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1 Introduction

F-theory [1-3] is a geometrical way to describe non-perturbative backgrounds of type IIB
string theory, whose transition functions include S-duality in addition to the more usual
symmetries. Supersymmetric backgrounds of F-theory describe a spacetime which includes
the base of an elliptic Calabi-Yau variety, with a variable axio-dilaton field whose value
is specified by the elliptic fibration. The degeneration loci of the fibration, called the
irreducible components of the discriminant locus, are interpreted as seven-branes on which
various gauge algebras are realized. Among these, one finds as particular examples the
ordinary D7-branes and O7-planes of perturbative IIB theory.

The perturbative definition of O-planes, however, allows for several different variants.!
In particular, we have two types of O7-planes called the O7_-plane and the O7-plane,
whose charge in units where a (full) D7-brane has charge 1 equals —4 and +4, respectively.
As was pointed out in the early days of F-theory, the one reproduced in conventional F-
theory is the O7_-plane [9]. At a fixed total D7-charge, an object with O7 allows for fewer
deformations than an object with O7_. For example, an O7_ with 8 D7s on top, with total
charge 4, can be deformed in various ways by pulling the D7s away, while a single O7
with the same charge does not allow for such a possibility. The F-theory description of the
latter should hence involve a divisor which for some reason cannot be deformed. This was
analyzed and called a frozen singularity in [10], where this was also discussed in several
dual frames. This phenomenon was then further investigated in [11].

Thus it was known for a long time that F-theory includes O7,-planes but they were
basically ignored in the vast existing literature on the compactifications of F-theory. One
motivation for revisiting this issue at present rests in the classifications of six-dimensional
superconformal theories (SCFTs). In a series of works initiated in [12], and in particu-
lar in [13], it was shown that almost all known 6d SCFTs at that time and a lot more
were realizable using 6d compactifications of F-theory. (For a recent comprehensive re-
view, see [14].) However, if one compares this classification against the known examples
constructed using massive ITA brane constructions [15-18] and the purely-field theoretical
analyses [19, 20], one recognizes that there are indeed cases not realized by conventional
F-theory constructions.

A typical feature of these cases is that their massive IIA brane construction involves
08.s. By a T-duality, this is mapped to a IIB brane construction involving O7s. This mo-
tivated us to look at F-theory compactifications to six-dimensions in the presence of O7s.

At this point, it is natural to worry if there could be frozen singularities other than O7 -
planes which have not been studied in conventional F-theory. This question was settled, at
least for supersymmetric seven-branes, in a recent re-analysis of 7-branes in F-theory [21]

!That the Chan-Paton indices can carry u, so and sp indices was originally pointed out by Schwarz in [4]
and that they were the only possibilities was soon showed by Marcus and Sagnotti in [5], both in 1982;
see also section 1.3 of Schwarz’s review [6]. That the choice of so and sp is reflected in the sign of the
RR-charge of the O9-plane was already essentially noticed in the seminal paper by Green and Schwarz on
the anomaly cancellation in Type I superstring theory [7] in 1984. That one can have a consistent T2 /Lo
compactification of type IIB theory with three O7_s and one O74 was originally noted in [8] in 1991.



which concluded that the O7, is in fact the only type of frozen singularity in F-theory.?
Therefore, the only ingredient missing in conventional F-theory compactifications to six-
dimensions is the inclusion of O7,-planes, and indeed including them we find F-theory
realizations of ‘missing’ 6d SCFTs, as we will see later in the paper.?

Once we are convinced that O7,-planes can be included in the F-theory construction,
we realize that we need to revisit every part of the standard F-theory machinery, such
as the assignment of the gauge algebras and of the matter content to the components of
the discriminant and to their intersections, and the way the 6d anomalies cancel via the
Green-Schwarz-West-Sagnotti effect [25, 26], derived geometrically for F-theory by Sadov
in [27]. This paper is the authors’ first attempt to provide such generalizations.

One unexpected consequence of the introduction of O7,-planes is the following. To
appreciate it, let us first recall the situation without O7,-planes. In a conventional F-theory
compactification without O7,-plane, once one is given the geometry of the elliptically-
fibered Calabi-Yau, there is a standard method to assign a unique set of gauge algebras
and matter content to the geometry. In particular, under this standard assignment, each
simple factor in the gauge algebra is associated to a single component of the discriminant
divisor, and each component has at most one simple factor of gauge algebras associated
to it. This choice corresponds to having zero holonomies of the gauge fields on these
divisors themselves. We have the option of turning on the non-trivial gauge configurations,
including the effects often called the T-branes [28], but we also have the standard option
of not turning them on at all.

With OT7,-planes, however, we will often be forced to have at least some nontrivial
gauge configurations on some of the components. More precisely, we even lose the concept
of a unique, standard assignment of gauge algebras and matter content, since we do not even
have a natural origin in the space of the all possible holonomies. Because of this, we often
have multiple simple factors of gauge algebras on a single component of the discriminant
locus, and also a single simple factor of gauge algebra shared across multiple components,
as we will see later.

Unfortunately, at present, we do not have any algorithmic method to find consistent
assignments given an elliptic Calabi-Yau and a specification of where the O7_-planes are;
we do not even have a method to tell if there are any consistent assignments at all. There-
fore we are forced to rely on consistency checks via anomaly cancellation and dualities to
backgrounds that are better understood.

The rest of the paper is organized as follows. In section 2, we study the properties of
O7.-planes in the context of F-theory, using string theory and M-theory dualities. This
will let us figure out how to assign gauge algebras and matter content. In section 3, we
study the anomaly cancellation of F-theory models with O7,-planes. We will see that the

2There are various other less-studied types of higher-codimension singularities one can incorporate in F-
theory, such as the ones used by Garcia-Etxebarria and Regalado [22] to construct 4d N'=3 SCFTs. Frozen
versions of singularities also occur in M-theory [10, 11], where they play an important role in M5-brane
fractionation [11, 23, 24].

3We will find F-theory realizations for certain examples, but we defer a general treatment of the classi-
fication problem formulated in [12, 13] to future work.



analysis of Sadov [27] can be naturally generalized by introducing a divisor which represents
where O7_-planes lie. Then in section 4, we discuss some 6d SCFTs which can be realized
only with O7,-planes in F-theory construction, and in section 5, we study the massless
spectrum of a couple of compact six-dimensional models with O7_-planes.

In appendix A, we review the 8d compactifications with O7_-planes, which is simpler
than the 6d examples discussed in the main text. Finally in appendix B, we give an
alternative derivation, using intersecting brane models, of the spectrum of some compact
models discussed in section 5.

2 Frozen seven-branes and their properties

In this section, we use perturbative string techniques to obtain some properties of frozen
singularities.

We start in section 2.1 with a lightning review of O-planes. We then discuss the
basics of O7,-planes in F-theory in section 2.2, and in section 2.3 we study the physics at
individual intersection points of O7_-planes and other seven-branes. To prepare ourselves
for the analysis of an O7.-plane which intersects with more than one seven-brane, we then
need to have short digressions, on the T-duals of NS5- and D6-branes in section 2.4 and on
the phenomenon of shared gauge algebras in section 2.5. We then come back to the case
with O74-planes in section 2.6. In the final subsection 2.7, we see that with O7,-planes a
shrunken divisor does not necessarily signify any singularity in the low energy physics.

2.1 Basics of orientifold planes

Let us start by a quick review of the basics of the orientifolds.*

Action on the closed strings: an orientifold is usually defined as a Zo symmetry II
that includes world-sheet parity €2. It can also include a spacetime involution o. It is often
necessary to also include an extra factor (—)ft (where Fy, is the left-moving spacetime
fermion number) so that II? acts as the identity. If locally o is the reflection of 9 — p
coordinates, so that the orientifold plane Op (the fixed locus of ¢)° has (spatial) dimension
p, one needs to include (=)t if p = 2,3 mod 4.5 To summarize, locally the orientifold
action is

09 08 o7 06 05
Q QRyg QRgRy(—1)"t QR;RgRy(—1)"t QRgR7RgRy -+’

(2.1)

1A good review of the basics can also be found in [29]. More detailed and rigorous analysis of perturbative
orientifolds were done e.g. in [30, 31], but we stick to the traditional, ad hoc approach in this paper. The
name orientifold itself was introduced in [32] by Dai, Leigh and Polchinski. The concept of the orientifold
goes back further in history, see e.g. [33, 34] and references therein.

®We will also consider actions that include translations and thus have no fixed locus as in (2.5); the
conclusions in (2.1) below also apply.

5To check this, one first uses the fact that a reflection R; of the I-th spatial coordinate acts by 'y on
the 10d Majorana spinor, which satisfies (I'r)* = +1. Therefore, R7,..;, = 1 or (=1)FL+Fr depending
on whether p = 0,1 or 2,3 mod 4, respectively. Then one compensates this (—1)FL+FR by the fact that
Q(—=1)TrQ = (—=1)"® and therefore (Q(—1)F)? = (—1)7r+Fr,



where R, denotes a reflection of the p-th coordinate. This specifies the orientifold’s action
on closed strings. In this paper, we will be interested in particular in O7s, with O6s and
08s making occasional appearances.

Action on the open strings: in presence of open strings, one also needs to decide its
action on the Chan-Paton matrix A, which appears in a superposition Z” Nij|ij) of the
states |i7), that in turn can be interpreted as going from the i-th to the j-th brane in a stack
(omitting other quantum numbers). Since the world-sheet parity 2 reverses orientation, it
acts by transposing A, but it may also mix the states with a change of basis M: namely,
A — MA'M~!. Imposing that this action is an involution leads to the condition that

MM =F1. (2.2)
This sign choice leads to two different types of O-plane, which we call Op..”

The RR-charge: the RR charge can be computed through a one-loop computation,
which contains —tr M~'M? in its Mobius strip contribution (see for example the re-
views [29, 35]). In the end one concludes that the charge is 4-2P~5 that of a full Dp-brane:®
explicitly,

p 9 8 7 6 5 4 3
+2P7° | £16 +£8 +4 +2 1 +5 +1

(2.3)

Thus, the Op_ has negative charge and the Op; has positive charge, as the name implies.

The gauge group: the gauge group is also influenced by the sign (2.2). If a stack of
N Dp-branes is parallel to the Op-plane but not on top of it, the action will relate the
strings ending on them to strings ending on an image stack in a different locus; the gauge
group will be the usual U(N). On the other hand, if the stack is on top of the Op-plane,
the action will relate the open string states to themselves, projecting out some of them.
To read off the gauge group, we can consider the gauge field states \;;ja 1 /2]0;1'3'). Since
Qa_1/9Q0 = —a_y/, the surviving states will be those with Chan-Paton factors A such
that A = —MMM~!. If the sign in (2.2) is —1, M is antisymmetric; by a change of basis
(A= C~IA\C, M — CMC?) it can be chosen to be of the form J = (_(I)N V), and thus A
will be in the spy algebra.? If on the other hand the sign in (2.2) is +1, then M can be
chosen to be 19y, and A € so9p.
Summarizing, the choice (2.2) leads to two different orientifolds:

e Op_, with soon gauge algebra and charge —2P~5, and

e Op,, with sp, gauge algebra and charge +2P~°.

"In [10] and other older papers, Op-planes are called planes of type O, with the opposite sign. We
stick to the more modern conventions which are now standard.

8Naively the fractional charge of the Op-plane for p < 4 contradicts the Dirac quantization. For a
resolution, see [36].

9We follow the standard convention that 5P, = SUa.



shife-O(p + 1)

Figure 1. A model with two Op-planes with opposite sign is turned by T-duality.

Dg-branes intersecting Op-planes: more generally, if we also have a stack of Dg-
branes which intersect our Op, there are subtle signs [37] coming from the fact that the
strings from the Op- to the Dg-branes needed to be expanded to both integer and half-
integer modes. In flat space (and vanishing B field), the number #ND of Neumann-
Dirichlet directions (the number of directions transverse to the Dp and parallel to the Dg,
or vice versa) has to be a multiple of 4, for unbroken supersymmetry. The result for the

gauge algebra on the Dg-branes is then as follows:'°

Op+ Op_
#ND = 0,8 | symplectic orthogonal | - (2.4)

#ND =4 orthogonal symplectic

T-duality: let us next discuss the T-duality of orientifolds, since we often need to perform
T-duality of the setup on S'/Zy where two fixed points support Op-planes, possibly of
different types. Two most straightforward cases are when both fixed points have Op_ or
both fixed points have Opy. The T-dual is then simply O(p + 1)_ or O(p + 1); wrapped
around S*.

When one fixed point has Op_ and the other fixed point has Op_, the T-dual is known
to be a shift-orientifold, namely an orientifold whose spacetime action ¢ not only flips the
coordinates transverse to the orientifold, but also translates a circle by half its radius

R
o . (I'p+1, Tp42,- " ,11?9) ~ <$p+1 + 5, —Tp42,° 0, —.’Eg) . (25)

See figure 1 for a pictorial representation. Note that this action fixes no point.

The derivation of this fact can be found e.g. in [10, p. 41] or [38]. A rough argument
goes as follows. We start from the shift-orientifold background (2.5), and T-dualize the
Zp41 direction. Its T-dual should be a compactification on S 1 /Zs. Therefore this should
result in a combination of two Op-planes at two fixed points. The original shift-orientifold

0The fields on the Dg stack get mapped to fields on another point of the stack, unless the Dq stack
is completely embedded in the Op-plane. A priori this only restricts the behavior as a function of the
coordinates of the gauge field, which would then locally remain of u(2m) type. However, in situations
where the divisor wrapped by the stack is compact, in most applications we want to keep only the zero-
modes of the gauge field under its equation of motion, and this restricts the gauge group as in (2.4).



background did not have any D(p + 1)-charge. Therefore, in the T-dual, we should have
zero Dp-plane charge. This is only possible if one fixed point is Op_ and the other is Op...

Another intuitive argument is as follows. The shift operator s : 2,41 — 2py1 + R/2
can be thought of as eigﬁ, where p is the momentum operator. Its T-dual is § = eiﬁ@,
where w is the “winding operator”, which measures the length of the string. 5 gives 1 on
strings of total length zero, such as those that begin and end on the same Op, but it gives
—1 on the strings that begin and end on different Op’s, signaling the fact that the two have
different signs.

Other types of orientifolds: it is also known that there are Opi-planes when p < 6,
distinguished from the more ordinary Op.-planes by the RR-torsion flux. As we will not
use them heavily, we will not discuss them further.

2.2 Frozen divisors in F-theory

Our main interest lies in seven-branes in Type IIB theory and F-theory. An ordinary
O7_ without any D7-branes on top is known to lift to two Iy divisors, due to quantum
effects [9]. Similarly, with n < 4 D7-branes on top, the F-theory realization is given by
(n + 2) I; divisors. With at least 4 D7-branes, it is interpreted in F-theory as an I} _,
divisor (where n is the number of D7-branes). Since string theory also has O7,-planes, it
is natural to ask how these are described in F-theory.

First of all, from (2.3) we see that O74 have charge equal to that of +4 full D7-branes.
So an O74 has the same charge and tension as an O7_ with 8 full D7-branes on top. In F-
theory, they will give rise to the same monodromy [10, 39]; we expect both to be described
by an I divisor. However, the O7_ with 8 D7 gives rise to an so16 gauge algebra, while the
O7,4 gives rise to none. A related difference is that the O7_ with 8 D7 can be deformed by
pulling the D7s away (which corresponds in F-theory to a complex structure deformation),
while the O7, cannot. Thus an O7, is described by a I} singularity which for some reason
cannot be deformed; we will call this a frozen singularity, and denote it by ICI.

More generally, an O7_ with n D7s has the same charge and tension as an O7; with
(n — 8) DT7s; both are described by an I, singularity, but in the latter case the gauge
algebra is sp,,_, rather than sog,, and the deformations are correspondingly reduced. In
this case too we say that the singularity is frozen, and we denote by A;;_ 4

To be more expicit, an F-theory vacuum is typically described by the “Weierstrass
coefficients” f and g which are sections of the line bundles Og(—4Kp) and Op(—6Kp) on
the F-theory base B, and which lead to the equation

v =2+ fr+g (2.6)

-~

for the total space of the elliptic fibration. Along a divisor D with a I_, singularity, f
vanishes to order 2, g vanishes to order 3, and the equation 4 f3 + 27¢? of the discriminant
locus vanishes to order (n — 8) + 10, for a configuration with n — 8 D7-branes on top
of an O74. Although the “freezing” mechanism is not understood, it must prevent any
deformation which lowers the order of vanishing of either f or g at all, or which lowers the
order of vanishing of 43 + 27¢? below 10.



Note that the Weierstrass coefficients are accompanied by periods of type IIB two-forms
over appropriate two-cycles in B; for compactifications to 6d, the complex moduli provided
by Weierstrass coefficients are paired with these periods of two-cycles to provide the two
complex scalars in a hypermultiplet. In particular, by activating a vev represented by one
of these two-form periods we may disturb the gauge group assigned to a divisor without
changing the geometry of the divisor (which would have required a change of complex
modulus). Such deformations are often described in the language of T-branes [28], for
which a number of geometric tools have been developed [40-42].

As an exercise in using the rule (2.4), let us consider D3-branes embedded in the
worldvolume of O74. Since #ND = 4, the gauge group on the embedded D3-branes is so
for O74+ and sp for O7_. In particular, the smallest gauge algebra allowed is so; and sp;,
with one and two Chan-Paton indices, respectively. A bulk D3-brane has two Chan-Paton
indices. Therefore, a bulk D3-brane can fractionate into two separate objects on O7, but
not on O7_. These D3-branes can be considered as point-like instantons of the gauge fields
on O74, and therefore the D3-charges of the minimal-charge instanton on O7+ differ by a
factor of 2. This fact becomes important in the anomaly analysis in section 3.1.

2.3 Intersections: perturbative analysis

As mentioned in the introduction, O7s are the only frozen F-theory singularities [21]. As
our main interest lies in the compactification to 6d, we now want to understand their be-
havior when they intersect other singularities, namely, how they modify the gauge algebras
of neighboring divisors and the matter representations at intersections with them. We will
do so by using perturbative string techniques, and dualities.

Some readers might want to study the simpler situation in 8d summarized in ap-
pendix A, before considering the more interesting but complicated examples of 6d com-
pactifications discussed here.

2.3.1 I*—I intersection

Let us now start working out what happens when the frozen divisors intersect ordinary
divisors. We will begin with the intersections of frozen f,’: with I, divisors.

Let us first recall what this intersection gives in the unfrozen case, i.e. an I*—I inter-
section. The intersection with the I* induces on the I a so-called “Tate” monodromy, a
nontrivial automorphism of the gauge algebra that reduces it [43].!1 This is expressed by
saying that the divisor is non-split, and denoted by a superscript ™. Its effect on the gauge
algebra is that it reduces from ugy,, to sp,,. We summarize this situation by writing

502n48 5P,
2.7
o 27

As a warm-up, let us also see how it is reproduced by orientifolds. Consider an intersection
of an O7_+(n+4) D7 along directions 01256789 with m full D7s along directions 03456789.

1This is not to be confused with the “Kodaira” monodromy, describing how the geometry changes when
one goes around a singular divisor.



O74 + (n—4)D7 =} I

el

m DT = I3}
3,4

Figure 2. An O7-D7 intersection, interpreted in F-theory as an intersection between an f;; 44 and
an I35 .

From (2.4) we see again that the gauge algebra on the m D7s is reduced to sp,,; see also
footnote 10. We thus recover (2.7). Notice that the spacetime action of the orientifold
projection can be interpreted as the Tate monodromy we mentioned above.

We can similarly work out what happens if the I* divisor is replaced by its frozen T*
counterpart: the configuration now involves an O74 + (n —4) D7s, and 2m transverse D7s
(see figure 2, where only directions 6789 are depicted). Looking again at (2.4), we see that
the gauge algebra on the m DTs is reduced this time to so09,,. We conclude

5Py, g 502m

n 2.8
I I, 25
Thus, an I™ divisor intersecting a frozen divisor has an so gauge algebra, rather than an
sp gauge algebra. In both cases (2.7) and (2.8) there is a bifundamental at the intersection,
due to the strings from one set of branes to the other.

2.3.2 I*-I*, I*—f*, I*—TI* intersections

We will now consider intersections between two I* divisors, both frozen and unfrozen. We
will see that using perturbative O7s we will have only partial success in understanding the
full possibilities. This will lead us in section 2.6 to consider T-dual configurations.

I*-T* intersection: let us again start by recalling what F-theory gives in the ordinary
unfrozen case. The intersection of two I* divisors actually falls outside Kodaira’s classi-
fication. To cure this, one can blow-up the base; this reveals a new divisor that touches
both I*’s, and that behaves like in (2.7):

50 50 50 S 50
2k+8 2048 - 2k+8 P(k+‘e) /2 502048 (2.9)
I* ° I* I* ns I*
k ¢ k k+0 ¢

where we assumed k 4+ £ to be even, and the e denotes the bad singularity that we blew up.
Physically, it signals a six-dimensional superconformal sector which is sometimes called



Dits Doy conformal matter;'? the blow-up represents moving along its tensor branch,
namely the part of its moduli space where we give a vev to the scalar in the tensor multiplet.

Let us now try to engineer an I*—I* intersection using O7s. The most natural gener-
alization of figure 2 consists of two OT7s that intersect transversally. This can be achieved
by an orientifold projection in flat space that has more than one generator of the type we
recalled in (2.1). For an intersection of two O7s, locally one takes the two generators

QRgR7(—1)I" | QRsRy(—1)7r . (2.10)

We can see that in this situation there is an O7 on the locus z°

= 27 = 0, and another
on the locus 2® = 2% = 0. (Notice that one is then also quotienting by their product
RgR7Rg Ry, so that at the intersection between the O7s there is in fact also a Zso orbifold
singularity.) Choosing the + type of these two orientifold planes affects their charge and
their action on Chan-Paton indices in the way we reviewed earlier; we will see shortly what

their combined effect amounts to.

Another ingredient is that the projection on the closed Zs-twisted sector is reversed
if two orientifolds of different type intersect [44]. This comes about by considering the
exchange of closed strings between two crosscaps, one from one O7 and another from
another O7. The sign of this diagram is reversed when two orientifolds are of different type,
and the modular transformation of this diagram determines the orientifolding projection
on the closed string Zs twisted sector. In the end, one finds that an O7_-O7 intersection
has a six-dimensional tensor multiplet, while O7_-O7_ or O7,-O7. intersection has a
hypermultiplet:

o7- 074
O7_ | hyper tensor | - (2.11)

O7, | tensor hyper

As we mentioned, if D-branes are present, they will now feel the effect of both projec-
tions. Consider for example choosing both planes to be O7_, with k + 4 and £ + 4 DT7s
present on the 6 = 27 = 0 and 2® = 2° = 0 loci respectively. The first set of DTs, say,
would be projected to s09;48 by the O7_ parallel to it; but, recalling (2.4), it would also be
projected to spy 4 by the O7_ transverse to it. This means that it actually gets projected
to the intersection of the two, ug4. In the language of F-theory branes, this gives

Uk4+4  Uppq
2.12
- (2.12)

2T fact this superconformal theory depends only on k+£ and has so(2k +2¢+16) flavor symmetry. Thus
we will simply call it Dy¢48 conformal matter in what follows. We use the blackboard letter D since the
notation D; denotes an i-th divisor in this paper. One can also define D, as the 6d superconformal theory
which has a one-dimensional tensor branch on which it becomes an sp,,_, theory with 4n fundamentals
with at least so4, flavor symmetry. For example, then, the Dg theory is the E-string theory.

~10 -



where the - now represents the hypermultiplet found in (2.11).' This hypermultiplet is
neutral under ugy4 @ upyy. The presence of this neutral hypermultiplet signals that the
configuration (2.12) is obtained by moving along a particular direction in the Higgs branch
of Dy44-Dyi4 conformal matter whose tensor branch was depicted in (2.9). This partic-
ular direction in the Higgs branch is parametrized by vevs of the neutral hypermultiplet
in (2.12). Another well-known direction in the Higgs branch, distinct from the one repre-
sented by (2.12), is provided by brane recombination, where the two I'* divisors merge.

I*-T* intersection: for an 0O7,-074 projection, for the same reason we get

Hhoa Wid (2.13)
Ik‘ * Iﬁ
In analogy with our discussion below (2.12), it is natural to think that this is the Higgsing
of a “frozen conformal matter”
SPr—a SPry

, 2.14
I,;k ° Iz ( )

and that upon blowing up (moving along the tensor branch) an I}}7, with so(k + /) gauge
algebra would be created, which would behave as in (2.8). We will see later that this
expectation is borne out.

I*-I* intersection: for an 0O7,-07_ intersection, on each set of D7s the two projections
will be of the same type. For example, on the D7s on the O7_, we have A = —Ml)\tMl_l =
—MQ)\MQ_I, with both M; symmetric. We can make M; = 1 as in section 2.1; with the
residual freedom in change of basis we can diagonalize Ms, but a priori it could have any
number of positive and negative eigenvalues. If we also impose that the D7s can move off
the O7_, we obtain that My = (1‘0*4 —12+4)’ and the gauge symmetry is s0p44 D 50444.

Similar considerations apply to the O74 + (k — 4)D7s; hence we get

SPrj2—2 DSPrja—2  S00+4 D S0p4y (2.15)
I o Iy

where we assumed £ to be even. Notice that in this case there is no neutral hypermultiplet

at the origin, according to (2.11); we have included the symbol o to mark this. So in

this case we do not expect this configuration to be a Higgsing of a conformal one. This

might look surprising, but it will become clearer in section 2.7 below, where we will see an

alternative realization of the same setup (in the case k = ¢ is even).

13A warning is in order. The orientifold projection leaves the gauge algebra u on I*, but the u; part
usually gets Higgsed and becomes massive by the Green-Schwarz mechanism, each u; eating a neutral
hypermultiplet. This point was carefully analyzed in [45, section 2]. In our case, the diagonal u; of ugta
and us44 will be gone. In a compact model, we usually expect every u; part to be eliminated in this
manner, agreeing with the usual expectation that only the su algebras are realized on the 7-branes, not the
u algebras.
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NS5 NS5 -1 DG

SuUy Suy SuUy,

Figure 3. NS5-branes, D6-branes, and T-duality. The compact and noncompact directions of the
cylinder are called respectively directions 4 and 3 in the text.

2.4 NS5- and D6-branes

To go beyond the results in section 2.3.2, we will need to consider configurations which are
dual to IIA in presence of NS5-branes. To set the stage, in this subsection we will discuss
a situation without orientifolds.

We consider IIA on R? x S!; let us say the S' corresponds to direction 4, and has
periodicity R. Let us have a single NS5 whose worldvolume is in directions 056789, localized
at 2@ = 2 = 0, o = 1,2,3. T-dualizing it along direction 4 turns it into an Euclidean
Taub-NUT geometry. The space transverse to the NS5 is R? x S1; T-duality turns the H
flux of the NS5 into a Chern class that signals the S! is now Hopf-fibred over the S%s at
z%2® = r2. The inverse images of these S?s are thus copies of S3. These shrink smoothly
at ® = 0, so that locally around this point the fibration is S* < R3> — R*. One way to
realize this fibration in coordinates is

H=~C?—>R? (2.16)
q= (Z) — 2% = ¢lo% (2.17)
where 0% are the Pauli matrices. So

a! 4 ix? = 2w, 23 = |22 — |w|* . (2.18)

3

If we have several NS5s localized at several positions in the 3 direction (23 = x3,

x! = 2? = 2% = 0), T-duality turns the geometry into a multi-Taub-NUT geometry where
the S! shrinks at the 22 = z7. The inverse image under the S! fibration of a path between
two of these points is an S2. We represent this in figure 3.

Let us now suppose some D6s are also stretched along the 0356789 directions. First
let us imagine there are n D6s stretched along the entire 3 axis, i.e. when n D6s are placed

2

at #' = 22 = 2* = 0. Under T-duality along direction 4, they will turn into n D7s. More

precisely, as figure 3 suggests, they will turn into a sequence of D7s wrapping the various
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S? on the Taub-NUT with multiplicity n. What the picture does not show is that these
S?s are holomorphic cycles. Locally around an NS5 at 2 = z* = 0, for example, the locus
% = 0 is turned into 7! = 22 = 0. From (2.18) we see this to be zw = 0, which is the
union of the curve z = 0 and of w = 0. In F-theory terms, this is a chain of intersecting
I,, curves.

In the presence of a Romans mass, parameterized conventionally by an integer 27 Fy =
ng # 0, the number of D6s ending on an NS5 from the left minus the number of D6s from
the right is ng. Focusing on an NS5 on which a D6 ends from the right and does not
continue to the left, we see again from (2.18) that T-duality turns it into the single curve
z = 0. This would be one of the S%s in figure 3. We then have a chain of intersecting
curves supporting I, Ining, Intong, - - - -

Another possible generalization is to move the D6s in the z* direction, so that there
is now a stack of n; D6s at zt = x?. On the IIB side, this corresponds to Wilson lines for
the gauge field on the DTs.

2.5 Shared gauge algebras

From the setup of figure 3, we can also wonder what happens if we move only some of the
D6s away from the NS5s in direction 4; say from an initial stack of n D6s we move m to the

4

position z* = z§. These D6s recombine: they no longer end on the NS5s. In field theory,

this corresponds to a partial Higgsing
sU, DS, — Suy_m DSy, D SUy_m (2.19)

where the su,, at the middle is the diagonal subalgebra of two copies of su,, C su,.

Since the displacement has happened along the 4 direction, it is not immediately
apparent on the IIB side: the T-dual still consists of two stacks of m + n D7-branes
meeting at a point, as in section 2.4. The only consequence of the displacement is the
presence of a Wilson line: there is a worldvolume gauge field with non-zero holonomy, a =
%diag(o, ...,0,1,...,1)dz*. Since direction 4 shrinks at the intersection point, on both
D7s there is a worldvolume da = f field strength proportional to a d-function supported
on the intersection point.

By comparing with the ITA picture, we conclude that a Wilson line can partially break
the gauge algebra on two intersecting D7s, as in (2.19): part of the gauge algebra can
recombine. The su,, algebra is now shared between the two intersecting divisors; this
is summarized in figure 4. In what follows, we fill find other examples of such shared
gauge algebras.

If we move all the D6s off the NS5 (i.e. if n = m), only the shared gauge algebra is
present. In this case, one might be puzzled by the fact that on the IIB side the Wilson line
is now proportional to the identity. This would not seem to cause a Higgsing, while from
the ITA picture it is clear that it does, since the D6s are away from the NS5.

To clarify this point, we need to identify the T-dual of the NS5 position in IIB. Since the
NS5 position in ITA is shifted by a diffeomorphism in the 2* position, its T-dual should be
shifted in IIB by a gauge transformation for the NS-NS two-form field, namely B — B+dA,
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NS5 n — m D6s

“=m D6s

N’

SUn—m l

ﬁun—m

SU,,

Figure 4. On the IIA side, we can move m of the D6s off the NS5s and make them recombine. On
the IIB side, this corresponds to a gauge algebra su,, that is shared between two curves meeting at
a point. We denote this with a double-sided arrow.

for A a one-form. In fact this one-form was identified in [46, section 2.2] explicitly. More
generally we conclude that, in the intersection between two curves Ci, Co, there is a shared
gauge algebra if on either curve there is an eigenvalue a; of the Wilson line a on the curves

that does not match with the pullback of A at large distance from the intersection:

a; 7é A‘C1 or a; 7& A‘CQ . (2.20)

In F-theory language, we could consider a deformation of the Weierstrass coefficients
which “recombined” two branes, i.e., smoothed the two divisors out into a single divisor.
If instead of this deformation, the corresponding periods of two-forms are activated, the
gauge theory will recombine without any change in the geometry.

2.6 Intersections: via T-duality

Having made a detour in the last two subsections, we now reintroduce O-planes in our story.

First we need to review the behavior of NS5s in presence of orientifolds. Like any other
brane, any NS5 must come with a mirror image under the orientifold action. Each copy
is usually called a half-brane to emphasize that it can become full if the two copies are
brought to the O-plane. It turns out [47] that when this is done the two half-NS5s can be
separated again: this time along the O-plane worldvolume, while staying on it. When this
happens, the orientifold type changes between the two half-NS5s.

The situation relevant for our purposes consists in having an O6 defined by a reflection
inverting directions 124, and for example two half-NS5s at two values of 23. (Thus the O6-
plane and the half-NSb5s are stretched along the same directions as the D6 and NS5 in the

1To see more clearly what (2.20) gives, our A in (2.20) is equal to a number # (the dual of the NS5
displacement) times the A in [46, (2.3)]. Going at large distance from the intersection, the pullback A will
just look like Zdf, and it makes sense to compare it with the a;.

— 14 —



(n +4) D6s n D6 (n +4) D6s (n +4) Dés n D6 (n + 4) D6s
06_ 06 06_ ) 06_ 06, 06_

0O6_

502,18 5Py, $02n+8 502548 5Py 02748
(a) (b)

Figure 5. Two configurations with O7.-planes, and their T-duals. The dots now represent
half-NSb5s.

previous subsection.) If the O6 is taken to be an O6_ outside the two half-NSb5s, its type
will change to O6, inside. This leads to a sequence of gauge algebras

502748, 5P, , 02,48 - (2.21)

Actually, since direction 4 is compact, a reflection involving 124 will have a fixed point
both at 2* = 0 and at z* = R/2, the opposite locus on the circle. The O6-plane on that
locus can be of both O6_ and O64 type. We show both those cases in figure 5. In both
cases the gauge algebras are still as in (2.21), since the difference with the case of figure 5(a)
happens in a region where no D6s are present.

Upon T-duality, we again find a chain of curves. To see what type of curves we have,
we need to use the rules reviewed in section 2.1; see in particular figure 1. We learn from
there that an orientifold with O6_-planes on both sides of a circle gets T-dualized to an
orientifold with an O74-plane, while a circle which has an O6 on one side and an O6_
on the other gets T-dualized to a shift-orientifold. This is another realization of Tate
monodromy, which we discussed at the beginning of section 2.3.1.

Thus, in the case of figure 5(a), after T-duality we end up with a curve I3 between
two ordinary I} curves. This is familiar from (2.9) with m = n, and is in agreement with
the sequence of gauge algebras (2.21) we found in ITA.

In the case of figure 5(b), we have a frozen f;; 14 curve touching two I3, ¢ ones. The
presence of the frozen singularity alters the usual F-theory rules: from the ITA picture, we
see that as expected an f;; 44 curve supports an sp,, gauge algebra; moreover, we also see
that an I3 touching a frozen curve supports an so0g,,. This can be generalized to

5p£_4 50k4¢ 5P£—4 (2.22)
Iy L3, I;

(with k& = n +4). This is the theory on the tensor branch of (2.14), thus realizing the
expectation discussed there.
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(n+4) D6s ®

06_ , (n +4) D6s
Y \ =\
® 06_
06— l 06_
Up44 Upnt4q 500118

(a) (b)

Figure 6. Two different ways of Higgsing Dy, 44—, 4 conformal matter. (a) reproduces (2.12);
(b) corresponds to brane recombination.

If we put the half-NS5s back on top of each other, we recover a full NS5. We can now
split it again by moving the two halves along the periodic 4 direction, together with some
of the D6s, or by moving them in another direction, so that the degeneration induced by T-
dualizing the NS5s no longer happens on the O6-D6 system. These two new configurations
represent respectively the Higgsing in (2.12), and the one mentioned below it involving
brane recombination. These two possibilities are depicted in figure 6.

The setup of this section can also be decorated by adding m D6-branes at the bottom
orientifold plane; this would add a gauge algebra so09,, to figure 5(a), and sp,,, to figure 5(b).
On the F-theory side, this would correspond to the presence of a Wilson line, and to a gauge
algebra that is shared among the three curves, in the language of section 2.5. Again, this
can be realized through the T-brane-like phenomena of activating the two-form-period
partner of a geometric deformation.

2.7 Smooth transitions

In the chains of curves considered so far, shrinking one or more of the curves leads to
some strongly coupled physics. This is clear from the IIA picture, where it corresponds to
making two or more NS5-branes coincide. In an effective field theory description, this often
manifests itself in a gauge coupling becoming infinite. The positions of the NS5s parame-
terize the tensor branch of a six-dimensional effective theory; these situations correspond
to non-generic loci of the tensor branch.

For example, in the situations depicted in figures 3 and 5, there is a one-dimensional
tensor branch, parameterized by a 6d tensor multiplet whose scalar ¢ corresponds to the
distance between the two NS5s, and which in the 6d theory also plays the role of the inverse
square of the gauge coupling. At the origin ¢ = 0, the gauge coupling diverges. At this
strong coupling point it is expected that a CFT arises, describing two coincident NS5s on
top of a D6 stack.

~16 —
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Figure 7. A smooth transition, in ITA and in F-theory.

n D6 (n + 4) D6s n D6 (n+4) D6s
@ @
064 O6_ 06+ 06—
06+ O6_ 06+ 06_
= y. ‘ =
m D6s (m+ 4) D6s m D6s (m +4) D6s
l — l
spy, 502,48 spy, 509,48
5P, 50918 T 502m+8

Figure 8. A configuration that produces a curve touching both an I* and an T*. The gauge
algebras sp,, and s09,,4s are shared between the first two and the second two curves respectively.

However, on the ITA side we can also consider placing the NS5s at different values of
29 (the compact direction). In this case, bringing the NS5s at the same value of 2° does
not actually put them on top of each other; now we do not expect strong coupling physics
at the origin ¢ = 0 of the tensor branch. A first example not involving orientifolds is shown
in figure 7. In this case without frozen seven-branes, we can of course put all NS5-branes
on the same stack of D6-branes so that this smooth transition does not happen.

When we start involving orientifolds, we can engineer more interesting situations. The
example in figure 8 has a non-split 13> touching both a frozen and a non-frozen I*. In this
case there is no way to put all NS5-branes on the same side of the O6-planes. Note also
that in both sides of the figure the overall gauge algebra remains the same, but the roles
of localized and shared simple subalgebras are exchanged.

When the two NSb5s are aligned, for m = n we are in fact in the situation of (2.15), with
k = ¢ = 2n + 4. This is in agreement with our observation made there (motivated by the
absence of a hypermultiplet) that there is no conformal point at that intersection; in this
case the transition is completely smooth, and there is no special point on the tensor branch.

In 6d compactifications of F-theory, we are accustomed to getting conformal theories
when a divisor shrinks. One reason for this is that one can engineer string states from
D3-branes, and these strings become tensionless when we shrink a curve. In the situations
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of figure 7 and &, in fact we cannot wrap a D3-brane on the middle curve: this is made
clear by T-dualizing back to ITA, where it would become a D2-brane, which can terminate
on either one or the other half-NS5, but not on both.

The situation in figure 8 is a simple illustration of the fact mentioned in the introduction
that in the presence of O7, we lose the notion of a canonical assignment of gauge algebras
and matter content. In this situation, this happens for two reasons. First, we can only
take m D6-branes from bottom to top of the cylinder. After doing that, we are still left
with 4 D6-branes ending on half-NS5-brane. This implies that there is no canonical ‘zero’
for the Wilson lines. Second, the half-NS5s are stuck at fixed values of 2*. This implies
that there are fixed non-zero periods of NS-NS 2-form potential on the curves.

2.8 Tangential intersections and O8-planes

The discussion of I*-I and I*~T intersections in section 2.3.1 has an interesting exception,
that occurs when the intersection is tangential. We discuss it now because T-duality helps
in the analysis, as we will now see.

We start by considering O7s and D7s that again share the directions 056789, but which
are extended in the remaining directions in a more complicated fashion than in section 2.3.1.
Define z = 2! +iz?, w = 23 +iz*, and let the orientifold act on the spacetime by o : z < w.
The O7+ will then be on the locus z = wj; place again n +4 D7s on top of it. Now also
place m half-D7s on the locus z = 0; their m images will be on the locus w = 0. In this
case, the gauge fields on the D7s on z = 0 will have a U(m) gauge field, which the O7
maps to a gauge field on the D7s on w = 0. To see why this is related to a tangential
intersection, consider the invariant coordinates v = z + w, u = zw. The configuration we
are considering is then mapped to an O74 + (n £4) D7s on the locus v? = 4u, and m D7s
on u = 0. These two loci intersect tangentially. We can summarize this as follows:

50248  SUp 5p,_4  SUpy

n 2.23
|| I L | I, (2.23)

where we have used || to denote tangency as in [48]. This coordinate change is illustrated
in the top part of figure 9, in the O7 case.

An additional subtlety concerns the matter content in (2.23). One can in principle
work this out directly in the original setup on the left of figure 9, but it is instructive to do
it instead in a dual frame. First of all we change coordinates, using again (2.18); only this
time we take z = 2! 4+ iz?, w = 2% + iz? introduced earlier, and define new coordinates

. . . . ;=4 T
3 = |z|? — |w]?, with a fourth periodic coordinate e = £2. We are once

Fl4+i3? = 2w, &
again rewriting R* as a fibration S' < R* — R3. The orientifold is now defined by the
involution o : % — —#3,7* — —&*; the O7-plane then sits at 3 = #* = 0, while the D7s
are on the locus #' = 72 = 0. (Notice that the #* circle shrinks at 3 = 0.) If we now
T-dualize along direction 4, we end up with an O8 at #> = 0 with a half-NS5 stuck on it,
and with D6s crossing it.

All this is depicted on the lower part of figure 9, again for the O8, case. At this
point we can read off the matter content from a perturbative string computation similar

to the one leading to (2.4), as already done in [16, 17]; the result is that in the tangential
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