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Humans use rules to organize their actions to achieve specific goals. Although simple rules that link a sensory stimulus to one response
may suffice in some situations, often, the application of multiple, hierarchically organized rules is required. Recent theories suggest that
progressively higher level rules are encoded along an anterior-to-posterior gradient within PFC. Although some evidence supports the
existence of such a functional gradient, other studies argue for a lesser degree of specialization within PFC. We used fMRI to investigate
whether rules at different hierarchical levels are represented at distinct locations in the brain or encoded by a single system. Thirty-seven
male and female participants represented and applied hierarchical rule sets containing one lower-level stimulus–response rule and one
higher-level selection rule. We used multivariate pattern analysis to investigate directly the representation of rules at each hierarchical
level in absence of information about rules from other levels or other task-related information, thus providing a clear identification of
low- and high-level rule representations. We could decode low- and high-level rules from local patterns of brain activity within a wide
frontoparietal network. However, no significant difference existed between regions encoding representations of rules from both levels
except for precentral gyrus, which represented only low-level rule information. Our findings show that the brain represents conditional
rules regardless of their level in the explored hierarchy, so the human control system did not organize task representation according to
this dimension. Our paradigm represents a promising approach to identifying critical principles that shape this control system.
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Introduction
Humans rely on different types of rules to define complex plans
and orchestrate their actions to achieve specific goals (Bunge and

Wallis, 2008). In some situations, rules linking actions to specific
stimuli (e.g., “if the phone rings, answer it”) may suffice. How-
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Significance Statement

Several recent studies investigating the organization of the human control system propose that rules at different control levels are
organized along an anterior-to-posterior gradient within PFC. In this study, we used multivariate pattern analysis to explore
independently the representation of formally identical conditional rules belonging to different levels of a cognitive hierarchy and
provide for the first time a clear identification of low- and high-level rule representations. We found no major spatial differences
between regions encoding rules from different hierarchical levels. This suggests that the human brain does not use levels in the
investigated hierarchy as a topographical organization principle to represent rules controlling our behavior. Our paradigm
represents a promising approach to identifying which principles are critical.
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ever, more complex situations may require the application of
hierarchical rule sets. Hierarchical rule sets contain rules within a
cognitive hierarchy in which higher-level rules influence the ap-
plication of lower-level rules; for instance, higher-level rules may
define in which context it is appropriate to apply lower-level
rules. In the example above, a higher-level rule may make answer-
ing the phone inappropriate if it rings while one is in a meeting.

Previous studies have demonstrated the involvement of a wide
frontoparietal network in simple rule representation and appli-
cation in both monkeys (White and Wise, 1999; Wallis and
Miller, 2003; Stoet and Snyder, 2004; Genovesio et al., 2005;
Buschman et al., 2012) and humans (Bunge et al., 2002; Brass
and von Cramon, 2004; Schumacher et al., 2007; Woolgar et al.,
2011; Reverberi et al., 2012a; Baggio et al., 2016). Recent research
has focused on a possible functional specialization of this network,
especially within PFC. Several theories propose an anterior-to-
posterior gradient within PFC. Gradient theories state that rules
from lower levels are represented by more posterior PFC regions,
whereas progressively higher level rules reside in increasingly an-
terior PFC regions (Fuster, 2000; Petrides, 2005; Koechlin and
Summerfield, 2007; Badre, 2008; Botvinick, 2008; Christoff et al.,
2009; O’Reilly, 2010). Some experimental work supports the
existence of such a gradient (Koechlin et al., 2003; Badre and
D’Esposito, 2007; Nee and Brown, 2012). Other studies argue
against strong, location-specific specialization, claiming that
the same parietal and prefrontal regions are involved in a wide
variety of cognitive tasks and proposing a single general
“multiple-demand network” (MDN) instead (Duncan, 2006;
Fedorenko et al., 2013).

Gradient theories also make claims about how the brain rep-
resents rule hierarchies. For example, one hypothesis states that
PFC implements a “representational hierarchy” (Badre, 2008)
with distinct regions representing rules depending on their hier-
archical level and not just contributing differentially to their ap-
plication. Evidence for a gradient in PFC derives mainly from
studies collapsing rule representation and application (Koechlin
et al., 2003; Badre and D’Esposito, 2007). However, neural activ-
ity during rule application does not reflect only rule representa-
tion, but also additional cognitive processes necessary to perform
the task (stimulus evaluation, motor activity, etc.).

Recent advances in analysis techniques allow access to con-
tents of current mental states (Kamitani and Tong, 2005; Haynes
and Rees, 2006; Kriegeskorte et al., 2006; Norman et al., 2006),
making it possible to explore the structure of brain represen-
tations. For example, multivariate pattern analysis (MVPA)
exploits local patterns of brain activity to identify neural repre-
sentations of experimental factors (e.g., rules), so it is suitable for
investigating rule representations. However, most previous stud-
ies that assessed rule representations using MVPA typically did
not investigate different hierarchical levels (Reverberi et al.,
2012a). Further, the two studies that did assess hierarchical rule
representations have limitations either because both low and
high hierarchical levels were manipulated simultaneously, thus
preventing the independent exploration of each level (Nee and
Brown, 2012), or because higher- and lower-order information
was conveyed in different ways (Reverberi et al., 2012b), thus
collapsing the information format with hierarchy.

In the present study, we investigate how the brain represents a
type of hierarchical rule sets (see “Relation with other paradigms
and theories” section) by testing whether rules at different levels
are represented in distinct brain regions or if they are encoded by
one common system. To accomplish this goal, we devised a par-
adigm allowing for the following: (1) exploring the representa-

tion of rules at each level of a cognitive hierarchy in the absence of
information about rules from other levels or other, potentially
confounding, task-related information; (2) assessing rule repre-
sentations directly with MVPA; and (3) minimizing differences
between rule representations by conveying information with for-
mally identical IF-THEN rules.

Materials and Methods
Participants
The general experiment setup follows our previous work (Reverberi et
al., 2012a, 2012b). Overall, 54 participants underwent the training
procedure (see “Experimental procedure” section). Fifteen of these were
excluded during the training because of poor performance at the task
(accuracy � 0.80); the remaining 39 participants took part in the fMRI
study. All people participated in the experiment in exchange for mone-
tary payment. Participants were right-handed (score � 50 on the Edin-
burgh Handedness Inventory; Oldfield, 1971) native German speakers,
had normal or corrected-to-normal vision, no self-reported neurological
or psychiatric history, and no anatomical brain abnormalities. Data from
2 of these 39 participants were discarded before data analysis because of
poor performance at the task (accuracy � 0.80) in the fMRI session. The
mean age of the remaining participants (N � 37, 24 females and 13
males) was 24.6 years (range: 19 –31). Instructions and all study materials
were provided in German. The ethics committee of the Humboldt Uni-
versity of Berlin approved the study. All participants gave written in-
formed consent.

Experimental stimuli
Participants were required to retrieve, maintain, and apply sets of condi-
tional rules to different target stimuli (Fig. 1). Each rule set consisted of
two compound rules from a two-level cognitive hierarchy (Fig. 1A): one
“low”-level compound rule (LCR) and one “high”-level compound rule
(HCR). Each compound rule consisted of two single rules. All single rules
had the same logical form. They were all conditionals: “If you see X, then
Y” (abbreviated “X ¡ Y” below). The LCR consisted of two “simple
stimulus–response associations” (Bunge and Wallis, 2008) that assigned
button presses to target images (i.e., the rules defined a “direct sensori-
motor mapping”; Petrides, 2005). An example of an LCR is as follows: “If
you see a banana, then press left; If you see a guitar, then press right.” The
HCR consisted of two individual rules defining the background color of
the pictures that should be considered relevant for LCR (i.e., rules that
“regulate the allocation of attention and therefore selection based on
conditional operations”; Petrides, 2005), thus determining when the
low-level rules should be evaluated (i.e., HCRs were “rules that govern
rules”; Badre, 2013). For example, an HCR is as follows: “If you see a
square, then consider only blue pictures; if you see a hexagon, then con-
sider only yellow pictures.” A hierarchical rule set is thus established in
that “the outcome of a decision at one level guides the appropriate action
at the next level down” (Crittenden and Duncan, 2014). For the main
analyses, two LCRs (LCR1 and LCR2) and two HCRs (HCR1 and HCR2)
were used (Fig. 1A, Table 1). The two compound rules from the same
level always contained the same targets (e.g., for the LCRs: banana, gui-
tar) and responses (left, right) and only differed in how the individual
rules connected targets and responses (e.g., LCR1: “banana¡ left; guitar¡
right,” LCR2: banana ¡ right; guitar ¡ left”; the same applies to HCR1
and HCR2). This arrangement prevents that differences between the
triggers (e.g., “banana” vs “guitar”) or the responses (“left” vs “right”)
can be exploited by the classifiers in the MVPA analyses. The same rea-
soning also applies for high-level rules. On each trial, one LCR and one
HCR were active. Therefore, an example for a complete hierarchical rule
set on one single trial would be as follows: LCR: “banana¡ left; guitar¡
right;” and HCR: “square ¡ blue; hexagon ¡ yellow.”

Rules were instructed by visual cues. Before the fMRI experiment,
participants learned 16 abstract visual cues, two visually unrelated cues
for each of the eight individual single rules (SR1-8 in Fig. 1A). Partici-
pants learned the associations between cues and rules in a separate train-
ing session (see “Experimental procedure” section). The associations
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between cues and rules were randomized across participants so that each
participant learned different cue–rule associations.

The target screen displayed three pictures surrounded by a shape
(square, hexagon, circle, or star); each picture was presented on a colored
background (Fig. 1B, yellow, blue, green, or red). Target pictures were 3D
colored pictures of four different objects: banana, guitar, car, and chair
(courtesy of Michael J. Tarr, Carnegie Mellon University). To prevent
confounding effects due to the specific object, shape, or color, we used
different pairs of objects, shapes, and colors to define the rules for differ-
ent participants; the other objects, shapes, and colors were not relevant
for the participants. Specifically, participants were assigned randomly to
two groups. LCRs always used responses left and right but different target
objects: either banana and guitar (group 1) or chair and car (group 2).
HCRs used hexagon and square (group 1) or circle and star (group 2) as
target figures and yellow and blue (group 1) or green and red (group 2) as
relevant colors. During the target phase, participants had to apply both
the low- and the high-level compound rule and derive the correct re-
sponse. When the shape on the target screen matched one of the shapes of
the HCR, participants had to apply the LCR only to the objects with the
background color specified by the HCR (e.g., LCR: “banana¡ left; guitar¡
right”; HCR: “square ¡ blue; hexagon ¡ yellow”; the target displays a

square and thus the LCR has to be applied only to bananas and guitars
with a blue background color) and to press the appropriate key(s). If the
shape did not match any of the shapes in the HCR, then participants had
to apply the LCR to every relevant object regardless of its background
color. The experiment was implemented and administered with
MATLAB (The MathWorks) using the Cogent 2000 toolbox (Functional
Imaging Laboratory and Institute of Cognitive Neuroscience, University
College London).

Figure 1B shows a typical trial. Each trial started with a first cue screen
(cue 1) displaying a pair of cues for 1 s at the center of the screen, one
above the other. After cue 1, a delay period of 5 s followed (delay 1) and
then a second cue screen (cue 2) was presented that displayed another
pair of cues for 1 s. After a second delay period of 3 s (delay 2), the target
screen was shown for 3 s. This showed three pictures on colored back-
ground embedded in one shape. The cues informed participants about
which rules had to be applied in the current trial. The cues in each cue
screen always instructed rules of the same level (low or high). In half of
the trials, the LCR was instructed (during cue 1) before the HCR (during
cue 2); in the remaining half, the HCR was instructed before the LCR.
Therefore, only LCR or HCR information was available in delay 1. Be-
cause this was the task phase that we were interested in, we used a delay of
several seconds to capture the signal of interest and prevent it to overlap
with signal related to subsequent task phases. We did not further increase
the delay with time jittering to ensure a sufficient number of repetitions
of the experimental conditions within each run without making the ex-
periment duration excessive.

When the target screen appeared, participants had to apply both the
LCR and the HCR. Participants had to check whether the shape in the
target matched one of the shapes in the active HCR; if so, the LCRs had to
be applied only to the pictures with the appropriate background color,
otherwise to all pictures. Participants then had to apply the LCR to all
selected pictures and to press all the key(s) triggered by the LCR. Multiple
responses were possible and participants could press the appropriate keys
in any order (e.g., if two items required a “left” response and one item a
“right” response, the responses “left, left, right,” or “left, right, left,” or
“right, left, left” were correct). Participants had to respond as quickly as

Figure 1. Schema of the experimental paradigm. A, From eight different single conditional rules (SR1–SR8), four compound experimental rules were produced: LCR1 and LCR2 or HCR1 and HCR2.
B, Timeline of the experiment. At the beginning of each trial, a pair of cues was presented, indicating which LCR (or HCR) had to be applied in the current trial. After a delay of 5 s, another pair of cues
specifying which HCR (or LCR) was active for the current trial was shown. A second delay of 3 s followed the second cue presentation and then the target screen was presented. Participants had to
apply the active rules to the target stimuli and derive as fast as possible the appropriate response(s). After the target screen and before the beginning of the consecutive trial, a blank screen was
presented for �2 s (intertrial interval, ITI; see “Experimental stimuli” section for details). In the first example (left), the figure in the target is a square; then, only the blue pictures are relevant. The
only picture with a blue background is the banana; then, the correct response is to press the left button. In the second example (right), the shape in the target is a hexagon, so yellow pictures are
relevant. The only yellow picture is the guitar; then, the correct response is a right button press.

Table 1. Types of compound rules used during fMRI scanning

Low level High level

Experimental trials
Rule 1 LCR1 (SR1, SR2) HCR1 (SR5, SR6)
Rule 2 LCR2 (SR3, SR4) HCR2 (SR7, SR8)

Unbalanced catch trials
Rule 3 LCR3 (SR1, SR3) HCR3 (SR5, SR7)
Rule 4 LCR4 (SR1, SR4) HCR4 (SR5, SR8)
Rule 5 LCR5 (SR2, SR3) HCR5 (SR6, SR7)
Rule 6 LCR6 (SR2, SR4) HCR6 (SR6, SR8)

For each different rule (e.g., Rule 1), the compound rule (e.g., LCR1) and the composing single rules (e.g., SR1 and
SR2, in parentheses; see Fig. 1A) are reported for the corresponding level (low or high) and for both experimental
trials and unbalanced catch trials.
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possible by pressing buttons with either their left or their right index
fingers. Given the active rules and the target shown on a particular trial,
four different outcomes were possible: Participants had to apply (1) both
low- and high-level rules when a relevant shape was present and the
background of a target object matched the color in the rule (hereafter:
“Both”); (2) only the low-level compound rule when the shape did not
match a high-level rule but at least one of the objects matched a low-level
rule (“OnlyLCR”); (3) only the high-level rule when the shape was rele-
vant but either the background color of none of the pictures was appro-
priate or the object(s) with the matching color did not trigger the LCR
(“OnlyHCR”); or (4) none of the rules, when both the shape was irrele-
vant and the objects did not trigger the LCR (“None”). When it was not
possible to apply the LCR (OnlyHCR and None conditions), participants
had to explicitly press a “no response” button by using the right middle
finger.

In addition to standard experimental trials, catch trials were inter-
spersed throughout the standard trials. We used two different types of
catch trials: trials with shorter delays and trials with an “unbalanced”
combination of composing rules. In short catch trials, both delay 1 and
delay 2 lasted only 2 s. This forced participants to immediately retrieve
and represent the rule set. In catch trials with unbalanced combinations
(Table 1), the composing rules shared either the triggering condition
(object or shape) or the response (motor response or color). For exam-
ple, both individual rules of the compound rule “if there is a banana, then
left; if there is a banana, then right” share the object “banana.” Unbal-
anced rule combinations enforced participants to retrieve the rules of
both cues that were shown and thus prevented them from applying
shortcuts to only represent one single rule and then derive the other rule
at the target screen.

Rationale behind the experimental paradigm
The experimental paradigm has been explicitly designed to achieve two
important goals: (1) assess “pure” representations of high- and low-level
rules when information about the other level is absent, thus allowing for
(2) evaluating the difference between rule representations of the two
levels. To achieve these goals, in our task, the first cue instructed either a
low- or a high-level rule equally often, so that only one compound rule
had to be maintained during delay 1; moreover, we used two different
rules for each level in the hierarchy. Therefore, we could decode the
identity of a compound rule by classifying the two rules from the same
hierarchical level (e.g., low level) using data from the subset of trials in
which a rule from this level was maintained during delay 1. Finally,
because low- and high-level rules were represented during delay 1 in
distinct trials, we could also compare representations of rules from the
two levels in the hierarchy in this time window. However, because only
rules from one level are represented during delay 1, our paradigm does
not allow for exploring the representation of hierarchical rule sets that
simultaneously contain low- and high-level rules.

Relation with other paradigms and theories
Above, we explained why the HCRs in our paradigm could be considered
at a higher hierarchical level than our LCRs. However, several theories
exist that differ in the general principles defining a hierarchy. To allow a
clear interpretation of our study, we detail explicitly the relation of our
LCRs and HCRs with major theories in the field and compare them with
paradigms of previous empirical studies.

Hierarchical relation can be defined by the level of abstraction of the
involved operations (Petrides, 2005). This applies directly to our rules:
LCRs define “a direct sensorimotor mapping,” whereas HCRs regulate
“selection based on conditional operations” (Petrides, 2005). Our hier-
archy also fits to definitions that use the abstraction level of the policies to
be implemented. For example, “a simple rule linking a stimulus and a
response is a first order policy,” as our LCRs, whereas rules “adding
additional contingencies,” as our HCRs, result “in more abstract policy”
(Badre and D’Esposito, 2009). In addition, “the depth of the decision tree
remaining to be traversed from any branch point to reach a response
determines the order of policy abstraction” (Badre, 2013), so our exper-
imental paradigm instantiates a second-order hierarchy because it has
two decision points. Conversely, it should be considered that HCRs do

not select among multiple first-order rule sets, as is often the case for the
higher-level rules in representational hierarchies. Instead, HCRs modify
the triggering conditions of LCRs. Therefore, if one would rely strictly on
this requirement, then HCRs should not be considered a more abstract
policy. Furthermore, hierarchical relation can be defined by temporal
abstraction (Koechlin et al., 2003). In a temporal hierarchy, control sig-
nals may be defined as either being “related to the immediate context in
which the stimulus occurs” or being traceable to a past event (episodic
control) defining an “episode in which a new set of rules apply” (Koech-
lin and Summerfield, 2007). In our paradigm, both the HCRs and the
LCRs pertain to the immediate context, so the rules in our experiment do
not differ in the temporal dimension of the episodic control. Finally,
hierarchies have been also defined as structures comprising multiple
levels maintaining asymmetrical relations; that is, structures in which
information at higher levels influences operations at lower levels more
than vice versa (Badre, 2008; Botvinick, 2008). From this point of view,
the rule sets that we use in our experimental paradigm hold a clear
hierarchical relation because HCRs modify the implementation of LCRs
but not vice versa.

In addition to theoretical considerations, our hierarchy implementa-
tion is similar to the operationalization of representational hierarchies in
other classic experimental paradigms. For example, in the feature exper-
iment of Badre and D’Esposito (2007), the low-level rules may be seen as
rules prescribing a left response when a condition is present and a right
response when it is absent, whereas the high-level policy is a rule speci-
fying which condition is relevant. Therefore, the higher-level rule mod-
ifies only the triggering conditions of the lower level rules that remain
identical across all conditions of the experiment; similarly, our HCR
modifies the triggering conditions of the active LCR.

Experimental procedure
During fMRI scanning, participants performed 300 trials divided into six
runs. In each run, 50 trials were administered in a pseudorandom order:
40 experimental trials, four short catch trials, and six catch trials with an
unbalanced combination of rules. The intertrial interval was around 2 s
(range 1.5–3.5 s). The whole fMRI experiment lasted �73 min.

Participants underwent two training sessions scheduled on separate
days at most 3 d before scanning. On the first day of training, participants
learnt the cue–rule associations; on the second day, they practiced the
experimental task and received feedback on their accuracy on each trial.
Overall, the training procedure lasted �2.5 h (mean duration on day 1 �
68 min; mean duration on day 2 � 84 min). Only participants who
reached a high accuracy (at least 12 correct responses in the last 15 trials)
were allowed to the fMRI session. Overall, 15 participants were excluded
during the training.

Directly before scanning, participants performed a “refresher session”
of �10 min to ensure that they remembered the cue–rule associations. In
the scanner, participants additionally performed five experimental trials
to get used to the scanner environment before the experiment started
(these data were not analyzed). After scanning, a questionnaire was ad-
ministered to investigate whether participants used strategies to perform
the task and, if so, which strategies they had adopted.

Image acquisition
fMRI data were collected using a 3 T Siemens Trio scanner equipped with
a 12-channel head coil. In each of the six scanning runs, we acquired 376
T2*-weighted volumes in descending order using gradient-echo echop-
lanar imaging sequences. The images were composed of 33 slices (3 mm
thick) separated by a gap of 0.75 mm. Imaging parameters were as fol-
lows: TR 2000 ms, TE 30 ms, FA 78°, matrix size 64 � 64, and FOV 192
mm � 192 mm, thus yielding an in-plane voxel resolution of 3 mm 3,
resulting in a voxel size of 3 mm � 3 mm � 3.75 mm. A T1-weighted
anatomical dataset and magnetic field mapping images were also ac-
quired. Imaging parameters for the anatomical scan were as follows:
TR 1900 ms, TE 2.52 ms, FA 9°, matrix size 256 � 256 � 192, FOV 256
mm � 256 mm � 192 mm, 192 slices (1 mm thick), and resolution 1
mm � 1 mm � 1 mm. For the field maps, the parameters were the
following: TR 400 ms, TE 5.19 ms and 7.65 ms, FA 60°, matrix size 64 �
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64, FOV 192 mm � 192 mm, 33 slices (3 mm thick), and resolution 3
mm � 3 mm.

Experimental design and statistical analysis
Behavioral analyses
We performed linear mixed-effect model (LMM) analyses to assess the
effect of multiple task variables on reaction time (RT) and accuracy mea-
sures (see “Behavioral results” section for details about each single anal-
ysis). All LMM analyses were performed using R 3.1.0 (The R Foundation
for Statistical Computing, Vienna, Austria, 2014) and the lme4 package
(Bates et al., 2015) for LMM analyses (Baayen et al., 2008). We preferred
this approach over repeated-measures ANOVA, which is typically used
for within-subject designs, because LMMs take into account not only the
subject variability in overall mean responses, but also individual subject
sensitivity to different experimental conditions. Therefore, they consti-
tute a more powerful tool with which to detect effects of interest than
repeated-measures ANOVA (Barr et al., 2013).

Preprocessing and first-level analyses
fMRI data were preprocessed and analyzed using SPM8 (Wellcome Trust
Centre for Neuroimaging, Institute of Neurology, University College
London). Images were realigned and slice-time corrected. Low-frequency
noise was removed using a high-pass filter with a cutoff period of 128 s
(Worsley and Friston, 1995) and an autoregressive AR model was fit to
the residuals to allow for temporal autocorrelations (Friston et al., 2002).
The images were neither spatially smoothed nor normalized to preserve
fine-grained patterns of brain activity.

Two independent GLMs were setup to estimate runwise correlation
coefficients from the realigned and slice-time corrected images: model 1
to decode the identity of the LCRs and model 2 to decode the identity of
the HCRs. Each model comprised two conditions corresponding to the
two pairs of rules: LCR1 and LCR2 for model 1 and HCR1 and HCR2 for
model 2 (e.g., for LCRs, the two conditions in model 1 were LCR1:
“banana ¡ left; guitar ¡ right” and LCR2: “banana ¡ right; guitar ¡
left”). We used two independent models to prevent any potential inter-
action between the two rule levels. Because we were only interested in
differences between rule representations during the delay period inde-
pendent of any specific assumption on HRF shape or onsets and dura-
tions of mental processes during that time, we applied a finite impulse
response (FIR) model (Henson, 2004) to allow for flexible modeling of
the BOLD time course. Each condition was modeled using 8 consecutive
FIR time bins of 2 s each (total FIR model length 16 s). The time vectors
of all regressors were defined using cue 1 onset times. Only experimental
trials with a correct response were used to estimate the parameters (i.e.,
both incorrect and catch trials were excluded). Each first-level model
resulted in 96 (8 FIR bins � 2 conditions � 6 runs) individual first-level
regressor images per participant. Note that creating one regressor for
each individual rule and detecting differences between rules from the
same level and then comparing these results between levels differs from
the standard procedure for univariate fMRI analysis, which creates one
regressor for all rules from a specific level and then contrasts these regres-
sors directly to test for differences between levels.

Representation of low- and high-level rules (whole-brain)
We used MVPA with a searchlight approach (Kriegeskorte et al., 2006;
Haynes et al., 2007) to identify which brain regions represent low-level rules
when information about high-level rules is absent and vice versa. Two inde-
pendent decoding analyses were implemented: the first analysis aimed at
identifying brain regions containing specific information about low-level
compound rules in the absence of high-level rules and the second one aimed
at identifying brain regions encoding high-level compound rules in the ab-
sence of low-level rules. The first analysis decoded between LCR1 and LCR2
and the second analysis between HCR1 and HCR2 (Fig. 2A). Note that this
procedure differs from standard univariate experiments, which do not con-
trast brain responses elicited by different individual rules within each level to
identify level-specific regions, but instead contrast brain responses to all rules
from one level against a baseline condition.

In general, cross-validated searchlight decoding is a spatially unbi-
ased method to test for localized information throughout the brain.

Specifically, it tests whether information is present in a local sphere
around each voxel that allows for distinguishing two different task
conditions from activity patterns of voxels within that sphere. The
following procedure has been performed for each of the two models,
for each participant, and for each FIR bin. For each voxel vi in the
brain, within the searchlight sphere (here: radius � 4 voxels) around
that voxel vi, the parameter estimates of all six runs were extracted for
the two experimental conditions to be compared (model 1: LCR1 vs
LCR2; model 2: HCR1 vs HCR2). The extracted parameters form a
pattern vector for each condition and each run, yielding a total of 12
vectors (6 runs � 2 conditions) for each participant in each of the two
analyses. The vectors were repeatedly assigned to independent train-
ing and test sets to avoid overfitting (Mitchell, 1997) using a 6-fold
leave-one-run-out cross-validation procedure in which in each fold
the data of one run was left out as test set once and the remaining data
constituted the training set. A linear support vector classifier (Müller
et al., 2001; Cox and Savoy, 2003) with fixed regularization parameter
C � 1 was trained to distinguish between the two conditions using
only the data from the training dataset. The classifier was then applied
to the left-out test set. Classification accuracy was calculated as num-
ber of correct classifications divided by number of all classifications
across all cross-validation folds. The resulting classification accuracy
of each searchlight analysis around voxel vi was stored in a new full-
brain image to voxel vi, resulting in one accuracy map for each partic-
ipant for each FIR bin for each analysis. The cross-validated accuracies in this
map serve as a measure of how well the classifiers discriminated between the
experimental conditions based on the multivariate signal in each sphere vi.
Note that these maps do not quantify activity differences between a condi-
tion of interest versus a baseline condition or activity differences between
different hierarchical levels (as in standard univariate analysis), but assess
how well different rules from the same level can be distinguished by using
local patterns of activation. Decoding analyses were performed using The
Decoding Toolbox (TDT) (Hebart et al., 2014).

For each participant, the resulting 16 accuracy maps (2 condi-
tions � 8 bins) were normalized to MNI space using the parameters
calculated during preprocessing and then submitted to second-level
ANOVAs to test at the group level in which brain regions the decoding
accuracies were significantly above chance level (50% for the present
analyses) across participants. A decoding accuracy significantly above
chance level implies that the patterns of brain activity in the sphere vi

contain information about the relevant experimental condition; that
is, which specific rule (LCR1 or LCR2, HCR1 or HCR2) had been
represented by a participant. Because only rules from the same hier-
archical level were contrasted, differences between either rule levels or
general processes that were specific to one or the other level could not
systematically influence the results. We tested for the presence of
information in the FIR time bins from 3 to 5, corresponding to the
time window from 4 to 10 s after cue 1 onset. Taking into account the
�4 s delay of the hemodynamic response, this interval includes only
activity related to cue 1 and delay 1 (Fig. 2C). A one-factorial ANOVA
was calculated for each model (model 1 for LCRs or model 2 for
HCRs; Fig. 2B) including the accuracy maps from all participants for
each of the 8 FIR time bins as individual levels of the same factor (i.e.,
FIR bin). A contrast c � 1⁄3 � [0 0 1 1 1 0 0 0] was calculated to test for
the presence of information in the relevant time window. Nonsphe-
ricity correction (Friston, 2003; Henson and Penny, 2003) was used to
correct for temporal correlation effects between time bins. The de-
scribed procedure has two advantages. First, performing individual
decoding analyses for each time bin and then submitting the results as
single levels of an ANOVA allows for slight differences in rule encod-
ing between different time points and thus for some temporal flexi-
bility in representations. The only requirement for this analysis is that
activity patterns differ between conditions within each FIR bin. Sec-
ond, including time bins before and after the critical time window
improves the estimation of the error variance (i.e., improves the sen-
sitivity of the statistical test) and allows for performing further quality
checks on the response around the target time window.

Finally, statistical images were assessed for cluster-wise significance
at � � 0.05 corrected for multiple comparisons using FWE correction
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at cluster level (Friston, 1997; see also Flandin and Friston, 2017). We
used a cluster-defining single-voxel threshold of p � 0.001, following
recent recommendations (Woo et al., 2014) to minimize the peril of
inflated FWE rates (Eklund et al., 2016). Note also that FWEc p-values
for all significant clusters in the analyses are far below � � 0.05. This
procedure resulted in two maps indicating where in the brain information
about either individual LCRs or individual HCRs could be distinguished
above chance level from local patterns of brain activity (i.e., where the BOLD
signal contains information about the specific rule stored in working
memory).

We only analyzed brain data from delay 1 to achieve a pure observa-
tion of low- and high-level rule representations because a single com-
pound rule from only one level (either an LCR or an HCR) was recalled
and maintained during this time window. We could not use brain data from
delay 2 because it contained both low- and high-level information, the short
duration of delay 2 did not allow us to isolate brain responses from later
phases within the same trial, and brain activity during delay 2 might addi-
tionally reflect rule integration processes. For similar reasons, we did not
analyze brain activity during target presentation; many additional cognitive
processes were involved when applying both rules to the target stimuli.

Figure 2. Analysis methods. A, Schema of the decoding analyses. The two decoding analyses for rule identity on either low- or high-level rules are explained. Both analyses decode between two
compound rules of the same level. Each compound rule contains the same basic elements (banana, guitar, left, and right for the LCRs and hexagon, square, blue, and yellow for the HCRs); thus, the
only difference between the two compound rules contrasted in each analysis is the link between the elements in the rules. B, Schema of the second-level ANOVA analyses. Four second-level ANOVAs
are explained: (1) the analysis to identify regions encoding rule identity regardless of the type of rule (see results in Fig. 4A), (2) the analysis to identify regions where one type of rule was encoded
better than the other (see results in Fig. 4B), (3) the analysis to identify regions encoding low-level rule information (see results in Fig. 4C), and (4) the analysis to identify regions encoding high-level
rule information (see results in Fig. 4D). C, FIR model for the analyses performed on fMRI data from delay 1. Each FIR model consisted of eight time bins lasting 2 s each to model the whole trial
duration. The first cue (c1) was presented at the beginning of each trial (onset 0 s), followed by a delay of 5 s (onset 1 s), a second cue (c2, onset 6 s), a second delay (onset 7 s), the target (T, onset
10 s), and the intertrial interval (ITI, about 2 s). To account for the temporal delay of the BOLD signal, we considered the time bins 3–5 because time bin 3 was the earliest that could reflect cue-related
activity, as shown by the timeline representing the events shifted by the first two volumes. In this model, cue 1 presentation corresponded to the first second of time bin 3, whereas delay 1 coincided
with time bins 3, 4, and 5. DA � decoding accuracy.
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Testing for differences between LCR and HCR representations
(whole-brain)
The analyses described in the “Representation of low- and high-level
rules (whole-brain)” section identified which regions in the brain repre-
sent LCR (or HCR) information. The results, however, are not suitable to
test for location-specific differences between LCR and HCR representa-
tions (“the difference between “significant” and “not significant” is not
itself statistically significant”; Gelman and Stern, 2006). To assess spatial
differences in decoding accuracies, we performed an ANOVA that con-
trasted the LCR and HCR identity decoding analyses described in the
“Representation of low- and high-level rules (whole-brain)” section (i.e.,
LCR and HCR identity decoding) in a single test analogous to the proce-
dure described above. Specifically, we used all decoding accuracy maps
from all time bins of the LCR and HCR decoding analyses for all partic-
ipants, yielding one ANOVA with 16 levels (Fig. 2B): Levels 1– 8 included
the data for the 8 time bins of the LCR analysis and levels 9 –16 the data
for the 8 time bins of the HCR analysis. We then tested whether decoding
accuracies were significantly higher for LCRs than for HCRs and vice
versa during the relevant time span 4 –10 s after cue 1 onset (FIR bins
3–5). We used a contrast vector c � 1⁄3 � [0 0 1 1 1 0 0 0 0 0 �1 �1 �1 0
0 0] to test for LCR � HCR and c � 1⁄3 � [0 0 �1 �1 �1 0 0 0 0 0 1 1 1
0 0 0] to test for HCR � LCR. As described in the “Representation of low-
and high-level rules (whole-brain)” section, data from all FIR time bins
were used to increase sensitivity through a more stable variance estimate
and nonsphericity correction was used to account for correlations be-
tween all levels. This procedure resulted in two brain maps containing
locations with significantly higher decoding accuracies for LCRs than
HCRs or significantly higher decoding accuracies for HCRs than LCRs.

It is important to emphasize that we did not compare the univariate or
multivariate activation signal of LCRs versus HCRs directly. Therefore,
for example, we did not use a multivariate classifier to assess whether
patterns of activation can discriminate between “If you see a banana, then
press left” (an LCR) and “If you see a square, then consider only blue
images” (an HCR). In fact, this direct comparison would have likely
collapsed information related to our specific research question (rule rep-
resentation) with other irrelevant sources of information such as the
representation of a motor act (only present in LCRs) or the representa-
tion of a color (only present in HCRs). To avoid this risk, we first applied
MVPA analyses to alternative rules at the same hierarchical level (LCR1
vs LCR2 and HCR1 vs HCR2), which are composed of the same “basic
ingredients”: same motor acts, same images, same colors, and same fig-
ures. This allowed us to obtain clean maps of the brain regions specifically
representing rule information at each hierarchical level (see also Rever-
beri et al., 2012a, 2012b for a similar analysis strategy). We then con-
trasted these maps to test at the group level whether and where these
information distribution maps are significantly different.

Comparing accuracies from different analyses might be problematic
because the relation between information content and decoding accu-
racy values may also depend on parameters not related to information
representation, such as the number of training examples or the cross-
validation scheme. This is why we took special care to make the accuracy
maps from low- and high-level decoding analyses directly comparable by
using the following measures: (1) the same number of trials, (2) the same
analysis pipeline (preprocessing, parameter estimation, decoding analy-
sis), (3) an identical trial structure, and (4) the exact same task that
participants performed in both conditions.

Testing for overlap between LCR and HCR representations (ROI
and whole-brain)
We used ROI analyses to test whether the significant clusters from the
decoding analysis for one rule level would also contain information
about the other rule level (i.e., whether the significant clusters from the
LCR analysis would also contain HCR information and vice versa). ROI
analyses are useful because they improve statistical sensitivity compared
with the whole-brain analyses since they define a more specific hypoth-
esis ( presence of information at a specific location) and thus require less
multiple-comparisons correction. Therefore, ROI analyses can detect the
presence of information in regions that the whole-brain analysis might
have missed. The implemented ROI analyses are not circular because the

analyses used to define the ROIs and those used to perform the tests are
independent (the LCR and HCR analyses relied on different, mutually
exclusive trials). In contrast, using the previously described ROI analyses
to test for significant differences between LCR and HCR information
would be circular because the data of one condition in each analysis
would have also been used to define the ROIs and thus the analyses
would have no longer been independent (Kriegeskorte et al., 2009).
Therefore, the ROI analyses are only suitable to test for overlap of infor-
mation (i.e., to test whether regions contain information about both rule
levels), whereas the whole-brain contrast analysis can test for informa-
tion differences. In Figure 4, we only present accuracy estimates of the
respective other hierarchical level (i.e., mean HCR decoding accuracy for
each LCR cluster in Fig. 4C and mean LCR decoding accuracy for each
HCR cluster in Fig. 4D), but not the accuracies from the ROI defining
condition (i.e., mean LCR decoding accuracy for each LCR cluster in Fig.
4C and mean HCR decoding accuracy for each HCR cluster in Fig. 4D) to
avoid presenting circular data.

We used the MarsBaR toolbox (Brett et al., 2002) to extract the mean
decoding accuracies within all voxels of each HCR (or LCR) ROI (Fig.
4C,D, Table 2) from the LCR (or HCR) searchlight accuracy maps ob-
tained from the analyses described in the “Representation of low- and
high-level rules (whole-brain)” section and then tested whether they
were significantly higher than chance. The same ANOVA setup as in

Table 2. Results of the whole-brain decoding analyses for low- and high-level rules

Anatomical region
Cluster
size (k)

p
(FWEc ) x y z

Accuracy at
t-peak (%)

Average
cluster

accuracy
Main
BAs

LCRs
SPL/PrCG 2447 �0.001 45 �19 49 61.6 57.6 7, 40

48 �28 55 61.3
48 �28 46 61.1

MOG 762 �0.001 �36 �85 �8 58.3 56.3 18, 19
�36 �94 4 57.6
�33 �64 �23 57.6

IPL 495 �0.001 �51 �7 22 58.6 56.5 40
�42 �34 61 57.2
�48 �49 58 57.2

MOG 176 �0.001 36 �91 10 58.5 56.4 18, 19
36 �88 19 58.5
27 �88 10 56.9

PC 160 �0.001 �9 �58 52 57.8 56.2 7
�30 �91 28 56.1
�12 �73 64 53.8

VLPFC 127 �0.001 48 44 1 57.5 56.3 46, 47
39 50 �8 57.5
51 47 16 54.0

Cerebellum 64 0.003 �9 �61 �8 57.2 56.2
3 �64 �11 56.8

�12 �67 �14 56.6
HCRs

SPL/angular gyrus 591 �0.001 33 �67 49 59.6 56.3 7, 40
27 �67 40 58.3
21 �73 58 57.5

MTG 463 �0.001 �48 �58 �11 59.4 56.4 37
�48 �67 �8 58.8
�54 �55 �2 58.5

PC 307 �0.001 �27 �76 31 60.1 56.3 7
�30 �67 43 57.0
�33 �70 55 56.7

IPL 113 �0.001 �48 �37 40 57.2 55.8 40
�45 �37 49 56.7
�57 �37 43 56.4

Brain regions with decoding accuracies significantly higher than chance (50%) are reported for both LCR and HCR
analyses. x, y, and z coordinates are in MNI-template space and the selection of cluster maxima follows the conven-
tions of SPM8. The reported p-values refer to cluster-level inference and are FWE corrected for multiple comparisons
at the cluster-level (FWEc ). We report the decoding accuracy of the searchlight at each t-peak and the average
decoding accuracy over all searchlights within each cluster. The main Brodmann’s areas (BAs) are also provided for
each cluster.
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those whole-brain searchlight analyses was used, again considering the
time span 4 –10 s after cue 1 onset (FIR bins 3–5).

Finally, we assessed which brain areas contained information about
rule identity regardless of the rule level. By using the same combined
whole-brain ANOVA analysis described in the “Testing for differences
between LCR and HCR representations (whole-brain)” section, we
tested in which regions in the brain the decoding accuracies were signif-
icantly higher than chance level regardless of the hierarchical level of the
rules between which the classification was performed. We used the con-
trast vector c � 1⁄6 � [0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0] (Fig. 2B). In other
words, we tested where in the brain the average decoding accuracy across
rule types was higher than chance.

Testing for the presence of LCR and HCR information in PFC
regions reported in previous studies supporting either gradient or
MDN theories
We performed additional ROI analyses to explore whether and where
LCRs and HCRs are encoded in PFC regions previously reported in stud-
ies on cognitive control supporting either gradient (Koechlin et al., 2000,
2003; Badre and D’Esposito, 2007) or MDN (Fedorenko et al., 2013)
theories. First, we considered PFC regions for which a hierarchy-specific
role has been proposed: dorsal premotor (PMd), pre-PMd, lateral PFC
(LPFC), and frontopolar cortex (FPC). Two separate sets of ROIs were
defined: set 1 (Badre and D’Esposito, 2007), including the four PFC
regions (i.e., PMd, pre-PMd, LPFC, and FPC) in both the left and the
right hemisphere (because no region on the right hemisphere was re-
ported in that study, we used the inverse x-coordinate to define the right
hemisphere ROIs), and set 2 (Koechlin et al., 2003), considering the same
PFC regions (for FPC, we referred to Koechlin et al., 2000) in both
hemispheres. All ROIs were defined as spheres centered on the relevant
coordinates with radius � 12 mm to match the size of the searchlight
sphere and make the results comparable. Then, we considered PFC re-
gions of the MDN for which a lesser degree of specialization has been
advocated: anterior and posterior inferior frontal sulcus (aIFS and pIFS,
respectively), anterior insula/frontal operculum (AI/FO), inferior frontal
junction (IFJ), premotor cortex (PM), and anterior cingulate cortex/
presupplementary motor area (ACC/pre-SMA; we omit this region from
the analysis involving an “hemisphere” factor because it lays perfectly
in the medial aspect of the brain and thus is not lateralized). We extracted
the MDN regions from the activation map of Fedorenko and colleagues
(2013) available at imaging.mrc-cbu.cam.ac.uk/imaging/MDsystem to
define a third set of ROIs.

We tested for the presence of either LCR or HCR information in the
regions of the three sets, as well as for differences between the two hier-
archical levels. In contrast to the ROI analyses in the “Testing for overlap
between LCR and HCR representations (ROI and whole-brain)” section,
in this case, a direct comparison between LCRs and HCRs is appropriate
because the ROIs considered here were defined using previous indepen-
dent studies. For each participant and for each of the 26 ROIs (4 PFC
regions � 2 hemispheres for sets 1 and 2 and 5 PFC regions � 2 hemi-
spheres for set 3), we extracted the mean decoding accuracy for both the
LCR and the HCR decoding analyses within all voxels of the ROI in the
time window of interest (i.e., 4 –10 s after cue 1 onset). These values were
entered in a 3-factorial (4 ROIs � 2 hemispheres � 2 decoding analyses
for set 1 and 2 and 5 ROIs � 2 hemispheres � 2 decoding analysis for set
3) repeated-measures ANOVA. A separate ANOVA was performed for
each set using R 3.1.0.

Behavioral control analyses
A recent study (Todd et al., 2013) hypothesized that successful decoding
of rule identity from fMRI data could be explained by differences in RTs
or related factors such as difficulty. To test directly whether individual
differences in RT could explain the neuroimaging results, we performed
two control analyses (we have already used the same analysis to test this
hypothesis in previous work before Todd et al. critique; Reverberi et al.,
2012b; see also Görgen et al., 2017). First, we tested whether the RTs of
the two LCRs (or two HCRs) allowed us to correctly classify compound
rules. Therefore, we performed the same analyses that we did on fMRI
data but we used RTs as evidence. Second, to make the analyses directly

comparable to that in Reverberi and colleagues (2012b), we investigated
whether RT differences could explain the fMRI results. Therefore, we
correlated RT differences to fMRI accuracies to determine whether par-
ticipants with larger RT differences between rules also showed higher
fMRI decoding accuracies for these rules.

Decoding compound rules using RTs. To test whether the two LCRs (or
HCRs) can be distinguished using RT, we performed two cross-validated
decoding analyses on RTs for each participant, one for LCRs and one for
HCRs, and then tested across participants whether RT could predict LCR
(or HCR) identity above chance. For this purpose, we used the same
analysis pipeline that we used for fMRI data: For each participant, we
calculated the average RT for each run and condition from trials that con-
tained LCRs (or HCRs) in the first delay period (delay 1) using the same trials
that were also used for the fMRI analysis (to parallel the creation of � esti-
mates from the fMRI data). We used the resulting 12 average RT values (six
per condition) to perform leave-one-run-out cross-validated decodings be-
tween the two LCRs (or HCRs). We then tested whether the LCRs (or HCRs)
could be predicted better than chance using a t test on the 37 participants’
individual decoding accuracies.

Relation between RT decoding performance and fMRI decoding perfor-
mance. The ability of RTs to predict LCRs (or HCRs) across individuals
does not automatically imply that RTs also explain fMRI decoding per-
formance or have the same underlying cause. We tested directly whether
RT differences could explain the fMRI decoding results by correlating
participants’ fMRI decoding performance with two behavioral measures:
the individual RT-decoding performance and the absolute RT differ-
ences between the two conditions (as in Reverberi et al., 2012b). These
correlation analyses were performed for each significant cluster of the
main fMRI analyses by correlating LCR fMRI accuracies to LCR RT
measures and HCR fMRI accuracies to HCR RT measures.

Bayesian correlation analyses. We calculated Bayes factors for all corre-
lation analyses with the Bayesian correlation analysis implemented in
JASP (the JASP Team, Amsterdam, The Netherlands, 2017; version 0.8.2)
using a “noninformative,” one-sided flat prior for H1 (i.e., the JASP
default, Ly et al., 2016). Bayes factors allow robustness checks for null
hypotheses under the given assumptions by quantifying the likelihood of
H0 over H1 (Jeffreys, 1961; Kass and Raftery, 1995; Dienes, 2014; Jarosz
and Wiley, 2014; Lee and Wagenmakers, 2014). Two Bayes factors are
typically calculated: BF10 and BF01. BF10 states how more likely H1 is than
H0 and BF01 (i.e., 1/BF10) states how more likely H0 is than H1. There-
fore, a Bayes factor of 1 means that both hypotheses are equally likely,
whereas a Bayes factor larger than 1 provides evidence for the respective
first hypothesis (i.e., H1 for BF10, H0 for BF01) and a Bayes factor smaller
than 1 favors the respective second hypothesis. Two scales are commonly
used to interpret how much evidence a given Bayes factor provides: the
(Jeffreys, 1961), with updated terminology by Lee and Wagenmakers
(2014), and a scale by Kass and Raftery (1995). Following Lee and
Wagenmakers (2014), we consider Bayes factors � 3 as “anecdotal” evi-
dence, Bayes factors � 3 as “moderate” evidence, and Bayes factors � 10
as “strong” evidence.

Results
Behavioral results
During scanning, participants were highly accurate in applying
the rules. Responses to experimental trials were correct on aver-
age in 92.6% (SD � 4.5%) of the trials (Fig. 3). Because up to
three button presses were required, left and right buttons could
be pressed in any order and pressing the “no response button”
and not responding at all were also possible responses; the chance
level for normal trials was 1/11 � 9.09% (chance level for all trials
was even lower, i.e., 3.45%, see below). Participants responded
quickly: the first button was pressed in about half of the total time
allowed for responding (3 s). Mean RT (here calculated as the
latency for the first button press) for the experimental trials was
1656.9 ms (SD � 148.1 ms).

To assess potential differences in difficulty between the rules,
we extracted all trials in which participants were required to apply

12288 • J. Neurosci., December 13, 2017 • 37(50):12281–12296 Pischedda, Görgen et al. • Neural Representations of Hierarchical Rule Sets



a specific experimental compound rule and compared the rela-
tive mean accuracies and RTs. We performed LMM analyses of
the relation between either RT or accuracy and the specific rule.
As fixed effect, we introduced compound rule identity into the
model and intercepts for participants as random effects to allow
for subject variability in mean responses. P-values were calcu-
lated with likelihood ratio tests of the full model with the effect of
interest against the model without that effect (Barr et al., 2013).
No effect of the specific compound rule on either RT or accuracy
was found (�(3)

2 � 2.05, p � 0.56, and �(3)
2 � 1.44, p � 0.70,

respectively).
Two types of catch trials were used in the experiment to

ensure that participants readily represented the complete rule
sets upon cue presentation. As in normal trials, participants
were very fast and accurate in catch trials, showing that they
were performing the task as requested. In catch trials with
unbalanced combinations of rules, the average accuracy was
80.2% (SD � 8.8%) and the mean RT was 1660.1 ms (SD �
196.7 ms). In short catch trials, participants had a mean accu-
racy of 89.4% (SD � 6.9%) and an average RT of 1688.9 ms

(SD � 176.4 ms). The accuracy of both types of catch trials was
again highly above chance level, which was for most catch
trials again 1/11 � 9.09% (like in normal trials) or even lower
for catch trials with unbalanced LCR combinations in which
both individual rules contained the same triggering stimulus
(e.g., “banana ¡ left; banana ¡ right”). These trials could
require up to six responses (if all target images matched the
rules; here, if three bananas were shown), so the chance level
drops to 1/29 � 3.45% for these trials. To assess the presence
of differences in RT and accuracy between the different types
of trials, we performed LMM analyses of the relation between
either RT or accuracy and the type of trial. As fixed effect, we
introduced trial type into the model. As random effects, we
considered intercepts and random slopes for each participant,
thus allowing for intersubject variability both in mean re-
sponses and in sensitivity to different rule types. The effect of
trial type on RT was not significant (�(2)

2 � 3.30, p � 0.19); in
contrast, the effect of trial type on accuracy was significant
(�(2)

2 � 45.1, p � 0.001). Post hoc tests using the Tukey’s HSD
method revealed that accuracy in experimental trials was sig-

Figure 3. Behavioral results (LMM). Plots of the mean response RTs (A) and accuracies (% of correct responses; B) for different trials. All: average across all trial types. LCR1 and LCR2: low-level
compound rules 1 and 2; HCR1 and HCR2: high-level compound rules 1 and 2. Exp: Experimental trials; Short: catch trials with delay 1 and delay 2 lasting 2 s; Unbalanced: catch trials with unbalanced
combinations of rules. OnlyHCR: Only the HCR applies; OnlyLCR: only the LCR applies; Both: both rules apply; None: neither the LCR nor the HCR applies. See text sections “Experimental stimuli” and
“Behavioral results” for a detailed description of the different conditions. Error bars indicate SEM.
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nificantly higher than either in catch trials with unbalanced
rule combinations ( p � 0.001) or in short trials ( p � 0.006).

To evaluate possible differences between diverse response
outcomes, we also analyzed RTs and accuracies for four different
response classes depending on whether the target images
matched the LCR or the HCR (see “Experimental stimuli” sec-
tion): (1) both the LCR and the HCR applied to the target
(“Both”); (2) only the LCR applied (“OnlyLCR”); (3) only the
HCR applied (“OnlyHCR”); or (4) neither the LCR nor the HCR
applied (“None”) (see Fig. 3 for mean RTs and accuracies for each
condition). In general, we found that the fewer rules to apply, the
faster and the more accurate the responses. We performed LMM
analyses of the relation between either RT or accuracy and the
combinations of rules to apply. As a fixed effect, we added the
combination of to-be-applied rules to the model. As random
effects, we considered intercepts for participants, as well as by-
participant random slopes to account also for differences be-
tween participants in their susceptibility to the experimental
factor. The effect of the combination of rules to be applied on
both RT and accuracy was significant (�(3)

2 � 78.38, p � 0.001 and
�(3)

2 � 41.22, p � 0.001, respectively). Post hoc tests using the
Tukey’s HSD method showed a significant difference in RTs be-
tween conditions for all the pairwise comparisons (all p � 0.001);
accuracies were significantly different between the conditions in
which the HCR had to be applied (either alone or together with
the LCR) and the conditions in which it had not (i.e., only the
LCR or neither of the rules applied; all p � 0.01). These differ-
ences were expected because the application of HCRs required
additional cognitive operations such as selective attention and
response inhibition. Together, these results further demonstrate
that participants performed the task as requested.

Neuroimaging results
Neural representations of low- and high-level rules
The central research question of this study was where and how
the brain represents low- and high-level rules, specifically in the
absence of information about the alternative level. To answer this
question, we performed MVPA decoding analyses to identify
brain regions that contained information on either low- (i.e.,
LCR) or high- (i.e., HCR) compound rules using data from a time
period (cue 1 and delay 1 in Fig. 1B) in which participants were
maintaining only one compound rule (either LCR or HCR). Note
that this period is also long before task execution, so information
about the target stimuli could not interfere.

We first used whole-brain searchlight analyses that test for
local activity patterns that can distinguish between rules from the
same level (i.e., either LCR or HCR rules). This analysis is com-
parable to a conventional (mass-)univariate analysis in the re-
spect that it is a spatially unbiased and locally resolved test. As
described in the Materials and Methods, this analysis tests for
information about individual rules within one hierarchical level
(e.g., LCR1 vs LCR2) to reveal rule-specific differences in brain
activity independent of any other potential level-specific effect.

The results of the whole-brain analyses are shown in Figure 4,
C and D, and in Table 2 (all p � 0.05 FWE corrected at the cluster
level, p � 0.001 at the single-voxel level, voxel extent threshold �
64 voxels). The identity of the LCRs could be decoded from right
superior parietal lobule (SPL, mainly BA 7/40), right ventrolat-
eral PFC (VLPFC, mainly BA 47), left inferior parietal lobule
(IPL, mainly BA 40), left precuneus (PC, BA 7), left cerebellum,
and bilaterally in middle occipital gyrus (MOG, mainly BA 19).
During the same time window (cue 1 and delay 1), information
on HCR identity was decoded in right SPL (BA 7/40), in left IPL

(BA 40), left PC (BA 7), and left middle temporal gyrus (MTG,
BA 37).

Differences between LCR and HCR representations
Next, we tested for spatial differences in decoding accuracies be-
tween LCRs and HCRs across the brain. Decoding accuracies
were significantly higher for LCRs than HCRs only in right pre-
central gyrus (PrCG); an additional ROI analysis did not show
any presence of HCR information in this region (Fig. 4B). HCR
accuracies were not significantly higher than LCR accuracies in
any region. Importantly, these whole-brain analyses showed no
statistically significant difference in decoding accuracy between
LCRs and HCRs in VLPFC.

Overlap between LCR and HCR representations
To further assess whether the regions where we could decode
either LCRs or HCRs encoded also information about rules from
the other hierarchical level, we performed a set of ROI analyses.
This additional test is important because, whereas the whole-
brain analyses can detect regions containing information any-
where in the brain without any a priori assumptions, they also
have a lower sensitivity given the required multiple comparison
correction. Restricting the location to a smaller area strongly in-
creases the sensitivity of the analysis and is thus useful to test
which regions contain both LCR and HCR representations. These
analyses are not circular because the trials used to define the ROIs
are independent from the trials used to perform the tests. In
contrast, testing the same conditions that had been used to define
the ROIs or comparing LCR versus HCR decoding accuracies
would be circular. Therefore, we only report the results for the
respective other condition in Figure 4, C and D (bar plots).

Information about LCRs was present in all four brain regions
that were found to encode HCR information in the whole-brain
analysis. Similarly, for all LCR ROIs, the mean decoding accuracy
for HCRs was significantly higher than chance level, except in
cerebellum (p � 0.43).

Finally, we assessed which brain regions encoded information
about rule identity regardless of the hierarchical level. We could
decode rule information with accuracy significantly higher than
chance in a wide frontoparietal network (Fig. 4A, Table 3) com-
prising SPL (BA 7), IPL (BA 40), MOG (BA 19), right VLPFC (BA
46/47), postcentral gyrus and PrCG (BA 6/4), and premotor cor-
tex (BA 6).

Comparison with results from previous studies
In contrast to previous studies investigating the hierarchy-based
segregation of information within PFC, we found no difference
between LCRs and HCRs (except in the PrCG). Moreover,
whole-brain analyses failed to detect information on rules in
many of the regions previously reported to perform hierarchy-
specific computations (Koechlin et al., 2000, 2003; Badre and
D’Esposito, 2007), as well as in some regions of the MDN argued
to represent rule information in a less specialized fashion (Fe-
dorenko et al., 2013). To better assess the role of those regions in
our task, we performed ROI analyses at the specific locations that
had been reported in these studies.

The ANOVA analysis performed using the ROIs from set 1
(Badre and D’Esposito, 2007) showed a significant effect of hemi-
sphere (F(1,36) � 6.66, p � 0.014, �g

2 � 0.005). Decoding accura-
cies of the ROIs in the right hemisphere were higher than those of
the ROIs in the left one. The intercept term was also significant
(F(1,36) � 4006, p � 0.001, �g

2 � 0.975), indicating that the mean
decoding accuracy over the whole PFC network was higher than
chance. Importantly, there was no effect of either ROI or rule
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level (p � 0.84 and p � 0.30, respectively) and no interaction
effect of these two factors (p � 0.23), indicating that decoding
accuracies for LCRs and HCRs in the different PFC regions did
not differ (Fig. 5). To further assess the presence and distribution
of LCR and HCR information in each ROI, we performed multi-
ple one-sample and paired t tests (we report only results signifi-
cant at p � 0.05, uncorrected). LCR information was present in
all regions except the left pre-PMd cortex (p � 0.16); HCR infor-
mation was present in left pre-PMd ROI and in right LPFC and
FPC ROIs. The difference between LCR and HCR decoding ac-
curacies was significant only in the right PMd ROI (t(70.8) � 2.48,
p � 0.01, d � 0.575), where the mean decoding accuracy was
higher for LCRs than for HCRs.

The ANOVA analysis performed including the ROIs from set 2
(Koechlin et al., 2000, 2003) showed no significant main effect of any
factor or any interaction effect. The intercept term was significant

(F(1,36) � 10675, p � 0.001, �g
2 � 0.977), indicating a mean decoding

accuracy significantly higher than chance and thus the encoding of
rule information in the network of PFC regions. The results of t tests
similar to those performed for the ROIs in set 1 showed the presence
of LCR information in both the left and the right PMd ROIs and in
the right LPFC ROI; HCR information was encoded by the left pre-
PMd cortex. The LCR and HCR decoding accuracies differed signif-
icantly only in the right PMd ROI (t(68.6) � 1.96, p � 0.03, d �
0.456), where the mean decoding accuracy for LCRs was higher than
for HCRs.

The ANOVA analysis performed using the ROIs from set 3 (Fe-
dorenko et al., 2013) showed neither a significant main effect of any
factor nor interaction effects. Once again, the intercept term was
significant (F(1,36) � 3561, p � 0.001, �g

2 � 0.972), indicating a mean
decoding accuracy significantly higher than chance and thus reveal-

Figure 4. Neuroimaging results. A, Main effect of compound rule encoding: regions encoding which compound rule is currently active regardless of its hierarchical level. Brain regions
representing rule identity were VLPFC, SPL and IPL, premotor cortex, postcentral gyrus and PrCG, and MOG. The effect in VLPFC is not driven only by LCR information despite the fact that the HCR
whole-brain analysis (D, left) did not detect information in VLPFC. In fact, the ROI analysis in the significant LCR clusters demonstrates significant decoding accuracy for HCRs in VLPFC (C, right). B,
Significant differences between LCR and HCR encoding: regions where decoding accuracies were different for LCRs and HCRs, whole-brain analysis. In PrCG (green) decoding accuracies were
significantly higher for LCRs compared with HCRs. The barplot on the right shows the mean decoding accuracy for either LCRs or HCRs within this region. C, Results of the whole-brain decoding
analysis for LCR identity. Brain regions encoding information about low-level rules (in pink) were VLPFC, PC, SPL, IPL, cerebellum, and MOG. The barplot on the right shows the mean decoding
accuracy for HCRs in the LCR ROIs (yellow bars). D, Results of the whole-brain decoding analysis for HCR identity. Brain regions containing information on high-level rules (in yellow) were SPL, PC,
IPL, and MTG. The HCR whole-brain decoding analysis was not significant in VLPFC (green circle). However, HCR information was detectable in this region when a more sensitive ROI-based approach
was used (sixth bar in the bar plot in C and see text section “Overlap between LCR and HCR representations”). The barplot on the right represents the mean decoding accuracy for LCRs in the HCR ROIs
(pink bars). The results of the ROI analyses (barplots in C and D) confirmed that information about LCRs was present in all HCR ROIs and that HCR information was present in all LCR ROIs except
cerebellum. Color scales represent t-values for the group-level statistics. Error bars indicate SEM. rMOG � right MOG; lMOG � left MOG; Cer � cerebellum. *p � 0.05; **p � 0.01; ***p � 0.001.
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ing rule information encoding in the network of PFC regions. Re-
sults of t tests similar to those performed for the ROIs in sets 1 and 2
revealed the presence of LCR information in the right aIFS and pIFS
ROIs and in the IFJ and PM ROIs on both hemispheres; HCR infor-
mation was present in left IFJ and PM cortex. LCR and HCR decod-
ing accuracies did not differ significantly in any of the regions of set 3.

To summarize, these analyses show that information about
both LCRs and HCRs was present in the network of PFC regions
previously reported to perform hierarchy-specific computations,
as well as within the MDN. Moreover, these analyses show no
difference between LCRs and HCRs in any node of the two net-
works except in the right PMd cortex. This area corresponds
approximately to the region where we found higher decoding
accuracy for LCRs than for HCRs in the present study (i.e., PrCG;
see Fig. 4B).

Moreover, we compared the results of the present study with
the findings of previous MVPA studies on rule representation
from our group (Fig. 6). The accuracy map (Fig. 6, blue) from the
combined ANOVA analysis on rule identity was compared with
the accuracy maps from the analysis on compound rule identity
in Reverberi and colleagues (2012a, 2012b) (in Fig. 6, the regions
are shown in green and red, respectively). In those studies, MVPA
was used to identify neural representations of conditional com-
pound rules similar to our LCRs and HCRs. Reverberi and col-
leagues (2012a) used compound conditional rules linking a
specific category to a motor response (e.g., “if face then left; if
house then right”); Reverberi and colleagues (2012b) used com-
pound conditional rules that linked a particular category with a
letter that indicated the motor response depending on its position
on the screen (e.g., “if furniture then A; if transport then B”). The
clusters in the right VLPFC (BA 47) found in all the three studies
overlap (overlaps are shown in cyan, yellow, magenta, and white
in Fig. 6). The clusters in the left IPL (BA 40) in the present study
and in Reverberi and colleagues (2012a) are also overlapping
(region in cyan on the map on the right in Fig. 6).

The comparison identified VLPFC as the only brain region
encoding compound rule information across all three studies.
Therefore, we conducted additional analyses to explore the dis-
tribution of information in this region. We performed ROI anal-
yses similar to those described in the “Testing for overlap between
LCR and HCR representations (ROI and whole-brain)” section;
we used the VLPFC clusters (in inferior frontal gyrus, BA 47)

from the two previous studies referred above as ROIs to test for
the presence of information about LCRs and HCRs. The results of
these analyses confirmed that the average decoding accuracy for
both LCRs and HCRs was significantly higher than chance in the
VLPFC regions from both previous studies (all p � 0.05, cor-
rected), with no significant difference between LCR and HCR
decoding accuracies (p � 0.09 for the region in Reverberi and
colleagues 2012a and p � 0.21 for the region in Reverberi and
colleagues 2012b).

RT decoding and correlation between RT measures and fMRI results
Recently, Todd and colleagues (2013) hypothesized that decod-
ing of rule identity from fMRI data could be caused by differences
in RT (or related factors such as difficulty). To test this hypothesis,
we assessed whether RT within participants contained informa-
tion about the two LCRs (or HCRs) by conducting cross-validated
decoding between the two LCRs (or HCRs) on RT data. We found
that, in general, RTs predicted LCR (mean decoding accuracy �
57.88%, 95% confidence interval [CI95] � 52.8 – 63.0%;
t(36) � 3.15, p � 0.003, d � 1.05) and HCR (mean decoding
accuracy � 57.43%, CI95 � 51.8 – 63.0%; t(36) � 2.69, p � 0.01,
d � 0.90) better than chance.

However, differences in RT do not imply that they also under-
lie fMRI decoding or have a shared common cause. This is par-
ticularly true in our experiment, in which the task phase that we
explored is seconds before the phase in which rules are applied
and RT measured. Therefore, we tested this possibility directly by
correlating RT accuracies (and absolute differences in RT) to the
fMRI accuracies of all significant ROIs (see also Reverberi et al.,
2012b). The results clearly contradict the hypothesis that RT dif-
ferences underlie fMRI rule decoding both for LCRs and HCRs
(Table 4). No correlation was significant at � � 0.05 after
multiple-comparisons correction either for correlations with RT
decoding accuracies or for absolute RT differences. Without cor-
rection, only one correlation analysis (of the 22 tests performed)
was significant at the standard �-level of � � 0.05, but here the
correlations between RT and fMRI accuracies were even negative
(PrCG/SPL, � � �0.36, p � 0.03; IPL, � � �0.31, p � 0.07),
meaning that participants with higher accuracies in fMRI decod-
ing had lower accuracies in RT decoding. If RT effects indeed
underlie fMRI decoding, then correlations between the two
should be positive; that is, participants with higher fMRI accura-
cies should also show higher RT accuracies. Therefore, these re-
sults contradict the hypothesis that RT differences underlie fMRI
decoding between rules in our experiment. Given that null find-
ings provide limited evidence, we performed additional analyses
to further assess the relation between RT differences and fMRI
decoding performance. For this, we calculated Bayes factors for
the correlation analyses and added a regressor of no interest to the
second-level analyses that contrasts the LCR and HCR decoding
accuracies.

First, we performed one-sided tests for positive correlations
between RT measures and fMRI decoding accuracies (H0: no
correlation between the two measures, H1: flat “noninformative”
prior for positive correlation values). The results are shown in
Table 4. We calculated Pearson and Kendall rank correlation
coefficients (Kendall coefficients are not shown in Table 4).
Nearly all correlations between decoding on RTs and fMRI de-
coding accuracies provide at least moderate evidence for H0 (i.e.,
all BF0� � 3). Correlation in PrCG provides even strong evidence
for H0 (BF0� � 10), whereas correlation in MOG shows only
anecdotal evidence for H0 (BF0� � 1). Similarly, most correla-
tions between average RT differences and fMRI decoding accu-

Table 3. Results of the whole-brain decoding analysis for rule identity irrespective
of the hierarchical level

Anatomical region
Cluster
size (k)

p
(FWEc ) x y z

Accuracy at
t-peak (%)

Average
cluster

accuracy Main BAs

SPL and IPL/MOG 6264 �0.001 33 �58 52 57.9 54.9 7,40,19
48 �52 58 57.7

�48 �70 �8 57.5
Inferior and middle

frontal gyrus
346 �0.001 48 47 �5 55.9 54.3 47, 46

45 44 �20 55.0
45 53 �11 54.3

PrCG and postcentral
gyrus

182 �0.001 �60 �1 34 55.5 54.6 4, 6
�51 �4 25 55.5
�57 �16 28 55.3

Premotor cortex 71 0.001 �18 5 73 54.3 54.6 6
�27 5 61 54.3
�18 8 61 54.3

Brain regions with decoding accuracies significantly higher than chance for rule identity irrespective of the hierar-
chical level are reported (i.e., results from the whole-brain ANOVA in text section entitled “Testing for overlap
between LCR and HCR representations (ROI and whole-brain)”; see also Fig. 4A). Coordinates, p-values, and decod-
ing accuracies are as in Table 2.
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racies also provide moderate evidence for H0. PrCG and
cerebellum provide strong evidence for H0 (BF0� � 10), whereas
MOG again shows only anecdotal evidence (BF0� � 1). No result
indicated evidence for a positive correlation (i.e., H1). Together,
these results demonstrate that the observed null correlations are
informative and reasonably robust.

Finally, we recomputed the second-level analysis testing for
differences in decoding accuracy between LCRs and HCRs by
adding a regressor of no interest that accounts for individual
subject RT decoding accuracy effects. If fMRI decoding results
depended on RT differences, then adding the RT covariate should
remove fMRI results. The results confirm our initial main results:

only PrCG shows decoding accuracies
significantly higher for LCRs than HCRs
and no decoding accuracies significantly
higher for HCRs than LCRs are present
anywhere in the brain, as in the original
analysis without the regressor of no
interest.

Discussion
In this study, we investigated how and
where the human brain represents rules at
different hierarchical levels. First, we
found that both low- and high-level rules
can be decoded from local patterns of
brain activity. Second, information about
both levels is present across frontal and
parietal brain regions. Third, the brain re-
gions encoding active rules in general did
not differ between high and low hierarchi-
cal levels, except for motor and premotor
cortex. Our study differs from previous
work on hierarchical rule sets (Koechlin et
al., 2003; Badre and D’Esposito, 2007; Nee
and Brown, 2012) in three important as-
pects: (1) we focused on the pure repre-
sentation of low- and high-level rules; (2)
we investigated each rule level in isolation
from other task-related information; and
(3) we minimized potential aspecific dif-

ferences by conveying information at all hierarchical levels with
formally identical IF-THEN rules. Most previous studies ana-
lyzed brain activity during rule application, making a clean sep-
aration between rule representations and rule application
difficult (e.g., preparation vs execution; Grafton and Hamilton,
2007). Our results address both the neural representations of
hierarchical rule sets and the organization of the human control
system.

Rules are represented regardless of their hierarchical level
The first aim of this study was to locate neural representations of
rules from different levels within a cognitive hierarchy. Both
LCRs and HCRs could be decoded from brain activity patterns
within a network comprising mainly parietal (SPL, IPL, and PC)
and frontal (VLPFC) brain regions. These results replicate previ-
ous findings from our group showing that lateral parietal regions
and VLPFC represent conditional rules (Fig. 6) and extend them
to rules at a higher hierarchical level. In particular, VLPFC rep-
resented the identity of conditional rules in all three studies. This
result agrees with evidence that VLPFC is involved in task–rule
retrieval and maintenance (Sakai and Passingham, 2003; Rowe et
al., 2008; Bengtsson et al., 2009). VLPFC has been related to the
use of both bivalent stimuli (Crone et al., 2006) and conditional
rules (Bunge, 2004; Reverberi et al., 2012a, 2012b). In all of these
experiments, the stimulus–response associations were variable, so
the same stimuli required different responses depending on the rule
active on a specific trial. Despite our LCRs and HCRs belonged to
different hierarchical levels, they were both conditional rules
linking a condition to its consequence (either a button press or a
relevance shift) and were both represented in VLPFC. This sug-
gests that VLPFC flexibly represents conditional associations re-
gardless of their hierarchical level. This high flexibility, however,
does not imply that any task-relevant information would be repre-

Figure 5. Rule information in PFC regions reported in a previous study on hierarchical rule representation. The plot shows the
mean decoding accuracy in the four ROIs in the right hemisphere of set 1 (Badre and D’Esposito, 2007). The average decoding
accuracy in these regions is displayed separately for LCRs and HCRs. Error bars indicate SEM. PMd � Premotor dorsal; pre-PMd �
pre-premotor dorsal. *Significant difference ( p � 0.05) between LCR and HCR decoding accuracies.

Figure 6. Comparison with regions encoding compound conditional rule identity in previous
MVPA studies. Results of analyses decoding rule identity from the present study (in blue) and
two previous MVPA studies on rule representation (from Reverberi and colleagues 2012a, in
green, and from Reverberi and colleagues 2012b, in red) are depicted. The clusters in right
VLPFC encoding compound rule identity in the present study, in Reverberi and colleagues
(2012a), and in Reverberi and colleagues (2012b) overlap (yellow, cyan, magenta, and white
areas). Additional overlap (cyan area on the map on the right) exists between the clusters in
parietal cortex from the present study and from Reverberi and colleagues (2012a).
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sented in VLPFC; for example, the information on which rule should
be applied first is not encoded in VLPFC (Reverberi et al., 2012b).

Beyond VLPFC, parietal cortex has been repeatedly impli-
cated in rule retrieval and maintenance (Bunge et al., 2003; Bode
and Haynes, 2009; Reverberi et al., 2012a). We found that SPL,
IPL, and PC encoded information about both LCRs and HCRs,
suggesting that these regions are involved in rule representation
independent of their hierarchical level. This result is consistent
with a recent meta-analysis (Niendam et al., 2012) showing that
these parietal regions are consistently activated across studies us-
ing different tasks involving cognitive control (see also Wis-
niewski et al., 2015).

We found few brain regions that specifically encoded rules
from one hierarchical level: right PrCG and cerebellum encoded
only information about LCRs. A potential explanation for the
difference in PrCG is that this region encodes the link between
stimuli and motor responses, which were only present in LCRs. Sim-
ilarly, a main function of the cerebellum is motor control (Ito� , 1984),
which LCRs, but not HCRs, required. Therefore, we speculate that
the differences we found between LCRs and HCRs might be ex-
plained by the different consequences that they produced.

The second goal of the study was to delineate how rules at
different hierarchical levels are represented in the brain. We
found that regions within the frontoparietal control network en-
code both the LCRs and the HCRs. Explicitly testing for differ-
ences in decoding accuracies between LCRs and HCRs in the PFC
regions of the MDN, as well as in regions previously reported to
perform hierarchy-specific computations, revealed differences
only in premotor cortex, suggesting that, in almost all of these
regions, rule information is encoded regardless of hierarchical
level during maintenance.

Why did we not find a gradient in PFC whereas previous
studies did? We propose a number of possible explanations. First,
most evidence in favor of the existence of a functional gradient in
PFC comes from studies that analyzed brain activity during rule

implementation, thus collapsing rule representation and applica-
tion. The required processing of rule and stimuli during execution
makes it difficult to distinguish processing from representations of
specific content (Wood and Grafman, 2003). Therefore, differences
in results with previous studies may reflect different cognitive pro-
cesses underlying rule application and representation (Toni et al.,
1999; Sigala et al., 2008). To permit a separation and to identify
specifically neural representations of hierarchical rules, we ap-
plied MVPA to fMRI data from a time window before task exe-
cution so that processing could not interfere with the analysis.
Second, multiple principles defining rule hierarchies exist (see
“Experimental stimuli” section). Our experiment does not ex-
plore hierarchies based on temporal abstraction but those relying
on policy abstraction (but see “Experimental stimuli” section for
more conservative definitions of policy abstraction) and asym-
metrical relations. Therefore, although our results suggest that
hierarchical relations and policy abstraction (as defined in the
present study) are not sufficient to elicit gradients in PFC, they do
not exclude that other types of hierarchical relations (e.g., tem-
poral) might induce PFC gradients. Third, the only previous
study using MVPA to investigate hierarchical rule set representa-
tions (Nee and Brown, 2012) manipulated both the low and the
high hierarchical levels simultaneously (in the “early delay”, con-
ditions differ for both the context that is relevant to determine the
target response and the stimulus that is associated with the target
response). This feature prevents the exploration of each level
representation independently. However, it also induces the rep-
resentation of the whole hierarchical rule set and not just of a
specific component (i.e., either only high- or only low-level rules)
as in our paradigm. This hints at the possibility that the simulta-
neous representation of the full hierarchical rule set is critical to
inducing the involvement of more anterior PFC regions, whereas
the representation of only one level of the hierarchy, even the
higher one, is not.

Organization of the human control system
This study explored two questions relevant for the current debate
on the organization of the human control system: (1) whether
rules from different hierarchical levels are encoded by a single
general system or represented at different locations and, if so,
whether specialized regions segregate along an anterior-to poste-
rior gradient (Christoff and Gabrieli, 2000; Fuster, 2000; Koech-
lin and Summerfield, 2007; Badre and D’Esposito, 2009); and
(2) how rule information is distributed across the brain.

Gradient theories defining hierarchies based on either policy
abstraction or asymmetrical relations (see “Experimental stim-
uli” section) predict that higher-level rules (HCRs) should be
represented more anterior within PFC compared with lower level
rules (LCRs). In contrast, theories claiming that a single network
encodes task rules (Dehaene and Naccache, 2001; Duncan, 2001)
predict no differences between HCRs and LCRs, with informa-
tion from both rule levels represented within the network. We
found neither prefrontal nor parietal regions specifically encod-
ing one hierarchical level. Therefore, the hierarchy relation ex-
plored in this study did not generate an anatomo-functional
gradient, as some gradient theories would have predicted. How-
ever, our results are not fully consistent with accounts proposing
a single network for task coding. Information distribution in our
study partly differs from that proposed within the MDN theory
(Duncan, 2006) because only some MDN regions represent our
rules (but consider Harding et al., 2015; Woolgar et al., 2016).
Moreover, brain regions critical for encoding hierarchical rule

Table 4. Correlations between RT analyses and fMRI decoding

DART �	RT�

p � BF0� p � BF0� x y z

LCR ROIs
MOG 0.28 0.18 2.43 0.22 0.20 1.09 �36 �85 �8
VLPFC 0.89 �0.02 3.46 0.97 �0.01 8.72 48 44 1
SPL/PrCG 0.03* �0.36* 12.74 S 0.22 �0.21 10.87 S 45 �19 49
Cerebellum 0.73 �0.06 8.54 0.32 �0.17 10.39 S �9 �61 �8
PC 0.45 �0.13 5.26 0.68 �0.07 5.43 �9 �58 52
MOG 0.66 �0.08 7.49 0.90 �0.02 4.17 36 �91 10
IPL 0.07 T �0.31 T 9.78 0.63 �0.08 7.71 �51 �7 22

HCR ROIs
SPL/angular

gyrus
0.39 �0.15 4.81 0.27 �0.18 7.88 33 �67 49

PC 0.29 �0.18 4.11 0.19 �0.22 6.62 �27 �76 31
IPL 0.63 �0.08 5.54 0.95 �0.01 7.79 �48 �37 40
MTG 0.51 �0.11 4.35 0.78 �0.05 6.07 �48 �58 �11

P-value and correlation coefficient (�) of rank– order correlation analyses between decoding accuracies on RT
(DART )/absolute RT differences ( 	RT ) of low-level compound rules (LCRs) and high-level compound rules (HCRs)
correlated to fMRI decoding accuracies of all significant ROIs (mean fMRI decoding accuracy across FIR bins 3–5). No
correlation survived multiple-comparisons correction. The only correlations with p � 0.10 (LCR DART in SPL/PrCG
and IPL) even showed a negative correlation, meaning that better decoding accuracies on RTs correlated with worse
decoding accuracies on neural data. Bayes factors (BF0�) for H0 over H1 (H0: no correlation between the measure
and the fMRI decoding accuracy; H1: positive correlation between the two measures) for Pearson’s correlation
coefficients are also reported. Values of BF0� � 10 indicate strong evidence for H0, values � 3 denote moderate
evidence, whereas values � 1 indicate anecdotal evidence for H0. BF0� for all correlations indicate moderate
evidence for H0, except for MOG, where BF0� shows anecdotal evidence for H0 and SPL/PrCG, where it indicates
strong evidence in favor of H0. Together, these results speak against the hypothesis that differences in RT cause fMRI
decoding results (or have a common underlying cause). ROI names and x, y, and z coordinates are as in Table 2.

*Significant at p � 0.05, uncorrected; T superscript indicates trend (0.05 � p � 0.10, uncorrected); S superscript
indicates strong evidence for H0.
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sets (e.g., VLPFC) lie outside the MDN as described currently
(Fedorenko et al., 2013; but see Woolgar et al., 2016).

Overall, our results suggest that the brain represents all con-
ditional rules in the same way regardless of their position in the
investigated cognitive hierarchy. This implies that the human
brain did not use this dimension as an organizational principle
for building task representations. This does not mean that cogni-
tive control and its neural basis are functionally homogeneous or
exclude that gradients might emerge when different types of hi-
erarchical relations are considered. Other studies have shown
functional dissociations within the control network for different
features; for example, signals related to the immediate versus past
context (Koechlin et al., 2003; Nee and D’Esposito, 2016), rule
identity and order (Reverberi et al., 2012b) or the type of logical
relation (Baggio et al., 2016). Our research approach is useful in
investigating which dimensions are relevant in shaping the hu-
man control system and thus is promising to unravel its neuro-
physiological architecture.
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