
Vol.:(0123456789)1 3

Journal of Membrane Computing (2019) 1:75–84
https://doi.org/10.1007/s41965-019-00011-4

REGULAR PAPER

Characterizing PSPACE with shallow non‑confluent P systems

Alberto Leporati1  · Luca Manzoni1 · Giancarlo Mauri1 · Antonio E. Porreca1,2 · Claudio Zandron1

Received: 16 July 2018 / Accepted: 13 February 2019 / Published online: 12 April 2019
© Springer Nature Singapore Pte Ltd. 2019

Abstract
In P systems with active membranes, the question of understanding the power of non-confluence within a polynomial time
bound is still an open problem. It is known that, for shallow P systems, that is, with only one level of nesting, non-confluence
allows them to solve conjecturally harder problems than confluent P systems, thus reaching ������ . Here we show that
������ is not only a bound, but actually an exact characterization. Therefore, the power endowed by non-confluence to
shallow P systems is equal to the power gained by confluent P systems when non-elementary membrane division and poly-
nomial depth are allowed, thus suggesting a connection between the roles of non-confluence and nesting depth.

Keywords  P systems · Active membranes · Non-confluent · PSPACE

1  Introduction

While families of confluent recognizer P systems with active
membranes with charges are known to characterize the com-
plexity class ������ when working in polynomial time [7,
16, 17], their computational power when the nesting level is
constrained to one (i.e., only one level of membranes inside
the outermost membrane, usually called shallow P systems)
is reduced to the class �#� , which is conjecturally smaller [1].
Since that complexity class often appears when studying the
computational power of shallow systems, even with differ-
ent rules or semantics [4, 8, 10], it is interesting when “flat”
systems are able to go outside that class and reach ������ .

While confluent P systems can make use of nondeterminism,
they are constrained in returning the same result for all com-
putations starting from the same initial configuration. How-
ever, by accepting when at least one computation accepts,
like nondeterministic Turing Machines (TM) traditionally do,
P systems can make use of the entire power of nondetermin-
ism: uniform families of non-confluent recognizer P systems
with active membranes with charges can efficiently solve
������-complete problems even in the shallow case and
even when send-in rules are disallowed (i.e., for monodirec-
tional systems) [5]. Here we show that, in fact, ������ is a
characterization of this kind of shallow non-confluent P sys-
tems when they work in polynomial time. This result shows
that the complex relation between computational power, nest-
ing depth, and monodirectionality present for confluent P
systems is absent in the non-confluent case. In particular, in
the confluent case, systems with no nesting characterize �
[18] whereas, additional nesting gives additional power [2]
until reaching ������ when unlimited nesting is allowed
[16, 17]. In the monodirectional case even unlimited nesting
cannot escape ��� , which is conjecturally smaller [3]. Non-
confluent systems, on the other hand, characterize �� when
there are no internal membranes [15] and immediately gain
the full power of ������ with only one level of nesting.
Furthermore, at least for shallow systems, this provides an
exact characterization. It is, therefore, natural to ask what is
the relation between the mechanisms that empower conflu-
ent P systems and the full power of non-confluence. Are the
former ones only a way to simulate the latter?

 *	 Alberto Leporati
	 leporati@disco.unimib.it

	 Luca Manzoni
	 luca.manzoni@disco.unimib.it

	 Giancarlo Mauri
	 mauri@disco.unimib.it

	 Antonio E. Porreca
	 antonio.porreca@lis‑lab.fr

	 Claudio Zandron
	 zandron@disco.unimib.it

1	 Dipartimento di Informatica, Sistemistica e Comunicazione,
Università degli Studi di Milano-Bicocca, Viale Sarca 336,
20126 Milan, Italy

2	 Aix Marseille Université, Université de Toulon, CNRS, LIS,
Marseille, France

http://orcid.org/0000-0002-8105-4371
http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-019-00011-4&domain=pdf

76	 A. Leporati et al.

1 3

2 � Basic notions

For an introduction to membrane computing and the related
notions of formal language theory, we refer the reader to
The Oxford Handbook of Membrane Computing [12], for
the topics related to time complexity we refer to [14], for
space (instead of time) complexity, we refer to [9], finally,
to show how the rules recalled here can be employed to
simulate more complex rules and behaviors, we refer to [6].
Here we recall the formal definition of P systems with active
membranes using only elementary division rules.

Definition 1  A P system with active membranes with ele-
mentary division rules of initial degree d ≥ 1 is a tuple

where

•	 � is an alphabet, i.e., a finite non-empty set of symbols,
usually called objects;

•	 � is a finite set of labels for the membranes;
•	 � is a membrane structure (i.e., a rooted unordered tree,

usually represented by nested brackets) consisting of d
membranes labelled by elements of � in a one-to-one
way;

•	 w
h1
,… ,w

hd
 , with h1,… , h

d
∈ � , are multisets (finite

sets whose elements have a multiplicity) of objects in
�  , describing the initial contents of the d regions of �;

•	 R is a finite set of rules.

Each membrane possesses, besides its label and posi-
tion in � , another attribute, called electrical charge, which
can be either neutral (0), positive ( + ) or negative (−) and
is always neutral at the beginning of the computation.

The rules in R are of the following types:

(a)	 Object evolution rules, of the form [� → w]�
h
.

	  They can be applied inside a membrane labelled by
h, having charge � and containing an occurrence of the
object a; the object a is rewritten into the multiset w
(i.e., a is removed from the multiset in h and replaced
by the objects in w).

(b)	 Send-in communication rules, of the form a []�
h
→ [b]

�

h
.

	  They can be applied to a membrane labelled by h,
having charge � and such that the external region con-
tains an occurrence of the object a; the object a is sent
into such membrane labelled by h becoming b and,
simultaneously, the charge of h is changed to �.

(c)	 Send-out communication rules, of the form [a]�
h
→ []

�

h
b.

	  They can be applied to a membrane labelled by h,
having charge � and containing an occurrence of the

� = (� ,�,�,w
h1
,… ,w

hd
,R)

object a; the object a is sent out from h to the outside
region becoming b and, simultaneously, the charge of
h becomes �.

(e)	 Elementary division rules, of the form [a]�
h
→ [b]

�

h
[c]

�

h

	  They can be applied to a membrane labelled by h,
having charge � , containing an occurrence of the object
a but having no other membrane inside (an elementary
membrane); the membrane is divided into two mem-
branes having label h and charges � and � , respectively;
the object a is replaced, respectively, by b and c, while
the other objects of the multiset are replicated in both
membranes.

The instantaneous configuration of a membrane of label h
consists of its charge � and the multiset w of objects it con-
tains at a given time. It is denoted by [w]�

h
 . The (full) configu-

ration  of a P system � at a given time is a rooted, unor-
dered tree; the root is a node corresponding to the external
environment of � and has a single subtree corresponding to
the current membrane structure of � . Furthermore, the root
is labelled by the multiset located in the environment, and
the remaining nodes by the configurations [w]�

h
 of the cor-

responding membranes. In the initial configuration of � , the
configurations of the membranes are [w

h1
]0
h1
,… , [w

hd
]0
hd

.
A P system is shallow if it contains at most one level of

membranes inside the outermost membrane. This means that
all the membranes contained in the outermost membrane are
elementary, i.e., they contain no other nested membrane.

A computation step changes the current configuration
according to the following set of principles:

•	 Each object and membrane can be subject to at most one
rule per step, except for object evolution rules: inside
each membrane, several evolution rules can be applied
simultaneously.

•	 The application of rules is maximally parallel: each
object appearing on the left-hand side of evolution, com-
munication, or division rules must be subject to, at most,
one of them (unless the current charge of the membrane
prohibits it). Analogously, each membrane can only be
subject to one communication or division rule (types
(b)–(e)) per computation step; these rules will be called
blocking rules in the rest of the paper. In other words,
the only objects and membranes that do not evolve are
those associated with no rule, or only to rules that are not
applicable due to the electrical charges.

•	 When several conflicting rules can be applied at the same
time, a nondeterministic choice is performed; this implies
that, in general, multiple possible configurations can be
reached after a computation step.

•	 In each computation step, all the chosen rules are
applied simultaneously (in an atomic way). However, in

77Characterizing PSPACE with shallow non‑confluent P systems﻿	

1 3

order to clarify the operational semantics, each compu-
tation step is conventionally described as a sequence of
micro-steps whereby each membrane evolves only after
their internal configuration (including, recursively, the
configurations of the membrane substructures it con-
tains) has been updated. In particular, before a mem-
brane division occurs, all chosen object evolution rules
must be applied inside it; this way, the objects that are
duplicated during the division are already the final
ones.

•	 The outermost membrane cannot be divided, and any
object sent out from it cannot re-enter the system again.
Hence, the environment only has a passive role and acts
mainly as a place where the result of the computation
can be collected.

A halting computation of a P system � is a finite sequence
C = (0,… ,

k
) of configurations, where 0 is the initial

configuration, every 
i+1 is reachable from 

i
 via a single

computation step, and no rules of � are applicable in 
k
 . A

non-halting computation C = (
i
∶ i ∈ ℕ) consists of infi-

nitely many configurations, again starting from the initial
one and generated by successive computation steps, where
the applicable rules are never exhausted.

P systems can be used as language recognisers by
employing two distinguished objects ��� and �� : in this
case we assume that all computations are halting, and that
either one copy of object ��� or one of object �� is sent
out from the outermost membrane, and only in the last
computation step, in order to signal acceptance or rejec-
tion, respectively. If all computations starting from the
same initial configuration are accepting, or all are reject-
ing, the P system is said to be confluent. In this paper
we deal, however, with non-confluent P systems, where
multiple computations can have different results and the
overall result is established as for nondeterministic TM:
it is acceptance iff an accepting computation exists [13].

In order to solve decision problems (or, equivalently,
decide languages) over an alphabet � , we use families of
recogniser P systems � = {𝛱

x
∶ x ∈ 𝛴⋆} . Each input x is

associated with a P system �
x
 deciding the membership

of x in a language L ⊆ 𝛴⋆ by accepting or rejecting. The
mapping x ↦ �

x
 must be efficiently computable for inputs

of any length, as discussed in detail in [11].

Definition 2  A family of P systems � = {𝛱
x
∶ x ∈ 𝛴⋆}

is (polynomial-time) uniform if the mapping x ↦ �
x
 can

be computed by two polynomial-time deterministic Turing
machines E and F as follows:

•	 F(1n) = �
n , where n is the length of the input x and �

n

is a common P system for all inputs of length n, with a
distinguished input membrane.

•	 E(x) = w
x , where w

x
 is a multiset encoding the specific

input x.
•	 Finally, �

x
 is simply �

n
 with w

x
 added to its input mem-

brane.

The family � is said to be (polynomial-time) semi-uniform
if there exists a single deterministic polynomial-time Turing
machine H such that H(x) = �

x
 for each x ∈ 𝛴⋆.

Any explicit encoding of �
x
 is allowed as output of the

construction, as long as the number of membranes and
objects represented by it does not exceed the length of the
whole description, and the rules are listed one by one. This
restriction is enforced to mimic a (hypothetical) realistic
process of construction of the P systems, where membranes
and objects are presumably placed in a constant amount dur-
ing each construction step and require actual physical space
proportional to their number; see also [11] for further details
on the encoding of P systems.

In the following, we denote the class of problems solvable
by polynomial-time uniform or semi-uniform families of
non-confluent shallow P systems with active membranes
with charges by ����

[⋆]

(depth-1,−d,−ne)
 , where [⋆] denotes

optional semi-uniformity. If no restriction on the depth of
the membrane structure is present, but both non-elementary
division and dissolution rules are forbidden, then the cor-
responding class of problems is denoted by ����

[⋆]

(−d,−ne)
.

3 � Nondeterministic simulation with oracles

Let � be a semi-uniform family of non-confluent shallow
recognizer P systems with active membranes with charges,
and let H be the TM of the semi-uniformity condition of � .
We are going to define a machine M working in polynomial
space such that on input H and x Turing machine M accepts
iff the P system H(x) = �

x
 of � accepts in polynomial time.

Notice that a single machine M suffices for all families of P
systems. The machine associated with a specific family �
of P systems can be obtained by “hard-coding” the input H
to M.

First of all, on input H and x, machine M simulates
machine H with x as input to obtain a polynomial-size
description of �

x
 . To simplify the description of the pro-

cedure used by machine M to simulate �
x
 , without loss of

generality we will assume M to work as a nondeterministic
polynomial-time TM with access to an oracle for a problem
in ������� = ������ . As the following result shows,
both this nondeterministic behavior and the oracle queries
can still all be simulated using a polynomial-space deter-
ministic TM.

Proposition 1  ��������� = ������.

78	 A. Leporati et al.

1 3

Proof  Clearly ���������
⊇ ������ , hence only the oppo-

site inclusion needs to be proved. Let N be a polynomial-
time nondeterministic TM with access to an oracle for a
language L ∈ ������� . Let D be a deterministic polyno-
mial-space TM built in the following way:

•	 D simulates N until a query is performed. This simu-
lation, including the nondeterministic choices of N,
can be performed in polynomial space by D, since
�� ⊆ ������.

•	 Since L ∈ ������� and ������� = ������ , there
exists a deterministic polynomial-space TM deciding L
that can be simulated by D to answer any query per-
formed by N while still using only a polynomial amount
of space. Once a query has been answered, D can resume
the simulation of N.

Since D can faithfully simulate N and its oracle queries, D
can recognize the same language as N, thus showing that
��

�������
⊆ ������ , as desired. 	� □

We can now describe how the simulation of �
x
 is car-

ried on by M. In the following, we assume that the size of
the input x is n, and that each computation of �

x
 requires at

most T time steps before halting and producing a result. By
hypothesis T is polynomial with respect to n.

3.1 � Simulation of the outermost membrane

The main idea of this construction is to simulate the evo-
lution of the outermost membrane directly by means of a
nondeterministic polynomial-time TM. All interactions with
the internal membranes are performed via nondeterministic
guesses. That is, for each communication rule and for each
time step, the number of rules that are applied between the
outermost and the inner membranes is guessed in a nonde-
terministic way. If ��� has been sent out by the simulation
of the outermost membrane, an oracle query is performed
to check whether all performed interactions with the inner
membranes were consistent with this information, that is,
whether a computation of the inner membranes able to per-
form the guessed interactions actually exists. If the query
returns a positive answer, then a computation of the entire
system actually producing ��� exists. In any other case, the
simulating machine rejects, since either an invalid simula-
tion of the outermost membrane—and of the P system—was
produced, or the simulation itself was correct but the simu-
lated computation was a rejecting one.

To perform this construction we build a table 
indexed by pairs of the form (r, t), where r ∈ R is either
a send-in rule from the outermost membrane to one of
the internal membranes or a send-out rule from one of

the internal membranes to the outermost membrane, and
t ∈ {0,… , T − 1} is a time step. The entry  (r, t) repre-
sents the number of times rule r has been applied at the
time step t. It is important to notice that table  can be
stored using a polynomial amount of space. In fact, the
number of entries is limited by the size of R (which, by
uniformity condition, is polynomial in the input size n),
and by the number T of time steps needed for the P system
to halt. We only need to prove that each entry  (r, t) can
be stored in a polynomial amount of space.

Let m ∈ ℕ be the number of internal membranes in the
initial configuration of �

x
 . By the semantics of the rules of

P systems, the number of objects sent in to internal mem-
branes or sent out from them after t time steps cannot be
greater than m × 2t , where the second multiplicative factor
is the maximum number of membranes per label that can be
obtained by membrane division in t time steps. Since this
value is exponential in t, it can be represented by a polyno-
mial number of bits with respect to t ≤ T  . Thus, each entry
of  requires at most a polynomial amount of space with
respect to n. We denote the maximum value attainable by
an entry of  by �.

Apart from keeping track of the communication rules
applied between the outermost and the internal membranes,
we also need to assure that all rules are applied in a maxi-
mally parallel way. To do so, we define another table 
indexed by pairs of the form (a, t) where a ∈ � is an object
type and t ∈ {0,… , T − 1} is, as before, a time step. The
entry  (a, t) represents the number of objects of type a in
the outermost membrane that had no rule applied to them at
time t. Table  can, too, be stored in a polynomial amount
of space, since each entry is at most exponential in value,
and thus, requires only a polynomial number of bits to be
described. In fact, suppose that an object can be rewritten
into m copies by an evolution rule; even if such a rule is
applied at every time step on each copy of the object pro-
duced, after t time steps the total number of objects present
will be at most mt , which can be represented using t logm
bits [14].

The simulation procedure of the outermost membrane
is detailed as Algorithm 1. There, label h always indicates
the outermost membrane and the label k an internal mem-
brane label, while |w|

a
 denotes the number of instances of

the object a inside the multiset w. The applicability of a
rule refers, in the algorithm, to the fact that the indicated
membrane must have the correct charge � and, if the rule is
blocking, that the membrane has not already been used by
another blocking rule in the same time step. For example,
the condition on line 14 of Algorithm 1 is never verified
once another send-out rule has been simulated in a previous
iteration of the loop for the current time step.

79Characterizing PSPACE with shallow non‑confluent P systems﻿	

1 3

Lines 1–3 perform the initialization of the algorithm,
setting the initial content and charge of the outermost
membrane and declaring the environment initially empty.
The main simulation loop is performed in lines 4–29.
Since the maximum number of time steps needed for �

x

to produce a result is T, the simulation loop is repeated at
most T times. If the loop ends without having produced
either ��� or �� in the environment while simultaneously
halting, the simulation performed did not correspond to
any actual computation of �

x
 ; thus a negative answer

must be produced (line 30).
Lines 5–7 deal with the send-in rules from the out-

ermost membrane to the inner membranes. Since the
number of internal membranes where the rule r can be
applied is not known, the number is nondeterministically
chosen and is bounded by the minimum number of inner
membranes and the number of objects of type a in the

outermost membrane (line 6). The guessed number of
internal membranes saved in table  and the effect of
the rules on the multiset w are scheduled for application
(line 7). Notice that, since the state of the internal mem-
branes is not stored, this amounts to the removal of  (r, t)
instances of objects of type a from w.

Lines 8–10 deal with send-out rules from the internal
membranes to the outermost membrane. As before, since
the configuration and number of the internal membranes
is not known, the number of times this rule is applied is
nondeterministically guessed (line 9), saved in table   ,
and the appearance of the corresponding objects of type
b in w is scheduled (line 10).

Lines 11–13 perform the simulation of the evolution
rules inside the outermost membrane. Since the simulated
system is nondeterministic, the actual number of applica-
tions of each rule is guessed (line 12) before the actual
effects of the rule applications are scheduled (line 13).

80	 A. Leporati et al.

1 3

Lines 14–19 deal with the application of send-out rules
from the outermost membrane to the environment. First of
all, a nondeterministic guess is performed to decide whether
the rule is actually applied (line 15). If so, then the actual
effects of the rules are scheduled for application (lines
16–19).

The table  is then updated to memorize the number of
objects that were not subjected to any rule (lines 20–21).
This will be used during the query process to ensure that the
send-in rules from the outermost membrane to the internal
membranes were actually applied in a maximally parallel
way.

All the scheduled modifications to the content and
charge of the outermost membrane and to the environ-
ment are now executed (line 22). If there are irreconcil-
able problems in the maximally parallel application of
the rules then a rejection is performed (lines 23–24). This
happens when there are objects that remained idle in the
outermost membrane, since they were not selected to be
sent-in into the internal membranes, nor were they subject
to applicable send-out or evolution rules. In particular,
if an applicable evolution or send-out rule involving an
object a exists then no copy of the object should remain
idle.

Finally, if either ��� or �� appears in the environment
(lines 25–29) then it is necessary to check whenever the
guesses performed for the interaction with the internal
membranes were accurate, and no further rules are appli-
cable in the next time step in the outermost membrane
(lines 26–29). If the answer to the query is positive and
no further rules were actually applicable, then the simu-
lation can either accept or reject accordingly (line 27).
Otherwise, the simulation performed did not correspond
to any actual computation of �

x
 and thus it must reject

(line 29).
Algorithm 1 can be executed in polynomial time by a

nondeterministic TM with access to an oracle to perform
the query procedure. In fact, both the outer loop and the
inner loops are executed only a polynomial amount of
times (either bounded by the time needed for �

x
 to halt,

or by the number of rules in the system). All the other
operations, including checking the applicability of rules,
can be performed in polynomial time, given an efficient
description of the configuration of the outermost mem-
brane, in which the number of copies of objects are stored
in binary. Furthermore, all nondeterministic guesses
involve a polynomial amount of bits.

3.2 � Simulation of the oracle

Let us now show that also the oracle which is used by M
during the simulation of �

x
 to query about the behavior of

the internal membranes can be simulated in nondeterministic
polynomial space. The query answered by the oracle is the
following:

Is there an halting computation of length t of the inter-
nal membranes consistent with the rule applications
guessed?

The main idea underlying the possibility of answering this
query in nondeterministic polynomial space is to simulate
each membrane sequentially and keep track of the com-
munication rules that are applied while comparing them
with the ones guessed by the simulation of the outermost
membrane. If division is applied then only the simulation
of one of the dividing membranes is immediately carried
out (as performing them all at the same time might require
exponential—instead of polynomial—space) while the
other membrane is pushed into a stack, thus performing
a depth-first simulation of the membrane hierarchy. This
ensures that a polynomial amount of space suffices: it is
the space needed to simulate one membrane, plus a stack
in which the number of elements is at most T, one for each
time step. This algorithm is similar to the deterministic one
presented in [17], although with an explicit stack instead
of a recursive definition, and the further difference that the
algorithm was able to work for unbounded-depth systems.
The actual algorithm implemented to answer the query is
presented in Algorithm 2.

81Characterizing PSPACE with shallow non‑confluent P systems﻿	

1 3

Lines 1–3 perform the initial set-up, where a new stack S
is filled with the configuration of all internal membranes at
the initial time step, i.e., t = 0 . In particular, for each mem-
brane the multiset of objects contained, label, charge, and
time step of the simulation are all pushed as a single record
into S.

In the main loop of lines 4–32 the simulation of all inter-
nal membranes is performed one at a time. This loop is
executed until the stack of membranes to be simulated is not
empty, which might require an exponential amount of time.

Once a new membrane to be simulated starting at time
t���� has been extracted (line 5) the simulation of the mem-
brane proceeds up to time step t, which is given as input as
part of the query (loop of lines 6–30) and represents the

time at which the simulation of the outermost membrane
has suspended in order to perform the query.

In lines 7–11, for each applicable division rule, i.e., the
correct object and charge are present and the membrane has
not already been used by a blocking rule in this time step, a
nondeterministic choice is performed (line 8) to decide if the
rule is actually applied. If so (lines 9–11), then the modifi-
cations described by the first half of the right-hand-side of
the rule are performed, while the other membrane resulting
from the division will be pushed on the stack S at the end of
the simulation of the current time step (line 30). This cannot
be performed earlier since the rewriting rules are applied,
by the semantics of rule application in P systems, before the
division actually takes place.

82	 A. Leporati et al.

1 3

The simulation of both send-in and send-out rules (lines
12–17 and lines 18–23, respectively) is performed similarly.
Since we are working in a situation of non-confluence, even
if a rule is applicable, to actually decide whether to apply
it, a nondeterministic guess is performed (line 13 and line
19, respectively). In both cases the modifications to be
performed to the membrane configuration are scheduled
for later execution (lines 16–17 and lines 22–23, respec-
tively). Since send-in and send-out are communication rules
between the outermost membrane and the internal mem-
branes, each time one of them is applied the value of  (r, t�)
is decremented (line 15 and line 21, respectively). If, at the
end of the simulation, the number of guessed applications
and the real number of applications of the communication
rules coincide, all entries  (r, t�) should be 0 (line 33).

The application of evolution rules (lines 24–26), their
effect being limited to the internal state of the membrane, is
simpler. As usual, which rules are actually applied is deter-
mined by a nondeterministic choice (line 25).

Once all rule applications have been decided, the actual
modifications to the state of the membrane are applied (line
27) and, if the rule application was not maximally paral-
lel then the computation rejects (lines 28–29). This can be
verified by checking if there still exist objects inside the
membrane with applicable rules but no rule was applied
to them, that is, if  (a, t�) is positive for some a ∈ � with
an applicable send-in rule to the currently simulated mem-
brane. Since  (a, t�) indicates the number of objects that
were available for the application of send-in rules from the
outermost membrane but no internal membrane was avail-
able, such an inconsistency would denote that the simulation
of the internal membranes had no correspondence to the
already performed simulation of the outermost membrane.

If a division rule was applied, then the configuration of
the second membrane resulting from division is pushed to
the stack S (line 30). Here, an instance of the object b is
replaced by an instance of object c and the charge is changed
from � to � to obtain from the current membrane an instance
corresponding to the other one obtained by division.

Before proceeding with the simulation of another mem-
brane, we check that after t steps the computation in this
membrane has actually halted (lines 31–32); otherwise, the
current computation must reject (line 32).

After the simulation of all internal membranes is finished,
i.e., the stack was emptied, a check on the entries of  is
performed. If all and every communication rule application
guessed during the simulation of the outermost membrane
was actually executed, then all entries of  should be 0. A
positive (resp., negative) value for  (r, t) denotes that less
(resp., more) applications of rule r at time t were performed
than the number that was guessed.

If at least one accepting computation of the machine sim-
ulating the oracle query exists then the answer to the query is
positive. Since the result given by Algorithm 2 provides the
correct answer to the query performed by Algorithm 1, the
simulation of the innermost and the outermost membranes
are “glued” together, showing that the result produced by
Algorithm 1 is correct. Combining this simulation with the
inverse simulation presented in [5], we can then state the
main result of the paper:

Theorem 1  ������ = ����
[⋆]

(depth-1,−d,−ne)
 . 	� □

As long as no dissolution is allowed, the property of being
elementary is a static one and, if no non-elementary division
is present, the simulation of the outermost membrane can be
extended to include all non-elementary membranes: since all
non-elementary membranes can never divide and are at most
polynomial in number, their simulation can be performed
directly inside Algorithm 1, without requiring any super-
polynomial growth in the space needed by the algorithm.
Therefore, we can state the following result:

Corollary 1  ������ = ����
[⋆]

(−d,−ne)
 . 	� □

4 � Conclusions

We have shown that, differently from confluent P systems,
monodirectionality and a restriction on the depth of the sys-
tem to 1 [3] (or, equivalently, the absence of both dissolution
and non-elementary division) do not prevent non-confluent
P systems from reaching ������ in polynomial time. It
remains open to establish if this upper bound can be extended
to membrane structures of higher (non-constant) depth where
non-elementary division is allowed. Since both monodirec-
tionality and nesting depth have a huge influence in the com-
putational power of confluent systems, it would be worthwhile
to understand why they do not provide an analogous increase
to non-confluent systems. These features are usually employed
by algorithms designed for confluent P systems to simulate the
power of nondeterminism, so the question is: are they always
useless when non-confluence is already present?

References

	 1.	 Leporati A, Manzoni L, Mauri G, Porreca AE, Zandron C. Simu-
lating elementary active membranes, with an application to the
P conjecture. In: Gheorghe M, Rozenberg G, Sosík P, Zandron
C, editors. Membrane computing, 15th International conference,
CMC 2014, lecture notes in computer science, vol. 8961. New
York: Springer; 2014. p. 284–99.

83Characterizing PSPACE with shallow non‑confluent P systems﻿	

1 3

	 2.	 Leporati A, Manzoni L, Mauri G, Porreca AE, Zandron C. Mem-
brane division, oracles, and the counting hierarchy. Fund Inf.
2015;138(1–2):97–111.

	 3.	 Leporati A, Manzoni L, Mauri G, Porreca AE, Zandron C. Mono-
directional P systems. Nat Comput. 2016;15(4):551–64.

	 4.	 Leporati A, Manzoni L, Mauri G, Porreca AE, Zandron C. The
counting power of P systems with antimatter. Theor Comput Sci.
2017;701:161–73.

	 5.	 Leporati A, Manzoni L, Mauri G, Porreca AE, Zandron C. Shal-
low non-confluent P systems. In: Leporati A, Rozenberg G, Salo-
maa A, Zandron C, editors. Membrane computing, 17th interna-
tional conference, CMC 2016. Lecture notes in computer science,
vol. 10105. New York: Springer; 2017. p. 307–16.

	 6.	 Leporati A, Manzoni L, Mauri G, Porreca AE, Zandron C. A
toolbox for simpler active membrane algorithms. Theor Comput
Sci. 2017;673:42–57.

	 7.	 Leporati A, Manzoni L, Mauri G, Porreca AE, Zandron C. Solving
QSAT in sublinear depth. In: Hinze T, Rozenberg G, Salomaa A,
Zandron C editors. Membrane computing, CMC 2018. Lecture
notes in computer science, vol 11399. Cham: Springer; 2019.

	 8.	 Leporati A, Manzoni L, Mauri G, Porreca AE, Zandron C. Sub-
routines in P systems and closure properties of their complexity
classes. Theor Comput Sci. 2018.

	 9.	 Leporati A, Manzoni L, Mauri G, Porreca AE, Zandron C. A
survey on space complexity of P systems with active membranes.
Int J Adv in Eng Sci Appl Math. 2018;10(3):221–9.

	10.	 Leporati A, Manzoni L, Mauri G, Porreca AE, Zandron C. Char-
acterising the complexity of tissue P systems with fission rules. J
Comput Syst Sci. 2017;90:115–28.

	11.	 Murphy N, Woods D. The computational power of mem-
brane systems under tight uniformity conditions. Nat Comput.
2011;10(1):613–32.

	12.	 Păun Gh, Rozenberg G, Salomaa A, editors. The Oxford handbook
of membrane computing. Oxford: Oxford University Press; 2010.

	13.	 Pérez-Jiménez MJ, Romero-Jiménez A, Sancho-Caparrini F. Com-
plexity classes in models of cellular computing with membranes.
Nat Comput. 2003;2(3):265–84.

	14.	 Porreca AE, Leporati A, Mauri G, Zandron C. Recent complexity-
theoretic results on P systems with active membranes. J Logic
Comput. 2015;25(4):1047–71.

	15.	 Porreca AE, Mauri G, Zandron C. Non-confluence in division-
less P systems with active membranes. Theor Comput Sci.
2010;411(6):878–87.

	16.	 Sosík P. The computational power of cell division in P sys-
tems: Beating down parallel computers? Nat Comput.
2003;2(3):287–98.

	17.	 Sosík P, Rodríguez-Patón A. Membrane computing and complex-
ity theory: a characterization of PSPACE. J Comput Syst Sci.
2007;73(1):137–52.

	18.	 Zandron C, Ferretti C, Mauri G. Solving NP-complete problems
using P systems with active membranes. In: Antoniou I, Calude
CS, Dinneen MJ, editors. Unconventional models of computation,
UMC’2K, proceedings of the second international conference.
New York: Springer; 2001. p. 289–301.

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Alberto Leporati, Ph.D.,  is an
Associate Professor at the Uni-
versity of Milano-Bicocca, at the
Department of Informatics, Sys-
tems and Communication. His
research activity concerns the
theory of computational com-
plexity. In particular, he studies
the computational power of
models of computation which
are inspired by the working of
living cells (Membrane Comput-
ing) and the laws of quantum
mechanics (Quantum Comput-
ing). On these subjects he pub-
lished more than 90 papers on

international journals and in peer-reviewed proceedings of international
conferences. He is also a member of the Steering Committee for the
CMC and ACMC international conference series, and he serves as
Vice-President of the International Membrane Computing Society.

Luca Manzoni  is an Assistant
Professor at the University of
Milano-Bicocca, Italy. He
obtained his Ph.D., in computer
science at the same university in
2013. In 2012 he obtained a
JSPS postdoctoral fellowship. In
2017 he obtained an award as the
best young postdoc in Computer
Science and Mathematics at the
University of Milano-Bicocca.
He has published more than 80
papers in international journals,
conferences, and workshops. His
interests are in the areas of natu-
ral computing models, like P

systems, reactions systems, cellular automata, and in the area of evo-
lutionary computation (in particular, genetic programming).

Giancarlo Mauri  is full professor
of computer science at the Uni-
versity of Milano-Bicocca. His
research interests include: natu-
ral computing and unconven-
tional computing models, in par-
ticular Membrane Systems and
Splicing Systems; Bioinformat-
ics, in particular algorithms for
NGS data analysis; Computa-
tional Systems Biology, in par-
ticular stochastic modeling and
simulation of biological systems
and processes. On these subjects,
he published about 350 scientific
papers in international journals,

contributed volumes and conference proceedings. He is or has been
member of the steering committees of the International Conferences
on DNA Computing, on Membrane Computing, on Unconventional
Computing and Natural Computing, on Developments in Language
Theory, and of the International Workshop on Cellular Automata.

84	 A. Leporati et al.

1 3

Antonio E. Porreca  is a maître de
conférences (lecturer) at Aix-
Marseille Université and a mem-
ber of the CANA research group
on natural computation at Labo-
ratoire d’Informatique et Sys-
tèmes, Marseille, France. He
received his Ph.D. in computer
science from Università degli
Studi di Milano-Bicocca, Italy.
His main research interest is the
computational complexity theory
of unconventional computing
models of natural inspiration,
such as membrane systems, reac-
tion systems, cellular automata,

and more general automata networks. He is coauthor of more than 50
papers published in international peer-reviewed journals and proceed-
ings of international conferences and workshops.

Claudio Zandron  got the Ph.D.,
in computer science from the
University of Milan in 2002.
Since 2006 he has been an asso-
ciate professor at the Department
of Informatics, Systems and
Communication of the Univer-
sity of Milano-Bicocca, Italy.
His research interests concern
the areas of formal languages,
molecular computing models,
DNA computing, membrane
computing, and computational
complexity.

	Characterizing PSPACE with shallow non-confluent P systems
	Abstract
	1 Introduction
	2 Basic notions
	3 Nondeterministic simulation with oracles
	3.1 Simulation of the outermost membrane
	3.2 Simulation of the oracle

	4 Conclusions
	References

