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SUMMARY

Chinese hamster ovary (CHO) cells dominate bio-
therapeutic protein production and are widely used
in mammalian cell line engineering research. To eluci-
date metabolic bottlenecks in protein production and
to guide cell engineering and bioprocess optimiza-
tion, we reconstructed the metabolic pathways in
CHO and associated them with >1,700 genes in the
Cricetulus griseus genome. The genome-scale meta-
bolic model based on this reconstruction, iCHO1766,
and cell-line-specific models for CHO-K1, CHO-S,
and CHO-DG44 cells provide the biochemical basis
of growth and recombinant protein production. The
models accurately predict growth phenotypes and
known auxotrophies in CHO cells. With the models,
we quantify the protein synthesis capacity of CHO
cells and demonstrate that common bioprocess
treatments, such as histone deacetylase inhibitors,
434 Cell Systems 3, 434–443, November 23, 2016 ª 2016 Elsevier In
inefficiently increase product yield. However, our sim-
ulations show that the metabolic resources in CHO
are more than three times more efficiently utilized
for growth or recombinant protein synthesis following
targeted efforts to engineer the CHO secretory
pathway. This model will further accelerate CHO cell
engineering and help optimize bioprocesses.

INTRODUCTION

Since their first commercial use in the late 1980s to produce tis-

sue plasminogen activator, Chinese hamster ovary (CHO) cell

lines have remained the platform of choice for producing pro-

teins requiring complex post-translational modifications for ther-

apeutic activity and regulatory approval (Kildegaard et al., 2013).

Over the years, dramatic increases in product titer have been

achieved in CHO cells as the result of bioprocess optimizations

that increased cell culture density and longevity (Hu et al.,

2007), resulting in CHO being the dominant host cell line for
c.
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biotherapeutic production (Walsh, 2014). Despite these achieve-

ments, the molecular basis of protein production in CHO cells

remains poorly characterized. Recent access to genome se-

quences (Brinkrolf et al., 2013; Lewis et al., 2013; Xu et al.,

2011) and advances in systems biology (Gutierrez and Lewis,

2015) now enable the construction of a mechanistic basis for

growth and protein production in CHO cells.

Three key cellular processes drive recombinant protein pro-

duction: transgene expression, metabolism, and protein secre-

tion. Metabolism is particularly important and inexorably linked

to the others. For example, metabolic enzymes, including dihy-

drofolate reductase (Kaufman and Sharp, 1982) and glutamine

synthetase (Bebbington et al., 1992), have served as selection

systems for transfecting and amplifying transgenes in CHO cells.

Additionally, metabolism provides the building blocks for the

protein product and the secretory machinery needed to secrete

it. Cell metabolism has been modulated extensively in the

enhancement of CHO-based bioprocessing. Specifically, the

balance of cellular metabolic demands has been targeted

through media optimization to improve cell density, growth,

and product yields (Castro et al., 1992). Efforts also have

reduced the secretion of undesirable by-products (e.g., lactate

and NH3) to ameliorate the impact on cell growth (Lao and

Toth, 1997), product quality (Chen and Harcum, 2006), and the

cellular metabolic state (Yang and Butler, 2000). Additionally,

metabolism influences product quality attributes (e.g., drug

efficacy and compatibility with the human immune system),

including glycosylation (Fan et al., 2015), oxidation, acetylation,

and disulfide bridge formation (Lorendeau et al., 2015). Intuitive

modifications of metabolic enzyme levels have improved protein

production and quality (Altamirano et al., 2013); however, since

each enzyme contributes to pathways, imbalances of compo-

nents and interactions between pathways can yield unexpected

results. Thus, a more complete understanding of CHO meta-

bolism is vital to identify metabolic bottlenecks in CHO cell cul-

ture and to rationally guide complex cell engineering efforts.

To cope with the complexity of CHO metabolism, computa-

tional models have been applied to study CHO under various

conditions (Carinhas et al., 2013; Nolan and Lee, 2011; Selvarasu

et al., 2012; Sengupta et al., 2011; Templeton et al., 2013; Za-

morano et al., 2010). Studies have focused primarily on central

metabolism (Templeton et al., 2013) or used models extrapo-

lated from mice (Martı́nez et al., 2015; Selvarasu et al., 2012;

Smallbone, 2013). However, CHO-specific genome-scale meta-

bolic models (GeMs) are now within reach, given the recent

sequencing of the CHO-K1 and Chinese hamster genomes

(Brinkrolf et al., 2013; Lewis et al., 2013; Xu et al., 2011). GeMs

(Lewis et al., 2012) contain detailed information about all

known biochemical reactions in a specific organism based on

its genome and physiological information. Since metabolic path-

ways synthesize the components necessary for growth and sur-

vival, these models link the genetic basis of a cell to phenotypic

capabilities, allowing more precise and complex metabolic engi-

neering efforts (Curran et al., 2013; Gutierrez and Lewis, 2015).

Here we present a genome-scale metabolic network recon-

struction for CHO cells that specifically links the genes encoded

by the CHO-K1 and hamster genome to growth and recombinant

protein production. This network was constructed and carefully

curated by dozens of researchers in the community, and it
delineates the genetic basis of the metabolic pathways fueling

all cell functions in CHO. We further built specific models for

the CHO-K1, -S, and -DG44 cell lines, and we demonstrate

that the models accurately predict important phenotypes, such

as growth rate, and unique metabolic features of CHO cells

(e.g., auxotrophies). Using these models, we analyzed the meta-

bolic impact of common bioprocess treatments that aim to in-

crease cell productivity. We found that, while the treatments

increased product titers by liberating cell resources, the cells

failed to efficiently redirect metabolic precursors toward recom-

binant protein production after treatment. However, targeted en-

gineering efforts showed more efficient redirection. Differences

between treatments in redirection efficacy highlight potential av-

enues for further engineering. Thus, the genome-scale network

of CHO metabolism is an invaluable tool for data analysis, bio-

process optimization, and CHO cell engineering.

RESULTS

A Community Genome-scale Metabolic Network
Reconstruction of Cricetulus griseus

Draft C. griseus metabolic models were reconstructed indepen-

dently by multiple research groups. Subsequently, these models

were merged using a systematic reconciliation process to cap-

ture all the careful curation that had gone into each model by

groups representing diverse areas of expertise (Figure 1). As a

result, we constructed and present a community consensus

model for CHO metabolism and protein secretion.

The reconciliation and reconstruction effort first identified and

curated the biochemical relationships linking genes, proteins,

and reactions (GPRs) for human metabolism from established

genome-scale reconstructions for Homo sapiens (Duarte et al.,

2007; Quek et al., 2014; Swainston et al., 2016; Thiele et al.,

2013). CHO homologs to human genes were found using

three different methods: reciprocal BLAST, the stand-alone

InParanoid program version 4.1 (Ostlund et al., 2010), and

gene name matching. Based on this effort, putative CHO GPRs

were constructed. These GPRs were then compared against

the GPRs from each of the earlier independently developed

genome-scale metabolic network reconstructions. Manual cura-

tion of the reactions ensured accuracy of the GPRs, subcellular

compartmentalization, and reaction stoichiometry. Additional

CHO-specific reactions were included based on literature sup-

port, and updates were made to mitochondrial and peroxisomal

beta oxidation to reflect biochemical GPRs (Figures 2A and 2B).

The resulting community genome-scale metabolic network

reconstruction, based on literature support from over 1,300 pub-

lications, includes 1,766 genes and 3,229 reactions associated

with those genes. As is common when building GeMs, an addi-

tional 3,434 reactions without gene associations were added

to convert the reconstruction to a computable model. These

include boundary reactions defining metabolite uptake and

secretion rates, as well as reactions where the specific gene

responsible is unknown (e.g., transporters). In total, the global

C. griseus metabolic model, iCHO1766, contains 6,663 meta-

bolic reactions involving 2,341 uniquemetabolites (4,456metab-

olites when accounting for subcellular compartmentalization).

Only 22% (1,490) of the reactions were present in all three input

models. Furthermore, almost 25% (1,571) of the reactions were
Cell Systems 3, 434–443, November 23, 2016 435
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Figure 1. A Multi-step Process Was Used to Reconcile a Few Existing Unpublished Models and to Generate the Final Community Recon-

struction and Models

(A) Themanually curated humanmetabolic network reconstructions (Recon 1 [Duarte et al., 2007] and Recon 2 [Quek et al., 2014]) were used to define an initial set

of reactions catalyzed in C. griseus and the genes and proteins involved in each reaction (GPRs). Specifically, Recon 1 and Recon 2 were combined, and all

enzyme-catalyzed reactions that differed between the two were manually curated and reconciled to obtain consistent GPRs.C. griseus homologs were obtained

for each human gene to obtain a set of draft GPRs linked specifically to genes in the CHO-K1 genome annotation.

(B) The draft CHO GPRs were then compared with the GPRs from three independently reconstructed and unpublished CHO genome-scale models, thus

leveraging the manual curation invested in each input model. By manually verifying all GPRs and adding more CHO-specific reactions present in the input CHO

genome-scale models, we obtained a more comprehensive community reconstruction forC. griseus. To enable computation with this network, orphan reactions

from Recon 2 were added and omic data were used to build global and cell-line-specific models.
newly added, in that these reactions were not present in any of

the initial genome-scale CHO models. A more detailed break-

down of reaction sources is shown in Figure 2C.

To formulate a GeM that can simulate growth and recombinant

protein production, we used known compositional data to define

the relative amounts of each metabolite needed for synthesizing

all cell components (i.e., biomass [Feist and Palsson, 2010]) and

the recombinant proteins erythropoietin (EPO) and IgG. Due to

differences between calculated gross cell composition in nonpro-

ducingCHOcell lines andmeasured values for IgG-producing hy-

bridoma lines (i.e.,measuredprotein fractionwas >70%of cell dry

weight in a producing cell, while calculated to be 55% in a non-

producing cell), two separate biomass reactions were formulated

(see the STAR Methods). Cell-line-specific models for CHO-K1,

-S, and -DG44were constructed using theGene InactivityModer-

ated by Metabolism and Expression (GIMME) algorithm (Becker

and Palsson, 2008) and contained 4,718, 4,672, and 4,502 reac-

tions, respectively (Figure 2D). The CHO-S and CHO-K1 models

were built using RNA sequencing (RNA-seq) and proteomic

data for both cell lines. In the proteomic data, 1,326 and 3,200

proteins were detected in CHO-S and CHO-K1, respectively.

The CHO-DG44 model was built based on microarray data for

13,504 genes (see the STAR Methods for data generation proto-

cols and Data S4 for the data used for model construction).

Additional information on the reconstruction andmodel content

is available in Data S1, including supporting literature associated

with reactions, metabolites, and/or genes. The model accounts

for nine compartments (cytosol, mitochondria, nucleus, endo-

plasmic reticulum, Golgi complex, lysosome, peroxisome, mito-

chondrial intermembrane space, and extracellular space) with

the subcellular localization of reactions summarized in Figure 2E.
436 Cell Systems 3, 434–443, November 23, 2016
The global model and reconstruction are available to browse and

download at the Biochemical, Genetic and Genomic (BiGG)

Models Database (King et al., 2016) (http://bigg.ucsd.edu), while

the three cell linemodels and globalmodel are additionally hosted

at http://www.CHOgenome.org (Kremkow et al., 2015).

CHO Cell-Line-Specific Models Recapitulate
Experimental Growth Rates
Genome-scale models can be used to predict phenotypes,

including growth rates, when uptake and secretion rates are pro-

vided for major metabolites. Thus, to evaluate the models, we

simulated growth rates for several different cell lines producing

recombinant proteins. Data were acquired from literature (Ahn

and Antoniewicz, 2011, 2013; Carinhas et al., 2013; Martı́nez

et al., 2015; Selvarasu et al., 2012) and from new experiments

presented here (see the STAR Methods). Measured uptake

and secretion rates for major nutrients and recombinant proteins

were applied as constraints to the appropriate cell-line-specific

model, and flux balance analysis was used to predict growth

rates by optimizing for flux through the appropriate biomass

reaction (see Data S3 for constraints). These computationally

predicted growth rates were, on average, within 25% of the

measured growth rates under serum-free conditions (Figure 3).

Additional predictions were made for datasets exhibiting high

uncertainty in calculated uptake and secretion rates, as well as

cells grown in serum-containing media (Figures S3–S5).

Cell-Line-Specific Models Recapitulate Known Amino
Acid Auxotrophies
CHO cells exhibit several amino acid auxotrophies (Kao and

Puck, 1967; Naylor et al., 1979; Valle et al., 1973) beyond the

http://bigg.ucsd.edu
http://www.CHOgenome.org
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Figure 2. Outcomes from the Reconciliation Process

(A) GPRs were updated and novel reactions were added in the reconstruction process, as shown for mitochondrial and peroxisomal beta oxidation. Specifically,

the trifunctional enzyme necessary for the second, third, and fourth steps of mitochondrial beta oxidation has been added to oxidation reactions occurring in the

mitochondria, while the GPRs of peroxisomal beta oxidation reactions have been updated to reflect additional catalytic activity of the SCP2 protein.

(B) Additional enzymes necessary for catabolism of various unsaturated fatty acids have been added for both peroxisomal and mitochondrial beta oxidation.

(C) The starting models had considerable differences in content, and, following reconciliation, 1,571 new reactions were added to the model that had not been

included in any of the starting CHOmodels. UCSD, NUS, and UQ/BOKU indicate the various groups contributingmodels to the initial reconciliation effort (see the

STAR Methods for additional details for each model).

(D) The reconstruction refers solely to gene-associated content. To convert the reconstruction into a computable model, a global C. griseus model was built by

including orphan reactions from Recon 2. These additions enable the activity of known enzymes in C. griseus and serve as hypotheses for enzyme discovery in

CHO. After removing unexpressed genes, cell-line-specific models were constructed for CHO-K1, -S, and -DG44 cells.

(E) The reactions in the global C. griseus model account for pathways in multiple subcellular compartments.
nine essential amino acids in human (His, Ile, Leu, Lys, Met, Phe,

Thr, Trp, and Val) and arginine, which is additionally essential in

rats for normal growth (Borman et al., 1946). The CHO-specific

auxotrophies include cysteine, proline, and at least one report

of an asparagine auxotrophy (Duarte et al., 2014).While cysteine,

proline, asparagine, and arginine are essential based on experi-

mental evidence, homologs for all genes required for their

biosynthesis are in the C. griseus genome. Thus, we tested the

cell-line-specific models for agreement with the reported amino

acid auxotrophies and further investigated the cell-line-specific

transcriptomic and proteomic data (see Data S4) to understand

the underlying mechanisms.

All the cell line models reproduced the arginine and cysteine

auxotrophies. Arginine biosynthesis was inhibited due to low

or absent gene expression of one or both arginine biosynthetic

genes (Figure 4A), and cysteine synthesis was disabled since

cystathionine lyase and synthase were not expressed (Fig-

ure 4B). The asparagine synthase reaction, on the other hand,

has strong transcriptomic and proteomic evidence for its

presence in CHO cell lines (Figure 4D). Therefore, we experi-

mentally tested if our CHO-S and CHO-K1 lines were auxotro-

phic for asparagine. Consistent with our models and the expres-

sion data, the cells could grow without asparagine (Table S1).

The reported asparagine auxotrophy was likely unique to the

CHOK1SV cell line used in the earlier study (Duarte et al.,

2014) and not a general characteristic of CHO cells.
We next analyzed the source of the proline auxotrophy in CHO

cells (Figure 4C). Mammals can synthesize proline from arginine

or glutamate; however, previous reports showed that CHO-K1

cells do not incorporate glutamate into proline and exhibit a dras-

tically decreased (yet present) rate of ornithine transaminase ac-

tivity (<10% of the activity in C. griseus lung cells) (Valle et al.,

1973). Both biosynthetic pathways normally converge upon

glutamate-5-semialdehyde, which is then converted to proline

after spontaneous decomposition to 1-pyrroline-5-carboxylate.

In the CHO-S and CHO-DG44 models, the pathway from gluta-

mate is missing due to a lack of the necessary protein and/or

mRNA expression. The GIMME algorithm incorrectly included

the pathway from arginine to proline (via ornithine) in the

CHO-S and CHO-DG44 models (the CHO-K1 model was

missing the arginase reaction); however, careful inspection of

the transcriptomic and proteomic data demonstrated that this

pathway is missing expression of at least one enzyme in all of

the cell lines. The gene responsible for the final step in proline

biosynthesis, reduction of pyrroline-5-carboxylate, is expressed

in all three cell lines, consistent with previous reports showing

activity of the enzyme in CHO-K1 (Kao and Puck, 1967). Thus,

the model-predicted proline synthesis capabilities showed

some inconsistencies with experimental observations due to lim-

itations of the GIMME algorithm (i.e., it erroneously added the

pathway linking arginine to proline); however, by overlaying tran-

scriptomic and proteomic data, the reconstruction provided an
Cell Systems 3, 434–443, November 23, 2016 437



Figure 3. The CHO Cell Line Models Can

Compute Growth Rates for Various IgG-Pro-

ducing Cell Lines

All cell lines are grown in serum-free media and are

producing IgG. HP and LP refer to high and low

producers, respectively, while NaBu indicates the

presence of sodium butyrate addition to the media

(Carinhas et al., 2013). Early exp./Late exp. refer to

the early and late exponential phase, respectively

(Selvarasu et al., 2012). Two cell lines are from cul-

tures exposed to a temperature shift (Martı́nez et al.,

2015); however, the data points used come from the

time period prior to the temperature shift. Simula-

tions for the Selvarasu study utilize the CHO-DG44

cell line model. Other simulations use the CHO-K1

cell line model.
explanation for the proline auxotrophy characteristic of CHO

cells (Figure 4C), guiding further model curation and enabling

more accurate model predictions.

An examination of C. griseus transcriptomic data from multi-

ple tissues (Lewis et al., 2013) (see Data S4) further elucidated

which auxotrophies are characteristic of the organism and

which are cell line specific. The enzymes needed for cysteine

and asparagine synthesis were expressed in the hamster tis-

sues, consistent with their nonessentiality in rat and human (Fig-

ures 4B and 4D). In the hamster tissues, the arginine biosyn-

thetic pathway had high expression in one of two necessary

reactions. The second reaction, argininosuccinate synthase,

exhibited low expression levels (Figure 4A). This is perhaps un-

surprising since rats can synthesize arginine, but not in levels

required to support normal growth (Borman et al., 1946). Finally,

synthesis of proline via ornithine showed expression in the ham-

ster tissues, consistent with reports of higher ornithine transam-

inase expression in C. griseus lung cells (Valle et al., 1973); the

pathway via glutamate also showed expression in the hamster

tissues (Figure 4C). These data suggest that the cysteine and

proline auxotrophies are specific to the CHO cell lines and the

arginine auxotrophy is, at least partially, shared between the

hamster and the CHO cell lines. Thus, by analyzing transcrip-

tomic and proteomic data in the context of the cellular path-

ways, we were able to elucidate the functional basis for known

amino acid auxotrophies in CHO cells.

Cell Engineering Enhances the Efficiency of Resource
Utilization Compared to Common Bioprocess
Treatments
Substantial increases have been achieved in recombinant pro-

tein yields in CHO-based bioprocessing in part by balancing

nutrient concentrations in media. Since nutrients can be used

for growth and other purposes, chemical treatments and tem-

perature shifts have been employed to increase product synthe-

sis at the expense of growth. However, it is unclear how well

these treatments redirect resources from growth to protein prod-

uct. To test this, we used the cell line models to simulate cell

metabolism and recombinant protein production before and

after culture perturbations. This approach allowed us to analyze

how efficiently cellular resources were redirected to protein
438 Cell Systems 3, 434–443, November 23, 2016
synthesis following bioprocess treatments or targeted cell engi-

neering efforts.

Specifically, we studied temperature shifts (Kim and Lee,

2009), sodium butyrate (NaBu) addition with (Kim and Lee,

2000–2001) and without (De Leon Gatti et al., 2007; Mimura

et al., 2001) BCL2 overexpression, and overexpression of secre-

tory pathway genes (Peng and Fussenegger, 2009). In each

case, estimates for uptake and secretion rates of major nutrients

were predicted for the control culture from each study (Figure 5A)

by sampling feasible uptake and secretion rates that supported

the measured growth and protein secretion rates (see the STAR

Methods and Data S5). These limits on nutrient availability were

then applied as constraints to the models exhibiting the lower

growth rates and higher protein secretion rates observed in the

studies after bioprocess treatments or cell engineering. Using

this approach, we calculated the maximum protein production

rate as a function of growth rate for each treatment by optimizing

for protein production after constraining growth to a fixed value.

We quantified how well the cells made use of resources for both

growth and production and compared these to experimentally

measured changes in growth and protein synthesis following

each treatment (Figure 5B). Furthermore, we assessed how effi-

ciently the cells use newly available resources at lower growth

rates for protein production (Figure 5C), as detailed in the

following sections.

Bioprocess treatments, such as histone deacetylase inhibitors

and temperature shifts, can improve specific productivities and

product titers. However, our analysis showed that overall

resource utilization was inefficient post-treatment, independent

of the decrease in growth rate (Figure 5B). To quantify the ineffi-

ciency, we compared the amount of protein that was produced

experimentally to the amount of protein that could be produced

if growth was halted (as calculated via model simulation). We

simulated maximum protein production across the range of

feasible growth rates and defined a region of optimal resource

utilization for protein production—an area where neither

additional growth nor protein production is possible with the

resources available (rainbow region in Figure 5B). For several

treatments, we examined proximity to optimal resource utili-

zation by comparing the measured growth and protein produc-

tion rates following bioprocess or cell engineering treatments
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Figure 4. The Models Provide Insights into the

Molecular Basis of CHO-Specific Amino Acid

Auxotrophies

(A–D) Arginine (A), cysteine (B), proline (C), and

asparagine (D). For each reaction, information in the

circles indicates whether the enzyme catalyzing the

reaction is seen in transcriptomic (upper left quarter-

circle) and/or proteomic (lower left quarter-circle) data,

as well as its presence or absence in the cell-line-

specific models generated by GIMME (right semi-cir-

cle). The square shows whether the enzyme catalyzing

the reaction is seen in transcriptomic data from a mix

of C. griseus tissues. Data used are available in Data

S4. Metabolite abbreviations are as follows: CITR,

citrulline; ASP, aspartate; ARGSUCC, argininosucci-

nate; ARG, arginine; SER, serine; HCYS, homocyste-

ine; CYST, cystathionine; ORN, ornithine; GLU, gluta-

mate; GLU5SA, glutamate 5 semialdehyde; PRO,

proline; GLN, glutamine; and ASN, asparagine.
to the simulated maximum growth and protein production

rates. Cells treated with NaBu produced protein at 2%–6% of

the predicted maximum rate, irrespective of the decrease in

growth rate, and were far from the region of full resource utili-

zation. BCL2 overexpression (relieving the apoptotic effect of

NaBu) still only achieved 8% of the maximum protein produc-

tion rate. Meanwhile, overexpressing the secretory pathway

genes XBP1, STXBP3 (MUNC18C), and SCFD1 (SLY1) allowed

protein production at 24% of the maximum possible rate—

3-fold higher than the best performance seen with cells over-

expressing BCL2 and treated with NaBu. Thus, yields are low,

even following bioprocess treatments. However, the increases

seen with targeted engineering, as cells move closer to the re-

gion of optimal resource utilization, suggest that there is consid-

erable potential for increasing cell-specific productivity to near

optimal levels.

The inherent trade-off between growth and protein production

suggests that resources for protein production may be liberated

following growth-inhibiting bioprocess treatments. Thus, we

simulated how efficiently cells redirected newly available re-

sources to protein production after suffering a decrease in

growth rate from the different treatments (Figure 5C). We found

that, while culturing at lower temperatures (33�C versus 37�C)
often increased final titers, the specific productivity (qp) only

increased to 6% of the theoretically possible level at the

measured growth rate. Similarly, NaBu-treated cells produced

only 3%–14% of their computationally predicted qp. Further-

more, simulating increases in NaBu concentration resulted in

even less efficient redirection of resources to protein production.

While these bioprocess treatments failed to efficiently redirect

resources specifically to protein production, targeted cell engi-

neering efforts improved the shift of resources. For example,

overexpressing BCL2 during NaBu treatment resulted in a

modest improvement in resource utilization (roughly 20% of

the predicted qp). The greatest improvement in resource utiliza-

tion was observed when the secretory pathway proteins were

overexpressed, producing close to 57% of the computationally

predicted maximum specific productivity.
DISCUSSION

Here we present a genome-scale metabolic network reconstruc-

tion for the Chinese hamster C. griseus. This resource enables

the enumeration of true genotype-phenotype links by connect-

ing the functions of more than 1,700 genes to CHO cell pheno-

types, such as growth, metabolic pathway activity, and protein

production. It presents many opportunities for analyzing bio-

process performance and guiding cell engineering. First, the

reconstruction provides a platform formanaging and interpreting

CHO-relevant big data. Second, the models demonstrated po-

tential for improving recombinant protein production by engi-

neering cells to efficiently shift resources to protein production.

The reconstruction will guide further strategies for cell line devel-

opment as advances are made in modeling and relevant tech-

niques. Third, the reconstruction will serve as a resource, in

which up-to-date knowledge on the biochemistry of CHO cells

can be maintained and made available to the entire CHO

community.

To gain greater control of product yields and quality attri-

butes of biopharmaceuticals, efforts to engineer CHO cells

must consider the activities of cell pathways and associated

genes. Thus, CHO-based bioprocessing is adopting data-

rich technologies to quantify the cellular parts, using next-

generation sequencing, high-throughput omic techniques,

high-content imaging, and online bioprocess measurement

techniques. To effectively analyze the data and deploy inter-

ventions, powerful statistical and modeling methods are

needed (Clarke et al., 2014). This reconstruction serves as a

platform for analyzing many types of molecular and pheno-

typic data using a variety of algorithms (Lewis et al., 2012).

Furthermore, since this reconstruction provides a mechanistic

link between the genotype and phenotype of CHO cells (via

the enumeration of enzymes underlying metabolic pathways),

it allows for the effective integration of orthogonal data types,

such as metabolomics, transcriptomics, genetic variants, and

growth rates (Cardoso et al., 2015; Hyduke et al., 2013). We

demonstrated this with our cell-line-specific models for the
Cell Systems 3, 434–443, November 23, 2016 439
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Figure 5. Resource Utilization Efficiency in CHO Cell Lines Is Greater after Cell Line Engineering

(A) Feasible uptake fluxes were generated for nutrient utilization efficiency analyses. Growth rates and specific productivities were obtained and used to constrain

themodel. By sampling the constrainedmodel, a set of feasiblemetabolite uptake rates and secretion rateswas calculated that support growth and production at

the specified values.

(B) The efficacy of resource utilization following common growth-inhibiting treatments in protein-producing CHO cell lines was quantified. Uptake and secretion

rates from (A) were used to predict maximum growth (i.e., no protein production) andmaximum protein yield (i.e., no growth), as well as yields at various fractions

ofmaximumgrowth. Thesewere used to predict a range of optimal protein production rates (i.e., making full use of resources) as growth rate decreases (indicated

as a region of full resource utilization), thus showing the theoretical maximal protein secretion rates at decreased growth rates. The fifth, 25th, 50th, 75th, and 95th

percentiles of theoretical maximal protein production rates at each growth rate are indicated by the gradient in color from black to orange. After several cell

treatments, the experimentally measured increased protein yield and decreased cell growth rate were compared to the predicted optimal protein secretion rates

to assess how successfully each treatment utilized available resources (e.g., amino acids and sugars) for growth and protein production. Boxes span the 25th and

75th percentiles, whiskers represent the fifth and 95th percentiles, and a red line denotes the median value of overall resource utilization efficiency for each

treatment, calculated as the ratio of experimentally measured protein production to the theoretical maximum protein yield (i.e., no growth).

(C) The efficiency of diversion of resources toward protein production following common treatments was assessed. Uptake and secretion rates from (A)

were used to compute the theoretical maximum specific productivity after cell line or process modifications yielding a range of theoretical optimal qp values.

Experimentally measured production rates were compared to the computational predictions to assess how effectively the cells are able to make use of re-

sources gained from growing slower. Boxes span the 25th and 75th percentiles, whiskers represent the fifth and 95th percentiles, and a red line denotes themedian

value.
CHO-K1, -S, and -DG44 lines. These models were built by

integrating transcriptomic, proteomic, and metabolomic data

with the global GeM, validated by predicting growth rates

and auxotrophies and ultimately used to predict protein pro-

duction capabilities. As the scope and quality of data expand,

the CHO genome-scale network reconstruction will continue

to enable the diagnosis of the molecular basis of different phe-

notypes, by serving as a platform to analyze the interplay of

diverse data types.

The models provided quantitative evidence that targeted en-

gineering of the secretory pathway allows for more efficient use

of liberated resources as growth decreases. The models will

enable further analyses of cell lines to help design mutants

that provide desired protein quality attributes. The accuracy
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of such cell designs will further improve as five challenges are

addressed. First, different CHO cell lines have accumulated

hundreds of mutations in metabolic pathways (Lewis et al.,

2013), which may contribute to differences seen in phenotypic

traits across cell lines (Golabgir et al., 2016). However, more

research is required to identify which mutations impact the ac-

tivity of pathways. Second, growth and protein yield predictions

require accurate measurements of metabolite concentrations,

and advances in analytical chemistry will provide improved

constraints on simulations with CHO metabolic models (see

Figure S4). Third, gaps remain in our understanding of mamma-

lian metabolism, but algorithmic developments (Thiele et al.,

2014) and biochemical assays will continue to refine the CHO

metabolic network. Fourth, our biomass objective functions



were defined based on experimental measurements in CHO

and hybridoma cells, and they provided accurate predictions

of cell growth; however, biomass composition is not static,

which may impact quantitative predictions of growth and pro-

tein production. Thus, there is a need for comprehensive mea-

surements of the composition of CHO cells (e.g., protein, DNA,

RNA, and lipids) under different conditions to formulate more

accurate biomass objective functions. Finally, metabolism is

only part of the system that controls the quantity and quality

of recombinant proteins. Efforts to model other processes,

such as glycosylation (Sha et al., 2016; Spahn et al., 2016)

and the secretory pathway (Feizi et al., 2013), can be integrated

with metabolic networks for a more comprehensive view of

protein production; further addition of signaling and regulatory

networks could reveal mechanisms behind inefficiencies in

protein production. These five advances will further improve

the predictive power of the genome-scale CHO models.

Lastly, the development of this resource involved the con-

certed effort of many groups in the community with interest in

genome-scalemetabolic modeling for mammalian bioprocesses

and CHO cells. Together, these combined efforts enabled the

careful curation of this community resource. The models are

available at http://www.CHOgenome.org (Kremkow et al.,

2015). Additionally, the global model can be browsed and down-

loaded at the BiGG Models database (King et al., 2016) (acces-

sible at http://bigg.ucsd.edu), where literature information and

experimental evidence are provided for each gene, reaction,

and metabolite in the model. Updates will be made with

continued research into CHO cells, including improvements in

the C. griseus genome sequence and annotation, and experi-

mental tests of model predictions (Chowdhury et al., 2015). As

such studies accumulate, the network reconstruction, as a com-

munity resource, will be maintained and improved over time,

thus enabling researchers throughout the CHO cell community

to conduct many studies to enhance the value of the primary

host for biotherapeutic production.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

QIAGEN’s RNeasy Mini Kit QIAGEN #74104

TruSeq Stranded mRNA Sample prep kit

with 96 dual indexes

Illumina RS-122-2103

Deposited Data

Raw RNA-Seq data This paper GEO: GSE77800

Global model of C. griseus metabolism This paper http://bigg.ucsd.edu; http://CHOgenome.

org

Cell-line models of CHO-S, K1, and DG44 This paper http://CHOgenome.org

Experimental Models: Cell Lines

Hamster: CHO-S Life Technologies A11557-01

Hamster: CHO-K1 ATCC CCL-61

Software and Algorithms

FastQC Andrews, 2010 http://www.bioinformatics.babraham.ac.

uk/projects/fastqc/

Trimmomatic Bolger et al., 2014 http://www.usadellab.org/cms/index.php?

page=trimmomatic

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR

SAMtools Li et al., 2009 http://www.htslib.org/

Cufflinks Trapnell et al., 2010 https://github.com/cole-trapnell-lab/

cufflinks

COBRA Toolbox Schellenberger et al., 2011 https://github.com/opencobra/

cobratoolbox/

GIMME Becker and Palsson, 2008 https://github.com/opencobra/

cobratoolbox/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for datasets and/or protocols may be directed to, and will be fulfilled by the Lead Contact Nathan

Lewis (nlewisres@ucsd.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cultures for Transcriptomic, Proteomic, and/or Metabolomic Data
CHO-S (Life Technologies # A11557-01) cells were cultured in CD CHOmedium (Life Technologies # 10743-029) supplemented with

8 mM L-glutamine (Life Technologies # 25030-024), Anti-clumping agent 1:500 (Life Technologies # 0010057 AE), and Pen-Strep

1:100 (Life Technologies # 15140-122) in 2 L Corning shake flasks (Sigma # 431255) with 400 mL medium. All cultures were main-

tained in an incubator kept at 37�C, 5% CO2, 70% humidity and 25 mm throw, shaking at 120 rpm.

Adherent CHO-K1 (ATCC CCL-61) cells were grown in F-12K medium, supplemented with 10% FBS, 1% non-essential amino

acids, and 2 mM L-glutamine (GIBCO) incubated at 37�C and 5% CO2. Spent medium was sampled from the culture at regular

intervals and metabolite concentrations were measured. Cell-free medium was also sampled at regular intervals to control for

metabolite degradation. Samples were taken from the CHO-K1 and cell-free control every 2 hr between 24-36 hr, and every 4 hr

subsequently (see Data S4).

Cultures for Determining Asparagine Essentiality
CHO-S (Life Technologies) and CHO-K1 (ATCC CCL-61 adapted to grow in suspension, serum-free conditions) cells were grown in

CD-CHO media with and without asparagine at a seeding concentration of 0.4-0.53 106 cells/mL. Asparagine was either added via

MEM NEAA solution (Control 1) or as an individual amino acid supplementing MEM NEAA solution lacking asparagine (Control 2).
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Both cell lines were able to grow successfully in media lacking asparagine, as measured by viability and VCD 72 hr after seeding

(Table S1). Cell growth and viability weremonitored using the NucleoCounter NC-200 Cell Counter (ChemoMetec, Allerod, Denmark)

based on two fluorescent dyes, acridine orange and DAPI for the total and dead cell populations, respectively.

METHOD DETAILS

Input Genome-scale Model Construction
In the preliminary stages of this effort, three research groups contributing to this study independently developed unpublished

genome-scale models of CHO cell metabolism. These were supplemented by an additional independent reconstruction of amino

acid metabolism.

University of California San Diego Metabolic Model

The initial draft of the UCSD genome-scale CHO metabolic network was reconstructed using GIMMEp (Bordbar et al., 2012). The

algorithm requires an initial metabolic network, a core set of reactions that must be operational, a set of requiredmetabolic functions,

and an optional set of additional reactions that may or may not be included in the final model.

First, we used the global humanmetabolic network (Recon 1 (Duarte et al., 2007)) as the initial network for the algorithm to build the

CHO metabolic network. Recon 1 served as a template for which metabolic reactions were initially chosen for the CHO metabolic

network.

Second, a core set of reactions was defined based on homology between the CHO and human genomes. A bidirectional BLASTP

was done by comparing human RefSeq proteins (downloaded on 12/13/2011) against the CHO genome sequence (Xu et al., 2011).

Metabolic proteins from Recon 1 with a high identity (> 70%) and high overlap (> 70%) with a CHO protein in the bidirectional BLAST

were marked as the core set of homologous proteins. A small set of proteins met the inclusion criteria in only one direction and was

subsequently manually curated for inclusion. The gene-protein-reaction rules for Recon 1 reactions were updated with CHO anno-

tations for homologous proteins, and removed if no homologous protein was present. The set of optional reactions provided as an

input to GIMMEp was not included in the final model.

Third, a set of metabolic functions was defined including: 1) the ability for the metabolic model to produce biomass, 2) the ability to

produce a glycosylated protein (EPO), and 3) the ability to uptake and secrete knownmetabolites characteristic of CHO-K1 cells. The

necessary reactions to accomplish these three tasks were added to the initial model before themodel building algorithmwas run and

were included in the core set of reactions. A biomass objective function (Feist and Palsson, 2010) was constructed accounting for

RNA, DNA, protein content, free amino acids, glycogen, free fatty acids, lipids, phospholipids, triglycerides, and associated ATP

maintenance costs using primary literature. The ratio of nucleotide content in DNA was set based on the GC content of the genome

(Xu et al., 2011). Ratios of nucleotide content in RNA and amino acid content in proteins were estimated based on RNA-Seq data (Xu

et al., 2011). In addition, metabolic reactions were reconstructed that translated the EPO protein and added the necessary N- and

O-glycans, as well as degraded the protein. Also, the exchange reactions of metabolites known to be taken up or secreted by CHO

cells were included in the core set of reactions.

The resultant draft model contained all CHO metabolic proteins that had high homology with the human metabolic proteins, while

minimizing the number of metabolic reactions with low homology that were added to enable the model to accomplish a set of key

metabolic functions including growth, protein production, and uptake/secretion of documented metabolites.

This was followed by manual curation of the model to ensure that gene associations, reaction localization, and other reaction con-

tents were accurate.

National University of Singapore/Bioprocessing Technology Institute Metabolic Model

TheH. sapiens reconstruction, Recon 1 (Duarte et al., 2007), served as the starting point of the NUSCHO-K1 genome scalemetabolic

model reconstruction. This wasmotivated by the high-quality manual curation performed on Recon 1, and the large number of genes

(81%) that were shared between the human and CHO-K1 genomes (Xu et al., 2011). To create a draft list of reactions for the new

model, a protein BLAST search of human genes was conducted against CHO-K1 genes. This allowed the mapping of metabolic

genes from human to CHO-K1. Of the 1496 metabolic genes in the Recon 1 model, 1441 (96%) corresponding matches were found

in the CHO-K1 genome. Based on the list of 55 missing genes, 39 relevant reactions were removed from the Recon 1 model. The

number of reactions removed is less than the number of genes due to reactions associated with isozymes. The 1514 non-gene asso-

ciated reactions in the original model were retained, since they were necessary to produce a functioning model.

The removal of missing genes introduced gaps within the model that prevented biomass production and removed metabolic func-

tions. By examining the list of removed reactions, SQLEr (squalene epoxidase) and C3STKR2r (C-3 sterol keto reductase zymosterol)

were found to be necessary to ensure biomass formation. We also found that the removal of the three reactions catalyzed by 2-ox-

oisovalerate dehydrogenase prevented the catabolism of branched amino acids (valine, leucine, and isoleucine). While the removal of

TPI1 (triosephosphate isomerase 1) strictly did not impair biomass formation, there are strong physiological arguments for its exis-

tence, and there is evidence that the enzyme exists in the ancestral CHO cell line (Daar et al., 1986). Based on experimental evidence

(Selvarasu et al., 2012), the GGLUCT (gamma-glutamylcyclotransferase) reaction was also not removed.

As the Recon 1 model was constructed to represent the global human metabolic model, the model includes tissue specific reac-

tions that are not relevant to CHO-K1. Consequently, we removed these reactions from the reaction list. The reactions removed

include 26 demand reactions for micronutrients such as vitamins, and 36 duplicate reactions for liver and uterus tissue (e.g., in do-

lichol biosynthesis). The RGroup synthesis reactions were also removed as the lipid requirement for CHO-K1 biomass formation was
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subsequently reconstructed based on literature sources. Finally, 80 reactions and relevant metabolites with the ‘‘hs’’ suffix were re-

labeled to the ‘‘cho’’ suffix.

To further refine the model, we utilized the KEGG PATHWAY (Kanehisa and Goto, 2000) and BRENDA Enzyme Database (Chang

et al., 2009) databases to identify CHO metabolic reactions based on physiological evidence. Based on curated databases of

BRENDA and KEGG, 85 additional reactions were added to subsystems such as arginine and proline metabolism, IMP biosynthesis,

and inositol phosphate metabolism. These include two reactions previously removed based on the gene mapping using BLAST.

The model reconstruction was originally conceived for biotechnological applications. Therefore, relevant biomass formation reac-

tions were constructed and added. As the RGroup synthesis reactions were removed, 15 reactions were added for the production of

fatty acid and cholesterol components of the cellular biomass. Reversible transport via proton symport reactions were also added to

facilitate the independent exchange of amino acids. Finally, based on recent evidence obtained by LC-MS experiments (Selvarasu

et al., 2012), 13 reactions were added to account for the production and secretion of the detected amino acid derivatives. The re-

constructed CHO-K1 model consists of 3718 reactions and 2774 compartment specific metabolites (1523 non compartment

specific).

The University of Queensland/ University of Natural Resources and Life Sciences, Vienna Metabolic Model

An updated version (Quek et al., 2014) of the H. sapiens reconstruction Recon 2, was used as a starting point for generation of a

manually curated CHO specific model by the UQ/BOKU groups. Curation focused on the identification of inconsistencies in the

naming conventions, annotations, removal of duplicated reactions and metabolites, as well as correction of the mass and energy

balance.

Homologous genes between CHO and H. sapiens were identified from RefSeq Release 66 using the standalone InParanoid pro-

gram v4.1 (Ostlund et al., 2010). The identified homologies were then used to convert the human specific Recon 2metabolic network

to a CHO specific network. This provided an initial basis for a CHO-specific metabolic network based on Recon 2, which later was

considered in the curation of the community-level network.

Technical University of Denmark Amino Acid Subnetwork

A metabolic network reconstruction of amino acid metabolism in CHO cells was generated at DTU using mouse genomic and

biochemical pathway information from the KEGG database as a starting point. To identify orthologous metabolic genes in CHO, a

protein BLAST search of amino acid metabolic genes from mouse was manually conducted against the CHO-K1 genome (Xu

et al., 2011), hosted at http://www.CHOgenome.org. The resulting list of CHO genes was manually curated for inclusion based on

information from literature.

Reconciliation Process
Tomerge these into one final community reconstruction, we developed aworkflow to reconcile similarities and differences among the

existing models (Figure 1).

The final metabolic network reconstruction was initially based on knowledge from human metabolism, as detailed in Recon 1

(Duarte et al., 2007) and an updated version of Recon 2 (Quek et al., 2014) (Figure 1A). Additional curation of Recon 2 was conducted

to refine the reconstruction (Swainston et al., 2016). These two reconstructions were first compared to determine a baseline set of

gene-protein-reaction (GPR) relationships for all reactions in themodels. If GPRs showed discrepancies between the two reconstruc-

tions, manual curation was carried out to determine a consensus GPR. This combined human reconstruction was subsequently used

to identify C. griseus homologs. Specifically, three different homology methods were used to determine CHO-human protein homo-

logs. First, two-way BLAST was conducted between the CHO proteome and the human proteome. Reciprocal top matches for both

C. griseus and human proteins were identified and retained. Second, the standalone InParanoid program v4.1 (Ostlund et al., 2010)

was used to find orthologs between human and C. griseus. Third, a search was conducted to identify genes with identical gene

names.

For each human gene, the union of these three methods was used to map from human GPRs to putative CHO GPRs, resulting in

3701 reactionswith gene associations. In this set of reactions, 733 hadGPRs that were identical between all 3 preliminary reconstruc-

tions and the putative CHO GPR. For the remaining reactions (2968), careful manual curation was carried out to determine the most

accurate GPR for each reaction in the final model (Figure 1B). In each case, primary literature was searched to find CHO-specific

information about the reaction (e.g., substrate specificity, subcellular localization, protein complex composition, gene association,

etc.). When such information was unavailable, information from other mammals was used. Through the curation process, additional

CHO-specific reactions were identified and added.

The curated gene-associated reactions were then combined with all the non-gene associated reactions from Recon 1 and the up-

dated Recon 2 to give a base CHO metabolic network. Mass imbalances were corrected and the network was tested for biomass

functionality. Further refinements included the removal of opposing irreversible reactions (in favor of a single reversible form), the

replacement of lumped reactions, and the addition of pathways for synthesizing IgG and EPO.

As a final comparison, the model content was compared against another unpublished and independently reconstructed CHO

metabolic reconstruction, based on Recon 1 (Duarte et al., 2007) (see below for details on this model’s construction) and any differ-

ences manually curated.

University of Chile Metabolic Model

For the generation of a preliminary CHO genome-scale metabolic model we used Pantograph, a tool to reconstruct genome-scale

models for eukaryotic organisms (Loira et al., 2015). This tool uses a template metabolic model and annotated genomes for both
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template and objective organisms, automatically rewriting the template’s GPRs in terms of the genes of the target organism, inherit-

ing knowledge from the template model and producing a draft metabolic model well suited for manual curation.

Three models were considered as templates for network reconstruction. A hybridoma metabolic reconstruction based on Mus

musculus genomic and biochemical information (Selvarasu et al., 2010) was modified and upgraded to include new genomic infor-

mation available in databases such as KEGG and NCBI-gene by manual curation and by using a script that connects to the KEGG

database to download new GPR candidates to be added to the model.

A metabolic reconstruction forMus musculus based on Recon 1 (Duarte et al., 2007), iMM1415, was also used as template for the

generation of a model for CHO cell metabolism. This model includes 1,415 genes, 2,212 gene-associated reactions and 1,514 non-

gene-associated reactions. Finally, the human reconstruction, Recon 1, was also used as a template for the generation of a CHO

genome-scale model (Duarte et al., 2007).

Orthologous genes often exhibit similar biological activities. Thus, they can often reliably be used to build novel reconstructions

from a template organism. The search for orthologs was performed using the standalone InParanoid program v4.1 (Ostlund et al.,

2010), which finds clusters of orthologous genes based on similarity scores calculated by NCBI-Blast between proteomes of the

analyzed species. The protein sequences for CHO were retrieved from http://www.CHOgenome.org and Ensembl, and these se-

quences were used to find orthologs between CHO and Mus musculus and CHO and Homo sapiens.

The template model and ortholog information for Mus musculus, Homo sapiens, and CHO were used to generate a preliminary

genome-scale model for CHO cells using Pantograph. Critical components for biomass synthesis were identified by analyzing meta-

bolic pathways that lead to their synthesis using the COBRA toolbox (Schellenberger et al., 2011).

GapFind (Satish Kumar et al., 2007) was used to find dead-end metabolites, which were subsequently studied using information

from databases such as CHOgenome.org, KEGG, and Virtual Metabolic Human in order to fill the gaps present in the initial recon-

struction. Model validation was performed using Pantograph (Loira et al., 2015) which tests the ability of the obtained genome-scale

models to replicate experimental data, such as the effect of known gene deletions and use of alternate carbon sources for CHO cells

in culture.

While the University of Chile model was not used as a base model in the reconciliation, it was compared to the global model and all

discrepancies manually curated. All validated reactions suggested by this secondary curation process were added to the final global

model.

Biomass Reaction
Two biomass reactions were built here: one for a recombinant-protein producing cell line (biomass_cho_producing) and one for a

nonproducing cell line (biomass_cho). The overall cell composition (e.g., protein, DNA, RNA, lipid fraction) of a protein producing

cell line was averaged from previously reported values for mouse hybridoma cell lines. The nonproducing cell line overall cell compo-

sition was calculated based on literature values for different cellular components in CHO. Both biomass reactions used experimen-

tally determined amino acid compositions of the protein fraction, obtained by averaging the composition of 5 cell lines (Selvarasu

et al., 2012). The ratios of different nucleotides for RNA and DNA composition were determined from genome and transcript se-

quences. Phospholipid composition was taken from previously reported values for CHO-K1. A detailed formulation of the biomass

equations (including all associated references) is available in Data S2.

Choice of Objective Function

An objective function should encapsulate what the cell is ‘‘trying’’ to do. What that entails remains a matter of great scientific interest.

In bacterial systems, the use of a biomass objective function (Feist and Palsson, 2010) has come to dominate, as experimental work

shows cells evolving toward optimal states as predicted by maximization of biomass production (Edwards et al., 2001; Ibarra et al.,

2002; Lewis et al., 2010).

Mammalian cells, as a whole, are more difficult to ascribe a one-size-fits-all objective function for, since many (e.g., terminally

differentiated cells) do not rapidly proliferate; their ‘objective’ may be another biological activity such as antibody production (plasma

cells), maintaining structural integrity (red blood cells), or generation of energy and signaling molecules (neurons). As CHO cells are

proliferative, we selected a biomass objective function for simulation of cell growth. In a study comparing experimental fluxomic data

to model flux predictions (Schuetz et al., 2007) in core metabolism in Escherichia coli, alternative objective functions were evaluated

for their accuracy in recapitulating experimental measurements. This study found that maximization of ATP or biomass both led to the

highest consistency between FBA predictions ofmetabolic flux and experimental fluxmeasurements. Subsequent research provided

further support for biomass optimization (Lewis et al., 2010), but found that maximization of ATP yield showed less consistency in

genome-scale models. The authors noted that ‘‘in a genome-scale model, the maximization of ATP selects against the usage of

biosynthetic pathways, since the end products are not specified in the objective function.’’ A similar conclusion can be drawn for

minimizing redox load as an objective function, which also does not require the use of many biosynthetic pathways, and so such

an objective function would not capture the activities of all pathways.

It is possible that in mammalian cell culture, that some combination of objective functions is the most biologically accurate; how-

ever, as our line of investigation largely focuses on predictions of growth rate, a gross phenotypic characteristic which definitionally

has an upper limit set by cellular composition (e.g., biomass generation), a simplification to a biomass objective function for

growth simulations is a reasonable approximation. Furthermore, the ability to recapitulate experimentally-measured growth rates

provides further support for this assumption and that the measurements used the biomass objective functions are within a reason-

able range.
Cell Systems 3, 434–443.e1–e8, November 23, 2016 e4

http://www.CHOgenome.org
http://CHOgenome.org


Construction of Cell-Line-Specific Models
We used GIMME (Becker and Palsson, 2008) to generate cell-line specific models for CHO-S, CHO-K1, and CHO-DG44. Transcrip-

tomic and proteomic datawere generated for CHO-S, while existing datawere used for CHO-K1 andCHO-DG44 (seeMethodDetails

for information on data used or generated). Genes were called as present if their FPKM was greater than 1 or they were found in the

proteomic analysis. Formicroarray data, geneswere called as present if their normalized log2-transformed valuewas greater than 10.

Blocked reactions were removed from the global model and the algorithmwas used while optimizing for growth, IgG production, and

erythropoietin production. The union of reactions present in these models served as the base cell-line model in each case.

Since algorithmic generation of the cell-line specific models ensures only functionality for user-defined objectives (here we used

growth, IgG production, and erythropoietin production), additional manual curation was done to incorporate other biological func-

tionalities important for simulation. We added eight reactions to all models: GLYCt and SUCCt4_3 were added to permit secretion

of glycerol and succinate, respectively. HISD, URCN, IZPN, GluForTx, FTCD and DM_trp_L[c] were added to account for histidine

and tryptophan uptake rates being significantly higher than needed for growth and protein production. Histidine catabolic reactions

were added to permit conversion to glutamate, since evidence for histamine production (from histidine) in CHO could not be found.

The tryptophan demand reaction was added as tryptophan is converted tomanymetabolites with diverse functions (e.g., hormones),

at least some of which have been detected in CHO cell culture (Hiller and Mulukutla, 2015); however, we were uncertain whether the

production of specific tryptophan-derived metabolites is cell line specific or a characteristic of the CHO cell in general, thus the in-

clusion of a generic demand reaction rather than specific biosynthetic pathways. Three additional reactions were added to the DG44

model, the mitochondrial and endoplasmic reticulum localized phosphatidylethanolamine N-methyltransferase and methionine ad-

enosyltransferase (PETOHMm_cho, PETOHMr_cho, and METAT, respectively) to allow growth in the absence of measured choline

uptake. The ORNTArm, GLU5Km, and G5SDym reactions were constrained to be off (lower bound = upper bound = 0) to reflect the

fact that—even if present—the enzymes do not appear to carry flux, leading to the experimentally observed proline auxotrophy in

CHO cell lines (Valle et al., 1973).

Omic Data Generation
Transcriptomics and Proteomics

CHO-S. Starting at 72 hr into culture and every 12 hr after, cells were collected for proteomic (5 time points) and transcriptomic

analysis (10 time points). 53 106 cells were harvested for transcriptomic analysis via RNA-Seq. Cells were centrifuged and the pellet

resuspended in 2%/98%DTT/RLT buffer and stored at�80�C. RNAwas extracted with QIAGEN’s RNeasymini kit (QIAGEN #74104)

according to manufacturer’s protocol with on-column DNase digestion. RNA libraries for sequencing were prepared using TruSeq

Stranded mRNA Sample prep kit with 96 dual indexes (Illumina, CA, USA) according to the manufacturer’s instructions with the

following changes. The protocols were automated using an Agilent NGS workstation (Agilent, CA, USA) using purification steps as

previously described (Borgström et al., 2011; Lundin et al., 2010). Libraries were clustered using cBot and sequenced on HiSeq2500

(HiSeq Control Software 2.2.38/RTA 1.18.61) with a 2x101 setup in RapidHighOutput mode. The raw reads are available at GEO

(GEO: GSE77800). Bcl to Fastq conversion was performed using bcl2Fastq v1.8.3 from the CASAVA software suite. The quality scale

is Sanger / phred33 / Illumina 1.8+.

FastQC (Andrews, 2010) was used to assess read quality. Trimmomatic v0.32 (Bolger et al., 2014) was used to trim reads with

adapters or low quality scores. STAR2.4.0a (Dobin et al., 2013) was used to align trimmed reads to the CHO-K1 genome (Xu

et al., 2011). Mapping results were stored using SAMtools 1.0 (Li et al., 2009). Cufflinks 2.2.1 (Trapnell et al., 2010) was used to

assemble mapped reads and quantify expression levels. FPKM levels for all time points are available in Data S4.

For proteomic analysis, 1 3 107 cells were harvested and centrifuged. Pelleted CHO cells were lysed in 100 ml urea (8M, 75 mM

NaCl, 50 mM Tris-HCl pH 8.2). To assist the rupture of the cells, two 3 mm Zirconium oxide beads were added and samples were

placed in a mixer mill (Glen Mills Inc, NJ, USA). Two rounds of mixing were applied, with the first 2 min at 25 Hz in the mixer mill fol-

lowed by 30 min at 4�C and additional 2 min at 25 Hz in the mixer mill. Between the two rounds, an additional 100 ml of urea were

added. Samples were then centrifuged for 15 min at 15000 g, after which the supernatant was collected. Then 400 ml 25 mM ammo-

nium bicarbonate was added and the volume reduced to 100 ml using a 3 kDa cutoff filter. Five ml DTT were added to samples

containing 100 ug of protein and then kept at 37�C for 45 min, after which 100 ml of iodoacetamide was added and samples were

kept in the dark for 45 min. Tryptic digestion of the proteins was done for 8 hr at 37�C. Digestion was terminated with the addition

of 10 ml 10% TFA and finally samples were staged tipped using C18 filters (Empore, 3M Company, USA) following an established

protocol (Rappsilber et al., 2007).

Each sample was trapped on a precolumn (Symmetry C18 5 mm, 180 mm x 20mm, Waters, Manchester UK) and washed for 4 min

after which it was loaded on the analytical column. The analytical setup consists of a nanoACQUITY System (Waters, Manchester UK)

equipped with a nanoACQUITY BEH130 C18 1.7 mm, 75 mm x 250 mm analytical reversed-phase column (Waters, Manchester UK).

The reverse phase elution profile included mobile phase A (0.1 formic acid in water) and mobile phase B (0.1% formic acid in aceto-

nitrile), during which B was increased from 5%–40% over 90 min with a flow rate of 250 nL min-1 and a column temperature of 35�C.
To minimize carry over, the method included a 30 min wash phase to clear the column.

Data acquisition was accomplished on a Synapt G2 (Waters, Manchester UK) Q-TOF instrument using ESI with a NanoLock-spray

source. The mass spectrometer was operated in positive and resolution mode with continuum spectra being acquired. Data were

continuously calibrated using leucine encephalin as lock mass. Data were acquired using MSE, during which the mass spectrometer

alternated between low- and high-energymode using a scan time of 0.8 s for eachmode over a 50-2000Da interval. In the low-energy
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MS mode, data were collected at constant collision energy of 4 eV. In the elevated-energy MS mode, the collision energy was

increased from 15 to 40 eV.

Raw data files for protein identification were obtained by using the ProteinLynxGlobalServer software v2.5.3 (Water corporation)

using the in-build MSE search function against the Chinese hamster UniProt proteome database (UP000001075). The search param-

eters were trypsin as enzyme, carboxamidomethyl on cysteine as a fixed modification and oxidation of methionine as partial modi-

fication, while allowing one missed cleavage.

CHO-K1. Additional proteomic and RNA-seq data were obtained from existing studies (Baycin-Hizal et al., 2012; Xu et al., 2011).

Briefly, for RNA-seq, CHO-K1 cells were grown in F-12K medium (Invitrogen) supplemented with 10% FBS at 37�C with RNA extrac-

tion during exponential phase. Sequencing was carried out using Illumina GA2 technology with paired-end reads. Quantification of

expression levels was carried out in an identical manner as for CHO-S. For proteomics, CHO-K1 cells were grown in F-12K medium,

supplemented with 10% FBS, 1% non-essential amino acids, and 2 mM L-glutamine (GIBCO) and gathered at 70%–80% confluence

for analysis.

CHO-DG44. Microarray data for an IgG-producing CHO-DG44 derivative were obtained from literature (Courtes et al., 2013). Briefly,

theCHO-DG44 cells expressing IgG, known asCHOM250-9,were grown in a proprietary protein free and chemically definedmedium.

The total RNAs were extracted using the QIAGEN RNeasy Plant Mini Prep kit during the exponential phase of cell culture. Subse-

quently, the gene expression was profiled with a NimbleGen CHOmicroarray chip containing 135,883 probes corresponding to a total

of 13,514 annotated CHO genes. Scanned microarray signals were then analyzed by the NimbleScan V2.6 (Nimblegen, U.S.A.) and

quantile normalized using the R package AffyPLM (Bolstad et al., 2005).

Metabolomics

CHO-K1. For eachmedia sample, polar extracellularmetaboliteswere analyzed by ultra performance liquid chromatography (UPLC)

(Acquity, Waters, Manchester, UK) coupled in line with a quadrupole-time-of-flight hybrid mass spectrometer (Synapt G2, Waters,

Manchester, UK) as previously reported (Paglia et al., 2012).

For the analysis of targetedmetabolites, data were processed using TargetLynx (Waters) while for untargeted analysis MarkerLynx

(Waters) was used to integrate and align MS data points and convert them into exact mass retention time pairs. Extracted ion chro-

matograms were obtained by using a 0.02 mDa window centered on the expected m/z for each targeted compound. Quantitation

was performed by external calibration with reference standards (Paglia et al., 2012).

The identity of each metabolite was established by verifying retention time, accurate mass measurements and collision induced

dissociation information against our in-house database and/or online databases, including HMDB and METLIN (Smith et al.,

2005; Wishart et al., 2013).

All materials used in the UPLC-MS experiments were purchased from Sigma-Aldrich (Germany) and were of analytical grade or

higher purity.

Model Simulation
When optimizing for growth, solutions were obtained by maximizing flux through the biomass_cho or biomass_cho_producing reac-

tion, depending on if the simulation was of a non-producing or producing cell line, respectively. For predicting maximum protein pro-

duction, solutions were obtained by maximizing flux through the DM_igg[g] or DM_epo[g] reaction, for production of IgG or EPO,

respectively.

Growth Rate Prediction Discrepancies

Serum-Containing Media Formulations. When applied as constraints, the uptakes from two CHO-K1 MFA studies were unable to

recapitulate the experimentally observed growth rate for the CHO-K1 cells grown in serum. The cause of this discrepancy is due to

the low uptake of proline in one study (Ahn and Antoniewicz, 2011) and the production of proline by the cells in another study (Ahn and

Antoniewicz, 2013), despite reports of the proline auxotrophy being a hallmark of the cell line. It is possible that the presence of serum

(and associated protease activity or peptide uptake and catabolism) may ‘mask’ a higher uptake rate of proline required to sustain the

higher observed growth. However, we also investigated whether spontaneous proline prototroph revertants (Kao and Puck, 1967)

could also explain the difference in calculated versus observed growth rates. To do so, we first added an extracellular arginase re-

action to the models (Höltt€a and Pohjanpelto, 1982), and then simulated growth with individual or both proline biosynthetic pathways

active, compared to simulated proline auxotrophy. Inclusion of active proline biosynthetic pathways in themodel greatly improved the

consistency of model predictions with measured growth (Figure S3), indicating that increased proline availability, either via biosyn-

thetic routes or via unmeasured uptake from serum components, can explain the discrepancies between model predicted and

experimental growth rates.

Metabolomic Measurement Uncertainty Impacts Growth Rate Prediction Accuracy

Wealso examined how variability in uptake and secretion rate calculations impacts the accuracy ofmodel predictions. To do this test,

we focused on three datasets in which computed uptake and secretion rates for somemetabolites demonstrated large standard de-

viations. These included three lower quality cultures generated by the authors of this study. In these experiments, the calculated

range (between 5th and 95th percentile confidence intervals) for more than half of the metabolite uptake or secretion rates was larger

than the predicted best fit value (Figure S4). For completeness, we show this metric compared to two cultures from a recent temper-

ature shift study (Martı́nez et al., 2015) (labeled ‘‘Cold 1’’ and ‘‘Cold 2’’ in Figure S4) that exhibited lower variability and are the same as

those included in the main text (Figure 3).
Cell Systems 3, 434–443.e1–e8, November 23, 2016 e6



We took the calculated values for amino acids, glucose, lactate, and IgG (if produced) and generated a family of uptake and secre-

tion values (within the 5th-95th percentile confidence intervals) for each metabolite based on its predicted directionality of flow. For

example, essential amino acids were forced to be taken up; alanine, traditionally secreted, was forced to be secreted. More formally,

we generated 3000 sets of uptake and secretion values satisfying the following criteria. If a metabolite is forced to be taken up, we

generated random uptake values between 5th percentile value and min(0, 95th percentile value). If a metabolite is forced to be

secreted, than we generated random secretion values between max(0, 5th percentile value) and 95th percentile value. Otherwise,

we generated a random uptake or secretion value between the 5th and 95th percentile values. Each set of values was applied as con-

straints to the model and used to predict growth, and the results compared to the growth rate prediction obtained using just the

calculated best-fit uptake/secretion values (Naive Uptakes bars in Figure S5). This approach led to predictions more in agreement

with experimental measurements (Figure S5), highlighting the importance of accurate metabolomic measurements.

Uptake Flux Generation

Lower limits for amino acids and glucose were defined based on experimental measurements from the studies used for phenotype

validation. The growth rate and production rate from the non-treated culture were set as constraints on the producing cell biomass

reaction and IgG/EPO production (as appropriate) in the appropriate cell-line specific model. Iteratively, the following procedure was

followed. First, an amino acid or glucose was randomly selected. If an uptake rate for the metabolite is not known, then we found the

minimum and maximum allowable uptake/secretion rate for the nutrient that permits growth and production at the experimentally

determined rate. Then the uptake or secretion of the nutrient was set to a randomly selected value within that range. This was

then repeated until all amino acids and glucose had uptake or secretion values. For each study, 3000 sets of uptake fluxes were

generated. Each set of uptake fluxes was checked by ensuring that removal of full constraints on protein production or growth re-

sulted in a production/growth rate within 1% of the experimentally measured value. Uptake fluxes which satisfied this criterion

were used for further analysis and are available in Data S5.

Algorithmically Generated Uptake and Secretion Rates Are Consistent with Experimental Measurements

Results for nutrient uptake and secretion flux generation were validated using data from a previous study (Selvarasu et al., 2012). The

algorithmwas applied at the growth rate and specific productivitymeasured during early exponential phase and the range of resultant

nutrient fluxes (available in Data S5) is compared to the experimental values (Figure S2). For 19 out of 20 measured metabolites (all

except phenylalanine), the experimental uptake or secretion value was within the bounds of our algorithm-generated values. For

phenylalanine, the deviation from the calculated range was very small: approximately 4.4x10�4 mmol gDW-1 hr-1 (2.8% of themedian

predicted value). Thus, it is clear that the predicted fluxes were consistent with experimentally measured fluxes.

Metabolite Uptake and Secretion Rates Are Consistent Before and After Treatment

The resource redirection efficiency analysis assumes that metabolite uptake and secretion rates do not significantly change after

treatment. This assumption was assessed by analyzing data from a study examining treatment of cells with sodium butyrate

(NaBu) (Carinhas et al., 2013). In this study, essential amino acid fluxes (which are limiting for growth and protein production) remain

fairly stable before and after NaBu treatment (Figure S1). In fact, the majority of changes were actually in the direction of increased

metabolite uptake, which—if extrapolated to all simulated uptakes for NaBu treated cell lines—would further decrease the calculated

efficiencies and yields for those treatments.

Redirection Analysis

For each ‘treatment’, the model growth rate was constrained to the experimentally measured value while protein production was un-

constrained. After applying a set of uptake flux values, the model was simulated while optimizing for maximum protein production.

This was repeated for all flux values passing the check for growth/production rate mentioned previously. The experimentally

observed production rate was compared to the family of simulated production rates.

For the data stemming from a temperature shift treatment (Kim and Lee, 2009), fluxes were scaled by a random factor between

0.517 and 0.798 based on the difference in uptake rates observed for glucose and glutamine between cultures with and without a

temperature shift.

Calculation of Growth and Protein Production Tradeoff

For each set of uptake fluxes passing the check for growth and production rates, the simulated maximum possible growth rate was

calculated by not forcing any protein production and optimizing for biomass production (i.e., flux through biomass_cho_producing).

Maximum simulated protein production was calculated by setting the growth rate to 0 and optimizing for protein production. The

fraction of maximum protein production at various fractions of maximum growth rate were calculated by constraining growth rate

to a fraction of the simulated maximum growth rate for a specific uptake flux and then optimizing for protein production (normalized

by maximum protein production for that uptake flux). The growth rates and production rates from the treatment papers were normal-

ized by the family of maximum growth rates and production rates, respectively, to evaluate production efficiency.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification of Model Constraints
Metabolite uptake and secretion rates were quantified and used as constraints for themodel simulations (see Data S3). The workflow

for quantification and integration of these exchange rates is presented below. Experimental growth rates were calculated by deter-

mining the slope of the linear polynomial fit to the natural log of the viable cell densities.
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Serum-Grown CHO-K1, Non-producing

Uptake and secretion rates were computed by calculating the slope of a linear polynomial fit to metabolite concentrations in the

spent and control media versus the integral of cell concentration (with respect to time) for exponential phase. The sample at 36 hr

was excluded due to poor quality (i.e., there were spurious jumps in some metabolite concentrations, which was inconsistent

with measurements of preceding and subsequent time points). The final exchange rates were calculated by subtracting the control

media rate from the spent media rate. Cell dry weight was set at 216.1 pg/cell, based on component weights (see Data S2). The

metabolite exchange rates were consistent with the expected rates for growth, except for arginine and cysteine equivalents, which

showed a net efflux, despite being essential in CHO (Naylor et al., 1979) (also see Figure S5).

CHO M250-9 Cells Grown in Protein-free, Chemically Defined Media

Previously published data were acquired for the metabolite uptake and secretion rates (Selvarasu et al., 2012). Since no information

was available on tryptophan uptake, a previously published (Carinhas et al., 2013) uptake rate of 0.0032 mmol gDW-1 hr-1 was used.

Butyrate-Treated CHO Cells

Previously published uptake and secretion rates were obtained for exponential phase of CHO cells producing high and low quantities

of protein under control and butyrate treatment while growing on CDCHOmedium (Carinhas et al., 2013). Since cysteine uptake was

not measured, an uptake rate of 0.0052mmol gDW-1 hr-1 for cysteine was obtained from a previously reported value (Selvarasu et al.,

2012). This value is qualitatively consistent with a previous report (Gorfien et al., 2003) showing that cysteine is taken up.

CHO-K1 from MFA Studies

Exchange rates were taken from previous studies (Ahn and Antoniewicz, 2013, 2011) and supplemented with the values used in the

associated metabolic flux analysis (MFA) model simulations for metabolites for which experimental data were not available. As both

studies reported uptakes on a per-cell basis, fluxes were calculated after scaling to a cell dry weight of 216.1 pg/cell, 315 pg/cell, and

350 pg/cell since dry weight composition was notmeasured. These flux values thus cover the range of observed cell weights for CHO

(Altamirano et al., 2001; Martı́nez et al., 2015). As the cells were grown in 10% FBS, an extracellular arginase reaction was added to

the models (Höltt€a and Pohjanpelto, 1982).

CHO-K1 Derivative Producing IgG in Serum-free Medium

Data were taken from a CHO XL99-Ab2 cell line producing an IgG1 antibody (Martı́nez et al., 2015). Uptake and secretion rates were

calculated by fitting a linear polynomial to metabolite concentration versus the integral of cell concentration (with respect to time,

prior to temperature shift) and scaled using a cell dry weight of 350 pg/cell. We discuss the control cultures (no temperature shift)

in the supplemental information (see Figures S4 and S5). Since cysteine uptake was not measured, an uptake rate of

0.0052 mmol gDW-1 hr-1 for cysteine was obtained from a previously reported value (Selvarasu et al., 2012).

DATA AND SOFTWARE AVAILABILITY

The accession number for the raw data files for CHO-S RNA sequencing reported in this paper is NCBI GEO: GSE77800. All models

are available at http://www.CHOgenome.org. Additionally, the global model can be browsed and downloaded at the BiGG Models

database (http://bigg.ucsd.edu).
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