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Multi Pixel Photon Counter (MPPC) is one of devices 
called silicon photomultiplier (SiPM). It is characterized by a 
fast response time, high gain coefficient, high photon 
detection efficiency resulting in good energy resolution, low 
voltage operation, resistance to mechanical shocks, 
compactness and immunity to a magnetic field. A MPPC gain 
is temperature dependent, so it is necessary to use a device 
which allows to maintain a constant value of a MPPC gain.

We report on two devices designed at the National Centre 
for Nuclear Research (NCBJ): FilterBox@NCBJ and 
MTCD@NCBJ to be used at the Joint European Torus (JET) 
during high count rate measurements. 

The experiments at JET during D-T campaigns will be 
performed in harsh radiation conditions, especially at high 
rates up to ~1 Mcps and at relatively high gamma-ray energy 
about a few MeV. Devices designed to replace existing 
detector at JET have to fit to available space and must use 
cabling installed almost 20~years ago. The device should be 
user-friendly and easy operated by both engineers and 
physicists. It is worth to notice that in case of a completely 
new system, some new designed elements could be optimized 
in comparison with a presented solution.  

A device for real-time temperature monitoring and MPPC 
gain stabilization was designed and produced at NCBJ, 
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necessary due to a very strong voltage-temperature 
dependence characteristic for MPPC. 

In Fig. 1, the overall scheme of electronics for the upgraded 
system is shown. 

Fig. 1. Overall scheme of a detector system for the upgraded JET 
Gamma-ray Camera. HV denotes a bias voltage for MPPC, LV - 
power supply for both temperature sensor and active elements. 

 The most important requirements for electronics could be 
summarized as follows: 

 setting of MPPC bias voltage,
 integrated temperature sensor,
 integrated power supply MAX1932,
 advanced power supply closed loop control.

A detector system consists of a set of individual capsules 
with a scintillator and a dedicated printed circuit board (PCB). 
On each PCB, a temperature sensor is mounted. The TSIC 
506F sensor is characterized by an outstanding accuracy of 
±0.1K, an excellent long-term stability and a very low current 
consumption of 30 µA during operation. The MPPCs, type 
S13361-3050NE-04 from Hamamatsu, were used. 

An active system based on a transimpedance amplifier 
(TIA) was designed for MPPC signal read-out to obtain a 
signal characterized by a high output amplitude with low time-
constant. TIA is mounted on the same PCB described above. 

In Fig. 2 a detailed schematic of TIA is shown. All results 
presented in this paper were obtained with the same 
experimental conditons and a CAEN Desktop Digitizer 
DT5730 was used for data acquisition. 
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Fig. 2. Detailed schematic of TIA. 

Information on temperature values is sent from a capsule to 
the FilterBox@NCBJ, based on a Microsemi ProAsic3 FPGA. 

In Fig. 3 a photo of FilterBox@NCBJ is presented. 

 
Fig. 3 FilterBox@NCBJ. 

The main functions of the FilterBox@NCBJ are: 
1. to serve for all individual capsules in each part of the

Gamma-ray camera,
2. to filter a bias voltage for MPPC in a capsule,
3. to power active elements, e.g., TIA and a temperature

sensor, mounted on PCB. For each capsule, a
separated DC linear voltage regulator is used to
minimize noise and crosstalk between detectors,

4. to provide communication with the MTCD@NCBJ
using three independent communication channels
based on a RS485 standard. Via RS485 actual
detector temperature values are read from
FILTERBOX@NCBJ.

FilterBox@NCBJ is supplied from a dedicated low voltage 
laboratory power supply. 

The firmware for the Microsemi ProAsic3 FPGA on 
FilterBox@NCBJ was designed in a VHDL language. It 
incorporates modules for reading a temperature from 
10 sensors. The power supply for each temperature sensor can 
be switched on/off individually. Temperature readout is done 
continuously with a programmed frequency and temperature 
values are accessible by reading dedicated registers. 

The MPPC Temperature Compensation Device 
(MTCD@NCBJ) is using a measured dependence of a 
breakdown voltage on temperature to maintain a constant 
value of the MPPC gain. The MPPC Temperature 
Compensation Device (MTCD@NCBJ) with integrated power 
supplies comprises two main parts: one is connected with 
10 adjustable MPPC bias voltage channels for each individual 
capsule, the other one is used to determine an optimal value of 
a bias voltage which guarantees a constant gain. Each channel 
has its own isolated converter to eliminate ground loops, 
followed by a low-dropout regulator to minimize a ripple on 
output. Connections are protected against electrostatic 

discharges. All functions are controlled from a personal 
computer. 

In Fig. 4 the MTCD@NCBJ board is shown. 

Fig. 4. MTCD@NCBJ with integrated power supplies. 

Power supplies used in MTCD@NCBJ are characterized by 
an output voltage up to 80 V, filtering of the MPPC voltage 
and an option to limit current. 

A development board MicroZed based on the Xilinx 
Zynq®-7000 was mounted in MTCD@NCBJ. A 
semiconductor device Zynq contains dual core ARM Cortex-
A9 CPU with FPGA peripherals what allows to implement 
firmware both in HDL and high level language. A main 
algorithm was implemented in C language under Linux 
operating system to provide in an easy way a connection to 
MTCD@NCBJ via Ethernet or USB and investigation of an 
actual status of the device. 

A control of 10 analog-to-digital (ADC) and 10 digital-to-
analog (DAC) converters was implemented in VHDL. 
Modules allows to be controlled by CPU via standard 
AXI(AMBA) on chip interconnection. 

PID (proportional–integral–derivative) regulator is applied 
to calculate a difference between actual and desirable voltage 
value. PID algorithm was implemented in C to control each 
high-voltage channel separately. A desirable value of a voltage 
is calculated based on temperature read from 
FilterBox@NCBJ.  

In Fig. 5 a logic of MTCD@NCBJ is shown. 

Fig. 5. Flow diagram of MTCD@NCBJ logic: left: CPU, right: 
programmable logic side in control program. 
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A protection of overvoltage was implemented in a control 
part of a program to guarantee that detectors will not be 
destroyed by applying too high voltage.

The output voltage, determined by a 20-bits digital-analog 
converter (DAC1220E), is delivered through the buffer to the 
feedback loop of the HV switching regulator 
(MAX1932ETC+). 

Measurements detailed: 
• 20 mm×15 mm cylindrical CeBr3 scintillator,
• MPPC type S13361-3050NE-04 from Hamamatsu,
• active system based on a transimpedance amplifier

(TIA) to obtain a signal characterized by a high
output amplitude with low time-constant,

• 137Cs source emitting 661.7 keV gamma linne with an
activity of 400 MBq.

Preliminary results are presented in Figs. 6 and 7 as well as in 
Table 1. 

Fig. 6. Peak position as a function of MPPC temperature. 
Upper: without MTCD@NCBJ. 
Lower: with MTCD@NCBJ.

Fig. 7. Peak position as a function of count rate. 

Table 1. Peak position and FWHM as a function of count rate. 
Rate, Mcps Peak 

position 
(PP), ch 

=|PP-
PPav|/PPav, % 

FWHM, % 

1 748 2.5 8.48 
0.1 743 3.3 8.46 
0.001 778 1.2 7.65 
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