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Abstract 

The aim of this work was to test if the smartphone’s 

embedded triaxial accelerometer can be used to extract 

respiratory frequency information from the chest 

movements during a controlled breathing protocol. 

Respiratory signals from 10 young volunteers were 

recorded simultaneously, by two smartphones (iPhone 4s 

and 6s; sampling frequency ~100 Hz), positioned one on 

the sternum and one on the belly, while in supine posture. 

At the same time, a belt transducer was used to acquire 

the reference respiratory signal. A controlled breathing 

protocol, consisting of four consecutive phases of 12 

respiratory cycles each (respiratory frequencies at 0.25, 

0.17, 0.125 and 0.1 Hz), was imposed through the 

visualization of a moving bar on a display. After low-pass 

filtering (fc=0.5 Hz), the respiratory signal was obtained 

from both smartphones, and respiratory frequency 

derived for each phase. Compared to the belt transducer, 

the resulting error was lower than 2% for each imposed 

respiratory frequency, for both smartphones’ positions, 

with better results obtained for the smartphone positioned 

above the belly. 

 

 

1. Introduction 

The use of mobile phones is increasing ubiquitously, 

and individuals are assuming a more active role in 

monitoring and managing their health and wellness. The 

introduction of this device for clinical applications and 

self-tracking has the potential to change the way 

healthcare is delivered [1].  

In healthcare applications, the feasibility to use 

smartphone’s accelerometers have been already tested to 

monitor subject’s activity [2], [3]. Moreover, its potential 

use for heartbeat detection it has been already 

demonstrated: when properly positioning the smartphone 

on the chest, close to the heart apex, the vibrations due to 

the heart contraction are recorded (i.e., 

seismocardiography), from which to derive the beat-to-

beat duration measurements [4], [5].  

The use of the accelerometers to record the respiratory 

activity has been already proposed [6], [7]. The 

accelerometers are embedded into a flexible belt, which 

can be preferable placed around the thorax at the level of 

the heart apex, capturing the movements of the chest 

derived from the subject respiration. As respiration is 

actually one of the most monitored vital signs, 

accelerometers represent an easy and simple alternative 

method to measure the respiratory movements in an 

unobtrusive way, in particular in an outpatient 

environment.   

In this context, the smartphone’s embedded 

accelerometers could represent an alternative tool to 

record the respiratory signal, offering the possibility of 

recording respiratory activity in a non-invasive way using 

a hand-held device. This work aimed at exploring the 

feasibility of the smartphone’s triaxial accelerometer to 

monitor the respiratory activity from two possible 

locations on the subject’s torso, following a controlled 

breathing protocol, and to test the accuracy of the 

estimated respiratory frequencies compared to a belt 

reference.  

 

 

2. Experimental set-up and study 

population 

Two mobile phones (iPhone4s and 6s, sampling 

frequency ~100 Hz) were used to acquire the 

accelerometric signal to derive the respiratory waveform 
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(RW). One device was positioned approximately at the 

heart apex, above the sternum (POS1), while the other 

was placed above the belly (POS2). The reference 

respiratory waveform was simultaneously acquired by a 

belt (RWb) transducer (Pneumotrace II; AD Instruments), 

that measured the changes in the abdomen and thoracic 

circumference, thus following the inhalation and 

expiration, and then used to derive the breathing rate.  

In addition, a 6-lead electrocardiogram (ECG) (Nexfin 

HD monitor, BMEYE, Amsterdam) sampled at 1000 Hz 

was simultaneously acquired. The two smartphones were 

synchronized at the beginning and at the end of the 

protocol, by tapping on the subject shoulder. In this way, 

a motion artefact was sensed concurrently by both 

devices and by the ECG, thus allowing temporal 

alignment with the belt transducer signal. Ten healthy 

volunteers took part in this pilot study (Age: 22.3 ± 1.4 

years; Body Mass Index: 21.9 ± 1.2 Kg/m2). The 

experimental procedures described in this paper were in 

agreement with the ethics principles defined in the 

Helsinki Declaration of 1975, as revised in 2013. Ethical 

committee approval of the Université Libre de Bruxelles, 

Hopital Erasme, was obtained prior to the study. The 

subjects laid on a bed in supine position and performed a 

controlled breathing protocol (CBP), by following a 

moving bar on a display. This bar oscillates at four 

different frequencies fixed at 0.25, 0.17, 0.125 and 0.1 

Hz, respectively, for 12 cycles each. The CBP was set so 

that inspiration and expiration periods were of the same 

duration, and the entire recording lasted approximately 6 

minutes. 

 

 

3. Methods 

3.1. Pre-processing step 

As can be observed in Fig. 1, the signal acquired from 

the triaxial accelerometer using the smartphone contains 

information from both respiratory and cardiac activities, 

mainly visible along the longitudinal (Y-axis) and the 

antero-posterior (Z-axis) components. Periodic 

deflections due to respiration were clearly visible along 

the longitudinal axis, especially for the mobile phone at 

POS2. Accordingly, only this longitudinal component of 

the accelerometric signal from both smartphones (named 

as RWPOS1, RWPOS2) was taken into consideration for 

further analysis. The baseline wandering of the 

accelerometric signal due to the respiratory activity was 

preserved with a low-pass filter with a cut-off frequency 

fixed at 0.5 Hz, using a 4th Butterworth filter, to remove 

cardiac activity. In addition, each respiratory phase of the 

CBP was visually identified, to separately proceed in 

deriving respiratory frequency for each phase, both in 

time and frequency domain. 

 

3.2.  Time domain analysis  

Respiratory intervals (RI), each defined as the distance 

between two consecutive minima, were automatically 

identified by detecting the minimum of the RW signals 

(Figure 2) and of the belt signal, using an algorithm 

implemented in Matlab R2016b (The Mathworks). The 

detection procedure was achieved by searching the valley 

using a time-moving window spanning the 70% of the 

 
Figure 1. Example of the three accelerometric 

orthogonal components (X,Y,Z) recorded by the 

smartphone in POS1 and POS2. The chest wall 

movements for respiratory activity were mainly 

visible along the longitudinal (Y-axis) component 

with respect to the other two directions. 

 
Figure 2. Example of low-pass filtered longitudinal 

component of the accelerometric signal, representing 

the respiratory activity, recorded at POS2 during 

controlled breathing at different frequencies (0.25, 

0.167, 0.125 and 0.1 Hz). The detected valleys (red 

dots) defined the respiratory intervals (RI).  
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duration of the preceding cycle. Respiratory intervals 

from the belt transducer (RIBelt) and the smartphones 

(RIsmart) were used to calculate the respiratory frequency 

(RF) as the inverse of the average of all the RI measured 

in each protocol phase. Results obtained from the 

smartphones and the belt reference in each phase were 

compared and the relative error (ƐT %) was evaluated as: 
 

 
 

3.3. Frequency domain analysis 

In order to proceed with spectral analysis, due to the 

unequally sampled data the Lomb-Scargle periodogram 

was utilized: it is suited for weak periodic signals in 

unevenly sampled data. The Lomb-Scargle power spectral 

density (PSDLS) estimate was computed on each 

previously selected respiratory phase, from which the 

respiratory frequency was derived as the frequency 

corresponding to the dominant peak of the PSDLS. In Fig. 

3, the periodograms obtained from the respiratory signals 

corresponding to the protocol phase with dominant 

frequency imposed at 0.17 Hz, acquired by the belt 

transducer (LSB) and the mobile phones (LSPOS1, LSPOS2) 

are shown over imposed. It is possible to observe their 

very good correspondence around the dominant 

frequency. Also in this case, for each CBP phase, the 

relative error (ƐF %) between the respiratory frequencies 

extracted by the PSDLS periodograms, from the 

smartphones  and from the belt transducer 

was calculated as: 
 

 
 

3.4. Statistical analysis 

Bland-Altman analysis was applied to compare the 

frequency extracted by the belt signal and those derived 

from the smartphones, separately for POS1 and POS2, for 

both the results obtained in the time and frequency 

domains. 

 

 

4. Results 

Of the 10 acquired subjects, one needed to be excluded 

due to problems in the signal acquired by the belt 

reference. In the time domain analysis, out of the 

remaining 9 subjects, feasibility of the automated analysis 

was 7/9 (78%) for POS2 and 5/9 (55%) for POS1, where 

discarded signals were related to low signal-to-noise ratio 

preventing the automated detection of valleys in the 

signal. The relative error compared to the belt-derived 

results was lower than 1.5% for each phase of the CBP, 

for both smartphone positions, with better results 

obtained in POS2 (see Table 1). For the frequency 

domain analysis, the feasibility reached 100% for POS1 

and POS2. The relative error compared to the belt-derived 

results was lower that 1.5% (see Table 2).  

In all cases, Bland-Altman analysis showed no 

significant biases and narrow limits of agreement, with 

the best results obtained for the respiratory frequencies 

extracted in POS2 for all four CBP phases (see Table 3).   

 

 

5. Discussion and conclusions 

In this pilot study, the feasibility of using the triaxial 

accelerometer embedded in the smartphone to derive the 

respiratory activity was tested, together with its accuracy 

in respiratory frequency estimation compared to a 

thoracic belt reference.  

Two positions of the smartphone during acquisition 

were simultaneously tested to simulate potential easy to 

access points by the user. A respiratory breathing 

protocol, including 12 cycles for each of the four 

frequencies imposed, was utilized to derive results in a 

wide range of possible respiratory frequencies (from 0.1 

Hz to 0.25 Hz). The respiratory frequencies were 

computed in both time and frequency domains from the 

low-pass longitudinal component of the accelerometric 

signal, in order to test two possible computational 

methodologies.  

The time domain approach required the detection of 

valleys characterizing the different breathing cycles. Due 

to noisy signals, best feasibility of this approach was 

 
Figure 3. Example of Lomb-Scargle periodograms 

obtained from the respiratory signals, relevant to the 

CBP phase with the dominant frequency set at 0.17 

Hz, by the belt transducer (red), compared to that 

derived from the mobile phones located at POS1 

(black) and POS2 (blue).  
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limited to 78% at POS2. The frequency domain approach 

resulted in 100% feasibility and faster computation. Both 

in time and frequency domains, the average respiratory 

frequency from both locations, belly and sternum, was 

estimated with an error lower than 1.5% with respect to 

the ones measured by the reference signal, which well 

corresponded to the imposed frequencies along the 

protocol. From the Bland-Altman analyses, it was 

possible to appreciate that the relative error remained low 

either with the mobile phone positioned at the sternum or 

above the belly (<2%), with the position above the belly 

resulting in the lowest relative percentage error. The 

utilization of the smartphone’s accelerometer to detect 

respiratory frequency appeared feasible, in particular if 

positioned above the belly, and accurate compared to a 

belt reference transducer. This methodology could 

represent the basis for apps aiming at tracking the 

respiratory frequency, with applications that could reveal 

useful for patients with chronic conditions, like heart 

failure. 
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Table 1. Average respiratory frequencies (mean ± SD) 

and relative errors obtained by belt reference (RWb) 

and the smartphones in POS1 and POS2 (RWPOS1, 

RWPOS2, at each respiratory frequency (RF) imposed 

by the CBP, obtained by time domain analysis  

RF 

[Hz] 

RWb 

 

RWPOS1 

ƐT% 

RWPOS2 

ƐT% 

0.25 0.251±0.003 0.249±0.002 

0.25 

0.252±0.002 

0.33 

0.17 0.168±0.003 0.168±0.002 

1.12 

0.167±0.002 

1.08 

0.125 0.126±0.001 0.125±0.001 

0.99 

0.126±0.001 

0.59 

0.1 0.101±0.001 0.101±0.002 

0.63 

0.101±0.001 

0.42 

 

Table 2. Average respiratory frequencies (mean ± SD) 

and relative errors obtained by belt reference (RWb) 

and the smartphones in POS1 and POS2 (RWPOS1, 

RWPOS2, at each respiratory frequency (RF) imposed 

by the CBP, obtained by frequency domain analysis. 

RF 

[Hz] 

RWb 

 

RWPOS1 

ƐF% 

RWPOS2 

ƐF% 

0.25 0.251±0.003 0.251±0.002  

0.51 

0.249±0.002  

0.85 

0.17 0.167±0.001 0.168±0.002  

0.66 

0.166±0.002  

1.25 

0.125 0.125±0.001 0.124±0.001  

0.74 

0.128±0.001  

0.26 

0.1 0.101±0.001 0.097±0.008 

0.49 

0.101±0.001  

0.43 
 

Table 3. Results of Bland-Altman analysis (bias ± 

2SD) obtained by the comparison of the frequency 

extracted by the LS periodograms of the belt signal 

and those derived from the smartphones. 

RF 

[Hz] 
POS1         Ɛ% POS2           Ɛ% 

0.25 -0.001± 0.005 0.98 -0.001 ± 0.006     0.8 

0.17 0.002 ± 0.004    1.6 0.002 ± 0.003    1.5 

0.125 0.001 ± 0.002   0.99  0.001 ± 0.001    0.97 

0.1 0.001 ± 0.002   0.96 0.0004 ± 0.002   0.7 
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