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and may alter the NPs surface charge and aggregation state.
Alternative methods for the label-free detection of NPs in
living cells are therefore desirable.

Cells can uptake NPs by means of very different mecha-
nisms depending upon their size, charge, surface coating,
and shape (17–19). To develop nanodevices that can target
cell organelles or act on specific cell metabolic paths, it is
critical to know how the internalization process occurs
and how the GNPs behave once they are inside the cyto-
plasm. No unique model has been devised for the intracel-
lular transport of nanoparticles and, more in general, of
organelles, vesicles, and cargoes: experimental results re-
ported in the literature vary from Brownian motion
(20,21) to anomalous super- (21–23) and subdiffusion
(24,25), the latter usually being described with the aid of
approximate, effective models (24,26). While subdiffusion
is usually attributed to elastic trapping, obstructions, mesh-
worklike domains, and stalling (23), it is largely accepted
that superdiffusion is due to the collective action of dynein,
kinesin, and myosin molecular motors, responsible for the
intracellular active transport of cargoes along the semiflex-
ible oriented filaments of the cytoskeleton (27–31). The
overall mobility of these cargoes as they randomly bind
and unbind to motor proteins is a complex interplay of
free thermal diffusion in the cytoplasm and directed,
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ballistic displacements along actin filaments and microtu-
bules (32). Overall, due to the heterogeneity of the cyto-
plasmic environment and to the resulting variability of
intracellular transport mechanisms, it would be very useful
to derive a model-free analysis protocol capable of quantita-
tively characterizing the mode of motion without any prior
assumption on its Brownian or superdiffusive nature.

In this work, we employ live-cell confocal time-lapse im-
aging and the detection of the scattering signal of branched
gold nanostars (GNSs) to follow their dynamics upon inter-
nalization in cellular (endocytotic) vesicles. By the temporal
and spatial correlation of the acquired xyt stacks, we quan-
tify the characteristic timescale of the vesicles dynamics and
identify the presence of different transport processes span-
ning from pure to enhanced diffusion. We combine the
idea of intermittent dynamics usually exploited to model
search and target-finding processes (33,34) with the tradi-
tional formalism adopted for the description of chemical re-
actions in point fluorescence correlation spectroscopy (FCS)
(35,36), to propose an intermittent model to be applied
through k-space image correlation spectroscopy (kICS).
By involving the switch between a passive and an active
diffusional state, our model identifies the simplest stochastic
transport model that accurately describes the experimental
data and allows us to map the dynamic and kinetic parame-
ters governing the GNSs intracellular (active) transport. The
results are finally corroborated by a Bayesian analysis of
single particle tracking data providing a parallel estimate
of the equilibrium probabilities of the two states.
MATERIALS AND METHODS

Methods

Temporal image correlation spectroscopy

Temporal image correlation spectroscopy (TICS) (37,38) has been

conceived as the imaging analog of FCS (39,40). Given an xyt stack of

raster-scanned images, TICS relies on the computation, for each lag time

t, of the temporal autocorrelation function (ACF) as

GðtÞ ¼ hdIðx; y; tÞdIðx; y; t þ tÞit
hIðx; y; tÞi2t

: (1)

In Eq. 1 the intensity fluctuations are defined as dI(x,y,t) ¼ I(x,y,t) �
hI(x,y,t)it, where I(x,y,t) is the intensity recorded at image pixel position

(x,y) at time t and the angular brackets denote a temporal average over

the entire pixel time series. The subtraction of hI(x,y,t)it acts as an immobile

population removal.

For the simple case of 2D Brownian diffusion, sampled by a TEM00 laser

beam with Gaussian radial intensity profile, Eq. 1 can be analytically

derived (38,41), leading to a hyperbolic decay with characteristic relaxation

time td:

GðtÞ ¼ Gð0Þ
�
1þ t

td

��1

þ GN: (2)

For confocal detection schemes td ¼ u0
2/(4D), where u0 is the excitation

laser beam waist, D is the diffusion coefficient of the investigated objects
andGN is an offset accounting for the computation of the experimental cor-

relation function on a finite dataset (42,43). If diffusion is superimposed to a

drift with velocity v, the hyperbolic correlation function is modulated by an

exponential factor (41) decaying on a characteristic time tv ¼ u0/jvj:

GðtÞ ¼ Gð0Þ
�
1þ t

td

��1

� exp

"
�
�
t

tv

�2�
1þ t

td

��1
#
þ GN:

(3)

By linear combinations of Eqs. 2 and 3, the explicit expression of the tem-

poral ACF for multiple populations undergoing drift and/or Brownian diffu-

sion can be readily obtained (41). We remark that, due to the dependence of

Eq. 3 on the modulus jvj of the drift velocity, TICS is insensitive to the di-

rection in which the particles exit the correlation volume.

Spatio-temporal image correlation spectroscopy

Spatio-temporal image correlation spectroscopy (STICS) is particularly

useful when directed motions are present, due to its sensitivity to both

the modulus and the direction of the drift velocity, and has been previously

described for the investigation of simple transport phenomena (41,44,45).

Briefly, given an xyt stack of raster-scanned confocal images, a generalized

spatio-temporal correlation function (STCF) is defined, for a lag time t and

for spatial lag variables x and h, as

Gðx; h; tÞ ¼
*
hdiðx; y; tÞdiðx þ x; yþ h; t þ tÞix;y

hiðx; y; tÞix;yhiðx; y; t þ tÞix;y

+
t

; (4)

where i(x,y,t) defines a corrected pixel intensity, which is obtained by sub-

tracting to the detected value I(x,y,t) the average intensity hI(x,y,t)it of the
pixel time trace (to eliminate the contribution of the immobile population

(44), as in TICS) and by subsequently adding the average intensity of the

entire xyt stack (to avoid oscillatory, noisy correlation functions due to

spatially averaged image intensities close to zero (46)). Spatially averaged

corrected intensities of the entire xy images—or of the selected region of

interest (ROI) on which the STICS analysis is performed—at time t and

time tþt in the temporal series, appearing in the denominator of Eq. 4,

are exploited for the computation of corrected intensity fluctuations as

di(x,y,t) ¼ i(x,y,t) � hi(x,y,t)ix,y.
As for TICS, the analytical expression of Eq. 4 has been derived for the

simple case of Brownian diffusion and for diffusive motions coupled to

directional flow (47):

Gðx;h; tÞf 1

u2
0 þ 4D

�
xtp þ htl þ t

�
� exp

(
�
��xdx � vx

�
xtp þ htl þ t

� �� 2
u2

0 þ 4D
�
xtp þ htl þ t

� )

� exp

(
�
��hdx � vy

�
xtp þ htl þ t

� �� 2
u2

0 þ 4D
�
xtp þ htl þ t

� )
:

(5)

Here dx is the pixel size, and vx, vy are the x- and y components of the drift

velocity. The values tp and tl define the pixel dwell time and the line scan

time, respectively. Under our typical experimental conditions, xtp þ htl þ
t y t and, for a fixed lag time, Eq. 5 can be approximated by a 2D

Gaussian. The variance increases linearly with the lag time; D can therefore

be recovered either by surface fitting the experimental 2D correlation func-

tions to Eq. 5, or by the linear regression of the variance-versus-t plot. The

peak value is located at (xmax, hmax)dx ¼ (0,0) if (vx,vy) ¼ (0,0), whereas it
Biophysical Journal 109(11) 2246–2258
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shifts at (xmax, hmax)dxy (vxt, vyt) when jvjs 0; this allows us to measure

the x- and y components of the drift velocity by simply tracking the

Gaussian peak coordinates (xmax, hmax) as a function of t (41,44).

Image correlation for intermittent active transport: STICS and
kICS

Attempts have been made in deriving the analytical expression of Eqs. 1 and

4 for more complex transport phenomena, resulting from the binding/un-

binding of fluorescently labeled macromolecules to immobile cellular sub-

strates or to unlabeled diffusing receptors in the plasma membrane. In the

first case, the particle motion occurs intermittently, with phases of Brow-

nian diffusion alternating with periods of immobility. The theoretical

framework, which has been derived for point-FCS (48), can be readily

extended to the TICS analysis. The second case, where the overall transport

can be modeled by two diffusive states characterized by different diffusion

coefficients, has been treated (49) for kICS (50,51).

As suggested by our experimental results, we derive here the theoretical

framework—for both STICS and its k-space version kICS—for a third type

of intermittent transport that best describes the switching between phases of

thermal diffusion and phases of active transport mediated by molecular mo-

tors inside living cells. Previous derivations for particle image correlation

spectroscopy (52,53) require numerical data fitting. We find here, instead,

an analytical solution to the problem that can be readily employed for

experimental data analysis.

Hence we consider a particle freely diffusing in a 2D-dimensional space

(20,29) that randomly binds to molecular motor proteins. Under the simpli-

fying assumption of an effective unimolecular reaction (48) and by denot-

ing with k12 and k21 the association and dissociation rates, respectively, a

two-state system of the form

D/
)

k12

k21

Dþ v (6)

can be considered, where states (1) and (2) are identified by the mode of

motion exhibited by the particle (respectively, Brownian diffusion and
diffusive active transport with constant velocity v ¼ (vx,vy)). We do not

take into account possible changes in the diffusion coefficient D due to

the switching between states (1) and (2), to minimize the employed number

of model parameters. This assumption appears to be sufficient to describe

the experimental data (see Results and Discussion).

If we call dCi ¼ 1,2(r,t), the fluctuation in the local particle concentration

in state (i), the differential equations describing the two-state system above

can be written as (39)8>>>>><>>>>>:

v

vt
dC1ðr; tÞ ¼ DV2dC1ðr; tÞ � k12dC1ðr; tÞ þ k21dC2ðr; tÞ

v

vt
dC2ðr; tÞ ¼ DV2dC2ðr; tÞ � v , V ðdC2ðr; tÞÞ

�k21dC2ðr; tÞ þ k12dC1ðr; tÞ

:

(7)

The expressions in Eq. 7 are conveniently solved in Fourier space (54),

leading to the general solutions for dbC1 (k,t) and dbC2 (k,t) in terms of the

initial conditions dbC1 (k,0) and dbC2 (k,0). These are subsequently employed

in the derivation of the 2D spatio-temporal correlation function of Eq. 4.

The calculation, reported in detail in Note S1 of the Supporting Material,

yields

Gðx; h; tÞhGðD ; tÞf
Z

dkGðk; tÞexpð�ik ,DÞ; (8)

where the 2D vector D has been introduced to identify the spatial lags (x,h)

dx; the value G(k,t) is given by
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Gðk; tÞf�� bWðkÞ �� 2 1

k12 þ k21

1

lð1Þ � lð2Þ
�
Aexp

�
lð1Þt

	
þ Bexp

�
lð2Þt

	
 (9)

with8>>>>>><>>>>>>:
lð1Þ ¼ �2Djk j 2 � ðk12 þ k21Þ þ ik , vþ

ffiffiffiffi
L

p

2

lð2Þ ¼ �2Djk j 2 � ðk12 þ k21Þ þ ik , v�
ffiffiffiffi
L

p

2

L ¼ ðk12 þ k21Þ2 � jk , v j 2 þ 2ik , vðk12 � k21Þ

(10a)

and
8>>>>><>>>>>:

A ¼ k12k21 þ k12
�
lð1Þ þ j

�� k21
�
lð2Þ þ j

�
��

lð1Þ þ j
��
lð2Þ þ j

�
B ¼ �k12k21 � k12

�
lð2Þ þ j

�þ k21
�
lð1Þ þ j

�
þ�

lð1Þ þ j
��
lð2Þ þ j

�
j ¼ Djk j 2 þ k12:

(10b)

Here, bWðkÞ in Eq. 9 is the Fourier transform of the excitation beam profile,

that, for one photon excitation, we model as a 2D Gaussian with amplitude

W0 and e�2 radial beam waist u0 (55):

bW ðkÞ ¼ W0u
2
0

4
exp

(
� u2

0jk j 2
8

)
: (11)

Equations 8–11 provide the full STICS theoretical framework for the inves-

tigation of intermittent active transport. Although no analytical solution can
be provided for the integral in Eq. 8, all the dynamic and kinetic parameters

(D, v, k12, and k21) could in principle be recovered by a nonlinear least-

squares numerical fit in the complex field of experimental correlation

functions.

A convenient alternative, having the main advantage of not requiring the

numerical integration of Eq. 8, is offered by the Fourier-space version of

STICS, namely kICS (50,51). The kICS correlation function (hereafter

referred to as G(k,t)) can be computed as the Fourier transform of the

STICS correlation function G(D,t), or equivalently by the spatio-temporal

correlation of the Fourier transform of the experimental xyt stack employed

for the TICS and STICS analyses. Because Eq. 8 relates the spatio-temporal

correlation functions in the direct and reciprocal spaces, the kICS

formalism is directly provided by Eqs. 9–11. We note that G(k,t) is defined

in the complex space, but the analytical separation of its real and imaginary

parts is prevented.

In the limit k12/þN and k21/0, Eq. 9 reduces (see the Supporting Ma-

terial) to the simpler expression

Gðk; tÞ ¼ �� bW ðkÞ �� 2exp�� Djk j 2t þ ik , vt
�
; (12)

which, in agreement with the literature (49,50), describes the case of Brow-

nian diffusion and uniform drift v.
In the Supporting Material, the derivation of the kICS correlation func-

tion is also extended to the more general case of intermittent 3D active

transport, though no analytical solution can be derived.

Single particle tracking

An alternative method to analyze intracellular transport is single particle

tracking (SPT) (56–58). This well-established technique is based on the

computation of the trajectory, i.e., the sequence of positions r(tj) at times
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tj¼1...N, of individual (fluorescent or scattering) mobile particles imaged in

time-lapse mode.

Mean-square displacement analysis. The particle coordinates (x(tj),

y(tj)) ¼ r(tj), determined with ~10 nm accuracy by centroid calculations

(56,59), are typically exploited in the computation of the mean-square

displacement (56,60,61) MSD(nDt), where nDt is an integer multiple of

the temporal separation Dt between consecutively sampled points in the tra-

jectory. In Eq. 13, we report the MSD explicit expressions for the three

transport phenomena we have considered in the previous paragraphs: 1)

Brownian diffusion, which results in a linear MSD-versus-t plot (56–62);

2) the coupling of thermal diffusion and uniform drift, which endows the

MSD plot with positive curvature (56–62); and 3) the intermittent active

transport described by Eq. 6, for which the MSD depends on the diffusion

coefficient and the drift velocity as well as on the jump rates between the

two states.8>>>>>>>><>>>>>>>>:

ðiÞMSDðtÞ ¼ 4Dt

ðiiÞMSDðtÞ ¼ 4Dt þ jv j 2t2

ðiiiÞMSDðtÞ ¼ 4Dt þ jv j 2efft2 þ 2trel
k21
k12

jv j 2eff

� �
t � trel

�
1� e�t=trel

�	
(13)
We derived Eq. 13(iii) by extending the treatment reported in Berezhkovskii

and Bezrukov (63) to a 2D motion in the xy plane. trel ¼ (k12þk21)
�1 is the
system relaxation time and jvjeff ¼ jvjk12/(k12 þ k21) is an effective drift

speed weighted for the equilibrium probability p2
eq of finding the particle

in state (ii), defined as

peq2 ¼ k12=ðk12 þ k21Þ;
peq1 ¼ 1� peq2 ¼ k21=ðk12 þ k21Þ: (14)
Experimentally, a constant term is usually added to the expressions in

Eq. 13(i–iii) to account for the uncertainty on the particle localization
(62,64).

Bayesian-based analysis of single particle tracks. A second promising

approach for the analysis of SPT data has been proposed recently, involving

the application of hidden Markov models to the particle tracking analysis

(65–67). Each trajectory is regarded as the outcome of an m-state Markov

chain, with the ith state, i ¼ 1...m, parameterized by a diffusion coefficient

Di and a drift velocity vi. At each time point tj ¼ 1...N, the particle state deter-

mines the length and direction of the next displacement Dr(tjþ1) ¼ r(tjþ1)�
r(tj): therefore, although theN-step state sequence s underlying the trajectory

(and hence the exact state the particle occupies at time tj) is unknown (hid-

den), the experimental measurement of all the particle displacements as-

signed by s allows inferring information on the sequence s itself, as well as

on the diffusion coefficients and drift velocities of the constituent states

and on the rates of transition between them. To this aimwe adopted the likeli-

hood maximization strategy summarized in the following.

Let q ¼ {Di ¼ 1...m,vi ¼ 1...m,pi,j ¼ 1...m} be the set of unknown parameters

for a d-dimensional trajectory described by anm-stateMarkov chain. Ford¼
2 (2D tracking experiment) and m ¼ 2 (as in Eq. 6), the transition probabil-

ities pi,j¼1,2 per time step (Dt) are related to the rate constants k12 and k21 by8>>>>>>>>><>>>>>>>>>:

p12 ¼ k12
k12 þ k21

f1� exp½ � ðk12 þ k21ÞDt�g

p21 ¼ k21
k12 þ k21

f1� exp½ � ðk12 þ k21ÞDt�g

p11 ¼ 1� p12

p22 ¼ 1� p21:

(15)
The set of independent parameters reduces in this case toq¼ {Di¼ 1,2,j vi¼ 1,2j,
ai ¼ 1,2, p12, p21}, where ai is the angle defining the x- and y components

of the drift velocity vector vi (vxi ¼ jvijcos(ai), vyi ¼ jvijsin(ai)). According
to Bayes’ theorem, assuming a uniform prior probability p(q) and marginal-

izing the likelihood over all possible hidden state sequences s, the likelihood

of a parameters set qgiven an experimental trajectory r(tj¼1...N) can bewritten

as

‘ðqjrðt1Þ; rðt2Þ;.; rðtNÞÞfpðrðt1Þ; rðt2Þ;.; rðtNÞjqÞ
¼ P

pðrðt1Þ; rðt2Þ;.; rðtNÞjs; qÞpðsjqÞ: (16)

The summation over state sequences can be performed efficiently by the

forward-backward algorithm (65,68). It allows computing the logarithm

of the right-hand side of Eq. 16, leading to

ln½‘ðqjrðt1Þ; rðt2Þ;.; rðtnÞÞ�fln
�
ef1ðNÞ þ ef2ðNÞ�; (17)

where the f-terms are defined recursively according to8><>:
fiðjÞ ¼ ln

�
ef1ðj�1Þþlogðp1iÞ þ ef2ðj�1Þþlogðp2iÞ�

þln
�
‘
�
Di; jvi j ;ai

��Dr �tj��	
fið1Þ ¼ lnðpeqi Þ þ ln½‘ðDi; jvi j ;aijDr ðt1ÞÞ�:

�
i ¼ 1; 2
j ¼ 2.N

(18)

Equilibrium probabilities in Eq. 18 obey the previous definition (Eq. 14),

while ‘ (Di, jvij, aijDr(tj))—the likelihood of the dynamic parameters Di,

jvij, ai given the individual displacement Dr(tj)—is computed (and inserted

into Eq. 18) from Bayes’ rule: it is proportional to the normal distribution

with variance 4DiDt and mean viDt defining the probability density of

observing a displacement Dr(tj) in a time interval Dt ¼ tj�tj�1 given that

the particle is in state (i) at time tj (56,69). Hence,8>>>>>>>>><>>>>>>>>>:

‘
�
Di; jvi j ;ai

��Dr �tj��h‘
�
Di; vi

��Dr �tj��fP
�
Dr

�
tj
�jDi; vi

�
P
�
Dr

�
tj
�jDi; vi

� ¼ 1

4pDiDt
exp

(
�
��Dr �tj�� viDt

�� 2
4DiDt

)

¼ 1

4pDiDt
exp

(
�
��Dx�tj��vxiDt

�� 2þ��Dy�tj��vyiDt
�� 2

4DiDt

)
:

(19)

The log-likelihood computed through Eqs. 17–19 must then be maximized

with respect to q to retrieve the most probable set of model parameters,

hereafter referred to as Q:

Q ¼ argmax
q

fln½P pðrðt1Þ; rðt2Þ;.; rðtNÞjs; qÞpðsjqÞ�g
¼ argmax

q

�
ln
�
ef1ðNÞ þ ef2ðNÞ

�

:

(20)

We perform this maximization by a Markov chain Monte Carlo (MCMC)

(70) algorithm, as described in Note S2 in the Supporting Material.
Materials

Gold nanostars synthesis

GNSs have been synthesized by a LSB (laurylsulphobetaine)-driven seed-

mediated growth as described elsewhere (13,71) ([LSB] ¼ 0.35 M). As
Biophysical Journal 109(11) 2246–2258
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derived from transmission electron microscopy images, the GNSs have

average branch sizes of (535 12) nm and (95 2) nm, yielding a plasmonic

absorption band centered at 780 nm. The diffusion coefficient of GNSs in

the cell-culture medium has been measured by raster image correlation

spectroscopy (46,72) as D ¼ (2.1 5 0.2) mm2/s (data not shown), corre-

sponding to a hydrodynamic radius of (106 5 10) nm and to an average

aggregation number of ~3 units.

Cell culture

HeLa cells have been cultured in complete DMEM, 10% FBS at 37�C with

5% CO2 and have been routinely split 1:10 in culture dishes when at ~80%

confluence. The cells have been incubated for 4 h at 37�C up to a final GNSs

concentration of 25 mg/mL, which has been proven by previous cell

viability tests (14) to be noncytotoxic to cells up to 24 h. For the incubation

process, no FBS has been added.

Confocal reflectance microscopy and image correlation
spectroscopy

All the xyt stacks have been acquired with a model No. SP5 TCS confocal

microscope (Leica Microsystems, Wetzlar, Germany). The GNSs scattering

signal has been primed by the 488 nm line of an Argon ion laser (P ¼
20 mW) and has been collected in back-scattering geometry by a 40�
Plan-Apochromat oil immersion objective (N.A. ¼ 1.3, q ¼ 60�); a photo-
multiplier tube has been employed for the signal detection.

Raster-scanned scattered- and transmitted-light images have been ac-

quired simultaneously and the superposition of the first and last frames of

both xyt stacks has been exploited to exclude the loss of the z-focal plane

positioning and the occurrence of whole-cell displacements throughout the

acquisition. The microscope stage drift has been evaluated by STICS ana-

lyses on immobile 0.1-mm fluorescent spheres: no displacement (less than

a pixel) has been detected in the STCF peak under the same imaging condi-

tions adopted for the investigation of the GNSs dynamics (data not shown).

Images have been acquired at a 400-Hz line-scan frequency continuously

up to 500 frames, on 30–40mmfields of view.With a 1024� 1024 resolution,

image acquisition timewas 2.5 s and the pixel sizewas 0.03–0.04mm.For the

TICS analysis only, pixels have been rebinned to a final size comparable to

the optical PSF (0.2 mm). All the correlation functions have been computed

by a custom-written Python code exploiting fast Fourier transform routines,

whereas nonlinear curve fitting has been performed by the Origin Pro 8.6

software (OriginLab, Northampton, MA). The zero-lag correlation values

have always been excluded from the fitting procedure.

SPT data analysis

SPT has been performed on the same xyt stacks analyzed by TICS, STICS,

and kICS. The tracking software Imaris (Bitplane, Zurich, Switzerland) has

been employed to compute the particle trajectories, which have been

analyzed by a custom-written Python code.
RESULTS AND DISCUSSION

Time-lapse confocal reflectance imaging (73) has been per-
formed on GNSs-treated and untreated cells for comparison:
in agreement with two-photon excitation experiments, scat-
tered-light images reveal that GNSs are internalized within
vesicles (Fig. S1 in the Supporting Material) comparable to
or larger than the optical PSF. Their typical diameter of
260 5 35 nm has been determined by Gaussian fits of the
radial intensity profiles on 20 objects.

The light-scattering signal fluctuations are here mainly
due to vesicles motions (number fluctuations) whereas
coherence effects due to phase fluctuations appear to be
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negligible. The phase factor of a single sphere (R ¼
300 nm) has been simulated and compared (Fig. S2) to
the phase factor of an aggregate made by three smaller
spheres (R ¼ 100 nm equal to the nanoparticles hydrody-
namic radius). The two phase factors are very similar for
the range of collection angles of our objective (120–240�).
Moreover, raster image correlation spectroscopy measure-
ments performed on zoomed intracellular regions so as to
increase the time resolution (1 ms/line, 2 ms/pixel) do not
reveal any decay in the autocorrelation function, thus
excluding subvesicle motions (74) (data not shown).
TICS analysis

The TICS analysis has been performed by computing in
each pixel of the 256 � 256 rebinned images the autocorre-
lation function of Eq. 1. To avoid the ACF computation in
pixels containing the only contribution of background scat-
tering, we applied a threshold (a high-pass filter) on the
time-averaged pixel intensities hI(x,y,t)it. A fast visualiza-
tion of the typical timescale of the transport processes pro-
ducing scattering fluctuations has been obtained by storing
and color-coding, for each pixel, the lag-time where the
normalized ACF halves. Large differences are found be-
tween treated and untreated cells (Fig. 1, a and b): long
time decays occur in the cytoplasm around the cell nucleus
for treated cells (Fig. 1 a), whereas shorter times are system-
atically found for untreated cells (Fig. 1 b). The difference is
evident from the histograms of the characteristic half-height
decay times, plotted in Fig. 1 c.

Typical experimental ACFs are shown in Fig. 1 d, exem-
plifying the three processes occurring in GNSs-treated cells.
The first is a purely diffusive ACF that can be fit to Eq. 2.
The typical decay times of diffusive-like ACFs range from
10 to 50 s, yielding diffusion coefficients in the range
(2–5)� 10�4 mm2/s. The diffusion coefficient is 104 smaller
than that of the same GNSs in solution, consistently with the
GNSs uptake by large vesicles (21). The second kind of
ACF is well fit by a diffusion-plus-drift model (Eq. 3).
Typical drift speed values ~10�2–10�3 mm/s are found,
comparable to those reported in a variety of studies of inter-
nalization of anticancer drugs (75), lipoplexes (76), poly-
plexes (77), and lipid/DNA nanoparticles (52). The third
kind of ACF time behavior cannot be fitted by either of
the previous models. Even a fractional a-exponent in the
temporal dependence of the diffusive ACF decay, which is
usually introduced to account for anomalous subdiffusion
(26), does not lead to a satisfactory fit of the data. The
more refined analysis performed by spatio-temporal correla-
tion (shown in the next section) is required.
STICS analysis

The acquired xyt stacks can also be analyzed by means of
the STICS formalism. The 1024 � 1024 images of the



FIGURE 1 TICS analysis. (a and b) Whole-cell

maps of the TICS correlation half-height decay

time obtained in GNSs-treated (a) and untreated

(b) HeLa cells; the decay times are color-coded

in seconds. The same intensity threshold of 100

a.u. has been applied for the analysis of both xyt

stacks. In the case of untreated cells, the map has

been built from the cellular (vesicles, organelles)

background scattering fluctuations. Scale bar ¼
10 mm in both (a) and (b). (c) Histogram of the cor-

relation half-height decay times recovered from the

TICS maps of (a) (open) and (b, solid). Each histo-

gram has been normalized to the corresponding to-

tal number of counts (excluding the pixels with a

time-averaged intensity lower than the applied

threshold, shown in white in a and b). (d) Exempli-

fying ACFs recovered on separate 16 � 16 ROIs

(2.2 � 2.2 mm) on the xyt stack analyzed in (a)

curve 1, fit to Eq. 2 with D ¼ (3.6 5 0.1) �
10�4 mm2/s; and curve 2, fit to Eq. 3 with D ¼
(2.21 5 0.04) � 10�4 mm2/s and jvj ¼ (3.6 �
0.1) � 10�3 mm/s. Experimental ACFs turn nega-

tive at large lag-times and deviate from the theoret-

ical ACF defined in the limit T/þN due to the

finite data acquisition and integration time T (T ¼ 1200 s, to be compared with the ~50s typical correlation decay time). For curve 3, the best fit to Eq. 3

is shown, evidencing that the ACF cannot be satisfactorily fit by either a diffusion-plus-drift or purely diffusive model. To see this figure in color, go online.
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selected cells have been divided in 64 � 64 (2.2 � 2.2 mm)
ROIs, the STICS correlation function has been computed on
each one according to Eq. 4 and whole-cell maps of the
GNSs dynamics have been built from the temporal displace-
ment of the STCFs peak. When more details are required by
the particular process examined, a finer grid can be also
adopted (78) by a 32 pixels’ shift of 64� 64 ROIs (resulting
in a four-times increment of the ROIs examined, here per-
formed on the upper-left quarter of Fig. 2 a).

A typical STICS result is exemplified in Fig. 2 a for the
same cell analyzed by TICS (Fig. 1). Regions of diffusive
motions are found (circles) together with regions where ves-
icles exhibit both diffusion and drift (arrows) and regions
where an anomalous behavior of the STCF is recovered
(squares). In the four-panel groups of the figure, for the
same ROIs already discussed in the TICS analysis (Fig. 1
d), STCFs are reported at three different time delays and
the x- and h-coordinates of the STCF peak (xmax, hmax)dx
are plotted versus time. In Fig. 2, b–e, the peak of the
STCF remains located at the origin of the axes, becoming
broader at later times as expected for the diffusive case.
Fig. 2, f–i, shows the case of a diffusive-plus-drift motion,
where the STCF peak coordinates vary linearly with the
time delay, allowing the estimate of the modulus and direc-
tion of the drift velocity. The direction of the arrows repre-
senting the recovered drift velocities in Fig. 2 a, indicates
that there is not a preferential flux, suggesting that although
described by a drift model, the motion of the GNSs collected
in large vesicles can be related to transport events in the
cytoplasm or along the randomly oriented F-actin filaments.
An example of an anomalous behavior is shown in Fig. 2,
j–m: the peak of the STCF broadens in an asymmetric
fashion for increasing lag time values and its position varies
nonlinearly with the lag time. A large fraction (40%) of the
ROIs shows this behavior. These results do not depend crit-
ically on the size of the ROI on which STICS is performed.

To have a more direct insight of the origin of the anoma-
lous, nonlinear trend of the (xmax, hmax)dx-versus-t plot, we
have adopted two approaches: 1) we have performed single
particle tracking on selected objects within the cell, and in-
spected the MSD-versus-t plot; and 2) we have run numer-
ical simulations to test whether the STCFs obtained starting
from assumed models of intracellular transport match the
experimental findings.
SPT analysis

SPT has been performed on selected objects providing the
trajectory coordinates in the focal plane. As already found
by image correlation analyses (TICS and STICS), the exper-
imental MSD curves (examples in Fig. 3 a) suggest the exis-
tence of different classes of trajectories. MSD 1 reveals a
purely diffusive motion (fit to Eq. 13(i)); MSD 2 requires
the coupling Brownian diffusion-plus-drift motion (fit to
Eq. 13(ii)); andMSD 3 cannot be fitted by the previous equa-
tions, and suggests superdiffusive, subballistic dynamics.

Enhanced diffusion models are found in the literature
leading to a t3/2 power law for the MSD. The 3/2-power
dependence has been empirically treated by the introduction
of a time-dependent friction coefficient in the generalized
Langevin equation (79). An alternative theoretical treatment
has been proposed considering motions in a random velocity
field (80), which models the effect of the diffusive motion in
between two drift (ballistic) events and can be used to model
Biophysical Journal 109(11) 2246–2258



FIGURE 2 STICS analysis. (a) STICS map recovered on the same cell analyzed by TICS in Fig. 1, a and d, classifying the scattering vesicles dynamics in

each ROI as purely diffusive (circles), diffusive with a drift component (arrows, defining the velocity direction and coded according to the speed jvj), and
anomalous (squares); the classification is based on the (xmax,hmax)dx-versus-t plot as described in the text. Two-hundred frames of the raw xyt stack have been

employed for the computation of the STCFs. Scale bar¼ 10 mm. (b–d) Contour plots of the STICS correlation functionG(x,h,t) at fixed lag times (t¼ 0 in b,

25 s in c, and 35 s in d) for the ROI identified as 1 in (a); the calibration bars code for the correlation amplitude. (e) (xmax,hmax)dx-versus-t plot for ROI 1

in (a). (f–h and j–l) Contour plots of the STICS correlation function G(x,h,t) at fixed lag times (t ¼ 0 s in f and j, 50 s in g and k, 75 s in h and l) for ROIs

2 (f–h) and 3 (j–l). (i andm) (xmax,hmax)dx-versus-t plot for ROIs 2 (i) and 3 (m). For ROI 2, the (xmax,hmax) coordinates allow to recover vx¼ (1.205 0.02)�
10�3 mm/s and vy ¼ (1.96 5 0.03) � 10�3 mm/s as best-fit parameters. For (e), (i), and (m), the experimental uncertainty on the STCF peak coordinates is

equal to one-half the pixel size. To see this figure in color, go online.
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superdiffusion within an intricate network of active fila-
ments (81). However, this model does not lead to an inte-
grable expression to be used in the STICS derivation of
the correlation function. The same reasoning applies to the
Lévy-walks model (82–85), which is used in the literature
to describe enhanced diffusion but lacks to give a finite sec-
ond moment of the diffusion propagator (probability density
of finding a particle at a given distance from the origin at a
certain lag time). Again this model leads to a formalism that
is not analytically transferable to the STICS framework.

Hypothesizing that cytoskeleton-based transport is
responsible for the enhanced diffusion revealed by STICS
and SPT data analysis, we have chosen to ascribe the exper-
imental superdiffusive MSD to a sequence of jumps be-
tween a purely diffusive Brownian motion regime (passive
transport) to an active transport regime (Eq. 6). The advan-
Biophysical Journal 109(11) 2246–2258
tage of this model is that it stems from derivable and phys-
ically meaningful parameters: namely, the diffusion
coefficient, the drift velocity, and the transition rates be-
tween the passive and the active state. In agreement with
this model, the MSD can be fitted to Eq. 13(iii), although
up to four parameters are needed. The two rates k12 and
k21 describing the intermittent diffusion are especially diffi-
cult to extract from the fit of individual MSDs due to the
complex multiparameter dependence of the fit function.

A more reliable estimate of all the parameters of the inter-
mittent Brownian diffusion-drift model can be obtained by
implementing the Bayesian-based maximum-likelihood
analysis described in the Materials and Methods. Fig. 3,
c–h, shows the outcome of the MCMC algorithm on an
exemplary trajectory (Fig. 3 b) exhibiting intermittency be-
tween diffusion and active transport. In Fig. 3 c, the



FIGURE 3 MSD-based and Bayesian analysis of single particle tracking data. (a) MSD-versus-t for three trajectories recovered by SPT within the same

cell analyzed in Figs. 1 and 2. At each lag time t, the MSD is reported as mean5 standard deviation over the whole trajectory length; error bars are within the

size of data points. Curve 1, fit to Eq. 13(i), with D ¼ (3.87 5 0.05) � 10�5 mm2/s, curve 2 fit to Eq.13(ii), with D ¼ (8.9 5 0.3) � 10�5 mm2/s and jvj ¼
(2.26 5 0.04) � 10�3 mm/s; curve 3 reveals intermittent active transport (fit to Eq. 13(iii) with D ¼ (1.4 5 0.1) � 10�3 mm2/s, jvjeff ¼ (1.12 5 0.04) �
10�2 mm/s, trel ¼ (85 3)s and k21/k12 ¼ 2.15 0.5). (b) SPT trajectory exhibiting intermittency between diffusion and active transport. The Bayesian-based

MCMC analysis has been performed separately on segments (i–iii): results in (c–h) refer to portion (i), while results for portions (ii) and (iii) are reported in

Fig. S4. (c) Log-likelihood as a function of the MCMC iteration step for five independent runs. (Inset) Log-scale, used to magnify the code convergence to the

same likelihood global maximum. (d–h) Histograms of the parameter values explored during the log-likelihood maximization after the initial convergence

steps. Data refer to D, jvj, a, p12, and p21 (d–h, respectively). The mean values recovered by the Gaussian fits identify the most probable parameter set Q ¼
{D ¼ (6.1 5 0.6) � 10�5 mm2/s, jvj ¼ (1.2 5 0.4) � 10�2 mm/s, a ¼ (241 5 12)�, p12 ¼ 0.04 5 0.03, and p21 ¼ 0.18 5 0.09} given the experimental

trajectory (peq1 ¼ 0.8 5 0.1). (In the inset of each panel, the value proposed for the corresponding parameter as a function of the maximum-likelihood iter-

ation is reported.)
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log-likelihood is plotted as a function of the iteration step
for five separate MCMC runs on the same intermittent-
type trajectory, evidencing the convergence to the likelihood
global maximum. Similarly, the trend of the model parame-
ters is reported in the insets of Fig. 3, d–h, together with the
corresponding histograms obtained once the maximum like-
lihood code has reached convergence. We remark that the
histograms are not to be intended as a distribution of values
at the different time steps of the trajectory, being instead the
values recovered at each step of the MCMC code for the
whole trajectory. The results strongly support that an inter-
mittent model can be adopted to describe the GNSs experi-
mental intracellular trajectories. The same model also
includes the single-state full diffusive (p12 ¼ 0) or diffu-
sive-plus-drift (p21 ¼ 0) limit behaviors, as shown in
Fig. S3, where the MCMC analysis for a purely diffusive
trajectory is reported for comparison.
Numerical simulations

Numerical simulations (Note S3 in the Supporting Material)
have been employed to assess whether the t-dependence of
the peak coordinates of the STICS correlation functions
agrees with the specific assumed transport models. At first,
a Monte Carlo simulation with increasing number of objects
in the ROI has been performed to test whether the presence
of particles exhibiting uniform drift along different direc-
tions could lead to the anomalous behavior of the peak po-
sition graphs. As shown in Fig. S5, the peak position
displacement resembles the one found experimentally,
though the MSD remains quadratic versus the lag time as
expected in the case of Brownian diffusion-plus-drift. The
MSD derived on experimental data, which often deviates
from this quadratic dependence, allows therefore excluding
the presence of multiple drift velocity directions as the
reason of the nonlinear (xmax, hmax)dx-versus-t-plot. Nu-
merical simulations have then been performed according
to the intermittent model (Eq. 6): in this case, both the
experimental MSDs and the recovered SPT trajectories
(Fig. 3) are reproduced by simulations. The intermittent
active transport model also reproduces the nonlinear (xmax,
hmax)dx-versus-t-plots (Fig. S6).
kICS analysis

SPT analysis with maximum likelihood fitting provides
direct insight in what we believe is an appropriate effective
dynamic model. However, it is time-consuming, it requires
the identification of individual objects inside the cell pre-
venting a ROI-by-ROI analysis, and it depends on the
signal/noise. It would be desirable to have a straightforward
approach to be applied to the raw images as in STICS.

As shown in the Materials and Methods, the formalism of
a two-state intermittent model cannot be used to derive an
analytical expression of the STCF in the (x,t)-space. By
contrast, an analytical expression of the STCF, G(k,t), can
be achieved by operating in the Fourier k-space, thereby ex-
ploiting the kICS analysis of Eqs. 9–11.
Biophysical Journal 109(11) 2246–2258
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kICS simulations

G(k,t) is effectively a time-series in the complex field, with

each frame being the average 2D spatial correlation of the

Fourier transforms of pairs of images that are a lag-time-t
apart in the experimental dataset. Two choices are possible

for data fitting: either analyzing the G(k,t)-versus-t-profiles

at fixed k delays, or fitting the G(k,t)-versus-k surfaces at

fixed lag time t. To assess which option gives the better es-
timate of the parameters (diffusion coefficientD, drift veloc-

ity v, association/dissociation rates k12 and k21), we

separately investigated the effect of D, v, and k12, k21
(through the two-state system probabilities p12 and p21) on
simulated kICS correlation functions in both representa-

tions, as shown in Fig. 4.
Re(G(t)) and Im(G(t)) are reported as functions of the lag

time t for fixed k ¼ (kx,ky) ¼ (�2,0)mm�1 with D ¼ 2 �
10�4 mm2/s, jvj ¼ 0.08 mm/s (Fig. 4, a and b) and jvj ¼
0.001 mm/s (Fig. 4, c and d) with an arbitrary direction

(a ¼ 290�) for the velocity vector. Several probability com-

binations have been explored: 1) p12 ¼ 0.05 and p21 ¼ 0.05,
0.4, 0.8; and 2) p12 ¼ 0.5 and p21 ¼ 0.05, 0.2, 0.4 (all the

combinations are plotted on each panel with the color-

code detailed in the figure caption and different line proper-

ties for sake of clarity). These p12 and p21 values correspond
Biophysical Journal 109(11) 2246–2258
to an equilibrium probability for the active transport state

p2
eq (Eq. 14) varying in the range 0.06–0.9. The kICS corre-

lation functions, simulated for all possible intermittent
transport modes ranging from nearly diffusive to almost
totally active, are significantly sensitive to the p12 and p21
values, especially at high drift speeds (Fig. 4, a–d). The
diffusion coefficient also affects the kICS profiles simulated
in Fig. 4, e and f, with D in the range 2 � 10�5 – 2 � 10�3

mm2/s, k ¼ (�2,0)mm�1, jvj ¼ 0.001 mm/s, a ¼ 290�, p12 ¼
0.05, and p21 ¼ 0.4.

Although the imaginary part of G(t) shows the greater
sensitivity to differences in the probability values, we eval-
uated the possibility of fitting the ratio Im(G(t))/Re(G(t))
(representing the tangent of the phase of G(t)) in order
not to discard the contribution of the real part. However,
this function does not guarantee the necessary stability, ex-
hibiting the periodic divergence of a tangent function
(Fig. S7). On the other hand, the modulus of G(t), being al-
ways positive, flattens the behavior of the curves becoming
less sensitive to the parameters (Fig. S7). A good compro-
mise is represented by the product Re(G(t)),Im(G(t)),
which is related (apart from a factor 2i) to the double prod-
uct obtained by squaring G(t). As can be seen in Fig. 4, g
and h, this function depends sensibly upon the transition
rates of the intermittent model.
FIGURE 4 Simulated kICS correlation func-

tions. (a and b) Simulated Re(G(t)) (in a) and

Im(G(t)) (in b) profiles for fixed k ¼
(�2,0) mm�1, D ¼ 2 � 10�4 mm2/s, and

jvj ¼ 0.08 mm/s; p12 ¼ 0.05 for blue curves

(p21 ¼ 0.05, crosses; 0.4, squares; 0.8, dashed-

dotted), and p12 ¼ 0.5 for red curves (p21 ¼ 0.05,

crosses; 0.2, dashed; 0.4, solid). (c and d) Same

simulation parameters and color-code of (a) and

(b) apart from jvj ¼ 0.001 mm/s. (e and f) Simulated

Re(G(t)) (in e) and Im(G(t)) (in f) profiles for D ¼
2 � 10�5, 8 � 10�5, 2 � 10�4, 8 � 10�4, and 2 �
10�3 mm2/s (increasing in the direction of the ar-

row), jvj ¼ 0.001 mm/s, k ¼ (�2,0)mm�1, p12 ¼
0.05, and p21 ¼ 0.4. (g) Re(G(t)),Im(G(t)) profiles
simulated with the same parameters and color-code

of (a) and (b). (h) Re(G(t)),Im(G(t)) profiles simu-

lated with the same parameters and color-code of

(c) and (d). (i and j) Product of the real and imag-

inary parts of the G(k) surface simulated for t ¼
25 s, D ¼ 2 � 10�4 mm2/s, jvj ¼ 0.08 mm/s;

{p12 ¼ 0.5, p21 ¼ 0.05} in (i), {p12 ¼ 0.05, p21 ¼
0.8} in (j). (k and l) Product of the real and imagi-

nary parts of the G(k) surface simulated for t ¼
25 s, D ¼ 2 � 10�4 mm2/s, jvj ¼ 0.001 mm/s;

{p12 ¼ 0.5, p21 ¼ 0.05} in (k), {p12 ¼ 0.05,

p21 ¼ 0.8} in (l). All the simulations have been

run on a Python code, which computes the kICS

correlation function profiles in the complex field

through Eqs. 9–11. The e�2 radius of the excitation

laser beam and the angle defining the direction of

the velocity vector have been kept fixed to u0 ¼
0.2 mm and a ¼ 290� for all the simulations. To

see this figure in color, go online.



FIGURE 5 kICS analysis. The parameters p2
eq (a), D (b), and jvj (c)

coded maps obtained by kICS on the same cell analyzed in Figs. 1 and 2.

Scale bar ¼ 10 mm. D and jvj are coded in mm2/s and mm/s, respectively.

In the upper-left quarter of (a)–(c), a 32-pixels shift has been adopted to in-

crease the detail in parameters recovery. (d) Exemplifying Re(G(t)),
Im(G(t)) profiles for ROI 2 (kx ¼ 0, ky ¼ �8.9 mm�1; right axis, squares)

and ROI 3 (kx ¼ 0, ky ¼ �11.8 mm�1; left axis, diamonds). Best fit param-

eters are D ¼ (3.15 0.3)� 10�4 mm2/s, jvj ¼ (2.475 0.03)� 10�3 mm/s,

a ¼ (59 5 1)� for ROI 2 (fit to Eq. 12); for ROI 3 (fit to Eqs. 9–11), D ¼
(7 5 4) � 10�5 mm2/s, jvj ¼ (6.1 5 0.1) � 10�3 mm/s, a ¼ (295 5 2)�,
k12 ¼ (0.007 5 0.004)s�1, and k21 ¼ (0.013 5 0.004)s�1. The Re(G(t))

plot is shown for ROI 1 (kx ¼�11.8 mm�1, ky ¼�17.7 mm�1; left axis, cir-

cles), fitted to Eq. 12 with jvj ¼ 0 and D¼ (3.55 0.4)� 10�4 mm2/s. Error

bars are within the size of data points. To see this figure in color, go online.
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Re(G(k)),Im(G(k))-versus-k surfaces simulated at fixed
lag time (t ¼ 25 s) are reported in Fig. 4 with D ¼ 2 �
10�4 mm2/s, a ¼ 290�, jvj ¼ 0.08 mm/s (Fig. 4, i and j),
and jvj ¼ 0.001 mm/s (Fig. 4, k and l) for the two extreme
values of the p12 and p21 probabilities combinations previ-
ously employed {p12 ¼ 0.05, p21 ¼ 0.8} and {p12 ¼ 0.5,
p21 ¼ 0.05}). A large difference in the surfaces, leading to
a reliable recovery of the probabilities from the G(k,t)-
versus-k 2D surfaces, is obtained for the highest value of
the drift velocity, whereas at the lower, the surfaces become
more and more insensitive to the probability values (Fig. 4, k
and l).

Fig. 4, i–l, also reveals that Re(G(k)),Im(G(k)) surfaces
decorrelate, for our typical D and jvj values, in the
~0–10 mm�1 k-range. When a confocal xyt stack is Four-
ier-transformed, the pixel size and the ROI size (51) deter-
mine the obtained k vectors. Therefore, an adequate
sampling of ~0–10 mm�1 reciprocal-space vectors starting
from a 64 � 64 ROI would require a pixel size of
~0.2 mm. This coarse spatial sampling required by G(k,t)-
versus-k surfaces could be obtained on the same experi-
mental dataset analyzed by STICS by pixel rebinning, at
the expense of the number of pixels on which the correlation
function is averaged. Alternatively the ROI size can be
increased, thereby lowering the number of ROIs into which
the cell is divided.

By contrast, even a single k vector can be exploited to
extract the corresponding G(k,t)-versus-t plot, with the
same temporal sampling suitable for STICS. No particular
k vector has been identified as optimal to this aim. Fig. S8
shows an Re(G(k)),Im(G(k)) surface with several k vectors
chosen for the extraction of the corresponding G(t) profiles.
Apart from amplitude variations, no profile appears
preferred. An advantage of G(k,t)-versus-k surfaces is that
they allow the immediate detection of the drift direction,
which is orthogonal to the displacement between the posi-
tive and the negative lobes (Figs. 4, i–l, and S8).

From the above considerations and taking into account
the computationally heavier effort in performing surface
fitting of a complex function, we suggest to fit the experi-
mental G(k,t)-versus-t plots due to the higher sensitivity to-
ward p12 and p21 probabilities and the less strict
requirements concerning spatial sampling. To increase the
precision in the parameters recovery and to decrease the
eventual cross correlation among the parameters in the fit,
it is convenient to perform a global fit over several G(k,t)-
versus-t at different k values.

kICS data fitting

Once investigated the effect of D, jvj, p12, and p21 on the
kICS correlation function, we employed reciprocal-space
correlation spectroscopy for the analysis of the same xyt
stacks previously examined by STICS. Each 64 � 64 ROI
has been Fourier-transformed to yield G(k,t); in the upper-
left quarter, a finer grid has been adopted by a 32-pixels shift
of the ROIs. Then, G(k,t)-versus-t profiles have been ex-
tracted for selected components kx and ky and fitted accord-
ing to Eqs. 9–11. Whole-cell maps have been obtained for
each of the parameters derived from the fit: in Fig. 5 a the
map for p2

eq, recovered on the same cell of Figs. 1 and 2,
is shown. D e jvj maps (Fig. 5, b and c) highlight the vari-
ability of both diffusion coefficients (in the range ~10�5–
10�3 mm2/s) and speed values (in the range ~10�4–
10�2 mm/s). For the three ROIs analyzed by TICS in
Fig. 1 d and by STICS in Fig. 2, exhibiting Brownian diffu-
sion (ROI 1), Brownian diffusion coupled to directed motion
(ROI 2), and intermittent active transport (ROI 3), exem-
plary Re(G(t)),Im(G(t)) profiles are shown in Fig. 5 d. To
be noted is that for ROI 1, only Re(G(t)) is plotted. Best-
fit parameters, reported in the caption, are comparable to
those obtained by STICS in Fig. 2 for ROI 2. For complete-
ness, the experimental kICS surfaces for the three ROIs at
t ¼ 30 are reported in Fig. S9.

We remark that when the intermittent model is employed
to fit G(k,t)-versus-t profiles (such as the one reported for
ROI 2) arising from a single-state Dþv system, transition
rates k12/þN and k21/0 are recovered; similarly,
k12/0, k21/þN, and jvj/0 are obtained for a purely
diffusive system, thereby confirming that easier transport
modes can be easily discriminated and no prior information
about the mode of motion is required for the fitting function
selection.
Biophysical Journal 109(11) 2246–2258
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Due to the low values of the recovered diffusion coeffi-
cient and drift speed, the 2D approximation seems reason-
able. The effect of this approximation has been discussed
and quantified on an analytically solved case (diffusion
plus drift) in Note S4 and Fig. S10 in the Supporting
Material.
CONCLUSIONS

We present the theory and the application of a Fourier-space
spatio-temporal correlation (kICS) analysis based on an
intermittent model that can explain a plethora of intracel-
lular processes leading to measurable parameters such as
diffusion coefficient, drift velocity, and on- and off-proba-
bilities between passive and active transport. To further sup-
port the model adopted, a particle tracking analysis though a
Bayesian code has been implemented. Both methods are
able to recover the parameters describing the intermittent
model adopted; kICS analysis, however, gives a more
routine procedure that is applicable even in those cases
when single particle tracking cannot be accomplished due
to the poor signal/noise of the images. The protocol has
been applied to gold nanoparticles motion in cells detected
through their scattering signal, but the same formalism can
be applied to fluorescent objects.
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