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1 Introduction and conclusions

In three dimensional Chern-Simons theories framing factors usually appear in the evalua-

tion of Wilson Loop operators (WL) on non-intersecting curves, being them associated to

regularization ambiguities in the contour integrations.

This has been extensively studied for pure topological Chern-Simons (CS) theories,

for which the first evidence of framing goes back to the seminal paper by Witten [1]. The

exact expression for the vacuum expectation value 〈W〉 obtained by using non-perturbative

methods contains in fact an overall phase factor which is not topologically invariant, being

induced by the gauge fixing procedure that necessarily introduces a metric dependence.

This factor can be made topologically invariant by framing the original manifold.

From a quantum field theory point of view the appearance of these factors has a very

clear explanation [1–3]. Correlation functions of gauge connections 〈Aµ1(x1) · · ·Aµn(xn)〉
entering the perturbative expansion of a WL require a regularization prescription in order to

be well-defined at coincident points on the contour. One possibility is to use point-splitting

regularization that allows each gauge connection to run on a deformed contour (frame),

slightly displaced and possibly intertwined with the original one. When the regularization

is removed, framing-dependent but metric-independent terms survive that are expressible

as powers of the linking number, that is the number of windings of the deformed path

around the original one. It has been proved [2, 3] that, resumming the perturbative series,

these terms exponentiate the one-loop contribution.

The fact that in the pure CS case the framing factor turns out to be a one-loop

effect relies on two important properties of the perturbative series: 1) Framing-dependent
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contributions come only from diagrams containing collapsible propagators [2, 3], that is

propagators joining two points on the contour that can get together; 2) In Landau gauge

where these calculations are performed, the gauge propagator is one-loop exact (in any

regularization scheme that preserves scale and BRS invariance it does not acquire any

infinite or finite quantum corrections [4–6], otherwise it may acquire a finite, scheme-

dependent one-loop quantum correction [3, 6, 7]).

This pattern is no longer true in CS theories coupled to interacting matter. In fact,

when matter is present non-trivial higher-loop corrections to the vector propagator gener-

ally appear. This is for instance the case in N = 2, 3 U(N) CS theories [8], N = 4 quiver

CS-matter theories [9] and N = 6 ABJ(M) theories [10, 11]. Moreover, matter interac-

tion vertices give rise to new topologies of diagrams that in principle might be framing

dependent, although not containing collapsible gauge propagators.

It is then natural to ask how the framing dependence in WL gets modified in the

presence of matter and whether it can still be factorized as a phase possibly given in terms

of a quantum corrected framing function.

In this paper we are going to investigate this problem by studying the bosonic 1/6 BPS

Wilson loop in ABJ(M) theory [12–14] in the planar limit. Using dimensional regularization

with dimensional reduction (DRED) we perform a three-loop calculation, as this is the first

non-trivial order where framing due to matter may arise. Moreover, since an exact result

for the 1/6 BPS WL is available from localization, comparing our genuine perturbative

calculation with the weak coupling expansion of the matrix model allows to identify the

framing contributions in the localization result.

First of all, we compute the two-loop correction to the gauge propagator. Although

most of the contributing integrals are UV divergent, in DRED scheme their sum turns

out to be finite and non-vanishing. This result is then used to evaluate the diagram

contributing to 〈W〉 at third order given by the exchange of a (collapsible) two-loop effective

propagator. Two classes of framing dependent contributions arise, proportional to λ1λ
2
2 and

λ2
1λ2 respectively, where λ1,2 are the ‘t Hooft couplings of ABJ. Using framing regularization

for splitting contours, once the framing parameter is removed the result ends up being

proportional to the the linking number (Gauss integral in eq. (2.3)).

Comparing with the third order expansion of the matrix model result [15, 16] we

find that the perturbative contribution proportional to the color factor λ1λ
2
2 reproduces

exactly the localization result, once we choose the linking number to be (minus) one. This

matching not only represents a non-trivial check of the matrix model calculation at three

loops, but it also allows to identify the imaginary contribution appearing at third order

in the weak coupling expansion of the matrix model as a genuine framing contribution.

Moreover, it confirms that DRED scheme is consistent with localization, as already found

at lower loops [17–19].

The factorization theorems [3] that in the pure CS case were at the basis of the expo-

nentiation of the one-loop framing contribution, are still at work in the presence of finite

quantum corrections to the gauge propagator. Therefore, the third order contribution

to 〈W〉 is the first non-trivial term in the expansion of an exponential that corrects the

original one-loop framing coming from the pure CS sector. The result in fundamental
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representation can then be written as

〈W〉 = e
iπ

(
λ1−π

2

2
λ1λ22+O(λ5)

)
χ(Γ,Γf )

(
1− π2

6
(λ2

1 − 6λ1λ2) +O(λ4)

)
, (1.1)

where χ(Γ,Γf ) is the linking number between the original and the framing contour.

However, this is not the end of the story. As already mentioned, the perturbative result

at three loops contains an extra framing-dependent term proportional to λ2
1λ2 that does

not have a counterpart in the weak coupling expansion of the matrix model. Therefore,

there must be some other contribution at this order that cancels the extra term in the

perturbative result. Having exhausted the topologies with collapsible propagators, the only

possibility is that non-trivial contributions to framing arise also from vertex-like diagrams.

A complete analytical calculation of all the contributions and the check of the actual

cancellation of framing in this sector is out of the scope of this paper. However, we perform

a numerical investigation of possible vertex-like diagrams contributing in this sector and,

in fact, we find that the corresponding integrals depend linearly on the linking number.

This evades the theorem of [3] that is valid in the pure CS case and represents a novel

feature of CS theories with matter that deserves further investigation.

Furthermore, we notice an interesting relation between our results and a recent pro-

posal for the exact Bremsstrahlung function B1/2(λ) in ABJM theory [20]. There, a gen-

eral formula for B1/2(λ) encoding the near-BPS limit of the cusp anomalous dimension for

fermionic Wilson Loop operators, has been derived in analogy with the N = 4 SYM [21].

The explicit construction of “latitude” fermionic 1/6 BPS Wilson Loops [22] was taken

into account together with some reasonable assumptions on their near-maximal circle be-

havior (see [20] details). The final answer, consistent with two-loop Feynman diagrams

computations [23] and leading [24] and subleading [25] strong coupling expansions reads

B1/2(λ) =
1

8π
tgΦB (1.2)

where the Bremsstrahlung function is completely expressed in terms of the phase ΦB of

the 1/6 BPS bosonic loop on the maximal circle. According to the results presented in

this paper it is reasonable to expect that the whole phase be a framing effect, as explicitly

seen at three-loop order. On the other hand, in the near-BPS cusp computation on the

plane, framing regularization appears to play no particular role while fermionic interac-

tions, absent in 1/6 BPS bosonic case here, are essential to recover the result. A possible

relation between these two apparently unrelated contributions seems therefore suggested

and certainly deserves a deeper analysis. It would be interesting to explore if a similar

relation emerges for the Bremsstrahlung function at generic opening angle [21], investigat-

ing wedge 1/6 BPS fermionic Wilson loops on S2. In deriving eq. (1.2) it was also used

the explicit vanishing of certain derivatives of n-winding 1/6 BPS bosonic Wilson loops:

again this vanishing crucially depends on the framing nature of some contributions [26]. A

closer inspection of framing effects for n-winding BPS Wilson Loops in ABJ(M) is therefore

certainly worthwhile [27].

We conclude by observing that the present analysis can be extended to other interest-

ing cases, most notably the 1/2 BPS Wilson loop in ABJ(M). The two-loop matching with
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the localization result has been carefully discussed in [17–19] at framing zero. It would be

interesting to make an explicit diagramatic check at non-trivial framing. New supersym-

metric Wilson loops in N = 4 super Chern-Simons [28–32] would also reserve surprises at

three-loop [33].

2 Framing factors in Wilson loops

As extensively discussed in literature [1–3], in pure Chern-Simons theory the vacuum ex-

pectation value of Wilson loop operators on close paths Γ

〈WCS〉 =
1

N

∫
[DA] e−SCS TrP exp

(
−i
∫

Γ
dxµAµ(x)

)
(2.1)

is affected by finite regularization ambiguities if point-splitting is used to regularize short

distance singularities in 〈Aµ1(x1) · · ·Aµn(xn)〉 which could potentially appear when mul-

tiple points on Γ clash. In this regularization scheme this is avoided by requiring every

single point xi to run on a different path (called frame). For instance, in the first non-

trivial correction proportional to the tree-level propagator 〈Aµ1(x1)Aµ2(x2)〉 the second

gauge connection can be chosen running on an infinitesimal deformation of the original

path defined by [1, 2]

Γf : xµ(τ)→ yµ(τ) = xµ(τ) + αnµ(τ) , |n(τ)| = 1 (2.2)

where nµ(τ) is orthogonal to the path Γ.

Although in pure CS no divergences appear [2], the removal of the point-splitting

regularization (α → 0) at the end of the calculation leaves a deformation-dependent term

which is proportional to the linking number of the two non-intersecting closed paths, the

original Γ and the deformed Γf . This is given by the Gauss integral

χ(Γ,Γf ) =
1

4π

∮
Γ
dxµ

∮
Γf

dyν εµνρ
(x− y)ρ

|x− y|3
(2.3)

It is a topological invariant that takes integer values corresponding to the number of times

the path Γf winds around Γ.

Diagrams associated to higher-loop corrections 〈Aµ1(x1) · · ·Aµn(xn)〉 containing at

least one collapsible gauge propagator1 lead to frame-dependent terms (see examples in

figure 1). The rest of contributions have been argued to be framing independent [2, 3].

The framing dependent terms contain powers of χ(Γ,Γf ) with the right coefficients to be

factorized as an overall phase. Therefore in pure CS theory the framing dependence appears

in a very controlled way, as for instance for the U(N) case the exact vacuum expectation

value in the fundamental representation takes the form2

〈WCS〉 = e
πiN
k
χ(Γ,Γf ) ρ(Γ) (2.4)

1Following ref. [3] we name “collapsible propagator” any free propagator that connects two different

points on the WL contour which can get together.
2Here and in the following k must be understood as the renormalized coupling constant. It coincides

with its bare values kB if we use DRED scheme or with kB +N if we instead employ higher derivative or

massive regularization.
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Figure 1. Examples of diagram series with collapsible propagators giving framing dependent con-

tributions. Each picture should be meant as indicating the diagram plus all possible permutations

of contour points.

where ρ is a frame-independent function.

This result is supported by two-loop calculations [2, 3, 6]. An all-loop proof has also

been given [3], which is based on the following general properties of the perturbative series:

(1) The gauge propagator does not acquire any quantum correction beyond one-loop

(which is for instance true in Landau gauge, using DRED scheme [4, 6], where even

the one-loop correction vanishes).

(2) A diagram gives framing factors if and only if it contains at least one collapsible

propagator.

(3) Reducible diagrams containing separated sub-diagrams factorize into the product of

partial contributions associated to each sub-diagram.

In particular, the second statement (very reasonable although not rigorously proved,

as far as we know) prevents any vertex-like diagram with no isolated propagators from

contributing to framing.

It is important to note that the tensorial structure of the tree-level vector propagator

in Landau gauge (see eq. (A.8)) plays a crucial role in determining the framing factor. It

is in fact the εµνρ tensor that is responsible for the reconstruction of the linking number in

eq. (2.3).

In supersymmetric pure CS theories a similar pattern appears and the identification

of the correct framing factor is confirmed by an exact calculation done using localization

techniques [16, 34, 35]. We recall that the result from localization is necessarily at framing

-1, as the only point-splitting regularization compatible with the supersymmetry used to

localize the functional integral on S3 is the one where the path and its frame wrap different

Hopf fibers [34].

The structure of the framing factor in susy and non-susy pure CS theories heavily

relies on the fact that in Landau gauge these theories are all-loop finite and in dimensional

reduction scheme not even finite corrections to the vector propagator seem to arise [4, 6]

(statement (1) above). In fact, this implies that the 1/k effect coming from the exchange

of a tree-level propagator, eventually exponentiated by summing all order diagrams as in

figure 1, is the only possible source of framing.
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The situation drastically changes in CS theories with matter where the vector prop-

agator can get finite (or infinite) loop corrections. In this case the vector propagators

appearing in the framing dependent diagrams of figure 1 should be replaced by effective

propagators, which are power series in 1/k. Still, we may expect that the factorization of

reducible diagrams works and that the coefficients are the right ones to exponentiate the

result from the exchange of a single, effective propagator (statements (2) and (3) above).

As a result, a framing phase of the form exp (if(1/k)χ(Γ,Γf )) should arise, where the

framing function f(1/k) is a power series in 1/k inherited from perturbative corrections

to the propagator. However, in the presence of interacting matter we are not guaranteed

a priori that perturbative contributions to the framing function only come from diagrams

with collapsible propagators (statement (2) above) and novel framing factors could arise.

In order to investigate these questions, we focus on well-known CS theories with matter,

that is ABJ(M) models.

In U(N1)k × U(N2)−k ABJ(M) theory, the U(N1) 1/6-BPS Wilson loop is defined

as [12–14]

〈W〉 =
1

N1

∫
[D(A, Â, C, C̄, ψ, ψ̄)] e−S Tr

[
P exp

(
−i
∫

Γ
dτA(τ)

)]
(2.5)

where the euclidean action is given in eq. (A.1) and the generalized connection

A = Aµẋ
µ − 2πi

k
|ẋ|M I

J CIC̄
J (2.6)

contains non-trivial couplings to the scalar matter fields governed by the matrix M J
I =

diag(+1,+1,−1,−1). The path Γ is the unit circle parametrized as

xµ(τ) = (0, cos τ, sin τ) (2.7)

Similarly, a second 1/6-BPS Wilson loop can be defined by simply replacing the U(N1)

connection Aµ with the U(N2) connection Âµ in eq. (2.6) and changing the scalar couplings

accordingly. However, for the scopes of our discussion we can just focus on the first one.

The quantity in (2.5) has been evaluated in DRED scheme and at framing zero, per-

turbatively up to three loops for the ABJM model [14] and more generally for the ABJ

one [17–19]. The result reads

〈W〉 = 1− π2

6
(λ2

1 − 6λ1λ2) +O(λ4) (2.8)

where λ1 = N1/k, λ2 = N2/k. Moreover, a general analysis based on the counting of ε

tensors together with the planarity of the contour Γ and the identity TrM2n+1 = 0 rules

out any perturbative contribution at odd loops [14].

Expression (2.5) has also been evaluated using localization techniques for three-

dimensional, N ≥ 2 supersymmetric CS-matter theories [34]. From the matrix model

result of [16] expanded at weak coupling one obtains (the expansion at higher orders is

given in appendix B)

〈W〉 = eπiλ1
(

1− π2

6
(λ2

1 − 6λ1λ2)− iπ
3

2
λ1λ

2
2 +O(λ4)

)
(2.9)
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where the standard framing-one factor for pure CS has been stripped off.

The comparison between eqs. (2.8) and (2.9) shows that, apart from the overall

framing-one factor, at third order in the couplings a mismatch appears due to a non-

trivial imaginary contribution in the matrix model result (framing -1) that is absent in

the result obtained in ordinary perturbation theory (framing zero). Requiring consistency

between the two results leads to the conclusion that the non-trivial term in (2.9) has to be

ascribed to a framing effect. In the next section we are going to prove that this is indeed

the case, being this contribution associated to a higher-order correction to the framing

function coming from a non-vanishing finite two-loop correction to the gauge propagator.

As a by-product we also find strong evidence that statement (2) above is no longer true,

since matching with the matrix model result works only if vertex-type diagrams contribute

to framing in canceling unwanted terms from the propagator corrections.

3 Gauge effective propagator in ABJ(M)

As discussed above, we expect higher-order corrections to the framing function to come

from non-trivial quantum corrections to the vector propagator. In this section we then con-

centrate on loop corrections to the Aµ propagator. We will perform the explicit calculation

up to two loops and discuss the general structure at higher orders. A similar calculation

can be easily applied also to Âµ.

Gauge and local Lorentz invariance require the quantum gauge propagator in momen-

tum space to be of the form3

〈Aµ(p)Aν(−p)〉 ≡ 2π

k
Πµν(p, λi) (3.1)

Πµν(p, λi) = Πe(p, λi)εµνρp
ρ + Πo(p, λi)

(
δµν −

pµpν
p2

)
where Πe(p, λi),Πo(p, λi) are power series in the two couplings λ1, λ2.

In general, at a given order, the first tensorial structure will come out from diagrams

proportional to an odd number of ε tensors, whereas the second structure will be produced

by diagrams proportional to an even number of ε. Recalling that in Landau gauge ε tensors

come from vector propagators, gauge cubic vertices (see appendix A) and traces of gamma

matrices (from identity (A.7) and its generalizations) it is easy to prove that at even loop

order the number of ε tensors is always odd and conversely. Therefore, the perturbative cor-

rections to the gauge propagator in Landau gauge are proportional to the tensor structure

εµνρp
ρ at even loops and to the structure (δµν − pµpν

p2
) at odd loops. This is confirmed by

the explicit expressions of the tree and one-loop propagators in eqs. (A.8), (A.9). It follows

that Πe(p, λi) and Πo(p, λi) are even and odd expansions in the couplings, respectively.

According to the general discussion of the previous section we expect that the function

Πe(p, λi), if not vanishing, will contribute to correct the framing function at higher orders.

3Below Πe(p, λi) and Πo(p, λi) are exchanged with respect to the usual convention [36] where the sub-

scripts e (even) and o (odd) typically denote the behavior under parity. We prefer, instead, to use these

subscripts to indicate the loop order: Πe has an expansion in even powers of the coupling and Πo in odd

ones, according to the normalization (3.1).

– 7 –
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Figure 2. Two-loop self energy diagrams with an identically vanishing integral.

Diagram Color Diagram Color

(a) N2
2 (e) 2N2

2 −N1N2

(b) N2
2 (f) N1N2

(c) N1N2 (g) N1N2 −N2
2

(d) N1N2 (h) N2
2

Table 1. Two loop non vanishing contributions with correspondent associated color structure.

To give support to this expectation we then compute the first non-trivial contribution to

Πe(p, λi), that is the two-loop gauge propagator.

3.1 Feynman diagram computation

We compute the two-loop gauge propagator in Landau gauge and in the planar limit using

DRED scheme [37, 38] that respects supersymmetry and gauge invariance. From previous

calculations [6] we know that at this order there are no corrections to the gauge self-energy

coming from the pure CS sector of the theory. Therefore it is sufficient to consider matter

contributions.

Taking into account that there is no one-loop correction to the scalar propagator and

excluding diagrams that give rise to vanishing integrals (see figure 2) the complete list of

contributions to the vector self-energy at two loops is given in table 1, where the color

factors are also indicated. The corresponding integrals are UV divergent except the last

one. We regularize divergences by working in d = 3− 2ε dimensions.

As a general strategy, we compute the second order contribution to Πe by contracting

the two-loop propagator with the tensorial structure [εµνρp
ρ]−1 = 1

2p2
εµνρp

ρ. Precisely, we

write

Π(2)
e (p) = 1

2p2
εµνρp

ρ Π(2)
µν (p) (3.2)

where Π
(2)
µν (p) is the sum of the contributions in table 1. With this operation we trade

– 8 –
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the evaluation of the original tensor integrals with the evaluation of scalar integrals, so

avoiding regularization ambiguities due to the contraction of three dimensional tensors

with d dimensional momenta coming from the regularized integrals.

We perform the calculation in momentum space and refer to appendix A for the cor-

responding Feynman rules. For each diagram we just write the initial expression and the

final result, adding few details only in the most complicated cases. All the results are given

in terms of G functions defined as∫
ddk

(2π)d
1

[k2]a[(k − p)2]b
≡ 1

(p2)a+b−d/2 Ga,b (3.3)

with

Ga,b =
1

(4π)d/2
Γ(a+ b− d

2)Γ(d2 − a)Γ(d2 − a)

Γ(a)Γ(b)Γ(d− a− b)
(3.4)

Diagram (a): the contribution of diagram (a) to the effective propagator (3.1) is

(a) =

(
2π

k

)3

64N 2
2

εµρ1ρ2ερ3ρ4ρ5ερ6νρ7p
ρ2pρ4pρ7

p4

∫
ddl ddk

(2π)2d

kρ1 lρ3kρ5 lρ6

k2(k − p)2(k − l)2(l − p)2l2

(3.5)

We proceed as discussed above by contracting with the tensorial structure εµνρp
ρ and

converting contracted pairs of ε to combinations of delta functions. This allows to rewrite

the string of momenta at numerator as a combination of scalar structures

p2 (k · l)((l ·k) p2−(l ·p) (k ·p))−k2p2(l2p2−(l ·p)2)+p2 l2(k ·p)2−p2 (k · l) (k ·p) (l ·p) (3.6)

Completing the squares and discarding tadpoles, we can read the final contribution to the

propagator

(a) =

(
2π

k

)3

N 2
2

(
4G2

1,1 −
16

3
G1,1G1,1/2+ε

)
εµνρ p

ρ

(p2)1+2ε
(3.7)

with the G functions defined in (3.4).

Diagram (b): the contribution from diagram (b) reads

(b) =

(
2π

k

)3

4N 2
2

εµρ1ρ2ερ3ρ4ρ5ερ6νρ7p
ρ2pρ7

p4

∫
ddl ddk

(2π)2d

(k − l)ρ5kρ8 lρ9(l − p)ρ10(k − p)ρ11
k2(k − p)2(k − l)2(l − p)2l2

× Tr(γρ1γρ8γρ3γρ9γρ6γρ10γρ4γρ11) (3.8)

This expression is again brought to scalar form by contraction with εµνρp
ρ. After working

out some lengthy γ−algebra and completing the squares, the final result can be expressed as

(b) =

(
2π

k

)3

N 2
2

(
4G2

1,1 −
16

3
G1,1G1,1/2+ε

)
εµνρ p

ρ

(p2)1+2ε
(3.9)

and turns out to be identical to the contribution of diagram (a).
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Diagram (c): this diagram yields

(c) = −
(

2π

k

)3

64N1N2
εµρ1ρ2ερ3ρ4ρ5ερ6νρ7p

ρ2pρ4pρ7

p4

∫
ddl ddk

(2π)2d

kρ1 lρ3kρ5 lρ6

k2(k − p)2(k − l)2(l − p)2l2

(3.10)

Besides an overall sign and the different color structure, this contribution is exactly the

same as the one appearing in diagram (a). Exploiting the previous result we can write

(c) =

(
2π

k

)3

N1N2

(
16

3
G1,1G1,1/2+ε − 4G2

1,1

)
εµνρ p

ρ

(p2)1+2ε
(3.11)

Diagram (d): this diagram is the fermion counterpart of diagram (c) and gives

(d) = −
(

2π

k

)3

8N1N2 εµρ1ρ2ερ1ρ3ρ4 ερ3ρ5ρ6 ερ7ρ4ρ8 ερ9νρ10 p
ρ2 pρ10

×
∫
ddl ddk

(2π)2d

Tr (γρ5γσ1γρ9γσ2γρ7γσ3) kσ1(k − p)σ2(k − l)σ3(l − p)ρ8 lρ6
k2(k − p)2(k − l)2(l − p)2l2

(3.12)

As usual we multiply the external structure by εµνρp
ρ and expand every pair of ε-tensors.

After a lengthy computation, the numerator of the integral is reduced to the following

scalar expression

2 (k · p) (k − p) · (l − p) (k − l) · l − 2 p · (k − p) (k · l) (k − l) · (l − p) (3.13)

Then, completing squares and discarding tadpoles we finally arrive to

(d) =

(
2π

k

)3

N1N2

(
2G2

1,1 −
8

3
G1,1G1,1/2+ε

)
εµνρ p

ρ

(p2)1+2ε
(3.14)

Diagram (e): this diagram is quite easy to evaluate. After Wick contractions we obtain

(e) = −
(

2π

k

)3

(16N 2
2 − 8N1N2)

εµρ1ρ2ερ1ρ3ρ4ερ3νρ5p
ρ2pρ5

p4

∫
ddl ddk

(2π)2d

lρ4

k2(k + l − p)2l2

(3.15)

Following the previous steps, we immediately get a scalar integral from which we extract

the contribution to the propagator

(e) =

(
2π

k

)3(
N 2

2 −
1

2
N1N2

) (
16

3
G1,1G1,1/2+ε

)
εµνρ p

ρ

(p2)1+2ε
(3.16)

Diagram (f): this diagram contains the one-loop correction to the gauge propaga-

tor (A.9) which, once inserted in two possible ways in the vector bubble, leads to

(f) =

(
2π

k

)3

8N1N2G1,1 εµρ1ρ2ερ1ρ3ρ4ερ5ρ6ρ7 ερ7ρ4ρ9ερ6νρ8p
ρ2pρ8

×
∫

ddk

(2π)d
(k − p)ρ9

(k − p)2(k2)1/2+ε

(
ηρ3ρ5 −

kρ3kρ5
k2

)
(3.17)

Proceeding as in the previous cases we obtain

(f) =

(
2π

k

)3

N1N2

(
10

3
G1,1G1,1/2+ε − 2G1,1G1,3/2+ε

)
εµνρ p

ρ

(p2)1+2ε
(3.18)
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Diagram (g): this diagram involves the 1-loop corrected fermion propagator given

in (A.13). After taking into account the two inequivalent insertions in the fermion bubble

we get

(g) = −8i

(
2π

k

)3

(N 2
2 −N1N2)G1,1 Tr (γρ1γρ3γρ4)

εµρ1ρ2ερ3νρ5p
ρ2pρ5

p4

×
∫

ddl

(2π)d
lρ4

l2[(l − p)2]1/2+ε
(3.19)

This can be easily ε-contracted and manipulated to get the final contribution to the prop-

agator

(g) =

(
2π

k

)3

(N 2
2 −N1N2)

(
16

3
G1,1G1,1/2+ε

)
εµνρ p

ρ

(p2)1+2ε
(3.20)

Diagram (h): the 1P-reducible contribution can be immediately derived from the 1-loop

correction to the vector self energy, eq. (A.9), and gives

(h) = −
(

2π

k

)3

N 2
2 16G2

1,1

εµνρ p
ρ

(p2)1+2ε
(3.21)

3.2 The two-loop result

We are now ready to sum the previous contributions and obtain the two-loop correction to

the gauge propagator due to matter interactions. In terms of G functions we have

2π

k
Π(2)
µν (p, λi) = (3.22)

−
(

2π

k

)3 [
8N2

2 G
2
1,1 + 2N1N2

(
G2

1,1 +G1,1G1,1/2+ε +G1,1G1,3/2+ε

)] εµνρ p
ρ

(p2)1+2ε

Using the explicit expansions

G2
1,1 =

1

64
+O(ε) (3.23)

G1,1G1,1/2+ε =
e−2γEε

(4π)3−2ε
π

(
1

ε
+ 6 +O(ε)

)
(3.24)

G1,1G1,3/2+ε =
e−2γEε

(4π)3−2ε
π

(
−1

ε
+ 2 +O(ε)

)
(3.25)

one can immediately realize that the 1/ε divergences cancel and for ε→ 0 we are left with

a finite result given by

2π

k
Π(2)
µν (p, λi) ≡

2π

k
Π(2)
e (p, λi)εµνρ p

ρ = −π
3

k2

[
N2

2 +N1N2

(
1

4
+

2

π2

)]
εµνρ p

ρ

p2
(3.26)

Since in dimensional reduction two-loop contributions from the gauge and ghost sectors

cancel each other [6], expression (3.26) is the complete two-loop correction to the gauge

propagator in ABJ(M) theory.
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Transforming back to configuration space we obtain

〈Aµ(x)Aν(y)〉(2) = −
(

2πi

k

)[
λ2

2 + λ1λ2

(
1

4
+

2

π2

)]
Γ(3

2 − ε)
4π−

1
2
−ε

εµνρ
(x− y)ρ

[(x− y)2]
3
2
−ε

(3.27)

We stress the two-loop finiteness of the gauge propagator. This is a remarkable property

of ABJ(M) theories, as in general for less supersymmetric CS-matter theories a non-trivial

renormalization of the gauge connection enters already at two loops [6] together with a

renormalization of the CS coupling in such a way that the beta function vanishes [39]. At

this order this peculiar property of ABJ(M) is due to the presence of two gauge groups

with opposite CS levels and the particular configuration of matter in bifundamental rep-

resentation, but not to the details of the self-interactions in the matter sector. We expect

them to play a role at higher loops where it would be nice to check whether the finiteness

of the gauge propagator is still valid.

Since these theories are expected to have vanishing beta functions [39], the lack of

renormalization of the gauge self-energy at two loops necessarily implies that no renormal-

ization of the CS cubic interaction (and then of the CS coupling) will arise at this order.

4 Framing at three loops for the 1/6 BPS WL

As discussed in section 2, the εµνρp
ρ part of the gauge propagator (3.1) is responsible for

the emergence of the framing factor. The tree-level propagator contributes to the framing

function only with terms proportional to powers λn1 that are known to exponentiate the 1/k

contribution (pure CS sector). In addition, higher-order corrections to the framing function

may come from non-trivial corrections to the Πe function when the effective propagator is

used in

〈W〉 → 1

N1
(−i)2

∫ 2π

0
dτ1

∫ τ1

0
dτ2 ẋ

µ
1 ẋ

ν
2 〈Aµ(x1)Aν(x2)〉 (4.1)

where the integral is framed according to the prescription (2.2).

We discuss this effect in details. Since at two loops the corrections to the propagator

are proportional to two different color structures, we will consider the two cases separately.

4.1 Color structure λ1λ
2
2

We begin by inserting in eq. (4.1) the λ2
2 term of the two-loop propagator (3.27). Using

point-splitting regularization as done at tree level, when the regularization parameter is

removed we are left with the following third order frame-dependent contribution

〈W〉(3)|λ1λ22 = i
π3

2
λ1λ

2
2 χ(Γ,Γf ) (4.2)

where χ(Γ,Γf ) is the linking number of the two closed paths defined in eq. (2.3). In

particular, setting χ(Γ,Γf ) = −1, the result perfectly matches the third order contribution

in the localization result [16] (see eq. (2.9)) and elucidates its framing origin.

We remark that the choice of DRED scheme has been crucial to get rid of lower

transcendentality constants which are not present in the localization result.
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Figure 3. Two-loop diagrams proportional to the color structure λ1λ
2
2 not containing collapsible

gauge propagators.

The factorization theorem for reducible diagrams proved in the pure CS case [3]

should still work in the presence of matter and with non-trivial quantum corrections

to the gauge propagator. It then follows that multiple insertions of collapsible gauge

propagators corrected at two loops (ladder-type topologies as in figure 1 with subdiagrams

now containing also matter) lead to the exponentiation of the framing function, now

corrected at order λ1λ
2
2.

At this order there can be other potential sources of framing proportional to this color

factor not ascribable to propagator-type diagrams. There are indeed further diagrams,

the ones in figure 3, that together with propagator diagrams already discussed, give the

complete set of contributions proportional to λ1λ
2
2. However, a close inspection reveals

that all these diagrams vanish identically either because they are proportional to vanishing

integrals or because they give rise to the trace of odd powers of the matrix M .

In conclusion, as long as the λ1λ
2
2 correction to framing is concerned, at framing -1 we

can write

〈W〉 = e
iπ

(
λ1−π

2

2
λ1λ22+O(λ5)

)(
1− π2

6
(λ2

1 − 6λ1λ2) +O(λ4)

)
(4.3)

where the framing factor e−i
π3

2
λ1λ22 is the result of resumming an infinite subclass of dia-

grams, that is the ones containing multiple collapsible gauge propagators corrected at two

loops.

4.2 Color structure λ2
1λ2

The result from localization, eq. (2.9), does not exhibit any correction proportional to the

color structure λ2
1λ2 once the standard framing phase eπiλ1 is factorized. Expanding the

phase in (2.9) we obtain a term

〈W〉(3)|λ21λ2 = −iπ3λ2
1λ2 (4.4)

which should be reproduced diagrammatically. If factorization of the framing works as in

the pure CS case, we expect that this contribution should be entirely due to the diagrams

in figure 4 (and their permutations) containing one collapsible tree-level gauge propagator.

Indeed, these diagrams represent the factorized interference between the two-loop matter

diagrams and the gauge vector exchange. We have explicitly checked that these diagrams

reproduce exactly contribution (4.4). This is a non-trivial check that the exponentiation

of the pure CS framing works also in the presence of matter.

Once this is taken into account the matrix model predicts no further contributions

to the λ2
1λ2 color sector. However, the two-loop propagator (3.27) contains a correction
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Figure 4. Framing dependent diagrams with λ21λ2 color structure which reconstruct the standard

phase factor.

Figure 5. List of possible framing dependent diagrams with color λ21λ2 and no collapsible vector

propagators.

proportional to λ1λ2 and its insertion in eq. (4.1) gives rise to a non-vanishing third-order

correction to 〈W〉 given by

i
π3

2
λ2

1λ2

(
1

4
+

2

π2

)
χ(Γ,Γf ) (4.5)

This expression not only contains weird lower transcendentality terms, but would be also in

contrast with the matrix model result. The combination of these two unexpected outputs

leads to the expectation that in this sector framing dependent contributions come also from

diagrams with no collapsible propagators, precisely the ones listed in figure 5. Matching

with the matrix model prediction necessarily implies that these vertex-type diagrams should

cancel exactly contribution (4.5) coming from the propagator.

A full analytical computation of these diagrams is complicated. This entails both

solving the internal interaction integrals and then analyzing the behavior of the integrand

under integration on framing contours. A complete analysis is beyond the scopes of this

paper. Here, we restrict to a sanity check of our conjecture, testing whether some of these

diagrams are in fact able to develop a framing dependence.

The simplest diagram to compute is the first one in figure 5. After performing Feynman

rules algebra we obtain a result proportional to (here we use xi ≡ x(τi))

∝ i
∫

2π>τ1>τ2>τ3>0

dτ1dτ2dτ3 εµνρ x
ν
12x

ρ
23

ẋµ2 |ẋ1||ẋ3| (|x12|+ |x13| − |x23|)
|x12||x13|2|x23|(|x12||x13|+ x12 · x13)

+ cyclic

(4.6)

The latter multiple integrals possess a singularity for coincident points which can poten-

tially cause a framing dependence. This is however nontrivial to establish analytically.

Alternatively, we provide numerical evidence that this integral can be framing dependent.

We evaluate the contour integral along a simple framing contour consisting of a toroidal
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Figure 6. A cartoon of framing contours.
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Figure 7. Left: dependence of integral (4.6) on logα at fixed n = 1: it approaches a finite value

for α→ 0. Right: linear dependence on the framing number at fixed α = 10−5.

helix of infinitesimal radius α winding around the original circular path

xi(τi) = {0, cos τi, sin τi}+ α (i− 1) {sinnτi, cosnτi cos τi, cosnτi sin τi} (4.7)

A magnified example is shown in figure 6. The equation above indicates that the prescrip-

tion for multiple point-splitting consists of shifting the contours with the same vector field,

but different integer multiples of the magnitude, in such a way that all paths have the same

linking number pairwise [2].

As a first check we study the behavior of the integral for fixed n in the limit of vanishing

α. For n = 0, namely trivial framing, the integrand vanishes identically. If the integral

were to be framing independent, we would expect its value to tend to 0 even for generic n.

On the contrary our numerical evaluation suggests that this is not the case, as the limit

of vanishing α is finite but not zero when n 6= 0. In figure 7 (left) we show an example of

this limit for n = 1.

As a second check we examine the dependence of the integral on the framing number

n for fixed and sufficiently small α.

We find that the dependence is linear, as the plot of figure 7 (right) indicates. This is

somehow in agreement with the expectation that this diagram could eventually contribute

to the cancellation of (4.5) where for the contour coordinates (4.7) we have χ(Γ,Γf ) = −n.

A similar numerical analysis can be performed on some pieces of the second diagram

of figure 5 where the internal integral can be solved exactly. It exhibits the same finiteness

properties in the α→ 0 limit and a linear dependence on the framing number, as described

above.

We stress that this analysis is incomplete and, moreover, it misses one crucial aspect.

In fact, it does not address the question of whether the integrals we evaluate are metric
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dependent or not, that is if they depend only on the framing number or also on the

particular shape of the framing contour. It is conceivable that the integrals of the various

diagrams are individually metric and framing dependent, but that the sum only depends

on the linking number of the framing contour. The mechanism for this to occur is not clear

and deserves further investigation.
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A Conventions and Feynman rules

In euclidean space the N = 6 supersymmetric Chern-Simons-matter theory with gauge

group U(N1)k ×U(N2)−k [10, 11] is described by the action

S = SCS + Sgf + Smatter (A.1)

SCS = −i k
4π

∫
d3x εµνρ

[
Tr

(
Aµ∂νAρ +

2

3
iAµAνAρ

)
(A.2)

−Tr

(
Âµ∂νÂρ +

2

3
iÂµÂνÂρ

)]
Sgf =

k

4π

∫
d3xTr

[
1

ξ
(∂µA

µ)2 + ∂µc̄D
µc− 1

ξ
(∂µÂ

µ)2 − ∂µ¯̂cDµĉ

]
(A.3)

Smatter =

∫
d3xTr

[
DµCID

µC̄I + iψ̄IγµDµψI

]
+ Sint (A.4)

where Sint includes Yukawa vertices and sextic scalar interactions which are not needed at

our perturbative order. Here (CI)
j

ĵ
((C̄I)ĵj), I = 1, · · · 4, are four matter scalars in the bi-

fundamental (antibifundamental) representation of the gauge group, and (ψ̄I)j
ĵ

((ψI)
ĵ
j) are

the corresponding fermions. Vector fields Aµ ≡ AaµT
a and Âµ ≡ ÂaµT̂

a are the gauge po-

tentials of the U(N1) and U(N2) groups respectively, with Tr(T aT b) = δab,Tr(T̂ âT̂ b̂) = δâb̂.

Covariant derivatives are defined as

DµCI = ∂µCI + iAµCI − iCIÂµ Dµψ̄
I = ∂µψ̄

I + iAµψ̄
I − iψ̄IÂµ

DµC̄
I = ∂µC̄

I − iC̄IAµ + iÂµC̄
I DµψI = ∂µψI − iψIAµ + iÂµψI (A.5)

Euclidean Clifford algebra {γµ, γν} = 2δµν is explicitly realized by

(γµ) β
α = {−σ3, σ1, σ2} (A.6)

Spinorial indices are lowered and raised as (γµ)αβ = εαγ(γµ) δ
γ εβδ, where ε12 = ε21 = 1. We

conventionally choose to write the spinorial indices of chiral fermions always up, while the

ones of antichirals always down For instance, in (A.4) we read ψ̄IγµDµψI ≡ ψ̄Iα(γµ)αβDµψ
β
I .
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Products of gamma matrices can be easily sort out using the basic identity

γµγν = δµνI− iεµνργρ (A.7)

From the action (A.1), working in dimensional regularization (d = 3− 2ε) and in Landau

gauge we obtain the following Feynman rules in configuration and momentum space

Vector propagators.

〈Aaµ(x)Abν(y)〉(0) = δab
(

2πi

k

)
Γ(3

2 − ε)
2π

3
2
−ε

εµνρ
(x− y)ρ

[(x− y)2]
3
2
−ε

(A.8)

= δab
∫

ddp

(2π)d
2π

k
εµνρ

pρ

p2
eip(x−y)

〈Aaµ(x)Abν(y)〉(1) = δab
(

2π

k

)2

N2
Γ2(1

2 − ε)
4π3−2ε

[
δµν

[(x− y)2]1−2ε
− ∂µ∂ν

[(x− y)2]2ε

4ε(1 + 2ε)

]
(A.9)

= δab
(

2π

k

)2

N2
Γ2(1

2 − ε)Γ(1
2 + ε)

Γ(1− 2ε)21−2επ
3
2
−ε

∫
ddp

(2π)d
eip(x−y)

(p2)
1
2

+ε

(
δµν −

pµpν
p2

)
At tree-level the Â propagator is minus the A one, whereas at one loop it is the same but

with N2 replaced by N1.

Scalar propagator.

〈(CI) ĵi (x)(C̄J)l
k̂
( y)〉(0) = δJI δ

l
iδ
ĵ

k̂

Γ(1
2 − ε)

4π
3
2
−ε

1

[(x− y)2]
1
2
−ε

= δÎ
Ĵ
δliδ

ĵ

k̂

∫
ddp

(2π)d
eip(x−y)

p2
(A.10)

The one-loop correction is vanishing.

Fermion propagator.

〈(ψαI ) j
î

(x)(ψ̄Jβ ) l̂k(y)〉(0) = −i δJI δ l̂îδ
j
k

Γ(3
2 − ε)

2π
3
2
−ε

(γµ)αβ (x− y)µ

[(x− y)2]
3
2
−ε

(A.11)

= − δJI δ l̂îδ
j
k

∫
ddp

(2π)d
(γµ)αβ

pµ
p2
eip(x−y) (A.12)

〈(ψαI ) j
î

(x)(ψ̄Jβ ) l̂k(y)〉(1) = −
(

2πi

k

)
δJI δ

l̂
î
δjk δ

α
β (N1 −N2)

Γ2(1
2 − ε)

16π3−2ε

1

[(x− y)2]1−2ε

(A.13)

= −
(

2πi

k

)
δJI δ

l̂
î
δjk δ

α
β (N1 −N2)

Γ2(1
2 − ε)Γ(1

2 + ε)

Γ(1− 2ε)(4π)
3
2
−ε

∫
ddp

(2π)d
eip(x−y)

(p2)
1
2

+ε

B 1/6 BPS WL: expansion of matrix model result

From the matrix model description [15, 16] it is possible to read the perturbative expansion

of the expectation value of the 1/6 BPS Wilson loop. Here we give the first few terms of

the expansion factorizing the standard phase as in pure CS models

〈W〉 = eπiλ1
(

1− π2

6
(λ2

1 − 6λ1λ2)− iπ
3

2
λ1λ

2
2 +

π4

120
(λ4

1 − 10λ3
1λ2 − 20λ1λ

3
2)

– 17 –



J
H
E
P
0
6
(
2
0
1
6
)
1
3
3

+ i
π5

24
λ1λ

2
2 (λ2

1 + λ2
2) +

π6

5040
(−λ6

1 + 14λ5
1λ2 + 700λ3

1λ
3
2 + 42λ1λ

5
2)

− i π
7

720
λ1λ

2
2 (λ4

1 + 70λ2
1λ

2
2 + λ4

2)

+
π8

362880
(λ8

1−18λ7
1λ2−7728λ5

1λ
3
2−56700λ4

1λ
4
2−22932λ3

1λ
5
2−72λ1λ

7
2)+. . .

)
(B.1)

Following our analysis of the perturbative corrections of the framing factor, it might be

useful to rewrite this result factorizing a generalized phase which multiplies a real function

of the couplings

〈W〉=ei
[
πλ1−π

3

2
λ1λ22+π5

24

(
−λ31λ22+12λ21λ

3
2+λ1λ42

)
+ π7

720

(
−3λ51λ

2
2+60λ41λ

3
2−425λ31λ

4
2−90λ21λ

5
2−λ1λ62

)
+O(λ9)

]
×
[
1 +

π2

6

(
− λ2

1 + 6λ1λ2

)
+

π4

120

(
λ4

1 − 10λ3
1λ2 − 20λ1λ

3
2

)
+

π6

5040

(
− λ6

1 + 14λ5
1λ2 + 700λ3

1λ
3
2 + 630λ2

1λ
4
2 + 42λ1λ

5
2

)
+

π8

362880

(
λ8

1 − 18λ7
1λ2 − 7728λ5

1λ
3
2 − 56700λ4

1λ
4
2 − 68292λ3

1λ
5
2

− 7560λ2
1λ

6
2 − 72λ1λ

7
2

)
+O(λ10)

]
(B.2)

We stress that this way of rewriting the result really makes sense only if the framing

dependence keeps factorizing also at higher loops. This is not a priori guaranteed because

of the presence of possible contributions to the framing coming from vertex-type diagrams,

for which an exponentiation theorem does not exist yet.
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