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Introduction 

A common goal of many experimental and observational clinical studies is to assess the relationship 

between an exposure (e.g. a treatment) and a well-defined response in a group of patients with 

certain characteristics. In many cases it is also of interest to establish to what extent this relationship 

can be interpreted as a causal effect of the treatment on the outcome. In the context of randomized 

controlled trials (RCT), this goal is made achievable by design: in particular, randomization 

theoretically guarantees that the possible confounders (i.e. known or unknown factors that are 

associated with both the treatment and the outcome) are similarly distributed among the treatment 

groups. This means that the contrast observed in the expected value of the outcome between 

groups is likely attributable to the treatment only.  In the context of observational studies this issue 

becomes more challenging as it can be tackled only in the data analysis phase. Thus, a wide range 

of statistical tools are nowadays available to address this problem. Propensity score (PS) methods 

are increasingly being used to reduce or minimize the effect of confounding factors in observational 

studies of treatment effect on outcomes. Furthermore, some propensity score methods allow to 

estimate marginal effects rather than conditional effects provided for instance by regression models 

[1]. The advantage of a marginal effects, relies on its causal interpretation. The marginal effect 

describes the impact of treatment that could be observed in the counterfactual situation in which 

the all population is moved from untreated to treated. Conditional effect does not have this causal 

flavour, because it describes the impact of treatment in a subject with specific characteristics and 

not at population level. 

In survival analysis the outcome is represented by time elapsed from an initial condition to the 

occurrence of an event of interest. A natural approach to quantify the treatment effect in survival 

analysis is to compare the survival or the cumulative incidence under each treatment level at some 

or all times t [2]. At any time t, it is also possible to calculate the incidence rate of new cases 

occurring in the next time-unit among those who had not yet developed the event before t. This 

quantity is the discrete time hazard and it may be regarded as a sort of instant velocity of event 

occurrence and thus it can increase or decrease over time [3]. Another frequent approach to 

quantify the treatment effect in survival analyses is to estimate the ratio of the hazards in the 

treated and the untreated, known as the hazard ratio [2]. This is frequently done using the Cox 

regression model, which allows estimating the hazard ratio of treatment adjusting for measured 

potential confounders. 
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Although propensity score methods have frequently been used in the analysis of time-to-event 

outcomes, there are few studies in literature examining the relative performance of different 

propensity score methods for estimating marginal hazard ratios [4] [5] [6]. In one of these studies 

[4], the author found that both PS matching and Inverse Probability Weighting (IPW) allow for the 

estimation of marginal hazard ratios with minimal bias, while stratification on the PS and covariate 

adjustment using the PS result in biased estimation of marginal hazard ratios. Considering these 

results, the author suggested to use PS matching and IPW when the interest is to estimate the 

relative effect of treatment on time-to-event outcomes. Another study [5] demonstrates that a 

failure to account for the sampling variability can bring to incorrect statistical inference when PS 

weighting analysis is performed, while [6] shows that  an estimator based on bootstrap resampling 

provides a good approximation of standard errors and thus an adequate coverage of the confidence 

interval for marginal hazard ratios [6]. The results presented in the above-mentioned studies all rely 

on a broad series of Monte Carlo simulations. However, within this framework, some of the settings 

chosen (e.g. limited number of confounders and all with a Gaussian distribution, absence of 

unmeasured confounders and correct PS model specification, extremely high sample size) appear 

unrealistic and not representative of the practical issues often arising in practice when analysing 

data from an observational study. Another issue that commonly arises when dealing with survival 

outcomes consist in analysing composite endpoint, that combine several specific event. The analysis 

of composite endpoint is straightforward because standard statistical method can be used; 

however, sometimes it is of interest to assign a different clinical relevance to each cause-specific 

event and ad hoc measure is been proposed to this aim. For example, one idea is to focus on a 

weighted composite survival endpoint [7]. 

 The methodological aim of this thesis is the comparison of the performance of different PS based 

methods, through simulation studies, in estimating the marginal effect of treatment on standard 

(unweighted) or weighted composite survival endpoints. The study of the causal effect of treatment 

on weighted endpoints is a completely innovative aspect, as currently there are no references in the 

literature about this topic. 

The motivating clinical study of this thesis is part of the HERCOLES project (Hepatocarcinoma 

Recurrence on the Liver Study), an Italian retrospective study on hepatocellular carcinoma [8]. The 

primary aim of this study is to compare the prognosis of patients with primary hepatocarcinoma 

undergoing different surgical techniques (anatomic resection vs wedge resection). The main 

endpoint of interest is the disease free survival defined as time from treatment to the first of the 
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following specific events: local hepatic recurrence (i.e. recurrence on the surgical cut of the liver), 

non-local hepatic recurrence and death without recurrence. We analysed the causal effect of 

treatment of the composite endpoint in term of marginal hazard ratio by combining several PS-

based methods with Cox regression. Furthermore, it is of interest to consider the different clinical 

relevance of the cause-specific events. In particular, in the clinical practice, death is considered the 

worst event, but also more relevance is given to local recurrence compared to the non-local one. To 

account for the different relevance assigned to each endpoint we considered the method of Ozga 

and Rauch who recently proposed a new non-parametric weighted effect measure and estimator 

for composite endpoints called the ‘weighted all-cause hazard ratio’ [9]. We used this method for 

the analysis of this study, in combination with IPW and PS-matching, to estimate a causal effect of 

treatment on the weighted composite endpoint. 

Regarding the structure of this thesis, in Chapter 1 the statistical methods relevant for the purposes 

of our study are introduced. Specifically, a description of the basic concepts of survival analysis and 

a definition of the standard and weighted all-cause hazard-ratio is given. Furthermore, an 

introduction to causal inference and a description of the different PS based methods are provided. 

In Chapter 2 and 3 the simulation studies on standard and weighted composite endpoints are 

described, respectively. In light of the results obtained, in Chapter 4 the clinical application of these 

methods on the HERCOLES data is reported. In the discussion (Chapter 5) all the findings are 

summarized and placed in the context of the existing literature. 
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1. Methods 

1.1. Standard survival analysis 

Survival analysis is a collection of statistical methods for data analysis for which the outcome 

variable of interest is time elapsed from a starting point (e.g. diagnosis of disease, administration of 

treatment, beginning of exposure) until an event occurs (e.g., death, disease incidence, relapse from 

remission, recovery). This time is often called “survival time” even when the event of interest is not 

death. Time can be measured in years, months, weeks, or days depending on the type of event of 

interest.  

A typical problem in survival analysis is the presence of censoring: for some individuals the time to 

occurrence of the event of interest is only partially available. 

There are three types of censoring: 

1. Right censoring: true survival time is equal to or greater than observed survival time 

2. Left censoring: true survival time is less than or equal to the observed survival time 

3. Interval censoring: true survival time is within a known time interval 

The most common is right censoring and the reasons why it may occur are: 

1. The study ends before a subject experiences the event (i.e. administrative censoring) 

2. A subject is lost to follow-up during the study 

3. A subject withdraws the treatment (drop out or treatment abandon), this may occur 

especially in RCT 

 

Theoretical functions in survival analysis 

Let T denote the survival time. Beside the density function, two other functions are commonly used 

in survival analysis to describe the distribution of T : the survival function, denoted by 𝑆(𝑡), and the 

hazard function, denoted by ℎ(𝑡). The survival function is defined as the probability that a subject 

survives longer than t: 

𝑆(𝑡) = 𝑃(𝑇 > 𝑡)    (1) 

 

Theoretically, as t ranges from 0 up to infinity, the survival function can be graphed as a smooth 

curve: 
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Figure 1. Survival function smooth curve 

 

Moreover, 𝑆(𝑡) is a non-increasing function of time t with the following properties: 

 

𝑆(𝑡) =  {
1     𝑓𝑜𝑟 𝑡 = 0      
0     𝑓𝑜𝑟 𝑡 = ∞     

     (2) 

The complement to 1 of the survival function is the cumulative incidence function, which represents 

the probability of event occurrence at time t or before: 

𝐹(𝑡) = 1 − 𝑆(𝑡) = 𝑃(𝑇 ≤ 𝑡)    (3) 

The hazard function, denoted by ℎ(𝑡), is given by the following formula: 

ℎ(𝑡) =  lim
∆𝑡 →0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡|𝑇 ≥ 𝑡)

∆𝑡
     (4) 

 

The hazard function ℎ(𝑡) gives the instantaneous event rate which describes the risk at time t that 

the event of interest occurs in the next time unit, given that the individual has survived up to time t 

[10]. The cumulative hazard function is the integral of the hazard function between integration limits 

of 0 and t: 

𝐻(𝑡) = ∫ ℎ(𝑢)𝑑𝑢    
𝑡

0

𝑡 > 0     (5) 

The survival function can also be expressed in terms of the hazard function by the negative exponent 

of the cumulative hazard function: 

𝑆(𝑡) = 𝑒−𝐻(𝑡)     𝑡 > 0     (6) 

 

From this one-to-one relationships, it is possible to obtain the relationship between ℎ(𝑡) and 𝑆(𝑡): 

ℎ(𝑡) = −[
𝑑𝑆(𝑡)/𝑑𝑡

𝑆(𝑡)
]     (7) 
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Considering a parametric survival model, time is assumed to follow some distribution whose 

probability density function 𝑓(𝑡) can be expressed in terms of unknown parameters. Once 𝑓(𝑡) is 

specified, the corresponding survival and hazard functions can be determined. The 𝑆(𝑡) can be 

obtained as follows: 

𝑆(𝑡) = P(T > t) = ∫ 𝑓(𝑢)𝑑𝑢
∞

𝑡

     (8) 

The hazard can then be found from (7). 

 

Estimators in survival analysis 

The Kaplan-Meier (KM) estimator [2], also known as the product limit estimator, can be used to 

estimate the survival function from survival data in presence of censored data, assuming 

independent censoring (i.e. censoring time is independent from the true survival time). This 

estimator is the non-parametric maximum likelihood estimator of 𝑆(𝑡) and can be expressed as 

follows: 

 𝑆̂(𝑡) = ∏
𝑛𝑖 − 𝑑𝑖

𝑛𝑖
𝑡𝑖<𝑡

     (9) 

At each event time 𝑡𝑖  there are 𝑛𝑖  subjects “at risk” and 𝑑𝑖  number of deaths/failures. Censored 

individuals before time 𝑡𝑖 are not anymore in the risk set 𝑛𝑖. 

In large samples, 𝑆̂(𝑡) is approximately normally distributed with mean 𝑆(𝑡) and a variance which 

may be estimated by Greenwood’s formula: 

𝑉𝑎𝑟(𝑆̂(𝑡)) = 𝑆̂(𝑡)2 ∑
𝑑𝑖

𝑛𝑖(𝑛𝑖 − 𝑑𝑖)
𝑡𝑖<𝑡

     (10) 

An important advantage of the KM curve is that this method is robust for right censoring. When no 

truncation or censoring occurs, the KM curve is the complement of the empirical distribution 

function. Nevertheless, there are a lot of different situations where the KM cannot be used. For 

example, when more than one type of event is considered (i.e. competing risks analysis) the 

incidence function of each specific event (crude incidence) is the quantity of interest and a valid 

estimator for this function must be used (see next paragraph). 

The Nelson-Aalen estimator [11] is a non-parametric estimator of the cumulative hazard, assuming 

independent censoring. It is expressed by the following formula: 
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𝐴̂(𝑡) = ∑
𝑑𝑗

𝑛𝑗
𝑡𝑗≤𝑡

     (11) 

The Nelson–Aalen estimator is an increasing right continuous step function with increments 
𝑑𝑗

𝑛𝑗
 at 

the observed failure times. The variance of the Nelson–Aalen estimator may be estimated by: 

𝜎2̂(𝑡) = ∑
(𝑟𝑗 − 𝑑𝑗)𝑑𝑗

(𝑟𝑗 − 1)𝑛𝑗
2

𝑡𝑗≤𝑡

     (12) 

The Cox Proportional Hazards (PH) model [2], most commonly known as the Cox model, is a semi-

parametric regression method that can be used to analyse the impact of multiple covariates on a 

survival outcome. The model formula for the hazard is the following: 

ℎ(𝑡, 𝑋) = ℎ0(𝑡)𝑒∑ 𝛽𝑖𝑋𝑖
𝑝
𝑖=1      (13)      

 

This model gives an expression of the hazard at time t for an individual with a given collection of 

𝑝 explanatory variables (X) and requires the assumption of independent censoring conditional on 

covariates [1] [10]. 

In the Cox model formula, the hazard at time t is the product of two quantities:  

i. ℎ0(𝑡): the baseline hazard function, that is a function of t that does not involve the X’s 

ii.  𝑒∑ 𝛽𝑖𝑋𝑖
𝑝
𝑖=1 : a function of X that does not involve t  

These properties lead to the proportional hazards (PH) assumption that characterizes the Cox 

model. One of the main reasons for the popularity of the Cox model is that, even though the baseline 

hazard is not specified, reasonably good estimates of regression coefficients and adjusted survival 

curves can be obtained in many situations.  

The regression coefficient of the Cox model is the Hazard Ratio (HR): the hazard for one individual 

divided by the hazard for a different individual. The two individuals compared can be differentiated 

by their X’s values. The HR can be written as the estimate of ℎ̂(𝑡, 𝑋∗) divided by the estimate of 

ℎ(𝑡, 𝑋) , where 𝑋∗ denotes the set of predictors for one individual, and X denotes the set of 

predictors for the other individual. 

𝐻𝑅̂ =
ℎ̂(𝑡, 𝑋∗)

ℎ̂(𝑡, 𝑋)
     (14) 

 

An expression for the HR formula in terms of the regression coefficients is obtained by substituting 

the Cox model formula into the numerator and denominator of the HR expression. 
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𝐻𝑅̂ =
ℎ̂0(𝑡)𝑒∑ 𝛽𝑖̂𝑋𝑖

∗𝑝
𝑖=1

ℎ̂0(𝑡)𝑒∑ 𝛽𝑖̂𝑋𝑖
𝑝
𝑖=1

= 𝑒∑ 𝛽𝑖(̂𝑋𝑖
∗−𝑋𝑖

𝑝
𝑖=1 )     (15) 

 

Hence, HR is calculated without having to estimate the baseline hazard function and then it is not 

time-dependent. When there is only one binary covariate X1 ∈ {0;1} (e.g. an indicator of treatment 

or exposure) the estimated HR reduces to 𝑒𝛽1.  

 

Estimators in survival analysis with competing risk 

In case of competing risks, several types of event may originate the failure time T and are thought 

as competing causes. In this context, the quantities of interest are the cumulative incidence of any 

event and also the incidence of each specific type of event and its contribution to the overall 

incidence. The incidence of each type of event (also called “crude incidence”) can be estimated using 

the Aalen‐Johansen estimator [12]. It is a standard non parametric method to estimate the 

cumulative incidence, generalizing the Kaplan‐Meier estimator to multiple event types under the 

assumption of independent censoring. This estimator is the sum of unconditional probabilities of 

failure due to the event of interest in time, obtained by multiplying the probability of having survived 

any event by the cause-specific hazard of the event of interest: 

𝐹̂1(𝑡) = ∏ ℎ̂1(𝑡𝑖) ∙ 𝑆(𝑡𝑖)

𝑡𝑖≤𝑡

     (16) 

Where:  

ℎ̂1(𝑢) =
𝑑1𝑖

𝑛𝑖
     (17) 

Where 𝑑1𝑖  is the number of events of type 1 at 𝑡𝑖 and 𝑛𝑖  the total of individuals at risk at 𝑡𝑖. Of note, 

this estimator is not equivalent to apply the Kaplan-Meier estimator after censoring the 

observations at the times of all competing events. In fact, this procedure would lead to overestimate 

the crude incidence. 
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1.2.  Survival analysis for composite endpoint 

1.2.1. The standard all-cause hazard ratio 

Composite Endpoints (CE) combine several events within a single variable, which means that the 

time to occurrence of the first among different events is considered. The rationale for the use of 

composite time-to-event endpoints is to increase the number of expected events and thereby the 

power by combining several event types of clinical interest [13]. A common example of CE is the 

disease free survival, which is the time until relapse or death without prior relapse, whatever occurs 

first. The methods used to analyse a CE and to evaluate how they are affected by a certain treatment 

or exposure are the same as those described for the standard survival analysis. 

Thus in the univariate case of a single dichotomous variable 𝑋𝑖 which is equal to 1 when the subject 

i belongs to the intervention (I) group and 0 when it belongs to the control (C), the hazard of the 

composite endpoint can be modelled as: 

𝜆𝐶𝐸,𝑖(𝑡)  =  𝜆𝐶𝐸,0(𝑡)𝑒𝛽𝐶𝐸𝑋𝑖          (18) 

 

This function is also called “all-cause hazard” and can be reworded as the sum of the cause-specific 

hazards for the k single endpoints (EPj): 

𝜆𝐶𝐸(𝑡)  =  ∑ 𝜆𝐸𝑃𝑗
(𝑡)

𝑘

𝑗=1

     (19) 

As a consequence, the standard “all-cause hazard ratio”, i.e. the hazard ratio of the CE, is given as 

𝜃𝐶𝐸   = 𝑒𝛽𝐶𝐸 =  
𝜆𝐶𝐸

𝐼 (𝑡)

𝜆𝐶𝐸
𝐶 (𝑡)

     (20) 

Of note, the formula used in (20) indicates that the proportional hazards assumption is assumed, 

meaning that 𝜃𝐶𝐸  is constant in time. Thus, the standard Cox model can be adopted to estimate 𝜃𝐶𝐸 . 

 

1.2.2. The weighted all-cause hazard ratio 

Using a composite time-to-event endpoint, the effect of the individual components might differ, in 

magnitude or even in direction, which leads to interpretation difficulties. Moreover, the individual 

event types often are of different clinical relevance which further complicates interpretation. 
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Starting from this statements, Rauch et al. [7] introduced the idea of the weighted all-cause hazard 

to replace the standard one (19) with a weighted sum of the cause-specific hazards using fixed 

weights.  Hence the weighted all-cause hazard is given as  

𝜆𝐶𝐸
𝑤 (𝑡)  =  ∑ 𝑊𝐸𝑃𝑗

𝜆𝐸𝑃𝑗
(𝑡)

𝑘

𝑗=1

     (21) 

 

The non-negative weights 𝑤𝐸𝑃𝑗 ≥ 0, 𝑗 = 1, … , 𝑘, reflect the clinical relevance of the components 

𝐸𝑃𝑗 , 𝑗 = 1, … , 𝑘. If all the weights were equally set to 1, then the weighted all-cause hazard would 

correspond to the standard all-cause hazard.  

The “weighted all-cause hazard ratio” as proposed by Rauch et al. [7] is then given as 

 

𝜃𝐶𝐸
𝑤 (𝑡)  =  

𝜆𝐶𝐸
𝐼,𝑤(𝑡)

𝜆𝐶𝐸
𝐶,𝑤(𝑡)

=   
∑ 𝑤𝐸𝑃𝑗

𝜆𝐸𝑃𝑗

𝐼 (𝑡)𝑘
𝑗=1

∑ 𝑤𝐸𝑃𝑗
𝜆𝐸𝑃𝑗

𝐶 (𝑡)𝑘
𝑗=1

   (22) 

 

To obtain an estimate of 𝜃𝐶𝐸
𝑤 (𝑡), Rauch et al. [7] proposed to estimate each cause-specific hazard 

via a parametric survival model (e.g. Weibull model) and to plug in the estimate of each 𝜆𝐸𝑃𝑗
 in (22). 

Following this approach, the weighted all-cause hazard ratio is given by 

 

𝜃𝐶𝐸
𝑤 (𝑡)  =  

∑ 𝑤𝐸𝑃𝑗
𝜆̂𝐸𝑃𝑗

𝐼 (𝑡)𝑘
𝑗=1

∑ 𝑤𝐸𝑃𝑗
𝜆̂𝐸𝑃𝑗

𝐶 (𝑡)𝑘
𝑗=1

     (23) 

 

Of note, a variance estimator for (23) cannot easily be measured and so an asymptotic distribution 

of the parametric estimator given in (23) is not available.  

Moreover, since the shape of the survival distribution is usually not known in advance, its pre-

specification, due to the choice of a parametric survival model, must be seen as a strong restriction. 

Thus, there is the general interest in deriving a more flexible non-parametric estimator. 

To derive a non-parametric estimator, Ozga et al. [9] propose to replace the cause-specific hazards 

by the cumulative cause-specific hazards: 

 

𝜃𝐶𝐸
𝑤 (𝑡) =

∑ 𝑤𝐸𝑃𝑗
Λ𝐸𝑃𝑗

𝐼𝑘
𝑗=1 (𝑡)

∑ 𝑤𝐸𝑃𝑗
Λ𝐸𝑃𝑗

𝐶𝑘
𝑗=1 (𝑡)

     (24) 
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where Λ𝐸𝑃𝑗
(𝑡), 𝑗 = 1, … , 𝑘,  refer to the corresponding cause-specific cumulative hazards over the 

period [0, t]. Using the non-parametric Nelson-Aalen estimators, it is possible to derive a non-

parametric estimator for the weighted all-cause hazard ratio: 

 

𝛬̂𝐸𝑃𝑗

𝐼 (𝑡) ∶= ∑
𝑑𝐸𝑃𝑗,𝑙

𝐼

𝑛𝑙
𝐼  ,𝑡𝑙≤𝑡      𝛬̂𝐸𝑃𝑗

𝐶 (𝑡) ∶= ∑
𝑑𝐸𝑃𝑗,𝑙

𝐶

𝑛𝑙
𝐶  𝑡𝑙≤𝑡      (25) 

 

By this, a non-parametric estimator for the weighted all-cause hazard ratio is given by 

 

𝜃̃𝐶𝐸
𝑤 (𝑡) =  

∑ 𝑤𝐸𝑃𝑗
Λ̂𝐸𝑃𝑗

𝐼 (𝑡)𝑘
𝑗=1

∑ 𝑤𝐸𝑃𝑗
Λ̂𝐸𝑃𝑗

𝐶 (𝑡)𝑘
𝑗=1

     (26) 

 

However, since the quantity of interest is the instantaneous cause-specific hazard, to ensure that 

the ratios between cumulative hazards and instantaneous hazards are the same, the authors 

assume that the cause-specific hazards are proportional: 

𝜆𝐶𝐸,𝑖(𝑡) =  𝜆0(𝑡) ∑ 𝑒
𝛽𝐸𝑃𝑗

𝑋𝑖𝑘
𝑗=1      (27) 

The proportional hazard assumption is verified if the baseline hazards for the k components (i.e. 

events) are equivalent within each group, meaning that the weighted all-cause hazard ratio is no 

longer time-dependent as: 

𝜃𝐶𝐸
𝑤 =

∑ 𝑤𝐸𝑃𝑗
𝜆𝐸𝑃𝑗

𝐼 (𝑡)𝑘
𝑗=1

∑ 𝑤𝐸𝑃𝑗
𝜆𝐸𝑃𝑗

𝐶 (𝑡)𝑘
𝑗=1

=  
∑ 𝑤𝐸𝑃𝑗

𝜆0(𝑡)𝑒
𝛽𝐸𝑃𝑗

∗1𝑘
𝑗=1

∑ 𝑤𝐸𝑃𝑗

𝑘
𝑗=1 𝜆0(𝑡)𝑒

𝛽𝐸𝑃𝑗
∗0

      (28) 

Of note, in formula (28) the baseline hazard 𝜆0 cancels out because it is assumed the same for all 

components. As mentioned, the correctness of the non-parametric estimator is based on the 

assumption of equal cause-specific baseline hazards. Theoretically, in case the baseline hazards 

differ, 𝜃̃𝐶𝐸
𝑤 (𝑡) can be calculated but represents a biased estimator for 𝜃𝐶𝐸

𝑤 (𝑡). However, Ozga et al. 

[9] show that in practice the estimator is remarkably robust with respect to this assumption and 

provides fairly unbiased estimates even in the case in which the baseline hazards are not equal. 
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Furthermore, another restriction is due to the fact that the only possibility to calculate standard 

errors, and thus confidence intervals, for the weighted hazard ratio is by means of resampling 

methods (e.g. bootstrap). 

 

Guidance for the choice of weights 

The use of the weighted all-cause hazard ratio requires to fix the weights in the planning stage of 

the study. Introducing the component weights in (21), the event time distribution, that is the 

corresponding survival function, is implicitly modified. If the chosen weight is unequal to 1, the 

shape of the survival distribution changes: for a weight greater than 1, the number of events 

artificially increases and as a consequence, the survival function decreases sooner; for a weight 

smaller than 1, the number of events decreases and so the survival distribution becomes more flat. 

Whereas the all-cause hazard ratio can be heavily masked by a large cause-specific hazard of a less 

relevant component, a more relevant component with a lower number of events can only have a 

meaningful influence on the composite effect measure, when it is up-weighted (or if the less 

relevant component is down-weighted accordingly). On the contrary, if a large cause-specific hazard 

is down-weighted this can result in a power loss. Therefore, weighting can improve interpretation 

but the effect on power can be positive or negative, depending on the data at hand. 

To help researchers with this task, Ozga et al. [9] provide some guidelines on how to choose 

appropriate weights. At first, the authors suggest to identify the clinically most relevant event type 

(e.g. death), assigning a weight of 1 to it. The weights for the remaining events are chosen based on 

the relative clinical relevance with respect to event with weight of 1. For example, one can think 

about the number of events of interest that could be considered as equally harmful as one event of 

the clinically most relevant endpoint. The latter information is difficult to obtain and it often needs 

the contribution of both clinical knowledge and data support to be elicited. Another 

recommendation consists in considering different clinically meaningful weighting schemes in order 

to evaluate the results in different scenarios. 
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1.3. Propensity score based methods 

Over the past decades, several studies have highlighted the need to define more appropriately 

concepts as association and causality relationships: the association is a relationship without a 

necessary specific direction (undirected), while causality is characterized by a specific direction. 

During these years, many statisticians have spent time analysing this concept in order to develop 

models to perform causal inference [3].  

Considering for example a binary exposure A and an outcome also binary Y. From a probabilistic 

point of view, the association between A and Y can be defined by:   

𝑃[𝑌 = 1|𝐴 = 1]  ≠ 𝑃[𝑌 = 1|𝐴 = 0]     (29) 

Now consider the two random variables 𝑌𝑎=1 e 𝑌𝑎=0 which represent the outcomes that I would 

have observed if I could have submitted the entire population to both treatments. These variables 

are called counterfactual outcomes since only one of the two is observed for each subject (the 

factual outcome).  

The exposure has a causal effect on the outcome (in the binary example) if for each subject: 

𝑌𝑎=1 ≠  𝑌𝑎=0     (30) 

Since the non-factual outcome is not observable at the individual level, it is necessary to define the 

causal effect at the population level. The exposure A has an average causal effect on the outcome Y 

in the entire population if: 

𝐸[𝑌𝑎] ≠ 𝐸[𝑌𝑎𝑖]    (31) 

for each pair a, ai, with a ≠ ai. 

Hence, in the binary example this condition becomes: 

𝑃[𝑌𝑎=1 = 1]  ≠ 𝑃[𝑌𝑎=0 = 1]    (32) 

The effect measures used to measure any causal relationship compare what would happen in a 

population under two possible but distinct scenarios, of which at most one can occur. For this 

reason, these measures cannot be measured directly from the data. 

The only condition in which it is possible to make consistent estimate of causal measures is the 

exchangeability: 

𝑃[𝑌𝑎 = 1|𝐴 = 1] = 𝑃[𝑌𝑎 = 1|𝐴 = 0] = 𝑃[𝑌𝑎 = 1]    (33) 
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valid only for randomized experiments, where the assignment of treatments occurs randomly. 

On the other hand, the observational studies may have a different distribution of some prognostic 

factors between the two treatment groups that leads to the lack of exchangeability between 

exposed and unexposed. However, under suitable assumptions, also in observational studies it is 

possible to estimate causality measures. 

The first assumption is the conditional exchangeability described as follows: 

𝑃[𝑌𝑎 = 1|𝐴 = 1, 𝐿 = 𝑙] = 𝑃[𝑌𝑎 = 1|𝐴 = 0, 𝐿 = 𝑙] = 𝑃[𝑌𝑎 = 1|𝐿 = 𝑙]    (34) 

where A represents the exposure, Y the outcome, 𝑌𝑎 the counterfactual outcome and L represents 

the predictive factor. 

In epidemiological terms, the predictive factor L can be considered as a confounding, that is, a 

variable that is associated to both the exposure A and outcome Y but that does not appear in the 

causal path of the exposure-outcome relationship. 

The other two assumptions that must be satisfied are the consistency and the condition of positivity. 

The consistency is defined as 𝑌𝑎 = 𝑌 if A=a is the treatment actually received by the subject; while 

the positivity condition implies:  

𝑃[𝐴 = 𝑎|𝐿 = 𝑙] > 0     𝑖𝑓 𝑃[𝐿 = 𝑙] ≠ 0     (35) 

this assumption means that it must be ensured (from the study design) that there is a probability 

greater than zero of being assigned to each of the treatment levels. 

Therefore, the ability to identify a causal effect from an observational study depends on whether 

the confounding L is measured. Many statistical methods used to remove or reduce the effect of 

the different distribution of the confounders between the two treatment groups are based on the 

concept of PS. 

The PS is defined as the probability that the i-th subject is assigned to a treatment conditional on 

confounders measured at baseline: 

𝑃𝑆 = 𝑃𝑟(𝐴𝑖 = 1|𝑋1𝑖, 𝑋2𝑖, … , 𝑋𝑘𝑖)     (36) 

In absence of randomization, balancing of the PS between treatment groups guarantees the 

conditional exchangeability which is essential to quantify a causal measure. 

The estimation of the PS is typically performed by logistic regression, where the binary outcome is 

represented by the treatment indicator and the potential measured confounders are included in the 

model as covariates. 
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The effect of treatment evaluated using a multiple regression approach (adjusting for potential 

confounders) is regarded as a conditional effect: the effect at subject level of moving a single subject 

from untreated to treated. The aim of the PS based methods is to estimate the marginal effect: the 

effect at population level, of moving an entire population from untreated to treated. In a causal 

notation, this effect is called the Average Treatment Effect (ATE). A slightly different situation occurs 

when the interest is in studying the effect of moving only the actually treated population from 

untreated to treated. In this case, the estimated effect is called the Average Treatment Effect on the 

Treated (ATT). Some PS based methods cannot produce unbiased estimates for ATE nor ATT, 

because they focus on a conditional effect. However, all these methods are used in applied literature 

to reduce or minimize confounding aiming to obtain an effect that could be interpreted as causal. 

In this work, the hazard ratio is the measure used to quantify the effect of treatment. An additional 

complication of dealing with such quantity in a causal perspective is that, differently from other 

effect measures such as Risk Difference or Relative Risk, the HR is not collapsible: the conditional 

and marginal treatment effects do not coincide even in the absence of confounding [4][5]. In the 

next paragraph, some well-known PS based methods are described, including both methods for 

marginal and conditional effect.  

 

1.3.1. Matching on propensity score 

It has been shown that matching on PS theoretically gives unbiased estimates of the ATT [20], which 

in principle can be different from ATE. However, in this work, we analysed the performance of this 

method in order to estimate a marginal HR which represents the ATE on unweighted and weighted 

composite survival endpoints. This is motivated by the fact that the ATE is the true quantity of 

interest in many applied studies and that in practice ATE and ATT could be very similar. 

The aim of the PS matching is to form matched sets of treated and untreated subjects who have a 

similar value of the PS. In literature, there are different algorithms for forming pairs of treated and 

untreated subjects matched on the propensity score.  

The most common algorithms are optimal matching, nearest neighbour matching with or without 

replacement and greedy nearest neighbour matching with or without replacement within specified 

caliper widths. In the matching without replacement we matched each untreated subject to at most 

one treated subject, while in the matching with replacement the same untreated subject can be 

matched to multiple treated subjects. Optimal matching forms matched pairs so as to minimize the 
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average within-pair difference in propensity scores. In contrast, the nearest neighbour matching is 

simply performed by matching each treated subject to the untreated subject whose propensity 

score is closest to that of the treated subject. A more refined procedure is called greedy nearest 

neighbour caliper matching and consists in matching treated and untreated subjects only if the 

absolute difference in their propensity scores is within a pre-specified maximal distance (the caliper 

distance). When using caliper matching, we match subjects on the logit of the propensity score using 

a caliper width that is defined as a proportion of the standard deviation of the logit of the propensity 

score [14][15][16]. A caliper of width equal to 0.2 standard deviations of the logit of the propensity 

score, has been found to perform well in a wide variety of settings [17].  

Once a PS-matched sample has been formed, it is possible to estimate marginal survival functions 

(using the Kaplan–Meier estimator) and the marginal hazard ratio between treated and untreated 

for the composite unweighted endpoint. This is simply done by fitting a Cox model to the PS-

matched sample including the treatment indicator as the only covariate and taking the exponential 

of the corresponding coefficient, as in formula (15). Concerning the all-cause weighted endpoint, 

one can estimate the marginal hazard ratio simply applying the estimator of Ozga et al. defined in 

(26) to the PS-matched sample.  

 

1.3.2. Stratification on the propensity score 

Stratification on the PS is not appropriate to estimate marginal effect, because focuses on a 

conditional measure similarly to a standard regression approach. 

The method consists on splitting out the entire sample into mutually exclusive subclasses based on 

the propensity score. In literature, the most popular approach is to define the subclasses using 

specified quantiles of the PS (typically quartiles or quintiles). Besides the HR, this method can be 

used to estimate adjusted survival curves for each of the two treatment groups through the Kaplan–

Meier estimator. When estimating the conditional effect, each stratum is weighted proportionally 

to the number of treated subjects who lay within that stratum. Essentially, one is pooling stratum-

specific survival curves to obtain a population-average survival curve. In this work, stratification on 

PS is used in order to estimate an adjusted HR only for the unweighted composite survival endpoint. 

This is done by fitting a Cox model on the original sample and including as covariates the treatment 

indicator and also the PS-stratum indicator. Again, the hazard ratio is obtained by taking the 

exponential of the treatment coefficient. 
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1.3.3. Propensity score as covariate in a model 

Including the PS in a regression model is another method theoretically focusing on conditional 

rather than marginal effects. A regression model for the study outcome can directly include the 

treatment indicator and the PS as explanatory variables. Flexible methods for the transformation of 

the PS variable should be considered, such as cubic splines or fractional polynomials, as the 

association between the score and the outcome may not be linear [18]. Again, the adjusted HR is 

obtained by calculating the treatment HR as the exponential of the treatment coefficient on the 

whole set of data. 

Another, less parsimonious, variation is to include, on the top of the treatment variable, both PS 

and important confounding variables as covariates in the regression model.  

In this work, PS as a covariate is used in order to estimate the adjusted HR only for the unweighted 

composite survival endpoint. 

 

1.3.4. Inverse probability weighting  

The aim of the inverse probability weighting (IPW) method is to create a hypothetical population in 

which every individual appears as a treated and as an untreated individual.  

Hence it is possible to quantify the ATE: the treatment effect that would be observed if the entire 

population could be submitted to both treatments. 

The size of the pseudo-population can be calculated by multiplying the observed numbers by the 

following weights: 

𝑊 =
1

𝑃(𝐴|𝐿)
    (37) 

 

A simple numerical example is the following [19]. 

Considering a population in which twenty subjects are followed over time to evaluate the effect of 

smoke on cardiovascular event. Of these, twelve have a high stress state (L=1) and of these nine 

smoke (A=1). Between these are observed six cases of cardiovascular event (Y=1) while among the 

subjects with high level of non-smoking stress two cases are observed. Between the eight subjects 

whose state of stress is not high, four are smokers and, of these, one experienced a cardiovascular 

event. Among the remaining four subjects (non-smokers) one case of cardiovascular event is 

observed. The data are summarized in figure 2. 
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Figure 2. A population with confounders L, exposure A and outcome Y 

 

Figure 3 represents the pseudo-population obtained if all subjects of the original population had 

been non-smokers (i.e. untreated).  

 

Figure 3. The population had everybody remained unexposed 
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The number of branches corresponding to Y = 0 and Y = 1 reflect the original proportions. 

Similarly, the tree corresponding to the pseudo population obtained if all subjects had been 

smokers (i.e. treated). This population is represented in figure 4. 

 

Figure 4. The population had everybody remained exposed 

 

By merging the previous two pseudo populations, the overall pseudo population is obtained.  

This pseudo-population can be obtained by applying the weights defined by (37). In figure 5 

represents the overall pseudo population: 
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Figure 5. The overall pseudo population 

 

For example, the first set of subjects having A = 0 and L = 0 corresponds to a weight equal to: 

 

𝑊 =
1

𝑃(𝐴 = 0|𝐿 = 0)
=

1

𝑃(𝐴 = 0, 𝐿 = 0)/𝑃(𝐿 = 0)
=

𝑃(𝐿 = 0)

𝑃(𝐴 = 0, 𝐿 = 0)
=

8/20

4/20
= 2 

 

and consequently the corresponding pseudo population size will be equal to 2*4 (weight* original 

population size). In this way the size of the pseudo population increases (doubles).  

If instead of considering the weights W, the following stabilized weights are implemented: 

 

𝑆𝑊 =
𝑃(𝐴)

𝑃(𝐴|𝐿)
    (38) 

 

the size of the pseudo-population remains the same as the starting one since the numerator 

represents a distribution whose integral is 1. In complex situations it is preferable to use stabilized 

weights than the non-stabilized one, since this makes the estimator more efficient. 

The calculation of the weights is done in practice using the logistic regression estimates of the PS to 

calculate the denominator. In the case of stabilized weights, the numerator can be obtained using 

an empty (i.e. without covariates) logistic regression model where treatment status represents the 
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outcome. In this work, the IPW is used in order to estimate the marginal HR of treatment on 

unweighted and weighted composite survival endpoints from the pseudo population. 

Once a pseudo-population has been formed, it is possible to estimate marginal survival functions 

(using the weighted Kaplan–Meier estimator) and the marginal hazard ratio between treated and 

untreated for the composite unweighted endpoint. This is simply done by fitting a Cox model to the 

pseudo-population (i.e. weighting each observation using inverse probability weights) including the 

treatment indicator as the only covariate and taking the exponential of the corresponding 

coefficient, as in formula (15). Concerning the all-cause weighted endpoint, one can estimate the 

marginal hazard ratio simply applying the estimator of Ozga et al. defined in (38) to the pseudo-

population (again, weighting each observation using inverse probability weights). 

 

  



23 
 

2. Simulations on unweighted hazard ratio   

2.1. Simulation protocol 

Data generation (i.e. the number of covariates, their distribution, their association with the 

treatment and the outcome, the distribution of treatments and the sample size) was inspired by 

data observed in the HERCOLES study (see Chapter 4) in order to mimic a situation which can occur 

in practice. The twelve baseline covariates (X1-X12) are simulated from different distributions 

(Normal, Binomial and Poisson) whose parameters are inspired by the distribution of the 

confounders identified for the HERCOLES study: 

 𝑥1 ~ 𝐵𝑖𝑛(1; 0.7) 

 𝑥2 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(1.3) 

 𝑥3 ~ 𝑁(75; 10) 

 𝑥4 ~ 𝐵𝑖𝑛(1; 0.1) 

 𝑥5 ~ 𝐵𝑖𝑛(1; 0.51) 

 𝑥6 ~ 𝑁(1.2; 0.24) 

 𝑥7 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(180) 

 𝑥8 ~ 𝑁(4.6; 2.9) 

 𝑥9 ~ 𝐵𝑖𝑛(1; 0.66) 

 𝑥10 ~ 𝐵𝑖𝑛(1; 0.73) 

 𝑥11 ~ 𝐵𝑖𝑛(1; 0.02) 

 𝑥12 ~ 𝐵𝑖𝑛(1; 0.48) 

 

For the i-th subject, the probability of being assigned to one of two treatments is determined from 

the following logistic model: 

𝒍𝑜𝑔𝑖𝑡(𝑝𝑖) =  𝛼0,𝑡𝑟𝑒𝑎𝑡 + 𝛼1𝑥1 + 𝛼2𝑥2 + 𝛼3𝑥3 + ⋯ + 𝛼12𝑥12     (39) 

The intercept of the model ( 𝛼0,𝑡𝑟𝑒𝑎𝑡  ) is set equal to 3.2 in order to obtain the desired proportion of 

treated subjects equal to 38%. 

The regression coefficients 𝛼1 − 𝛼12 have been set according to the association with the treatment 

observed on the HERCOLES dataset: 

 𝛼1 = 0.53 

 𝛼2 = 0.38 
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 𝛼3 = −0.01 

 𝛼4 = 0.49  

 𝛼5 = −0.08 

 𝛼6 = −1 

 𝛼7 = −0.01 

 𝛼8 = −0.23  

 𝛼9 = −0.35  

 𝛼10 = 0.02 

 𝛼11 = 0.77  

  𝛼12 = 0.59  

The treatment status is generated from a Bernoulli distribution with subject-specific parameter 𝑝𝑖 

and the outcome is generated using a data-generating process for time to-event outcomes 

described by Bender et al [20]. A linear predictor is defined for the i-th subject as: 

𝐿𝑃 = 𝛽𝑡𝑟𝑒𝑎𝑡𝑍 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + ⋯ + 𝛽12𝑥12     (40) 

A random number is generated from a standard uniform distribution 𝑢1 ~ 𝑈(0,1)  and the 

censorship are generated from the following uniform distribution 𝑢2 ~ 𝑈(360,500). 

The regression coefficients 𝛽1 − 𝛽12 have been set according to the association with the treatment 

observed on the HERCOLES dataset: 

 𝛽1 = 0.19 

  𝛽2 = 0.22 

  𝛽3 = −0.01 

  𝛽4 = 0.16 

  𝛽5 = −0.13 

 𝛽6 = −1.78 

 𝛽7 = −0.01 

  𝛽8 = −0.02 

 𝛽9 = 0.72 

 𝛽10 = 1.49 

 𝛽11 = 0.65 

 𝛽12 = 0.39 

The survival time for each subject is generated from a Weibull distribution as follows:   
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𝑇 =  − log(𝑢)/(𝛾𝑒𝐿𝑃)1/η ,  𝑤𝑖𝑡ℎ 𝛾 = 0.01 𝑎𝑛𝑑 𝜂 = 0.8     (41)  

The corresponding hazard function is: 

λ(𝑡) =  𝜆0(𝑡)𝑒𝐿𝑃       𝑤𝑖𝑡ℎ  𝜆0(𝑡) = 𝜂𝛾𝜂𝑡𝜂−1     (42) 

The parameters 𝛽𝑖, λ and η are set in order to obtain a survival times distribution similar to the 

HERCOLES dataset. This data-generating process results in a conditional treatment effect, with a 

conditional hazard ratio of 𝑒𝛽𝑡𝑟𝑒𝑎𝑡. However, as the aim is to generate data from a specified marginal 

hazard ratio, an iterative process proposed by Austin et al. [4] was used to obtain the value of  𝛽𝑡𝑟𝑒𝑎𝑡 

that induced the desired marginal hazard ratio. This process consists on the following steps: 

1. Fixing the desired marginal HR 

2. Calculation of the marginal HR induced by an hypothetical 𝛽𝑡𝑟𝑒𝑎𝑡 (i.e. the logarithm of the 

conditional HR) 

3. Comparison between the calculated marginal HR and the desired marginal HR: 

a. If marginal HR = marginal HR desired, the 𝛽𝑡𝑟𝑒𝑎𝑡 value is found 

b.  If marginal HR < marginal HR desired , 𝛽𝑡𝑟𝑒𝑎𝑡 is increased of 0.001 and go back to step 2  

c. If marginal HR > marginal HR desired , 𝛽𝑡𝑟𝑒𝑎𝑡 is decreased of 0.001 and go back to step 2 

These steps are iterated till 𝛽𝑡𝑟𝑒𝑎𝑡 required is found, with an approximation on the third decimals 

place. Three scenarios are simulated considering respectively three values for the marginal HR:  

- Scenario a: HR=1 

- Scenario b: HR=1.5 

- Scenario c: HR=2 

In each scenario 10,000 datasets consisting of 1,000 subjects are simulated. 

For each dataset, the propensity score is estimated using a logistic regression model on the twelve 

confounders generated, then the hazard ratio and its standard error are measured using a robust 

Cox model to which the following propensity score based methods are applied:  

1. IPW 

2. Greedy nearest-neighbour matching on PS, with caliper equal to 0.2 standard deviation of 

the logit(PS) 

3. Covariate adjustment using the propensity score with spline transformation 

4. Stratification on the propensity score using quintiles of the distribution 
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Once the estimates of the cumulative hazard ratios from the i-th simulation (𝐻𝑅𝑖) are obtained, 

their distribution and the distribution of the differences with the true HR on the logarithm scale (i.e. 

log (𝐻𝑅𝑖) − log (𝐻𝑅𝑡𝑟𝑢𝑒)) were represented using boxplots.  

 The ratio between the mean standard error and the standard deviation of the estimated log-hazard 

ratios across the 10,000 simulated datasets was measured; it indicates whether, for a given 

estimation method, the estimated standard error of the estimated treatment effect is correctly 

estimating the sampling variability of the treatment. The 95% confidence interval for each 𝐻𝑅𝑖 is 

computed and the proportion of 95% confidence intervals that covered the true hazard ratio 

(coverage rate) is determined. Finally, the Mean Squared Error was calculated on the logarithm scale 

as: (
1

10000
) ∑ (log (𝐻𝑅𝑖) − log (𝐻𝑅𝑡𝑟𝑢𝑒))210000

𝑖=1  . The proportion of subjects treated is fixed on 0.38 

and the average number of matched pairs formed across the 10,000 simulated samples is equal to 

310 for all three scenarios. Thus, the 81.6% of treated subjects is approximately matched with an 

untreated subject. The average censorship rate is 16.6%, 13.9% and 12.8% for the three scenarios 

respectively. 

 

2.2. Results 

The distribution of the estimated hazard ratios shows a precise estimation of the hazard ratio in the 

scenario a, but as the true marginal hazard ratio increases, there is a tendency to overestimate the 

effect by all the methods except for the IPW estimator (figure 6). 
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Figure 6. Distribution of the estimated hazard ratios in each simulation in the scenario a, b and c. Abbreviations: IPW=Inverse 
Probability Weighting; Matched=matching on propensity score; Spline= propensity score as covariate with spline transformation; 
Stratification= stratification by propensity score quintiles 
 
 

 

 

 

The bias is close to zero for the IPW and for propensity score as covariate with spline transformation 

in the scenario a, but it tends to assume higher values  in scenarios b and c in every method. The 

only one with minimal bias in all of the three scenarios is the IPW (figure 7). 
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Figure 7. Distribution of the differences between the estimated log(HR) in each simulation and the true log(HR) in the scenario a, b 
and c. The horizontal solid lines represent the bias (mean of the differences). Abbreviations: IPW=Inverse Probability Weighting; 
Matched=matching on propensity score; Spline= propensity score as covariate with spline transformation; Stratification= 
stratification by propensity score quintiles 
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The mean standard error and the standard deviation of the estimated log-HR are reported in the 

following table, together with their ratios: 

 

  IPW Matching Spline Stratification 

Scenario a      

 Mean(SE) 0.090 0.087 0.078 0.078 

 SD 0.081 0.078 0.072 0.072 

 Mean(SE)/SD 1.113 1.110 1.094 1.082 

Scenario b      

 Mean(SE) 0.091 0.086 0.077 0.076 

 SD 0.083 0.076 0.070 0.070 

 Mean(SE)/SD 1.100 1.124 1.092 1.078 

Scenario c      

 Mean(SE) 0.095 0.087 0.077 0.076 

 SD 0.089 0.078 0.073 0.073 

 Mean(SE)/SD 1.073 1.114 1.054 1.040 

Table 1. Mean Standard Error (SE), Standard Deviation (SD) and their ratio for each method in the three scenarios 

 

In the three scenarios the average of the ratios between the mean standard error and the standard 

deviation of the estimated log-HR is close to one for every method (figure 8). 

These results indicate that the average standard error is precise in estimating the sample dispersion 

of the estimated log-hazard ratios. In the scenario a and b, the averages of the ratios are very similar 

and close to the value 1.1 In the scenario c these values tend to be closer to 1 for all methods except 

matching on PS. 
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Figure 8. Ratio of mean standard error to standard deviation of estimated log-hazard ratios. The three scenarios (a, b and c) are here 
displayed on the horizontal axis (true marginal HR 1, 1.5 and 2). Abbreviations: IPW=Inverse Probability Weighting; 
Matched=matching on propensity score; Spline= propensity score as covariate with spline transformation; Stratification= 
stratification by propensity score quintiles 

 

Coverage rate of 95% confidence intervals is greater than 0.95 in all the scenarios for IPW. For 

matching on propensity score, it is greater than 0.95 in the scenario a, while it is equal to or less 

than 0.95 in the scenario b and c, respectively. For the other methods, the coverage rate is greater 

than 0.95 in the first scenario and it strongly decreases to very low values at the increasing of the 

true marginal HR (figure 9). 

 

 

 

Figure 9. Coverage rates of 95% confidence intervals (CIs) for the estimated hazard ratios. The three scenarios (a, b and c) are here 
displayed on the horizontal axis (true marginal HR 1, 1.5 and 2). Abbreviations: IPW=Inverse Probability Weighting; 
Matched=matching on propensity score; Spline= propensity score as covariate with spline transformation; Stratification= 
stratification by propensity score quintiles 
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In the end, figure 10 presents the MSE of the estimated treatment effects. The MSE values are all 

close to zero and increase together with the true marginal hazard ratio, even if this increase is very 

slight for all the four methods. The IPW estimator turns out to have the lowest MSE in every 

scenario, followed by the matched estimator. Stratification on PS is the methods with the highest 

values of MSE in all the three scenarios. 

 

 

 

Figure 10. Mean squared error of the estimated log-hazard ratio. The three scenarios (a, b and c) are here displayed on the horizontal 
axis (true marginal HR 1, 1.5 and 2). Abbreviations: IPW=Inverse Probability Weighting; Matched=matching on propensity score; 
Spline= propensity score as covariate with spline transformation; Stratification= stratification by propensity score quintiles 
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3. Simulations on weighted all-cause hazard ratio 

3.1. Simulation protocol 

Data are generated in order to represent a more simplified reality than that considered in the 

simulations on the standard all-cause-hazard ratio, since the weighted all-cause hazard ratio is more 

complex to estimate than the unweighted one. 

Three baseline confounders (X1-X3) with different distributions (Normal, Binomial and Poisson) were 

generated.  

 𝑥1 ~ 𝐵𝑖𝑛(1; 0.7) 

 𝑥2 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(1.3) 

 𝑥3 ~ 𝑁(75; 10) 

For each subject, the probability of being assigned to one of two treatments is determined from the 

following logistic model: 

𝒍𝑜𝑔𝑖𝑡(𝑝𝑖) =  𝛼0,𝑡𝑟𝑒𝑎𝑡 + 𝛼1𝑥1 + 𝛼2𝑥2 + 𝛼3𝑥3     (43) 

The intercept of the model (𝛼0,𝑡𝑟𝑒𝑎𝑡 ) is set equal to 0.1 in order to obtain the desired proportion of 

treated subjects equal to 38%. The regression coefficients 𝛼1 − 𝛼3  have been set as follows: 

 𝛼1 = 0.53 

 𝛼2 = 0.38 

 𝛼3 = −0.01 

The treatment status is generated from a Bernoulli distribution with subject-specific parameter 𝑝𝑖 

and the outcome is generated using a data-generating process for time to-event outcomes 

described by Bender et al [9]. A linear predictor is defined for the i-th subject as: 

𝐿𝑃1 =  𝛽𝑡𝑟𝑒𝑎𝑡1𝑍 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3     (44) 

𝐿𝑃2 =  𝛽𝑡𝑟𝑒𝑎𝑡2𝑍 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3     (45) 

A random number is generated from a standard uniform distribution 𝑢1 ~ 𝑈(0,1)  and the 

censorship are generated from the following uniform distribution 𝑢2 ~ 𝑈(0.5,2). The regression 

coefficients 𝛽1 − 𝛽3  have been set as follows: 

 𝛽1 = 0.19 

 𝛽2 = 0.22 

 𝛽3 = −0.01 
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Two different endpoints are generated: death (event=1) and recurrence (event=2). 

The event times for each subjects are generated from a Weibull distribution as follows:   

- 𝑇1 = − log(𝑢)/(𝑘𝑒𝐿𝑃1)1/𝑝  ,   𝑤𝑖𝑡ℎ 𝑘 = 0.5 𝑎𝑛𝑑 𝑝 = 1     (46)  

- 𝑇2 = − log(𝑢)/(𝑙𝑒𝐿𝑃2)1/𝑞,   𝑤𝑖𝑡ℎ 𝑙 = 0.7 𝑎𝑛𝑑 𝑞 = 2     (47)   

The corresponding hazard functions are: 

- 𝜆1(𝑡) =  𝜆01(𝑡)𝑒𝐿𝑃1        𝑤𝑖𝑡ℎ  𝜆01(𝑡) = 𝑝𝑘𝑝𝑡𝑝−1     (48)  

- 𝜆2(𝑡) =  𝜆02(𝑡)𝑒𝐿𝑃2        𝑤𝑖𝑡ℎ  𝜆02(𝑡) = 𝑝𝑙𝑞𝑡𝑞−1     (49) 

Setting the parameters in this way, the assumption of equal baseline hazards across the components 

of the composite endpoint within each group of treatment made by Ozga et al [9] is violated.  This 

was done because we aim to check whether the robustness of the estimator shown by Ozga is 

preserved even when estimating a marginal weighted all-cause-hazard-ratio with PS-based 

methods. However, just in order to ease the evaluation of the performance of the methods, another 

assumption was made: the treatment effect is not time dependent and thus it is represented by a 

single number.  

This data-generating process results in a conditional treatment effect with a  hazard ratio 

represented by 𝑒𝛽𝑡𝑟𝑒𝑎𝑡1  for the endpoint 1 and 𝑒𝛽𝑡𝑟𝑒𝑎𝑡2  for the endpoint 2.  

The process to generate data with a chosen marginal cumulative weighted hazard ratio is similar to 

that described for the unweighted HR simulation protocol (Chapter 2), except for the fact that in 

this case two parameters, i.e. 𝛽𝑡𝑟𝑒𝑎𝑡1 and 𝛽𝑡𝑟𝑒𝑎𝑡2 have to be found. However, the iterative process 

can just be focused on searching for the value of 𝛽𝑡𝑟𝑒𝑎𝑡2, leaving 𝛽𝑡𝑟𝑒𝑎𝑡1 fixed. 

In the simulations, the weighted all-cause hazard ratio is estimated at a predefined time-point (i.e. 

at time 1) for simplicity. This can be done thanks to the constant HR assumption mentioned above. 

Nine scenarios are simulated considering three different values for the marginal HR and three 

different types of weights: 

 (w1;w2)=(1;1) (w1;w2)=(1;0.5) (w1;w2)=(1;0.8) 

Scenario a HR=1 HR=1 HR=1 

Scenario b HR=1.5 HR=1.5 HR=1.5 

Scenario c HR=2 HR=2 HR=2 
Table 2. Scenarios of the simulations on weighted all-cause hazard ratio 

In each scenario, we simulated 1,000 datasets, each consisting of 1,000 subjects. 

The propensity score is estimated using a logistic regression model on the 3 confounders generated, 

then the ratio of the cumulative hazard and its standard error are measured using the non-
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parametric estimator [9] to which two propensity score based methods are applied: IPW and greedy 

nearest-neighbour matching on PS. 

Once the estimates of the cumulative hazard ratios from the i-th simulation (𝐻𝑅𝑖) are obtained, 

their distribution and the distribution of the differences with the true HR on the logarithm scale (i.e. 

log (𝐻𝑅𝑖) − log (𝐻𝑅𝑡𝑟𝑢𝑒)) were represented using boxplots.  The ratio between the mean standard 

error and the standard deviation of the estimated log-hazard ratios across the 1,000 simulated 

datasets was measured; it indicates whether, for a given estimation method, the estimated standard 

error of the estimated treatment effect is correctly estimating the sampling variability of the 

treatment. The 95% confidence interval for each 𝐻𝑅𝑖  is computed and the proportion of 95% 

confidence intervals that covered the true hazard ratio (coverage rate) is determined. Finally, the 

Mean Squared Error was calculated on the logarithm scale as: (
1

1000
) ∑ (log (𝐻𝑅𝑖) −1000

𝑖=1

log (𝐻𝑅𝑡𝑟𝑢𝑒))2 . The proportion of subjects treated is fixed on 0.58 and the average number of 

matched pairs formed across the 1,000 simulated samples is 408 in all scenarios. Thus, the 70.3% of 

treated subjects is approximately matched with an untreated subject. The average censorship rate 

for each scenario is reported in the following table: 

 (w1;w2)=(1;1) (w1;w2)=(1;0.5) (w1;w2)=(1;0.8) 

Scenario a 29.3% 29.4% 29.4% 

Scenario b 23.3% 22.7% 25.4% 

Scenario c 19.0% 19.4% 19.7% 
Table 3. Censorship rate for each scenario of the simulations on weighted all-cause hazard ratio 

 

3.2. Results 

The distribution of the estimated cumulative hazard ratios shows that the estimates obtained 

through the IPW estimator are more precise that those obtained through the matched sample. 

Moreover, considering the two methods separately, the distributions in the nine scenarios are very 

similar (figure 11). 
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Figure 11. Distribution of the estimated hazard ratios in all scenarios. Abbreviations: IPW=Inverse Probability Weighting; 
Matched=matching on propensity score; Spline= propensity score as covariate with spline transformation; Stratification= 
stratification by propensity score quintiles 
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The bias is close to zero for the IPW method in all scenarios, but it tends to assume higher values 

for the propensity score matching (figure 12). 

 

 

 
Figure 12. Distribution of the differences between the estimated log(HR) in each simulation and the true log(HR) in the scenario a, b 
and c. The horizontal solid lines represent the bias (mean of the differences). Abbreviations: IPW=Inverse Probability Weighting; 
Matched=matching on propensity score; Spline= propensity score as covariate with spline transformation; Stratification= 
stratification by propensity score quintiles 
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The mean standard error and the standard deviation of the estimated log-HR together with their 

ratio are reported in the following table: 

 

  Scenario a Scenario b Scenario c 

  (1;1) (1;0.5) (1;0.8) (1;1) (1;0.5) (1;0.8) (1;1) (1;0.5) (1;0.8) 

IPW          

 Mean(SE) 0.089 0.095 0.090 0.089 0.095 0.090 0.091 0.099 0.092 

 SD 0.070 0.075 0.070 0.071 0.074 0.068 0.071 0.076 0.072 

 Mean(SE)/

SD 

1.273 1.279 1.291 1.264 1.285 1.317 1.287 1.297 1.285 

Matching          

 Mean(SE) 0.101 0.107 0.101 0.099 1.105 0.099 0.100 0.108 0.102 

 SD 0.079 0.083 0.077 0.079 0.085 0.078 0.079 0.086 0.083 

 Mean(SE)/

SD 

1.284 1.299 1.312 1.263 1.228 1.271 1.274 1.258 1.230 

Table 4. Mean Standard Error (SE), Standard Deviation (SD) and their ratio for each method in all scenarios 

 

The average of the ratios between the mean standard error and the standard deviation of the 

estimated log-hazard ratios tends to be larger than one in both methods for all the three scenarios. 

It means that the standard error tends to overestimate the sample variability (figure 13). 
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Figure 13. Ratio of mean standard error to standard deviation of estimated log-hazard ratios in all scenarios. The three scenarios (a, 
b and c) are here displayed on the horizontal axis (true marginal HR 1, 1.5 and 2). Abbreviations: IPW=Inverse Probability 
Weighting; Matched=matching on propensity score; Spline= propensity score as covariate with spline transformation; 
Stratification= stratification by propensity score quintiles 
 

Coverage rates of 95% confidence intervals is optimal in all scenarios for both methods (figure 14). 
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Figure 14. Coverage rates of 95% confidence intervals (CIs) for the estimated hazard ratios. The three scenarios (a, b and c) are here 
displayed on the horizontal axis (true marginal HR 1, 1.5 and 2). Abbreviations: IPW=Inverse Probability Weighting; 
Matched=matching on propensity score; Spline= propensity score as covariate with spline transformation; Stratification= 
stratification by propensity score quintiles 
 

In the end, figure 15 presents the MSE of the estimated treatment effects. The MSE increases 

together with the true marginal hazard ratio, even if this increase is very slight for both methods. 

The IPW estimator turns out to have the lowest MSE in every scenario. 
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Figure 15. Mean squared error of the estimated log-hazard ratio. The three scenarios (a, b and c) are here displayed on the horizontal 
axis (true marginal HR 1, 1.5 and 2). Abbreviations: IPW=Inverse Probability Weighting; Matched=matching on propensity score; 
Spline= propensity score as covariate with spline transformation; Stratification= stratification by propensity score quintiles 
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4. Application 

4.1. The clinical context  

HCC is a major health problem, as in 2016 one million incident cases of liver cancer globally and 

829,000 deaths were recorded. It ranks as the fifth most common cause of cancer in men and the 

seventh in women representing a third of all cancer-related deaths and the leading cause of death 

in patients with liver cirrhosis [21]. 

The HCC is more common in East Asia, however its incidence is increasing in the Western World.  

Hepatic resection is the first-line therapeutic option and it is accepted as a safe treatment with a 

proven impact on prognosis, with a low operative mortality as the result of advances in surgical 

techniques and perioperative management. Nevertheless, surgical resection is applicable in only 

about 20% to 30% of patients with HCC, since most have poor hepatic reserve function caused by 

underlying chronic liver disease and multifocal hepatic distributions of HCC. 

Hepatic resection is one of the curative treatments for hepatocellular carcinoma, however the 

recurrence rate of HCC even after curative resection is quite high, estimated to be approximately 

50% during the first three years and more than 70% during the first five years after curative 

resection, and so the postoperative long term results remain unsatisfactory.  

Although surgical treatment has been adopted in the last years in more patients outside the 

guidelines with satisfactory results in term of mortality, morbidity and short term oncological 

outcomes, the limits of this approach remain the long term disease free survival [8]. Moreover, the 

comparison between the efficacy of wedge resection and anatomic resection, the two most 

common types of laparoscopic hepatectomy performed, is an open field of investigation. The WR is 

a surgical procedure to remove a triangle-shaped slice of tissue, usually used to remove a tumor or 

some other type of tissue that requires removal and typically includes a small amount of normal 

tissue around it. The AR is defined as the complete removal of at least one liver's segment containing 

the tumor together with the related portal vein and the corresponding hepatic territory. 

 

4.2. The HERCOLES study 

The HERCOLES Project (Hepatocarcinoma Recurrence on the Liver Study) is an Italian observational 

multicentric study on surgical treatment and survival endpoints of patients affected by 

hepatocellular carcinoma (HCC) [8].  
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Data are collected prospectively and anonymized prior to the analysis. 

The primary aim of the study is to evaluate the impact of surgical resection, anatomic and wedge, 

on Disease-Free-Survival, Overall Survival and Tumor-Specific-Survival within a national framework; 

the secondary aim is to evaluate the role of different clinical, biochemical, radiological and 

histopathological variables in determining the post-surgery recurrence. 

The inclusion criteria are the following: 

- No age limit; 

- Hepatocarcinoma diagnosis confirmed at histological specimen; 

- Patient with a first diagnosis of HCC, or with a recurrence/persistence treated with surgical 

resection at the participating centers. 

On the other hand, the exclusion criteria are: 

- Surgical resection performed as down-staging therapy towards transplantation; 

- Patients treated with surgery for non-curative purposes (palliation, best supportive care, 

etc.); 

- Primary mixed etiology tumors (i.e. hepatocolangiocarcinoma); 

- Patients with other previous cancers. 

For the purpose of this thesis, we considered data of patients enrolled between 2008 and 2017. The 

Italian centers which joined the project are reported in table 5. 

 

Center name City Overall 

 

(n=1089) 

n(%) 

Anatomic 

resection  

(n=722) 

n(%) 

Wedge  

resection  

(n=367) 

n(%) 

IRCCS Ospedale  

San Raffaele 
Milano 540 (49.6) 442 (61.2) 98 (26.7) 

Fondazione IRCCS Istituto 

Nazionale dei Tumori 
Milano 121 (11.1) 47 (6.5) 74 (20.2) 

Ospedale San Gerardo Monza 85 (7.8) 21 (2.9) 64 (17.4) 

Fondazione IRCCS 

Policlinico San Matteo 
Pavia 78 (7.2) 54 (7.5) 24 (6.5) 

Azienda Ospedaliera 

Spedali Civili di Brescia 
Brescia 68 (6.2) 37 (5.1) 31 (8.4) 
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Ospedale Pierantoni 

Morgagni 
Forlì 43 (3.9) 23 (3.2) 20 (5.4) 

Policlinico Borgo Nuovo Verona 43 (3.9) 32 (4.4) 11 (3.0) 

Policlinico di Monza Monza 29 (2.7) 17 (2.4) 12 (3.3) 

Istituto Fondazione 

Poliambulanza 
Brescia 26 (2.4) 16 (2.2) 10 (2.7) 

Ospedale Maggiore Crema 20 (1.8) 20 (2.8) 0 (0.0) 

Policlinico di Bari Ospedale 

"Giovanni XXIII" 
Bari 17 (1.6) 6 (0.8) 11 (3.0) 

Chirurgia Oncologica 

Epatobiliopancreatica 
Parma 8 (0.7) 4 (0.6) 4 (1.1) 

Ospedale San Paolo Savona 6 (0.6) 2 (0.3) 4 (1.1) 

Ospedale Sacco Milano 5 (0.5) 1 (0.1) 4 (1.1) 

 Table 5. The Italian centers that joined the study 

 

4.3. Statistical analysis  

As mentioned in the previous section, one of the aims of the HERCOLES study is to compare the 

impact of anatomic vs wedge surgical resection to treat liver cancer. The main endpoint of interest 

is the disease free survival (DFS) defined as time from treatment to the first of the following cause-

specific events: local recurrence (appearing on the surgical margin), other hepatic recurrence and 

death without recurrence. 

The purpose of this study is to quantify the marginal treatment effect of surgical resection on DFS 

through PS-based methods. In other words, the aim is to estimate the impact of treatment while 

trying to remove or reduce the effect of the different distribution of some prognostic factors 

(confounders) between the two treatment groups. 

We recall that, loosely speaking, a confounder is a variable that influences both the outcome and 

the assignment of treatment, causing a spurious association. 

Confounding factors are here identified using a logistic model with Least Absolute Shrinkage and 

Selection Operator (LASSO) penalty [22], considering variables associated with the outcome of 

interest from clinical knowledge. 
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The type of surgical resection is entered as dependent variable, Y, in the logistic regression model 

and is coded as 0 for anatomic resection and 1 for wedge resection. The probability of being treated 

with wedge resection given the covariates xi is calculated as follows: 

𝑃(𝑌 = 1|𝑥𝑖) =
𝑒𝛽0+𝛽1𝑥𝑖1+⋯+𝛽𝑘𝑥𝑖𝑘

1 + 𝑒𝛽0+𝛽1𝑥𝑖1+⋯+𝛽𝑘𝑥𝑖𝑘
    (50) 

where 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑘) are covariates of the ith observation and include the variables shown 

in tables 7 and 8. The parameter β0 is the intercept and βj  (j=1,…,k) is the coefficient corresponding 

to the jth covariate. The logistic LASSO estimator 𝛽0̂, … , 𝛽𝑘̂  is defined as the minimizer of the 

negative log likelihood: 

∑ [−𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑘𝑥𝑖𝑘
𝑛
𝑖=1 ) + log (1 + 𝑒𝛽0+𝛽1𝑥𝑖1+⋯+ 𝛽𝑘𝑥𝑖𝑘)]     (51) 

subject to ∑ |𝛽𝑗| ≤ 𝜆.𝑘
𝑗=1  Here, λ>0  is a tuning parameter that controls the sparsity of the estimator 

(i.e., the number of coefficients with a value of zero) and is selected by cross-validation. We used 

the “glmnet” package in R to apply the logistic LASSO estimator on our data. The propensity score 

is estimated using a logistic regression model considering the type of surgical resection as the 

outcome and the confounders selected by the LASSO model as covariates. The marginal treatment 

effect is measured in terms of marginal hazard ratio. For the case of the standard unweighted 

composite end-point (i.e. DFS), this is estimated by applying the PS-based methods to a Cox model. 

To account for the different clinical relevance of each specific event (death obviously corresponds 

to the worst event, but also local recurrence is considered more severe than other recurrence) the 

non-parametric estimator proposed by Ozga and Rauch [9] for a weighted cumulative hazard ratio 

was considered, again in combination with the application of PS-based methods to obtain a marginal 

measure. The PS-based methods used to estimate a marginal effect of the type of surgical resection 

on DFS are the following: 

I. Inverse probability weighting (IPW) 

II. Greedy nearest-neighbour matching on PS 

III. Covariate adjustment using the propensity score with spline transformation 

IV. Stratification on the propensity score using the quintile of the distribution 
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4.4. Results  

A total of 1089 patients were enrolled. The 34% (n=367) of the total underwent wedge-type surgery 

and the remaining 66% (n=722) anatomic-type surgery. 

The patients alive and without any type of recurrence at the end of the follow-up are 524 (48%); 91 

(8%) has developed a local recurrence; 408 (38%) has other types of recurrence and the remaining 

66 (6%) died. 

The description of demographical and baseline clinical characteristics are reported overall and by 

type of surgery (table 7-8). 

The distribution of the three endpoints is different between the two treatment groups, while the 

median of follow-up is similar in the two groups (table 6). 

 

Type of event  Overall 

 

(n=1089) 

n(%) 

Anatomic 

resection 

(n=722) 

n(%) 

Wedge 

resection 

(n=367) 

n(%) 

p-value 

Local recurrence 91 (8.4) 45 (6.2) 46 (12.5) <0.001 

Non-local recurrence 408 (37.5) 282 (39.1) 126 (34.3) 

Death 66 (6.1) 31 (4.3) 35 (9.5) 

No event 524 (48.1) 364 (50.4) 160 (43.6) 

Median follow-up (months) 55 54 61  

Table 6. Distribution of the endpoints and median follow-up divided by type of surgery. P-value obtained through Pearson's Chi-
squared test.  
 

The disease free survival curve stratified by type of surgery (figure 16) shows a higher survival 

probability for patients who have received an anatomical resection (p=0.005) 
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Figure 16. Disease Free Survival stratified for type of surgery 

 

4.4.1. The confounding factors 

The baseline characteristics available from the HERCOLES data and known in the clinical practice to 

be associated with both the choice of the treatment and the outcome are the following: 

- Sex (M/F) 

- Age (years) 

- Cirrhosis (Y/N) 

- Child Pugh Grade  

- Hepatitis B virus (Y/N) 

- Hepatitis C virus (Y/N) 

- Alcoholic (Y/N) 

- Number of nodules  

- Histological grading 

- Adjuvant therapy (Y/N) 

- American Society of Anaesthesiologists (ASA) 
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- Microvascular Invasion (Y/N) 

- International Normalized Ratio (INR)  

- Platelets (thousands/μl) 

- Larger nodule size (cm) 

- Bilirubin (mg/dL) 

- Surgical margin distance (mm) 

 

Twelve of these confounders, described in tables 7-8, were selected using the LASSO model. 

Most of them are associated with the choice of the treatment, while age, HCV and adjuvant therapy 

do not show a significant association. Nevertheless, all of them are included in the propensity score 

estimation, starting from a clinical background. 

 

Characteristics Overall 

 

(n=1089) 

Anatomic 

resection 

(n=722) 

Wedge 

resection 

(n=367) 

p-value 

Age (years)     

Mean±SD 74.7±9.91 74.91±9.92 74.15±9.88 0.231 
Median 77 77 75  
I-III quartile 69-81 70-81 68-82  

INR      

Mean±SD 1.2±0.23 1.20±0.23 1.15±0.22 <0.001 
Median 1.1 1 1  
I-III quartile 1 -1.3 1-1.3 1 -1.2  

Platelets (thousands/μl)     

Mean±SD 182.7±88.35 194.59±89.89 159.25±80.34 <0.001 
Median 172 183 148  
I-III quartile 116-232 125-250 95-193  

Larger nodule size (cm)     

Mean±SD 4.6±2.89 5±3.1 3±1.9 <0.001 
Median 3.8 4 3  
I-III quartile 2.8-5 3-7 2-4  

Table 7. Continuous confounders. Abbreviations: INR=International Normalized Ratio; IQR=interquartile range. P-value obtained   
through two sample t-test. 
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Characteristics Level Overall 

 

(n=1089) 

n (%) 

Anatomic 

resection 

(n=722) 

n (%) 

Wedge 

resection 

(n=367) 

n (%) 

p-value 

Sex M 815 (74.8) 536 (74.2) 279 (76.0) 0.571 
 F 274 (25.2) 186 (25.8) 88 (24.0)  
      

Cirrhosis No 335 (30.8) 246 (34.1) 89 (24.3) 0.001 
 Yes 754 (69.2) 476 (65.9) 278 (75.7)  

      

Child Pugh Grade A 985 (90.4) 641 (88.8) 344 (93.7) 0.012 
 B 104 ( 9.6) 81 (11.2) 23 ( 6.3)  

      

HCV  No 497 (45.6) 323 (44.7) 174 (47.4) 0.439 
 Yes 592 (54.4) 399 (55.3) 193 (52.6)  

      

Number of nodules <2 862 (79.2) 595 (82.4) 267 (72.8) <0.001 
 ≥2 227 (20.8) 127 (17.6) 100 (27.2)  

      

Histological grading 1 91 ( 8.4) 54 ( 7.5) 37 (10.1) 0.002 
 2 748 (68.7) 521 (72.2) 227 (61.9)  

 3 250 (23.0) 147 (20.4) 103 (28.1)  
      

Adjuvant therapy No 1068 (98.1) 711 (98.5) 357 (97.3) 0.259 
 Yes 21 ( 1.9) 11 ( 1.5) 10 ( 2.7)  

      

ASA score <3 603 (55.4) 428 (59.3) 175 (47.7) <0.001 
 ≥3 486 (44.6) 294 (40.7) 192 (52.3)  
      

Table 8. Categorical confounders. Abbreviations: HCV=Hepatitis C virus; ASA=American Society of Anaesthesiologists. P-value 
obtained   through Pearson's Chi-squared test. 

 
 

The disease free survival stratified for the confounding factors are estimated in order to study the 

association between confounders and the outcomes (figure 17). 

Cirrhotic patients have a higher probability to develop a recurrence or death compared to non-

cirrhotic (p=0.008). The higher the ASA score, the number of nodules and the histological grade of 

the tumor (assessed through post-surgical biopsy), the higher the probability to have a recurrence 

or death (p<0.0001, p=0.004 and p<0.001, respectively). The Adjuvant therapy has a protective 

effect on recurrence or death (p=0.040). The Hepatitis C virus (HCV) and the Child Pugh Grade have 

no effect on the disease free survival (p=0.200 and p=0.400, respectively) but they are included in 
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the propensity score estimation because they have an impact on survival probability, according to 

clinical knowledge. 

The larger nodule size and the age seem not to have an effect on the probability of having a 

recurrence or dying, while the International Normalized Ratio (INR) and the number of platelets 

(within the normal range) seem have a protective effect on the disease free survival (figure 18). 
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Figure 17. Disease free survival curve stratified for the categorical confounders 
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Figure 18. Smoothed HR distribution to study the effect of each continuous confounder on the disease free survival. Abbreviations: 
INR=International Normalized Ratio; HR=hazard ratio; SE=standard error; CI=confidence interval. 

  
 
 
Propensity Score estimation 
 
The PS distribution in the two groups of treatment (figure 19) shows that the PS well detects the 

differences between the two groups. In particular, as expected, the distribution of PS (i.e. probability 

of wedge) is generally higher for the patients that undergone the wedge resection (median: 0.46; I-

III quartile: 0.33-0.58) than the group that received the anatomic surgical technique (median: 0.27; 

I-III quartile: 0.13-0.41). 

 



52 
 

 
Figure 19. Distribution of the propensity score by type of surgery. Abbreviations: Anatomic = anatomic resection; Wedge = wedge 
resection. 

 

 

Considering the coefficients of the PS model (table 9), only six confounders appear to be statistically 

associated with the choice of treatment: cirrhosis, INR, platelets, number of nodules, larger nodule 

size and the ASA score. 

 

 OR  95% CI p-value 

Age 0.99 0.97-1.00 0.126 

Cirrhosis 1.39 1.01-1.91 0.042 

Child Pugh Grade 0.63 0.37-1.06 0.081 

HCV 0.82 0.62-1.08 0.158 

INR 0.45 0.24-0.85 0.014 

Platelets 1.00 0.99-1.00 0.003 

Number of nodules 1.73 1.24-2.41 0.001 

Larger nodule size (cm) 0.72 0.67-0.78 <0.001 

Histological grading (2 vs 1) 0.94 0.57-1.52 0.788 

Histological grading (3 vs 1) 1.47 0.86-2.52 0.157 

Adjuvant therapy 1.56 0.57-4.27 0.383 

ASA score 1.55 1.16-2.07 0.003 

Table 9. OR of the propensity score model with their confidence intervals and p-value. Abbreviations: HCV=Hepatitis C virus; 
INR=International Normalized Ratio; ASA=American Society of Anaesthesiologists 
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4.4.2. Results on marginal hazard ratio 

Before the estimation of the ATE, the balancing between the two groups of treatment was evaluated 

for the IPW and PS matching methods. The number of matched pairs formed are 330 in total. 

The absolute mean differences are lower than the conventional threshold of 0.01 for all the 

confounders, so a good balancing has been achieved (figure 20). 

 

 

                        Figure 20. Covariate balance evaluation for the Inverse Probability Weighting (IPW) and propensity score matching 

 

 

The estimate of the effect of the two types of surgical resections on the DFS (figure 21) proves that 

the choice of the surgical technique does not influence the standard composite endpoint. The 

proportional hazards assumption was checked on the adjusted model using the test based on 

Schoenfeld residuals (p= 0.354) 
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Figure 21. The estimated hazard ratios for the disease free survival and their 95% confidence intervals for each propensity score 

method. Abbreviations: IPW=Inverse Probability Weighting; Matched=matching on propensity score; Spline= propensity score as 

covariate with spline transformation; Stratification= stratification by propensity score quintiles; Adj Model=Adjusted Model with 

confounders as covariates. 

 
Furthermore, it is of clinical interest to investigate the impact of the surgical resections on each 

cause-specific endpoint: local recurrence, non-local recurrence and death. To this purpose, a 

competing risk analysis is performed in order to consider each endpoint separately. 

Considering the cumulative incidence of the three endpoints stratified for the two surgical 

resections (figure 22), the non-local recurrence has the highest incidence, while local recurrence 

and death have both a much lower incidence. 

Focusing on every single endpoint, there is a statistically significant difference (Grey test) between 

the cumulative incidence of the two treatment groups for local recurrence (p<0.001) and death 

(p<0.001), in favour of anatomic resection. On the other hand, the control of other recurrence was 

in favour of wedge resection, although not statistically significant (p= 0.188) 
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Figure 22. Cumulative Incidence of the cause-specific endpoints (local recurrence, non-local recurrence and death) stratified for 
type of surgery. Below the number at risk at different time points. 

 
 

The results of the HR for each cause specific support different conclusion from those obtained in 

the analysis of the DFS endpoint (figure 23). 

 

 

Figure 23. The adjusted hazard ratios for the cause-specific endpoints (local recurrence, non-local recurrence and death) and their 

95% confidence interval for each propensity score method. Abbreviations: IPW=Inverse Probability Weighting; Matched=matching 

on propensity score; Spline= propensity score as covariate with spline transformation; Stratification= stratification by propensity 

score quintiles; Adj Model=Adjusted Model with confounders as covariates. 
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For all the PS methods, the wedge resection increases the probability of death and local recurrence. 

The type of surgery has a borderline effect on the non-local recurrence for all the methods analysed. 

The size of confidence intervals reflects the different sample size of the three endpoints: the most 

reliable estimations are the non-local recurrence ones. 

 

4.4.3. Results on weighted all-cause hazard ratio 

The previous analysis showed a strongly different effects of the two types of surgery on the three 

endpoints. Hence, a weighted all-cause hazard ratio is performed in order to estimate the surgical 

effect on a composite endpoint where the three endpoints have different weights. In particular, as 

suggested by the HERCOLES study clinicians, the local recurrence has a greater weight in terms of 

severity; therefore, the third scenario is the one with higher clinical interest (table 10). 

 

Scenario Weights 

1. Standard approach w1 =1; w2=1; w3=1 

2. Death is considered the worst event and the 
same relevance is given to the other 
endpoints 

w1 =0.5; w2=0.5; w3=1 

3. Death is considered the worst event but 
also more relevance is given to local 
recurrence with respect to the other one 

w1 =0.8; w2=0.5; w3=1 

Table 10. Description of the scenarios. Abbreviations: w1=weight for local recurrence; w2=weight for other recurrences; w3=weight 
for death 

 

Among the PS based methods, for this part of the analysis, only the IPW and PS matching are 

compared because it is known that they are the two methods that minimize the bias in the 

estimation of the marginal hazard ratios [4]. 

Observing the weighted all-cause hazard ratio and its confidence intervals, provided by 

bootstrapping techniques (figure 24), the standard approach, both for IPW and PS matching, does 

not show significant difference between the two surgical techniques (scenario a). In the scenario b, 

there is a slight increase of the hazard ratio values but the confidence interval still does not highlight 

any significant difference between the two treatments. 

The last scenario (scenario c) seems to suggest that the wedge resection increases the risk of the 

occurrence of one of the three events, in particular for the PS matching method. 
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Figure 24. The weighted all-cause hazard ratio for Inverse probability weighting and propensity score matching in the three scenarios 
(a, b and c) 
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5. Discussion 

Over the last few years, propensity score methods have been increasingly used in observational 

studies in medical literature to reduce confounding in estimating the treatment effect. Despite a 

wide collection of papers on propensity score analysis have been published, few of them are focused 

on the analysis of time to event outcomes [23].  

The aim of this work was to add some novel considerations about the performance of different PS 

methods to estimate marginal hazard ratios and this was done considering a standard single 

endpoint, but also a composite endpoint. Another peculiar aspect of this work is the interest in 

dealing with composite endpoints.  From a methodological point of view, the analysis of composite 

or single endpoints is not different, when the effect of the composite endpoint is based on the first 

event occurred irrespective of the type. However, sometimes it is of interest to assign a different 

clinical relevance to each single endpoint and thus a weighted effect measure, such as the weighted-

all-cause-hazard-ratio [9], can be used to quantify the impact of treatment on the survival outcome.  

While there is some literature about the estimation of marginal hazard ratios for standard 

endpoints, the performance of PS methods to estimate causal effects on weighted endpoints is 

currently a topic still unexplored. Simulations studies were implemented to evaluate the behaviour 

of the various approaches we considered. 

Results of the simulations on unweighted endpoints, confirm existing evidences about the 

effectiveness of IPW and matching on PS in reducing bias of the marginal treatment effect, while 

stratification and covariate adjustment using the PS result in estimation poorer performance 

[4][24][23]. More specifically, results here presented point out the primacy of the IPW over the 

other methods in terms of both precision (figures 6,9) and accuracy (figures 7,10) and thus a slightly 

worse performance of matching on the PS than IPW. This is not in agreement with all studies already 

present in the literature, e.g. [4]. A reason could be that the average number of matched pairs in 

this study (81.6%) is lower than in [4] (94.3%), causing a loss of both precision and accuracy of the 

estimates. A second limitation is the inclusion of only a single matching algorithm: greedy nearest-

neighbour matching on the logit of the PS using calipers defined by the variance of the logit of the 

PS. This approach was used in this work because it has been found to perform well compared with 

other commonly used alternatives [17], but also other algorithms are available [16]. The higher 

biases observed for covariate adjustment and stratification using PS are also explainable. In fact, it 
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was demonstrated that these methods can estimate only conditional hazard ratios and not a 

marginal effect like matching or IPW [4]. 

The simulations on weighted all-cause hazard ratio present high computational complexity, 

therefore the two PS methods (stratification and covariate adjustment) were a priori excluded based 

on the biased results obtained on the unweighted context and only matching on PS and IPW were 

compared. The IPW results again the most precise (figures 11,14) and accurate (figures 12,15) 

method. Concerning PS matching, it has to be noted that the average number of matched pairs 

(70.3%) is lower than what obtained in the unweighted simulations. This could be, again, the main 

reason for lower efficiency associated with this method, compared to IPW. In all scenarios here 

considered, the assumption of equal cause-specific baseline hazards, which theoretically is required 

to guarantee that the non-parametric estimator of the all-cause-weighted-hazard-ratio of Ozga et 

al. [9], is violated. This was done because in practice (as in the motivating study here analysed), this 

assumption is often not tenable. Ozga et al. [9] state that the performance of the non-parametric 

estimator of the weighted all-cause hazard ratio remains good even when the assumption is not 

valid. Based on my results, I confirm this property of robustness of the weighted all-cause hazard 

ratio estimator also for the estimation of marginal treatment effects using PS matching or IPW.  

In both simulation studies (dealing with unweighted and weighted endpoints) a limited number of 

scenarios was considered. Thus, the performance of the estimators of the marginal treatment effect 

could be different if tested in further situations and below different assumptions about the 

distribution of confounders and their relationship to treatment selection and outcomes. The setting 

of the parameters in this work was inspired by an application on a clinical observational study where 

the interest was to compare the effect of two surgical techniques to treat a particular liver tumor 

on the disease free survival (HERCOLES study). 

The application of PS-based methods on the estimation of marginal hazard ratio for unweighted and 

weighted endpoints on the HERCOLES data is reported (Chapter 4). A common issue of propensity 

score based studies is the approach used to select confounders to be included in the PS model 

[25][26][27]. In this study, the confounding factors are identified using a logistic model with the  

least absolute shrinkage and selection operator (LASSO) variable selection method [22] that it was 

shown to be good in selecting true confounders and predictors of outcome [28]. Other automated 

variable selection methods have been criticized for the possibility of increasing risk of bias through 

over-adjustment on colliders or instrumental variables, but this issue still remains contentious in the 

current literature [25]. Another important issue that has to be taken into account when interpreting 
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the results of a PS-based analysis is the possible presence of unmeasured confounding. Some 

proposals have been recently presented in the literature to overcome this problem (e.g. the use of 

instrumental variables [29][30][31]) but further studies are needed to understand their relative 

performance in different contexts before they can be recommended. We assume that data 

regarding all the main relevant prognostic factor have been accurately measured in this study.  

Initially, a standard (i.e. unweighted) composite endpoint was considered, namely the disease free 

survival (first event occurring among death, local and non-local recurrence). However, it was of 

interest to assign a different clinical relevance to each endpoint (death is considered obviously the 

worst event but also local recurrence is regarded as more severe than non-local one). Moreover, 

the competing risk analysis showed a strongly different effect of the two types of surgery on the 

three cause-specific events (figure 23). Hence, the non-parametric method of Ozga et al. [9] was 

adopted in order to estimate the surgical effect in terms of a weighted all-cause hazard ratio where 

the three endpoints have different weights. The choice of the weights for the different endpoints 

represents a controversial aspect for this method because it is somewhat arbitrary.  A guidance for 

the choice of the relevance weights is proposed by Ozga et al. [9], but it is not definitive. The most 

important recommendation is that this process should be done in agreement with the study’s 

clinicians, as it is done in this work.  

Regarding the possible developments of this work,  a good starting point could be the introduction 

of competing risk in this context, since actually there are very few guidelines on how to use 

propensity score based methods with competing risk data [32]. Another interesting point might be 

the comprehension of what happens when the assumption of independent censoring is violated: 

neither of the PS methods is suited to solve the problem of censored data when the censorship 

depends on the outcome [33]. In that case, an approach based on Inverse Probability of Censoring 

Weighting (IPCW) could be an option, provided that it is possible to accurately model the probability 

of censoring in time [34]. 

A final perspective could be to analyse the performance of the PS-based methods in estimating 

other marginal measures of effect (i.e. restricted mean survival time, time-fixed survival probability 

and survival quantile). With respect to the hazard ratio these measure have the advantage to be 

more easily interpretable from a clinical point of view [5] even though they are generally harder to 

estimate properly. 
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Appendix 

In this Appendix the main lines of R code are reported for the simulation studies. 

 

**Simulation on unweighted hazard ratio** 

library(survival) 

library(arm) 

library(MatchIt) 

library(splines) 

library(gtools) 

 

Nsim=10000 

for (j in 1:Nsim) { 

  N=1000 

  x1   <-  rbinom(N, 1, prob=0.70)  

  alpha1 <- 0.53 

  x2   <-  rpois(N, 1.3) 

  alpha2 <- 0.38 

  x3   <-  rnorm(N,75,10)  

  alpha3 <- -0.01 

  x4 <- rbinom(N,1,0.1) 

  alpha4 <- 0.49 

  x5 <- rbinom(N, 1, prob=0.51)  

  alpha5 <- -0.08 

  x6   <-  rnorm(N,1.2,0.24) 

  alpha6 <- -1 

  x7   <-  rpois(N, 180) 

  alpha7 <- -0.01 

  x8   <-  rnorm(N,4.6,2.9) 

  alpha8 <- -0.23 

  x9.2 <- rbinom(N, 1, prob=0.66) 

  alpha9.2 <- -0.35 
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  x9.3 <- ifelse(x9.2==1,0,rbinom(1, 1, prob=0.73)) 

  alpha9.3 <- 0.02 

  x10 <- rbinom(N,1,0.02) 

  alpha10 <- 0.77 

  x11 <- rbinom(N,1,0.48) 

  alpha11 <- 0.59 

  alpha0 <- 3.2  

  p_wedge <- invlogit(alpha0+alpha1*x1+alpha2*x2+alpha3*x3+alpha4*x4+ alpha5*x5+ 

  alpha6*x6+alpha7*x7+alpha8*x8+alpha9.2*x9.2+alpha9.3*x9.3+alpha10*x10+alpha11*x11) 

  CreateTreat <- function(N, var) {rbinom(N,1,var)} 

  treatment <- CreateTreat(1000,p_wedge) 

  table(treatment) 

  t.cens <- runif(N, min=360, max=500) 

  U<-runif(N, min=0, max=1) 

  k<-0.15  

  p<-1  

  beta1 <- 0.19 

  beta4 <- 0.16 

  beta9.2 <- 0.72 

  beta9.3 <- 1.49 

  beta10 <- 0.65 

  beta11 <- 0.39 

  beta2 <- 0.22 

  beta6 <- -1.78 

  beta7 <- -0.01 

  beta8 <- -0.02 

  beta3 <- -0.01 

  beta5 <- -0.13 

  HR <-  1.5 

  beta0 = 0.501 

  

  iter = 0 
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  repeat { 

    iter = iter+1 

    t.event0 <-  (-log(U))/(k*exp(beta1*x1+beta2*x2+beta3*x3+beta4*x4+beta5*x5+ 

     beta6*x6+beta7*x7+beta8*x8+beta9.2*x9.2+beta9.3*x9.3+beta10*x10+beta11*x11))^(1/p)   

    t.event1 <-  (-log(U))/(k*exp(beta0+beta1*x1+beta2*x2+beta3*x3+beta4*x4+beta5*x5+ 

     beta6*x6+beta7*x7+beta8*x8+beta9.2*x9.2+beta9.3*x9.3+beta10*x10+beta11*x11))^(1/p) 

    mod <- coxph(Surv(c(t.event0,t.event1),rep(1,2*N))~c(rep(0,N),rep(1,N))) 

    if (round(summary(mod)$coef[1,1],3) == round(log(HR),3) | iter==1000) break 

    if (summary(mod)$coef[1,1] < log(HR)) {beta0 <- beta0 + 0.001} 

    if (summary(mod)$coef[1,1] > log(HR)) {beta0 <- beta0 - 0.001}   

  } 

  if (iter ==1000) {salti = salti+1 

  next 

  } 

  # observed time and event indicators 

  t.event <- ifelse(treatment==1, t.event1, t.event0) 

  T.event<-pmin(t.event,t.cens) 

  Event<-ifelse(t.event<t.cens,1,0) 

  data_sim <- data.frame(T.event,Event,treatment, x1,x2,x3,x4,x5,x6,x7,x8,x9.2,x9.3,x10,x11) 

   

  #calculation of weights 

  mod1 <- glm(treatment ~ x1+x2+x3+x4+x5+x6+x7+x8+x9.2+x9.3+x10+x11, data=data_sim, 

family="binomial") 

  data_sim$ps_value <- predict(mod1, type="response") 

  data_sim$ipw <- ifelse(data_sim$treatment==1, 1/data_sim$ps_value, 1/(1-data_sim$ps_value)) 

  mod2 <- glm(treatment ~ 1, data=data_sim, family="binomial") 

  data_sim$p_treat <- predict(mod2, type="response") 

  data_sim$ipw_st <- ifelse(data_sim$treatment==1,data_sim$p_treat/(data_sim$ps_value),(1-

data_sim$p_treat)/(1- data_sim$ps_value)) 

  

  #IPW 

  mod4 <- coxph(Surv(T.event,Event)~ treatment, weights=ipw, data=data_sim, robust=T) 
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  #Matching 

  match <- matchit(treatment ~ x1+x2+x3+x4+x5+x6+x7+x8+x9.2+x9.3+x10+x11, data=data_sim, 

                   method = "nearest", caliper=0.2) 

  data_complete_match <- match.data(match) 

  mod6 <- coxph(Surv(T.event,Event)~ treatment,data=data_complete_match, robust=T) 

     

  #PS as covariate with spline transformation 

  mod8 <- coxph(Surv(T.event,Event)~ treatment + ns(ps_value,df=4), data=data_sim, robust=T) 

    

  #Stratification on PS quintiles 

  data_sim$ps_quintile <- quantcut(data_sim$ps_value, q=5, format="d") 

  mod9 <- coxph(Surv(T.event,Event)~ treatment + as.factor(ps_quintile), data=data_sim, 

robust=T) 

 

  print(j)   

} 
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**Simulation on weighted all-cause hazard ratio** 

 

library(survival) 

library(arm) 

library(MatchIt) 

library(splines) 

library(gtools) 

library(dplyr) 

library(tidyr) 

library(dynpred) 

 

 

################################# 

#IPW 

Nsim=1000 

for (j in 1:Nsim) { 

  N=1000 

  x1   <-  rbinom(N, 1, prob=0.70)  

  alpha1 <- 0.53 

  x2   <-  rpois(N, 1.3) 

  alpha2 <- 0.38 

  x3   <-  rnorm(N,75,10)  

  alpha3 <- -0.01 

  alpha0 <- 0.1  

   

  p_wedge <- invlogit(alpha0+alpha1*x1+alpha2*x2+alpha3*x3) 

  CreateTreat <- function(N, var) {rbinom(N,1,var)} 

  treatment <- CreateTreat(1000,p_wedge) 

  table(treatment) 

   

  k<-0.5  

  p<- 1 
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  l<-0.7 

  q<- 2 

  beta1 <- 0.19 

  beta2 <- 0.22 

  beta3 <- -0.01 

  beta0.1=1 

  beta0.2=1 

  w1=1 

  w2=0.5 

  cumHR=2 

 

  iter = 0 

  repeat { 

    iter = iter+1 

    U<-runif(N, min=0, max=1) 

    t.event1A<- (-log(U))/(k*exp(beta1*x1+beta2*x2+beta3*x3))^(1/p)   

    U<-runif(N, min=0, max=1) 

    t.event2A<- (-log(U))/(l*exp(beta1*x1+beta2*x2+beta3*x3))^(1/q)  

    U<-runif(N, min=0, max=1) 

    t.event1B <- (-log(U))/(k*exp(beta0.1+beta1*x1+beta2*x2+beta3*x3))^(1/p) 

    U<-runif(N, min=0, max=1) 

    t.event2B <- (-log(U))/(l*exp(beta0.2+beta1*x1+beta2*x2+beta3*x3))^(1/q)   

     

    status_A <- ifelse(t.event1A<t.event2A,1,2) 

    status_B <- ifelse(t.event1B<t.event2B,1,2) 

    t.eventA <- pmin(t.event1A,t.event2A) 

    t.eventB <- pmin(t.event1B,t.event2B) 

     

    mod1A <- summary(survfit(Surv(t.eventA,status_A==1)~1)) 

    mod2A <- summary(survfit(Surv(t.eventA,status_A==2)~1)) 

    mod1B <- summary(survfit(Surv(t.eventB,status_B==1)~1)) 

    mod2B <- summary(survfit(Surv(t.eventB,status_B==2)~1)) 
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    h1A <- mod1A$n.event / mod1A$n.risk 

    h2A <- mod2A$n.event / mod2A$n.risk 

    h1B <- mod1B$n.event / mod1B$n.risk 

    h2B <- mod2B$n.event / mod2B$n.risk 

    cum1A <- sum(h1A[mod1A$time<1]) 

    cum2A <- sum(h2A[mod2A$time<1]) 

    cum1B <- sum(h1B[mod1B$time<1]) 

    cum2B <- sum(h2B[mod2B$time<1]) 

    cumHRcond <- (w1*cum1B + w2*cum2B)/(w1*cum1A + w2*cum2A) 

    if (round(cumHRcond,3) == round(cumHR,3)) break 

    if (cumHRcond < cumHR) {beta0.2 <- beta0.2 + 0.001} 

    if (cumHRcond > cumHR) {beta0.2 <- beta0.2 - 0.001} 

  } 

   

  #observed time and event indicators  

  t.cens <- runif(N, min=0.5, max=2) 

  t.event <- ifelse(treatment==1, t.eventB, t.eventA) 

  T.event<-pmin(t.event,t.cens) 

  event<- ifelse(treatment==1, status_B, status_A) 

  Event<-ifelse(t.event<t.cens,event,0)  

  data_sim <- data.frame(T.event,Event,treatment, x1,x2,x3) 

   

  #calculation of weights 

  mod1 <- glm(treatment ~ x1+x2+x3, data=data_sim, family="binomial") 

  data_sim$ps_value <- predict(mod1, type="response") 

  data_sim$ipw <- ifelse(data_sim$treatment==1, 1/data_sim$ps_value, 1/(1-data_sim$ps_value)) 

   

  mod2 <- glm(treatment ~ 1, data=data_sim, family="binomial") 

  data_sim$p_treat <- predict(mod2, type="response") 

  data_sim$ipw_st <- ifelse(data_sim$treatment==1,data_sim$p_treat/(data_sim$ps_value),(1-

data_sim$p_treat)/(1- data_sim$ps_value)) 

  ##anatomic resection 
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  anatomic <- data_sim[which(data_sim$treatment==0),] 

  #Event 1 

  mod <- summary(survfit(Surv(T.event,Event==1)~1,data=anatomic,weights=ipw)) 

  hazard <- mod$n.event / mod$n.risk 

  IPW1A <- sum(hazard[mod$time<1]) 

  #Event 2 

  mod <- summary(survfit(Surv(T.event,Event==2)~1,data=anatomic,weights=ipw)) 

  hazard <- mod$n.event / mod$n.risk 

  IPW2A <- sum(hazard[mod$time<1]) 

   

##wedge resection 

  wedge <- data_sim[which(data_sim$treatment==1),] 

  #Event 1 

  mod <- summary(survfit(Surv(T.event,Event==1)~1,data=wedge,weights=ipw)) 

  hazard <- mod$n.event / mod$n.risk 

  IPW1B <- sum(hazard[mod$time<1]) 

  #Event 2 

  mod <- summary(survfit(Surv(T.event,Event==2)~1,data=wedge,weights=ipw)) 

  hazard <- mod$n.event / mod$n.risk 

  IPW2B <- sum(hazard[mod$time<1]) 

  ##calculation of weighted all-cause HR 

  wHR_ipw <- (IPW1B*w1+IPW2B*w2)/(IPW1A*w1+IPW2A*w2) 

  HR <- c(HR,wHR_ipw) 

  n.cens <- c(n.cens, table(data_sim$Event)[1])  

  n.1event <- c(n.1event, table(data_sim$Event)[2])  

  n.2event <- c(n.2event, table(data_sim$Event)[3])  

   

  print(j) 

} 

######################################### 

#MATCHING 

Nsim=1000 
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for (j in 1:Nsim) { 

  N=1000 

  x1   <-  rbinom(N, 1, prob=0.70)  

  alpha1 <- 0.53 

  x2   <-  rpois(N, 1.3) 

  alpha2 <- 0.38 

  x3   <-  rnorm(N,75,10)  

  alpha3 <- -0.01 

  alpha0 <- 0.1  

   

  p_wedge <- invlogit(alpha0+alpha1*x1+alpha2*x2+alpha3*x3) 

  CreateTreat <- function(N, var) {rbinom(N,1,var)} 

  treatment <- CreateTreat(1000,p_wedge) 

  table(treatment) 

   

  k<-0.5  

  p<- 1 

  l<-0.7 

  q<- 2 

  beta1 <- 0.19 

  beta2 <- 0.22 

  beta3 <- -0.01 

  beta0.1=1 

  beta0.2=1 

  w1=1 

  w2=0.5 

  cumHR=2 

  iter = 0 

   

  repeat { 

    iter = iter+1 

    U<-runif(N, min=0, max=1) 
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    t.event1A<- (-log(U))/(k*exp(beta1*x1+beta2*x2+beta3*x3))^(1/p)   

    U<-runif(N, min=0, max=1) 

    t.event2A<- (-log(U))/(l*exp(beta1*x1+beta2*x2+beta3*x3))^(1/q)  

    U<-runif(N, min=0, max=1) 

    t.event1B <- (-log(U))/(k*exp(beta0.1+beta1*x1+beta2*x2+beta3*x3))^(1/p) 

    U<-runif(N, min=0, max=1) 

    t.event2B <- (-log(U))/(l*exp(beta0.2+beta1*x1+beta2*x2+beta3*x3))^(1/q)   

     

    status_A <- ifelse(t.event1A<t.event2A,1,2) 

    status_B <- ifelse(t.event1B<t.event2B,1,2) 

    t.eventA <- pmin(t.event1A,t.event2A) 

    t.eventB <- pmin(t.event1B,t.event2B) 

     

    mod1A <- summary(survfit(Surv(t.eventA,status_A==1)~1)) 

    mod2A <- summary(survfit(Surv(t.eventA,status_A==2)~1)) 

    mod1B <- summary(survfit(Surv(t.eventB,status_B==1)~1)) 

    mod2B <- summary(survfit(Surv(t.eventB,status_B==2)~1)) 

    h1A <- mod1A$n.event / mod1A$n.risk 

    h2A <- mod2A$n.event / mod2A$n.risk 

    h1B <- mod1B$n.event / mod1B$n.risk 

    h2B <- mod2B$n.event / mod2B$n.risk 

    cum1A <- sum(h1A[mod1A$time<1]) 

    cum2A <- sum(h2A[mod2A$time<1]) 

    cum1B <- sum(h1B[mod1B$time<1]) 

    cum2B <- sum(h2B[mod2B$time<1]) 

    cumHRcond <- (w1*cum1B + w2*cum2B)/(w1*cum1A + w2*cum2A) 

    if (round(cumHRcond,3) == round(cumHR,3)) break 

    if (cumHRcond < cumHR) {beta0.2 <- beta0.2 + 0.001} 

    if (cumHRcond > cumHR) {beta0.2 <- beta0.2 - 0.001} 

  } 
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  #observed time and event indicators  

  t.cens <- runif(N, min=0.5, max=2) 

  t.event <- ifelse(treatment==1, t.eventB, t.eventA) 

  T.event<-pmin(t.event,t.cens) 

  event<- ifelse(treatment==1, status_B, status_A) 

  Event<-ifelse(t.event<t.cens,event,0)  

  data_sim <- data.frame(T.event,Event,treatment, x1,x2,x3) 

   

  match <- matchit(treatment ~ x1+x2+x3, data=data_sim, method = "nearest",caliper=0.2) 

  data_complete_match <- match.data(match) 

  ##anatomic resection 

  anatomic <- data_complete_match[which(data_complete_match$treatment==0),] 

  #Event 1 

  mod <- summary(survfit(Surv(T.event,Event==1)~1,data=anatomic)) 

  hazard <- mod$n.event / mod$n.risk 

  M1A <- sum(hazard[mod$time<1]) 

  #Event 2 

  mod <- summary(survfit(Surv(T.event,Event==2)~1,data=anatomic)) 

  hazard <- mod$n.event / mod$n.risk 

  M2A <- sum(hazard[mod$time<1]) 

  ##wedge resection 

  wedge <- data_complete_match[which(data_complete_match$treatment==1),] 

  #Event 1 

  mod <- summary(survfit(Surv(T.event,Event==1)~1,data=wedge)) 

  hazard <- mod$n.event / mod$n.risk 

  M1B <- sum(hazard[mod$time<1]) 

  #Event 2 

  mod <- summary(survfit(Surv(T.event,Event==2)~1,data=wedge)) 

  hazard <- mod$n.event / mod$n.risk 

  M2B <- sum(hazard[mod$time<1]) 

  ##calculation of the all-cause HR 

  wHR_match <- (M1B*w1+M2B*w2)/(M1A*w1+M2A*w2) 
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  HR <- c(HR,wHR_match) 

  n.cens <- c(n.cens, table(data_sim$Event)[1])  

  n.1event <- c(n.1event, table(data_sim$Event)[2])  

  n.2event <- c(n.2event, table(data_sim$Event)[3])  

  dim.match <-c(dim.match, dim(data_complete_match)[1]) 

   

  print(j) 

} 

 

 


