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Abstract
In P systems with active membranes, the question of understanding the power of non-confluence within a polynomial time 
bound is still an open problem. It is known that, for shallow P systems, that is, with only one level of nesting, non-confluence 
allows them to solve conjecturally harder problems than confluent P systems, thus reaching ������ . Here we show that 
������ is not only a bound, but actually an exact characterization. Therefore, the power endowed by non-confluence to 
shallow P systems is equal to the power gained by confluent P systems when non-elementary membrane division and poly-
nomial depth are allowed, thus suggesting a connection between the roles of non-confluence and nesting depth.
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1  Introduction

While families of confluent recognizer P systems with active 
membranes with charges are known to characterize the com-
plexity class ������ when working in polynomial time [7, 
16, 17], their computational power when the nesting level is 
constrained to one (i.e., only one level of membranes inside 
the outermost membrane, usually called shallow P systems) 
is reduced to the class �#� , which is conjecturally smaller [1]. 
Since that complexity class often appears when studying the 
computational power of shallow systems, even with differ-
ent rules or semantics [4, 8, 10], it is interesting when “flat” 
systems are able to go outside that class and reach ������ . 

While confluent P systems can make use of nondeterminism, 
they are constrained in returning the same result for all com-
putations starting from the same initial configuration. How-
ever, by accepting when at least one computation accepts, 
like nondeterministic Turing Machines (TM) traditionally do, 
P systems can make use of the entire power of nondetermin-
ism: uniform families of non-confluent recognizer P systems 
with active membranes with charges can efficiently solve 
������-complete problems even in the shallow case and 
even when send-in rules are disallowed (i.e., for monodirec-
tional systems) [5]. Here we show that, in fact, ������ is a 
characterization of this kind of shallow non-confluent P sys-
tems when they work in polynomial time. This result shows 
that the complex relation between computational power, nest-
ing depth, and monodirectionality present for confluent P 
systems is absent in the non-confluent case. In particular, in 
the confluent case, systems with no nesting characterize � 
[18] whereas, additional nesting gives additional power [2] 
until reaching ������ when unlimited nesting is allowed 
[16, 17]. In the monodirectional case even unlimited nesting 
cannot escape ��� , which is conjecturally smaller [3]. Non-
confluent systems, on the other hand, characterize �� when 
there are no internal membranes [15] and immediately gain 
the full power of ������ with only one level of nesting. 
Furthermore, at least for shallow systems, this provides an 
exact characterization. It is, therefore, natural to ask what is 
the relation between the mechanisms that empower conflu-
ent P systems and the full power of non-confluence. Are the 
former ones only a way to simulate the latter?
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2 � Basic notions

For an introduction to membrane computing and the related 
notions of formal language theory, we refer the reader to 
The Oxford Handbook of Membrane Computing [12], for 
the topics related to time complexity we refer to [14], for 
space (instead of time) complexity, we refer to [9], finally, 
to show how the rules recalled here can be employed to 
simulate more complex rules and behaviors, we refer to [6]. 
Here we recall the formal definition of P systems with active 
membranes using only elementary division rules.

Definition 1  A P system with active membranes with ele-
mentary division rules of initial degree d ≥ 1 is a tuple

where

•	 �  is an alphabet, i.e., a finite non-empty set of symbols, 
usually called objects;

•	 � is a finite set of labels for the membranes;
•	 � is a membrane structure (i.e., a rooted unordered tree, 

usually represented by nested brackets) consisting of d 
membranes labelled by elements of � in a one-to-one 
way;

•	 w
h1
,… ,w

hd
 , with h1,… , h

d
∈ � , are multisets (finite 

sets whose elements have a multiplicity) of objects in 
�  , describing the initial contents of the d regions of �;

•	 R is a finite set of rules.

Each membrane possesses, besides its label and posi-
tion in � , another attribute, called electrical charge, which 
can be either neutral (0), positive ( + ) or negative (−) and 
is always neutral at the beginning of the computation.

The rules in R are of the following types:

(a)	 Object evolution rules, of the form [� → w]�
h
.

	   They can be applied inside a membrane labelled by 
h, having charge � and containing an occurrence of the 
object a; the object a is rewritten into the multiset w 
(i.e., a is removed from the multiset in h and replaced 
by the objects in w).

(b)	 Send-in communication rules, of the form a [ ]�
h
→ [b]

�

h
.

	   They can be applied to a membrane labelled by h, 
having charge � and such that the external region con-
tains an occurrence of the object a; the object a is sent 
into such membrane labelled by h becoming b and, 
simultaneously, the charge of h is changed to �.

(c)	 Send-out communication rules, of the form [a]�
h
→ [ ]

�

h
b.

	   They can be applied to a membrane labelled by h, 
having charge � and containing an occurrence of the 

� = (� ,�,�,w
h1
,… ,w

hd
,R)

object a; the object a is sent out from h to the outside 
region becoming b and, simultaneously, the charge of 
h becomes �.

(e)	 Elementary division rules, of the form [a]�
h
→ [b]

�

h
[c]

�

h

	   They can be applied to a membrane labelled by h, 
having charge � , containing an occurrence of the object 
a but having no other membrane inside (an elementary 
membrane); the membrane is divided into two mem-
branes having label h and charges � and � , respectively; 
the object a is replaced, respectively, by b and c, while 
the other objects of the multiset are replicated in both 
membranes.

The instantaneous configuration of a membrane of label h 
consists of its charge � and the multiset w of objects it con-
tains at a given time. It is denoted by [w]�

h
 . The (full) configu-

ration  of a P system � at a given time is a rooted, unor-
dered tree; the root is a node corresponding to the external 
environment of � and has a single subtree corresponding to 
the current membrane structure of � . Furthermore, the root 
is labelled by the multiset located in the environment, and 
the remaining nodes by the configurations [w]�

h
 of the cor-

responding membranes. In the initial configuration of � , the 
configurations of the membranes are [w

h1
]0
h1
,… , [w

hd
]0
hd

.
A P system is shallow if it contains at most one level of 

membranes inside the outermost membrane. This means that 
all the membranes contained in the outermost membrane are 
elementary, i.e., they contain no other nested membrane.

A computation step changes the current configuration 
according to the following set of principles:

•	 Each object and membrane can be subject to at most one 
rule per step, except for object evolution rules: inside 
each membrane, several evolution rules can be applied 
simultaneously.

•	 The application of rules is maximally parallel: each 
object appearing on the left-hand side of evolution, com-
munication, or division rules must be subject to, at most, 
one of them (unless the current charge of the membrane 
prohibits it). Analogously, each membrane can only be 
subject to one communication or division rule (types 
(b)–(e)) per computation step; these rules will be called 
blocking rules in the rest of the paper. In other words, 
the only objects and membranes that do not evolve are 
those associated with no rule, or only to rules that are not 
applicable due to the electrical charges.

•	 When several conflicting rules can be applied at the same 
time, a nondeterministic choice is performed; this implies 
that, in general, multiple possible configurations can be 
reached after a computation step.

•	 In each computation step, all the chosen rules are 
applied simultaneously (in an atomic way). However, in 
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order to clarify the operational semantics, each compu-
tation step is conventionally described as a sequence of 
micro-steps whereby each membrane evolves only after 
their internal configuration (including, recursively, the 
configurations of the membrane substructures it con-
tains) has been updated. In particular, before a mem-
brane division occurs, all chosen object evolution rules 
must be applied inside it; this way, the objects that are 
duplicated during the division are already the final 
ones.

•	 The outermost membrane cannot be divided, and any 
object sent out from it cannot re-enter the system again. 
Hence, the environment only has a passive role and acts 
mainly as a place where the result of the computation 
can be collected.

A halting computation of a P system � is a finite sequence 
C = (0,… ,

k
) of configurations, where 0 is the initial 

configuration, every 
i+1 is reachable from 

i
 via a single 

computation step, and no rules of � are applicable in 
k
 . A 

non-halting computation C = (
i
∶ i ∈ ℕ) consists of infi-

nitely many configurations, again starting from the initial 
one and generated by successive computation steps, where 
the applicable rules are never exhausted.

P systems can be used as language recognisers by 
employing two distinguished objects ��� and �� : in this 
case we assume that all computations are halting, and that 
either one copy of object ��� or one of object �� is sent 
out from the outermost membrane, and only in the last 
computation step, in order to signal acceptance or rejec-
tion, respectively. If all computations starting from the 
same initial configuration are accepting, or all are reject-
ing, the P system is said to be confluent. In this paper 
we deal, however, with non-confluent P systems, where 
multiple computations can have different results and the 
overall result is established as for nondeterministic TM: 
it is acceptance iff an accepting computation exists [13].

In order to solve decision problems (or, equivalently, 
decide languages) over an alphabet � , we use families of 
recogniser P systems � = {𝛱

x
∶ x ∈ 𝛴⋆} . Each input x is 

associated with a P system �
x
 deciding the membership 

of x in a language L ⊆ 𝛴⋆ by accepting or rejecting. The 
mapping x ↦ �

x
 must be efficiently computable for inputs 

of any length, as discussed in detail in [11].

Definition 2  A family of P systems � = {𝛱
x
∶ x ∈ 𝛴⋆} 

is (polynomial-time) uniform if the mapping x ↦ �
x
 can 

be computed by two polynomial-time deterministic Turing 
machines E and F as follows:

•	 F(1n) = �
n , where n is the length of the input x and �

n
 

is a common P system for all inputs of length n, with a 
distinguished input membrane.

•	 E(x) = w
x , where w

x
 is a multiset encoding the specific 

input x.
•	 Finally, �

x
 is simply �

n
 with w

x
 added to its input mem-

brane.

The family � is said to be (polynomial-time) semi-uniform 
if there exists a single deterministic polynomial-time Turing 
machine H such that H(x) = �

x
 for each x ∈ 𝛴⋆.

Any explicit encoding of �
x
 is allowed as output of the 

construction, as long as the number of membranes and 
objects represented by it does not exceed the length of the 
whole description, and the rules are listed one by one. This 
restriction is enforced to mimic a (hypothetical) realistic 
process of construction of the P systems, where membranes 
and objects are presumably placed in a constant amount dur-
ing each construction step and require actual physical space 
proportional to their number; see also [11] for further details 
on the encoding of P systems.

In the following, we denote the class of problems solvable 
by polynomial-time uniform or semi-uniform families of 
non-confluent shallow P systems with active membranes 
with charges by ����

[⋆]

(depth-1,−d,−ne)
 , where [⋆] denotes 

optional semi-uniformity. If no restriction on the depth of 
the membrane structure is present, but both non-elementary 
division and dissolution rules are forbidden, then the cor-
responding class of problems is denoted by ����

[⋆]

(−d,−ne)
.

3 � Nondeterministic simulation with oracles

Let � be a semi-uniform family of non-confluent shallow 
recognizer P systems with active membranes with charges, 
and let H be the TM of the semi-uniformity condition of � . 
We are going to define a machine M working in polynomial 
space such that on input H and x Turing machine M accepts 
iff the P system H(x) = �

x
 of � accepts in polynomial time. 

Notice that a single machine M suffices for all families of P 
systems. The machine associated with a specific family � 
of P systems can be obtained by “hard-coding” the input H 
to M.

First of all, on input H and x, machine M simulates 
machine H with x as input to obtain a polynomial-size 
description of �

x
 . To simplify the description of the pro-

cedure used by machine M to simulate �
x
 , without loss of 

generality we will assume M to work as a nondeterministic 
polynomial-time TM with access to an oracle for a problem 
in ������� = ������ . As the following result shows, 
both this nondeterministic behavior and the oracle queries 
can still all be simulated using a polynomial-space deter-
ministic TM.

Proposition 1  ��������� = ������.
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Proof  Clearly ���������
⊇ ������ , hence only the oppo-

site inclusion needs to be proved. Let N be a polynomial-
time nondeterministic TM with access to an oracle for a 
language L ∈ ������� . Let D be a deterministic polyno-
mial-space TM built in the following way:

•	 D simulates N until a query is performed. This simu-
lation, including the nondeterministic choices of N, 
can be performed in polynomial space by D, since 
�� ⊆ ������.

•	 Since L ∈ ������� and ������� = ������ , there 
exists a deterministic polynomial-space TM deciding L 
that can be simulated by D to answer any query per-
formed by N while still using only a polynomial amount 
of space. Once a query has been answered, D can resume 
the simulation of N.

Since D can faithfully simulate N and its oracle queries, D 
can recognize the same language as N, thus showing that 
��

�������
⊆ ������ , as desired. 	�  □

We can now describe how the simulation of �
x
 is car-

ried on by M. In the following, we assume that the size of 
the input x is n, and that each computation of �

x
 requires at 

most T time steps before halting and producing a result. By 
hypothesis T is polynomial with respect to n.

3.1 � Simulation of the outermost membrane

The main idea of this construction is to simulate the evo-
lution of the outermost membrane directly by means of a 
nondeterministic polynomial-time TM. All interactions with 
the internal membranes are performed via nondeterministic 
guesses. That is, for each communication rule and for each 
time step, the number of rules that are applied between the 
outermost and the inner membranes is guessed in a nonde-
terministic way. If ��� has been sent out by the simulation 
of the outermost membrane, an oracle query is performed 
to check whether all performed interactions with the inner 
membranes were consistent with this information, that is, 
whether a computation of the inner membranes able to per-
form the guessed interactions actually exists. If the query 
returns a positive answer, then a computation of the entire 
system actually producing ��� exists. In any other case, the 
simulating machine rejects, since either an invalid simula-
tion of the outermost membrane—and of the P system—was 
produced, or the simulation itself was correct but the simu-
lated computation was a rejecting one.

To perform this construction we build a table   
indexed by pairs of the form (r, t), where r ∈ R is either 
a send-in rule from the outermost membrane to one of 
the internal membranes or a send-out rule from one of 

the internal membranes to the outermost membrane, and 
t ∈ {0,… , T − 1} is a time step. The entry  (r, t) repre-
sents the number of times rule r has been applied at the 
time step t. It is important to notice that table   can be 
stored using a polynomial amount of space. In fact, the 
number of entries is limited by the size of R (which, by 
uniformity condition, is polynomial in the input size n), 
and by the number T of time steps needed for the P system 
to halt. We only need to prove that each entry  (r, t) can 
be stored in a polynomial amount of space.

Let m ∈ ℕ be the number of internal membranes in the 
initial configuration of �

x
 . By the semantics of the rules of 

P systems, the number of objects sent in to internal mem-
branes or sent out from them after t time steps cannot be 
greater than m × 2t , where the second multiplicative factor 
is the maximum number of membranes per label that can be 
obtained by membrane division in t time steps. Since this 
value is exponential in t, it can be represented by a polyno-
mial number of bits with respect to t ≤ T  . Thus, each entry 
of   requires at most a polynomial amount of space with 
respect to n. We denote the maximum value attainable by 
an entry of   by �.

Apart from keeping track of the communication rules 
applied between the outermost and the internal membranes, 
we also need to assure that all rules are applied in a maxi-
mally parallel way. To do so, we define another table   
indexed by pairs of the form (a, t) where a ∈ �  is an object 
type and t ∈ {0,… , T − 1} is, as before, a time step. The 
entry  (a, t) represents the number of objects of type a in 
the outermost membrane that had no rule applied to them at 
time t. Table   can, too, be stored in a polynomial amount 
of space, since each entry is at most exponential in value, 
and thus, requires only a polynomial number of bits to be 
described. In fact, suppose that an object can be rewritten 
into m copies by an evolution rule; even if such a rule is 
applied at every time step on each copy of the object pro-
duced, after t time steps the total number of objects present 
will be at most mt , which can be represented using t logm 
bits [14].

The simulation procedure of the outermost membrane 
is detailed as Algorithm 1. There, label h always indicates 
the outermost membrane and the label k an internal mem-
brane label, while |w|

a
 denotes the number of instances of 

the object a inside the multiset w. The applicability of a 
rule refers, in the algorithm, to the fact that the indicated 
membrane must have the correct charge � and, if the rule is 
blocking, that the membrane has not already been used by 
another blocking rule in the same time step. For example, 
the condition on line 14 of Algorithm 1 is never verified 
once another send-out rule has been simulated in a previous 
iteration of the loop for the current time step. 



79Characterizing PSPACE with shallow non‑confluent P systems﻿	

1 3

Lines 1–3 perform the initialization of the algorithm, 
setting the initial content and charge of the outermost 
membrane and declaring the environment initially empty. 
The main simulation loop is performed in lines 4–29. 
Since the maximum number of time steps needed for �

x
 

to produce a result is T, the simulation loop is repeated at 
most T times. If the loop ends without having produced 
either ��� or �� in the environment while simultaneously 
halting, the simulation performed did not correspond to 
any actual computation of �

x
 ; thus a negative answer 

must be produced (line 30).
Lines 5–7 deal with the send-in rules from the out-

ermost membrane to the inner membranes. Since the 
number of internal membranes where the rule r can be 
applied is not known, the number is nondeterministically 
chosen and is bounded by the minimum number of inner 
membranes and the number of objects of type a in the 

outermost membrane (line 6). The guessed number of 
internal membranes saved in table   and the effect of 
the rules on the multiset w are scheduled for application 
(line 7). Notice that, since the state of the internal mem-
branes is not stored, this amounts to the removal of  (r, t) 
instances of objects of type a from w.

Lines 8–10 deal with send-out rules from the internal 
membranes to the outermost membrane. As before, since 
the configuration and number of the internal membranes 
is not known, the number of times this rule is applied is 
nondeterministically guessed (line 9), saved in table   , 
and the appearance of the corresponding objects of type 
b in w is scheduled (line 10).

Lines 11–13 perform the simulation of the evolution 
rules inside the outermost membrane. Since the simulated 
system is nondeterministic, the actual number of applica-
tions of each rule is guessed (line 12) before the actual 
effects of the rule applications are scheduled (line 13).
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Lines 14–19 deal with the application of send-out rules 
from the outermost membrane to the environment. First of 
all, a nondeterministic guess is performed to decide whether 
the rule is actually applied (line 15). If so, then the actual 
effects of the rules are scheduled for application (lines 
16–19).

The table   is then updated to memorize the number of 
objects that were not subjected to any rule (lines 20–21). 
This will be used during the query process to ensure that the 
send-in rules from the outermost membrane to the internal 
membranes were actually applied in a maximally parallel 
way.

All the scheduled modifications to the content and 
charge of the outermost membrane and to the environ-
ment are now executed (line 22). If there are irreconcil-
able problems in the maximally parallel application of 
the rules then a rejection is performed (lines 23–24). This 
happens when there are objects that remained idle in the 
outermost membrane, since they were not selected to be 
sent-in into the internal membranes, nor were they subject 
to applicable send-out or evolution rules. In particular, 
if an applicable evolution or send-out rule involving an 
object a exists then no copy of the object should remain 
idle.

Finally, if either ��� or �� appears in the environment 
(lines 25–29) then it is necessary to check whenever the 
guesses performed for the interaction with the internal 
membranes were accurate, and no further rules are appli-
cable in the next time step in the outermost membrane 
(lines 26–29). If the answer to the query is positive and 
no further rules were actually applicable, then the simu-
lation can either accept or reject accordingly (line 27). 
Otherwise, the simulation performed did not correspond 
to any actual computation of �

x
 and thus it must reject 

(line 29).
Algorithm 1 can be executed in polynomial time by a 

nondeterministic TM with access to an oracle to perform 
the query procedure. In fact, both the outer loop and the 
inner loops are executed only a polynomial amount of 
times (either bounded by the time needed for �

x
 to halt, 

or by the number of rules in the system). All the other 
operations, including checking the applicability of rules, 
can be performed in polynomial time, given an efficient 
description of the configuration of the outermost mem-
brane, in which the number of copies of objects are stored 
in binary. Furthermore, all nondeterministic guesses 
involve a polynomial amount of bits.

3.2 � Simulation of the oracle

Let us now show that also the oracle which is used by M 
during the simulation of �

x
 to query about the behavior of 

the internal membranes can be simulated in nondeterministic 
polynomial space. The query answered by the oracle is the 
following:

Is there an halting computation of length t of the inter-
nal membranes consistent with the rule applications 
guessed?

The main idea underlying the possibility of answering this 
query in nondeterministic polynomial space is to simulate 
each membrane sequentially and keep track of the com-
munication rules that are applied while comparing them 
with the ones guessed by the simulation of the outermost 
membrane. If division is applied then only the simulation 
of one of the dividing membranes is immediately carried 
out (as performing them all at the same time might require 
exponential—instead of polynomial—space) while the 
other membrane is pushed into a stack, thus performing 
a depth-first simulation of the membrane hierarchy. This 
ensures that a polynomial amount of space suffices: it is 
the space needed to simulate one membrane, plus a stack 
in which the number of elements is at most T, one for each 
time step. This algorithm is similar to the deterministic one 
presented in [17], although with an explicit stack instead 
of a recursive definition, and the further difference that the 
algorithm was able to work for unbounded-depth systems. 
The actual algorithm implemented to answer the query is 
presented in Algorithm 2. 
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Lines 1–3 perform the initial set-up, where a new stack S 
is filled with the configuration of all internal membranes at 
the initial time step, i.e., t = 0 . In particular, for each mem-
brane the multiset of objects contained, label, charge, and 
time step of the simulation are all pushed as a single record 
into S.

In the main loop of lines 4–32 the simulation of all inter-
nal membranes is performed one at a time. This loop is 
executed until the stack of membranes to be simulated is not 
empty, which might require an exponential amount of time.

Once a new membrane to be simulated starting at time 
t���� has been extracted (line 5) the simulation of the mem-
brane proceeds up to time step t, which is given as input as 
part of the query (loop of lines 6–30) and represents the 

time at which the simulation of the outermost membrane 
has suspended in order to perform the query.

In lines 7–11, for each applicable division rule, i.e., the 
correct object and charge are present and the membrane has 
not already been used by a blocking rule in this time step, a 
nondeterministic choice is performed (line 8) to decide if the 
rule is actually applied. If so (lines 9–11), then the modifi-
cations described by the first half of the right-hand-side of 
the rule are performed, while the other membrane resulting 
from the division will be pushed on the stack S at the end of 
the simulation of the current time step (line 30). This cannot 
be performed earlier since the rewriting rules are applied, 
by the semantics of rule application in P systems, before the 
division actually takes place.
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The simulation of both send-in and send-out rules (lines 
12–17 and lines 18–23, respectively) is performed similarly. 
Since we are working in a situation of non-confluence, even 
if a rule is applicable, to actually decide whether to apply 
it, a nondeterministic guess is performed (line 13 and line 
19, respectively). In both cases the modifications to be 
performed to the membrane configuration are scheduled 
for later execution (lines 16–17 and lines 22–23, respec-
tively). Since send-in and send-out are communication rules 
between the outermost membrane and the internal mem-
branes, each time one of them is applied the value of  (r, t�) 
is decremented (line 15 and line 21, respectively). If, at the 
end of the simulation, the number of guessed applications 
and the real number of applications of the communication 
rules coincide, all entries  (r, t�) should be 0 (line 33).

The application of evolution rules (lines 24–26), their 
effect being limited to the internal state of the membrane, is 
simpler. As usual, which rules are actually applied is deter-
mined by a nondeterministic choice (line 25).

Once all rule applications have been decided, the actual 
modifications to the state of the membrane are applied (line 
27) and, if the rule application was not maximally paral-
lel then the computation rejects (lines 28–29). This can be 
verified by checking if there still exist objects inside the 
membrane with applicable rules but no rule was applied 
to them, that is, if  (a, t�) is positive for some a ∈ �  with 
an applicable send-in rule to the currently simulated mem-
brane. Since  (a, t�) indicates the number of objects that 
were available for the application of send-in rules from the 
outermost membrane but no internal membrane was avail-
able, such an inconsistency would denote that the simulation 
of the internal membranes had no correspondence to the 
already performed simulation of the outermost membrane.

If a division rule was applied, then the configuration of 
the second membrane resulting from division is pushed to 
the stack S (line 30). Here, an instance of the object b is 
replaced by an instance of object c and the charge is changed 
from � to � to obtain from the current membrane an instance 
corresponding to the other one obtained by division.

Before proceeding with the simulation of another mem-
brane, we check that after t steps the computation in this 
membrane has actually halted (lines 31–32); otherwise, the 
current computation must reject (line 32).

After the simulation of all internal membranes is finished, 
i.e., the stack was emptied, a check on the entries of   is 
performed. If all and every communication rule application 
guessed during the simulation of the outermost membrane 
was actually executed, then all entries of   should be 0. A 
positive (resp., negative) value for  (r, t) denotes that less 
(resp., more) applications of rule r at time t were performed 
than the number that was guessed.

If at least one accepting computation of the machine sim-
ulating the oracle query exists then the answer to the query is 
positive. Since the result given by Algorithm 2 provides the 
correct answer to the query performed by Algorithm 1, the 
simulation of the innermost and the outermost membranes 
are “glued” together, showing that the result produced by 
Algorithm 1 is correct. Combining this simulation with the 
inverse simulation presented in [5], we can then state the 
main result of the paper:

Theorem 1  ������ = ����
[⋆]

(depth-1,−d,−ne)
 . 	�  □

As long as no dissolution is allowed, the property of being 
elementary is a static one and, if no non-elementary division 
is present, the simulation of the outermost membrane can be 
extended to include all non-elementary membranes: since all 
non-elementary membranes can never divide and are at most 
polynomial in number, their simulation can be performed 
directly inside Algorithm 1, without requiring any super-
polynomial growth in the space needed by the algorithm. 
Therefore, we can state the following result:

Corollary 1  ������ = ����
[⋆]

(−d,−ne)
 . 	�  □

4 � Conclusions

We have shown that, differently from confluent P systems, 
monodirectionality and a restriction on the depth of the sys-
tem to 1 [3] (or, equivalently, the absence of both dissolution 
and non-elementary division) do not prevent non-confluent 
P systems from reaching ������ in polynomial time. It 
remains open to establish if this upper bound can be extended 
to membrane structures of higher (non-constant) depth where 
non-elementary division is allowed. Since both monodirec-
tionality and nesting depth have a huge influence in the com-
putational power of confluent systems, it would be worthwhile 
to understand why they do not provide an analogous increase 
to non-confluent systems. These features are usually employed 
by algorithms designed for confluent P systems to simulate the 
power of nondeterminism, so the question is: are they always 
useless when non-confluence is already present?
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