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We present a geometric approach to the asymptotics of the Legendre polynomials 𝑃𝑘,𝑛+1, based on the Szegö kernel of the Fermat
quadric hypersurface, leading to complete asymptotic expansions holding on expanding subintervals of [−1, 1].

1. Introduction

The search for asymptotic expansions and approximations
of special functions is a very classical vein of research and
is of great relevance in pure mathematics, in numerical
analysis, mathematical physics, and the applied sciences (see,
for instance, of course with no pretence of completion [1–4]).

The goal of this paper is to develop a geometric approach
to the asymptotics of the Legendre polynomial 𝑃𝑘,𝑛+1(𝑡) for𝑘 → +∞, with 𝑡 = cos(𝜗) ∈ [−1, 1] and 𝑛 ≥ 1
fixed; as is well-known, 𝑃𝑘,𝑛+1(𝑡) is the restriction to 𝑆𝑛 of
the Legendre harmonic, expressed in polar coordinates on
the sphere. For thorough discussions and terminology, see,
for instance, [1, 3, 5–7]. We obtain an asymptotic expansion
holding on expanding subintervals of [−1, 1], rather than on
fixed subintervals of the form [−1 + 𝛿, 1 − 𝛿] for some given𝛿 > 0, as one typically finds in the literature.

However, the actual point of this work is neither to
present essentially new results nor to give an especially eco-
nomic proof of Legendre asymptotics (the use of Szegö kernel
machinery is arguably not more elementary than the tradi-
tional approaches). Rather, it is motivated by the following
considerations. On the one hand, there is a conceptually very
appealing view on spherical harmonics, due to Lebeau and
Guillemin, based on the Szegö kernel of the Fermat quadric.
On the other hand, in recent years, a considerable amount
of work and attention has been devoted to algebro-geometric
Szegö kernel asymptotics, which have played a fundamental
role in complex geometry. Therefore, it seems per se very

natural and interesting to illustrate the important conceptual
juncture between spherical harmonics and Szegö kernels,
by revisiting classical results on Legendre asymptotics in
view of these recent developments. In a broader perspective,
the application of Szegö kernels to spherical harmonics
seems a very promising area; a revisitation of this kind
is also instrumental to the development of computational
techniques thatmight be useful in future developments in this
direction.

Let us come to a closer description of the content of
this paper. There is a tight relation between 𝑃𝑘,𝑛+1(𝑡) and the
orthogonal projector

P𝑘,𝑛 : 𝐿2 (𝑆𝑛) 󳨀→ 𝑉𝑘,𝑛, (1)

where 𝑉𝑘,𝑛 is the space of level-𝑘 spherical harmonics on 𝑆𝑛;
equivalently, 𝑉𝑘,𝑛 is the eigenspace of the (positive) Laplace-
Beltrami operator on functions on 𝑆𝑛, corresponding to its𝑘th eigenvalue 𝜆𝑘,𝑛 = 𝑘(𝑘 + 𝑛 − 1).

Namely, for any choice of an orthonormal basis (󰜚𝑘𝑛𝑗)𝑁𝑘,𝑛𝑗=1

of 𝑉𝑘,𝑛 the distributional kernel P𝑘,𝑛(⋅, ⋅) ∈ C∞(𝑆𝑛 × 𝑆𝑛)
satisfies

P𝑘,𝑛 (q, q󸀠) = 𝑁𝑘,𝑛∑
𝑗=1

󰜚𝑘𝑛𝑗 (q) ⋅ 󰜚𝑘𝑛𝑗 (q󸀠), (2)

where q ⋅ q󸀠 = q𝑡q󸀠 (we think of q and q󸀠 as columns
vectors), and 𝑁𝑘,𝑛 is the dimension of 𝑉𝑘,𝑛. By symmetry
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considerations,P𝑘,𝑛(q, q󸀠) only depends on q⋅q󸀠. In fact, with
the normalization 𝑃𝑘,𝑛+1(1) = 1,

P𝑘,𝑛 (q, q󸀠) = 𝑁𝑘,𝑛

vol (𝑆𝑛)𝑃𝑘,𝑛+1 (q ⋅ q󸀠) . (3)

Thus, it is equivalent to give asymptotic expansions for𝑃𝑘,𝑛+1(cos(𝜗)) and forP𝑘,𝑛(q, q󸀠) with q ⋅ q󸀠 = cos(𝜗).
Since for any (q, q󸀠) ∈ 𝑆𝑛 × 𝑆𝑛 we have

P𝑘,𝑛 (q, q) = 𝑁𝑘,𝑛

vol (𝑆𝑛) ,
P𝑘,𝑛 (q, −q󸀠) = (−1)𝑘P𝑘,𝑛 (q, q󸀠) , (4)

we may assume q ̸= ±q󸀠. Then there is a unique great circle
parametrized by arc length going from q to q󸀠 in a time 𝜗 ∈(0, 𝜋) and q𝑡q󸀠 = cos(𝜗).

Our geometric approach uses, on the one hand, the
specific relation between spherical harmonics on 𝑆𝑛 and the
Hardy space of the Fermat quadric hypersurface in P𝑛 [8, 9]
and, on the other hand, the off-diagonal scaling asymptotics
of the level-𝑘 Szegö kernel of polarized projective manifold
[10, 11].

The following asymptotic expansions involve a sequence
of constants 𝐶𝑘,𝑛 > 0 with a precise geometric meaning [9].
There is a natural algebraic isomorphism between the level-𝑘
Szegö kernel of the Fermat quadric 𝐹𝑛 ⊂ P𝑛 and 𝑉𝑘,𝑛, given
by a push-forward operation; this isomorphism is however
unitary only up to an appropriate rescaling, and 𝐶𝑘,𝑛 is the
corresponding scaling factor.

An asymptotic expansion for 𝐶𝑘,𝑛 is discussed in [9],
building on the theory of [8]; an alternative derivation is given
in Proposition 2 (with an explicit computation of the leading
order term).

In the following, the symbol ∼ stands for “has the same
asymptotics as.”

Theorem 1. There exist smooth functions 𝐴𝑛𝑙 and 𝐵𝑛𝑙 (𝑙 =1, 2, . . .) on [0, 𝜋] such that the following holds. Let us fix𝐶 > 0
and 𝛿 ∈ [0, 1/6). Then, uniformly in (q, q󸀠) ∈ 𝑆𝑛 ×𝑆𝑛 satisfying
q𝑡q󸀠 = cos(𝜗) with 𝐶𝑘−𝛿 < 𝜗 < 𝜋 − 𝐶𝑘−𝛿, (5)

we have for 𝑘 → +∞ an asymptotic expansion of the form

P𝑘,𝑛 (q, q󸀠) = 2𝑛/2𝐶2𝑘,𝑛 ( 1
sin (𝜗))(𝑛−1)/2 ⋅ [cos (𝛼𝑘,𝑛 (𝜗))

⋅A𝑛 (𝜗, 𝑘) + sin (𝛼𝑘,𝑛 (𝜗)) ⋅B𝑛 (𝜗, 𝑘)] ,
(6)

where

𝛼𝑘,𝑛 (𝜗) š 𝑘𝜗 + (𝜗2 − 𝜋4 ) (𝑛 − 1) ,
A𝑛 (𝜗, 𝑘) ∼ 1 + +∞∑

𝑙=1

𝑘−𝑙 𝐴𝑛𝑙 (𝜗)
sin (𝜗)6𝑙 ,

B𝑛 (𝜗, 𝑘) ∼ +∞∑
𝑙=1

𝑘−𝑙 𝐵𝑛𝑙 (𝜗)
sin (𝜗)6𝑙 .

(7)

At the 𝑙th step, we have for some constant 𝐶𝑙 > 0󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝐴𝑛𝑙 (𝜗)
sin (𝜗)6𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝐵𝑛𝑙 (𝜗)sin (𝜗)6𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶𝑙𝑘−𝑙(1−6𝛿), (8)

and a similar estimate holds for the error term. Hence, the
previous is an asymptotic expansion for 𝛿 ∈ [0, 1/6).

As mentioned, the same techniques yield an asymptotic
expansion for 𝐶𝑛,𝑘 (see (6.18) in [9]).

Proposition 2. For 𝑘 → +∞, we have an asymptotic
expansion of the form:

𝐶𝑘,𝑛 ∼ [(𝑛 − 1)!2√2 ⋅ vol (𝑆𝑛) vol (𝑆𝑛−1)]1/2 (𝜋𝑘)−(𝑛−1)/4
⋅ [[1 + ∑𝑗≥1𝑘−𝑗𝑎𝑗]] .

(9)

If we insert the latter expansion in the one provided by
Theorem 1, we obtain the following.

Corollary 3. With the assumptions and notation ofTheorem 1,
for 𝑘 → +∞, there is an asymptotic expansion

P𝑘,𝑛 (q, q󸀠) = 2(𝑛+3)/2(𝑛 − 1)!
⋅ 1
vol (𝑆𝑛) vol (𝑆𝑛−1) ( 𝜋𝑘

sin (𝜗))(𝑛−1)/2
⋅ [cos (𝛼𝑘,𝑛 (𝜗)) ⋅C𝑛 (𝜗, 𝑘) + sin (𝛼𝑘,𝑛 (𝜗))⋅D𝑛 (𝜗, 𝑘)] ,

(10)

where C𝑛(𝜗, 𝑘) and D𝑛(𝜗, 𝑘) admit asymptotic expansions
similar to those of A𝑛(𝜗, 𝑘) and B𝑛(𝜗, 𝑘), respectively (of
course, with different functions 𝐶𝑛𝑙 and𝐷𝑛𝑙, 𝑙 ≥ 1).

Pairing Corollary 3 with (3), we obtain the following.

Corollary 4. In the same situation as in Theorem 1, for 𝑘 →+∞, there is an asymptotic expansion

𝑃𝑘,𝑛+1 (cos (𝜗)) = 2(𝑛+1)/2
vol (𝑆𝑛−1) ( 𝜋

sin (𝜗) 𝑘)(𝑛−1)/2
⋅ [cos (𝛼𝑘,𝑛 (𝜗)) ⋅E𝑛 (𝜗, 𝑘) + sin (𝛼𝑘,𝑛 (𝜗))⋅F𝑛 (𝜗, 𝑘)] ,

(11)

where again E𝑛(𝜗, 𝑘) and F𝑛(𝜗, 𝑘) admit asymptotic expan-
sions similar to those ofA𝑛(𝜗, 𝑘) andB𝑛(𝜗, 𝑘), respectively.

Let us verify that Corollary 4 fits with the classical
asymptotics. For example, when 𝑛 = 1, we obtain𝑃𝑘,2 (cos (𝜗)) ∼ cos (𝑘𝜗) + ⋅ ⋅ ⋅ , (12)

so that the leading order term is the 𝑘th Chebyshev poly-
nomial. Since it is known that in this case the Legendre
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polynomial is the Chebyshev polynomial ([6], page 11), this
is in fact the only term of the expansion.

For 𝑛 = 2, we obtain the formula of Laplace (cfr [12],
Section 4.6; [4], (8.01) of Ch. 4; [13],Theorem 8.21.2), but as a
full asymptotic expansion holding uniformly on expanding
subintervals converging to [−1, 1] at a controlled rate, as
above:

𝑃𝑘,3 (cos (𝜗)) ∼ √ 2𝜋𝑘 sin (𝜗) cos((𝑘 + 12) 𝜗 − 𝜋4 )
+ 𝑂 (𝑘−3/2+6𝛿) . (13)

For arbitrary 𝑛, 𝑃𝑘,𝑛+1 is a multiple of a Gegenbauer
polynomial ([2]; [6], page 16):

𝑃(𝑛/2−1,𝑛/2−1)𝑘 (cos (𝜗)) = 𝑟𝑘,𝑛𝑃𝑘,𝑛+1 (cos (𝜗)) . (14)

Given the standardization for 𝑃(𝑛/2−1,𝑛/2−1)𝑘 ([14], section 10.8)

𝑟𝑘,𝑛 = 𝑃(𝑛/2−1,𝑛/2−1)𝑘 (1) = (𝑘 + 𝑛2 − 1𝑘 ) = (𝑛/2)𝑘𝑘!
= Γ (𝑘 + 𝑛/2)𝑘!Γ (𝑛/2) ,

(15)

where Γ is of course the Gamma function. By (35.31) in [3],
for 𝑘 → +∞, we have

Γ (𝑘 + 𝑛2) ∼ 𝑘𝑛/2Γ (𝑘) = 𝑘𝑛/2 (𝑘 − 1) !. (16)

Therefore,

𝑟𝑘,𝑛 ∼ 𝑘𝑛/2 (𝑘 − 1)!𝑘!Γ (𝑛/2) = 𝑘𝑛/2−1Γ (𝑛/2) . (17)

If we use the well-known formula (see, e.g., (2) of [6])

vol (𝑆𝑛−1) = 2𝜋𝑛/2Γ (𝑛/2) , (18)

we obtain for 𝑃(𝑛/2−1,𝑛/2−1)𝑘 (cos(𝜗)) as asymptotic expansion
with leading order term

2(𝑛+1)/2 𝑘𝑛/2−1Γ (𝑛2)
Γ (𝑛/2)2𝜋𝑛/2 ( 𝜋

sin (𝜗) 𝑘)(𝑛−1)/2 cos (𝛼𝑘,𝑛 (𝜗))
= 1√𝜋𝑘 1

cos (𝜗/2)(𝑛−1)/2 sin (𝜗/2)(𝑛−1)/2 cos (𝛼𝑘,𝑛 (𝜗)) ,
(19)

in agreement with (10) on page 198 of [14].

2. Preliminaries

2.1. The Geometric Picture. For the following, see [8, 9].
Let 𝑆𝑛1 ⊂ R𝑛+1 be the unit sphere, and let us identify the

tangent and cotangent bundles of 𝑆𝑛1 bymeans of the standard

Riemannianmetric.The unit (co)sphere bundle of 𝑆𝑛1 is given
by the incidence correspondence

𝑆∗ (𝑆𝑛1) ≅ 𝑆 (𝑆𝑛1) = {(q, p) ∈ 𝑆𝑛1 × 𝑆𝑛1 : q𝑡p = 0} . (20)

The Fermat quadric hypersurface in complex projective
space is

𝐹𝑛 fl {[z] ∈ P
𝑛 : z𝑡z = 0} ; (21)

let 𝐴 be the restriction to 𝐹𝑛 of the hyperplane line bundle.
Given the standardHermitian product onC𝑛+1,𝐴 is naturally
a positive Hermitian line bundle, 𝐹𝑛 inherits a Kähler struc-
ture 𝜔𝐹𝑛 (the restriction of the Fubini-Study metric), and the
spaces of global holomorphic sections of higher powers of𝐴,𝐻0(𝐹𝑛, 𝐴⊗𝑘) have an induced Hermitian structure.

The affine cone over 𝐹𝑛 is C𝑛 = {z𝑡z = 0} ⊂ C𝑛+1; the
intersection𝑋1 fl C𝑛 ∩𝑆2𝑛+11 may be viewed as the unit circle
bundle in the dual line bundle 𝐴∨. More generally, for any𝑟 > 0, the intersection

𝑋𝑟 fl C𝑛 ∩ 𝑆2𝑛+1𝑟 (22)

with the sphere of radius 𝑟 is naturally identified with the
circle bundle of radius 𝑟 in 𝐴∨. In particular,

𝑋√2 = {q + 𝑖p : ‖q‖2 = ‖p‖2 = 1, q𝑡p = 0} (23)

is diffeomorphic to 𝑆∗(𝑆𝑛) by the map 𝛽 : (q, p) 󳨃→ q + 𝑖p;
furthermore, 𝛽 is equivariant for the natural actions of𝑂(𝑛 +1) on 𝑆∗(𝑆𝑛) and𝑋√2 defined by, respectively,

𝐵 ⋅ (q, p) š (𝐵q, 𝐵p) ,𝐵 ⋅ (q + 𝑖p) = 𝐵q + 𝑖𝐵p (𝐵 ∈ 𝑂 (𝑛 + 1)) . (24)

We shall identify 𝑆∗(𝑆𝑛) and 𝑋√2 and denote the projec-
tion by

] : 𝑆∗ (𝑆𝑛) ≅ 𝑋√2 󳨀→ 𝑆𝑛,
q + 𝑖p 󳨃󳨀→ q. (25)

There is also a standard structure action of 𝑆1 on 𝑋√2,
induced by fibrewise scalar multiplication in 𝐴∨, or equiva-
lently in C𝑛+1. The latter action is intertwined by 𝛽 with the
“reverse” geodesic flow on 𝑆∗(𝑆𝑛) ≅ 𝑆(𝑆𝑛). The 𝑆1-orbits are
the fibers of the circle bundle projection

𝜋√2 : q + 𝑖p ∈ 𝑋√2 󳨃󳨀→ [q + 𝑖p] ∈ 𝐹𝑛. (26)

This holds for any 𝑟 > 0; we shall denote by 𝜋𝑟 : 𝑋𝑟 → 𝐹𝑛
the projection for general 𝑟 > 0.
2.2. The Metric on 𝑋𝑟. Let us dwell on the metric aspect of
(22); there are two natural choices of a Riemannianmetric on𝑋𝑟, hence of a Riemannian density, and we need to clarify the
relation between the two.
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There is an obvious choice of a Riemannian metric 𝑔󸀠𝑟 on𝑋𝑟, induced by the standard Euclidean product onC
𝑛+1.With

respect to 𝑔󸀠𝑟, the 𝑆1 orbits on 𝑋𝑟 have length of 2𝜋𝑟. Clearly,𝑔󸀠𝑟 is homogeneous of degree 2with respect to the dilation 𝜇𝑟 :𝑥 ∈ 𝑋 󳨃→ 𝑟𝑥 ∈ 𝑋𝑟, and therefore the corresponding volume
form Υ󸀠𝑋𝑟 on𝑋𝑟 is homogeneous of degree dim(𝑋) = 2𝑛 − 1.
That is,

𝜇∗𝑟 (Υ󸀠𝑋𝑟) = 𝑟2𝑛−1Υ󸀠𝑋. (27)

An alternative and common choice of a Riemannian
structure 𝑔1 on 𝑋1 comes from its structure of a unit circle
bundle over 𝐹𝑛. Let 𝛼 ∈ Ω1(𝑋1) be the connection 1-form
associatedwith the unique compatible covariant derivative on𝐴, so that d𝛼 = 2𝜋∗1 (𝜔𝐹𝑛). Also, let𝐻(𝑋1/𝐹𝑛) = ker (𝛼) ,

𝑉 (𝑋1/𝐹𝑛) = ker (d𝜋1) ⊆ 𝑇𝑋 (28)

denote the horizontal and vertical tangent bundles for 𝜋1,
respectively. There is a unique Riemannian metric 𝑔1 on 𝑋1

such that 𝜋1 a Riemannian submersion and the 𝑆1-orbits on𝑋1 have unit length. The corresponding volume form on 𝑋1

is given by

Υ𝑋1 = 1(𝑛 − 1)!𝜋∗1 (𝜔∧(𝑛−1)𝐹𝑛
) ∧ 12𝜋𝛼

= 12𝜋𝜋∗1 (Υ𝐹𝑛) ∧ 𝛼,
(29)

where Υ𝐹𝑛 = 𝜔∧(𝑛−1)𝐹𝑛
/(𝑛 − 1)! is the symplectic volume form

on 𝐹𝑛.
We wish to compare the two Riemannian metrics 𝑔1

and 𝑔󸀠1, the corresponding volume forms, Υ󸀠𝑋1 and Υ𝑋1 , and
densities, d𝑉𝑋 and d󸀠𝑉𝑋.
Lemma 5. Υ𝑋1 = (1/2𝜋)Υ󸀠𝑋1 and d𝑉𝑋1 = (1/2𝜋)d󸀠𝑉𝑋1 .
Proof of Lemma 5. The connection 1-form for the Hopf map𝑆2𝑛+1 → P𝑛 is

𝜃 = 𝑖2 (z𝑡dz𝑡 − z𝑡dz) ; (30)

thus, 𝛼 is the restriction of 𝜃 to 𝑋1. Let 𝜔0 be the standard
symplectic structure onC𝑛+1. Since 𝜃z(w) = 𝜔0(z,w), we have
ker(𝜃z) = z⊥𝜔0 (symplectic annihilator). In other words,

ker (𝜃z) = (spanR (z) ⊕ z⊥ℎ0 ) ∩ 𝑇z𝑆2𝑛+11 = z⊥ℎ0 , (31)

where z⊥ℎ0 is the Hermitian orthocomplement of z for the
standard Hermitian product.

Thus, if z ∈ 𝑋1, then𝐻z (𝑋1/𝐹𝑛) = ker (𝛼z) = z⊥ℎ0 ∩ 𝑇zC𝑛 = z⊥ℎ0 ∩ z⊥ℎ0 . (32)

On the other hand, 𝑉z(𝑋1/𝐹𝑛) = spanR(𝑖z). Thus, 𝑉(𝑋1/𝐹𝑛)
and𝐻(𝑋1/𝐹𝑛) are orthogonalwith respect to both𝑔1 (by con-
struction) and 𝑔󸀠1 (by the previous considerations). Hence,

we may compare 𝑔1 and 𝑔󸀠1 separately on 𝐻(𝑋1/𝐹𝑛) and𝑉(𝑋1/𝐹𝑛).
On the complex vector bundle 𝐻(𝑋1/𝐹𝑛), 𝑔󸀠1 and 𝑔1 are,

respectively, the Euclidean scalar products associatedwith the
restrictions of the (1, 1)-forms

𝜔0 = 𝑖2𝜕𝜕 ‖z‖2 ,
𝜔1 = 𝑖2𝜕𝜕 ln (‖z‖2) .

(33)

Given that 𝜔0 and 𝜔1 agree on 𝑇𝑆2𝑛+21 , 𝑔1 = 𝑔󸀠1 on𝐻(𝑋1/𝐹𝑛).
On the other hand, both 𝑔1 and 𝑔󸀠1 are 𝑆1-invariant, but𝑆1-orbits on𝑋1 have length 2𝜋 for 𝑔󸀠1 and 1 for 𝑔1. Thus, 𝑔1 =𝑔󸀠1/2𝜋 on 𝑉(𝑋1/𝐹𝑛).
The claim follows directly from this.

2.3. The Szegö Kernel on 𝑋𝑟. The following analysis is based
on the equivariant asymptotics of the Szegö kernel of𝑋√2 [11].
We refer the reader to [10, 11, 15] for a thorough discussion of
Szegö kernels in the algebro-geometric context and to [16, 17]
for the basic microlocal theory that underlies the subject
(see also the neat discussion of Hardy spaces in [9]). To put
things into perspective, however, let us recall that if 𝑌 is the
boundary of a pseudoconvex domain, itsHardy space𝐻(𝑌) ⊂𝐿2(𝑌) is the Hilbert space of square summable boundary
values of holomorphic functions. The Szegö projector is then
the orthogonal projector Π : 𝐿2(𝑌) → 𝐻(𝑌); with some
abuse of notation, the Szegö kernel Π ∈ D󸀠(𝑌 × 𝑌) is the
corresponding distributional kernel. A description of Π as a
Fourier integral operator was given in [16].

In the special algebro-geometric case, where 𝑌 is the dual
unit circle bundle of a positive line bundle on a complex
projective manifold,𝐻(𝑌) is the orthogonal direct sum of its
isotypical components 𝐻𝑘(𝑌), 𝑘 = 0, 1, 2, . . ., under the 𝑆1-
action; correspondingly,Π = ⨁𝑘Π𝑘, whereΠ𝑘 is the orthog-
onal projector onto𝐻𝑘(𝑌); since𝐻𝑘(𝑌) is finite-dimensional,Π𝑘 is a smoothing operator; therefore, its Schwartz kernel is
aC∞ function on 𝑌×𝑌. Many local asymptotic properties ofΠ𝑘, for 𝑘 → +∞, were first discovered in [10, 11, 15] building
on the theory of [16]. We shall recall what is needed here
shortly.

Let us now come to the specific case in point. For every𝑟 > 0,𝑋𝑟 is the boundary of a strictly pseudoconvex domain,
and as such it carries a CR structure, a Hardy space 𝐻(𝑋𝑟),
and a Szegö projectorΠ𝑟 : 𝐿2(𝑋𝑟) → 𝐻(𝑋𝑟).We aim to relate
the various Π𝑟’s.

Let O(C𝑛 \ {0}) be the ring of holomorphic functions on
the conic complexmanifoldC𝑛\{0}. LetO𝑘(C𝑛\{0}) ⊂ O(C𝑛\{0}) be the subspace of holomorphic functions of degree of
homogeneity 𝑘.

For every 𝑟 > 0 and 𝑘 = 0, 1, 2, . . . let 𝐻𝑘(𝑋𝑟) ⊂ 𝐻(𝑋𝑟)
be the finite-dimensional 𝑘th isotypical component of𝐻(𝑋𝑟)
with respect to the standard 𝑆1-action. Restriction induces an
algebraic isomorphism O𝑘(C𝑛 \ {0}) → 𝐻𝑘(𝑋𝑟); with a slight
abuse of language, we shall denote by the same symbol an
element of𝐻𝑘(𝑋𝑟) and the corresponding element ofO𝑘(C𝑛 \{0}).
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Suppose that (𝑠𝑘𝑗)𝑁𝑘𝑗=0 ⊆ O𝑘(C𝑛 \ {0}) yields by restriction
an orthonormal basis of𝐻𝑘(𝑋1):

∫
𝑋1

𝑠𝑘𝑗 (𝑥) 𝑠𝑘𝑙 (𝑥)d𝑉𝑋1 (𝑥) = 𝛿𝑗𝑙. (34)

Setting 𝑦 = 𝑟𝑥 and using (27) together with Lemma 5, we get

∫
𝑋𝑟

𝑠𝑘𝑗 (𝑦) 𝑠𝑘𝑙 (𝑦) 12𝜋d󸀠𝑉𝑋𝑟 (𝑦)
= 𝑟2𝑛+2𝑘−1 ∫

𝑋1

𝑠𝑘𝑗 (𝑥) 𝑠𝑘𝑙 (𝑥) 12𝜋d󸀠𝑉𝑋1 (𝑥)
= 𝑟2𝑛+2𝑘−1𝛿𝑗𝑙.

(35)

Therefore, we have the following.

Lemma 6. If (𝑠𝑘𝑗)𝑁𝑘𝑗=0 ⊆ O𝑘(C𝑛 \ {0}) yields by restriction an
orthonormal basis of 𝐻𝑘(𝑋1) with respect to d󸀠𝑉𝑋1 , then for
every 𝑟 > 0

(𝑟−(𝑘+𝑛−1/2)𝑠𝑘𝑗)𝑁𝑘𝑗=0 (36)

yields by restriction an orthonormal basis of 𝐻𝑘(𝑋𝑟), with
respect to d󸀠𝑉𝑋𝑟/2𝜋.

Let nowΠ𝑟,𝑘 be the level-𝑘 Szegö kernel on𝑋𝑟, that is, the
orthogonal projector

Π𝑟,𝑘 : 𝐿2(𝑋𝑟, d󸀠𝑉𝑋𝑟2𝜋 ) 󳨀→ 𝐻𝑘 (𝑋𝑟) . (37)

By Lemma 6, its Schwartz kernelΠ𝑟,𝑘 ∈ C∞(𝑋𝑟×𝑋𝑟) is given
by

Π𝑟,𝑘 (𝑦, 𝑦󸀠) = 𝑟−(2𝑘+2𝑛−1) 𝑁𝑘∑
𝑗=0

𝑠𝑘𝑗 (𝑦) ⋅ 𝑠𝑘𝑗 (𝑦󸀠)
(𝑦, 𝑦󸀠 ∈ 𝑋𝑟) .

(38)

When pulled back to𝑋1, this is (here 𝑥, 𝑥󸀠 ∈ 𝑋1)

Π𝑟,𝑘 (𝑟𝑥, 𝑟𝑥󸀠) = 𝑟−(2𝑘+2𝑛−1) 𝑁𝑘∑
𝑗=0

𝑠𝑘𝑗 (𝑟𝑥) ⋅ 𝑠𝑘𝑗 (𝑟𝑥󸀠)
= 𝑟−(2𝑛−1) 𝑁𝑘∑

𝑗=0

𝑠𝑘𝑗 (𝑥) ⋅ 𝑠𝑘𝑗 (𝑥󸀠)
= 𝑟1−2𝑛Π1,𝑘 (𝑥, 𝑥󸀠) .

(39)

In particular,

Π√2,𝑘 (√2𝑥,√2𝑥󸀠) = √22𝑛 Π1,𝑘 (𝑥, 𝑥󸀠) . (40)

We shall make repeated use of the following asymp-
totic property of Π1,𝑘, which follows from the microlocal
description ofΠ as an FIO (explicit exponential estimates are
discussed in [18]).

Theorem 7. Let dist𝐹𝑛 be the distance function on 𝐹𝑛 associ-
ated with the Kähler metric. Given any 𝐶, 𝜖 > 0, uniformly for𝑥, 𝑥󸀠 ∈ 𝑋 satisfying

dist𝐹𝑛 (𝜋 (𝑥) , 𝜋 (𝑥󸀠)) ≥ 𝐶𝑘𝜖−1/2, (41)

we have Π1,𝑘 (𝑥, 𝑥󸀠) = 𝑂 (𝑘−∞) (42)

when 𝑘 → +∞.

2.4. Heisenberg Local Coordinates. There are two unit circle
bundles in our picture: the Hopf fibration 𝜋 : 𝑆2𝑛+11 → P𝑛,
and 𝜋1 : 𝑋1 → 𝐹𝑛. Clearly, 𝜋1 is the pull-back of 𝜋 under
the inclusion 𝐹𝑛 󳨅→ P𝑛. Both 𝑆2𝑛+11 and 𝑋1 are boundaries of
strictly pseudoconvex domains and carry a CR structure.

On both 𝑆2𝑛+11 and 𝑋1, we may consider privileged
systems of coordinates called Heisenberg local coordinates
(HLC). In these coordinates, Szegö kernel asymptotics exhibit
a “universal” structure [11]; we refer to ibidem for a detailed
discussion.

Given z0 ∈ 𝑋1, a HLC system on𝑋1 centered at z0 will be
denoted in additive notation:(𝜃, k) ∈ (−𝜋, 𝜋) × 𝐵2𝑛−2 (0, 𝛿) 󳨃󳨀→ z0 + (𝜃, k) ∈ 𝑋1. (43)

Here 𝜃 ∈ (−𝜋, 𝜋) is an “angular” coordinate measuring
displacement along the 𝑆1-orbit through z0 (the fiber through
z0 of 𝜋1 : 𝑋1 → 𝐹𝑛); instead, k ∈ 𝐵2𝑛−2(0, 𝛿) ⊆ R2𝑛−2 ≅ C𝑛−1

descends to a local coordinate on 𝐹𝑛 centered at𝑚0 = 𝜋(𝑥0),
inducing a unitary isomorphism𝑇[z0]𝐹𝑛 ≅ C𝑛−1.Wemay thus
think of k as a tangent vector in 𝑇[z0]𝐹𝑛.

Here this additive notation might be misleading, since𝑋1 ⊂ C𝑛+1. Therefore, we shall write z0+𝑋1(𝜃, k) for HLC
on 𝑋1 centered at z0. We shall generally abridge notation by
writing z0+𝑋1k for z0+𝑋1(0, k).

Similarly, (𝜃,w) ∈ (−𝜋, 𝜋) × 𝐵2𝑛(0, 𝛿) 󳨃→ z0+𝑆2𝑛+11 (𝜃, k)
will denote a system of Heisenberg local coordinates on 𝑆2𝑛+11

centered at z0.There is in fact a natural choice ofHLCon 𝑆2𝑛+11

centered at any z0 ∈ 𝑆2𝑛+11 .
Namely, let (a1, . . . , a𝑛) be an orthonormal basis of the

Hermitian orthocomplement z⊥ℎ0 ⊆ C𝑛+1, and for w = (𝑤𝑗) ∈
C𝑛 let us set

z0+𝑆2𝑛+11 (𝜃,w) fl 𝑒𝑖𝜃√1 + ‖w‖2 (z0 + 𝑛∑
𝑗=1

𝑤𝑗a𝑗) . (44)

Since there is a canonical unitary identification z⊥ℎ0 ≅ 𝑇[z0]P𝑛,
we shall also write this as z0+𝑆2𝑛+11 (𝜃, k) with (𝜃, k) ∈ (−𝜋, 𝜋) ×𝑇[z0]P𝑛.

If z0 ∈ 𝑋1, HLC on 𝑋1 centered at z0 can be chosen so
that they agree to second order with the formerHLCon 𝑆2𝑛+11 .
More precisely, we may assume that for any k ∈ 𝑇[z0]𝐹𝑛 ⊂𝑇[z0]P𝑛 we have

z0+𝑋 (𝜃,w) = z0+𝑆2𝑛+11 (𝜃, k + 𝑅2 (k)) , (45)

where𝑅2 is a function vanishing to second order at the origin.
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Given k,w ∈ C𝑛+1 ≅ R2𝑛+2, let us define

𝜓2 (k,w) š −𝑖𝜔0 (k,w) − 12 ‖k − w‖2 ; (46)

here 𝜔0 is the standard symplectic structure, and ‖ ⋅ ‖ is the
standard Euclidean norm.We shall make use of the following
asymptotic expansion, for which we refer again to [11].

Theorem 8. Let us fix 𝐶 > 0 and 𝜖 ∈ (0, 1/6). Then for
any z ∈ 𝑋1, and for any choice of HLC on 𝑋1 centered at
z, there exist polynomials 𝑃𝑗 of degree ≤ 3𝑗 and parity 𝑗 on𝑇[z]𝐹𝑛 × 𝑇[z]𝐹𝑛 ≅ R2𝑛−2 ×R2𝑛−2, such that the following holds.
Uniformly in v1, v2 ∈ 𝑇[z]𝐹𝑛 with ‖v𝑗‖ ≤ 𝐶𝑘𝜖 for 𝑗 = 1, 2, and𝜃1, 𝜃2 ∈ (−𝜋, 𝜋), one has for 𝑘 → +∞ the following asymptotic
expansion:

Π1,𝑘 (z + (𝜃1, k1√𝑘) , z + (𝜃2, k2√𝑘)) ∼ (𝑘𝜋)
𝑛−1

⋅ 𝑒𝑖𝑘(𝜃1−𝜃2)+𝜓2(k1 ,k2) [[1 +
+∞∑
𝑗=1

𝑘−𝑗/2𝑃𝑗 (k1, k2)]] .
(47)

In the given range, the above is an asymptotic expansion,
since 󵄨󵄨󵄨󵄨󵄨𝑘−𝑗/2𝑃𝑗 (k1, k2)󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶𝑗𝑘−(𝑗/2)(1−6𝜖). (48)

2.5. P𝑘 and Π√2,𝑘. As discussed in [9], the push-forward
operator ]∗ : C∞(𝑋√2) → C∞(𝑆𝑛) yields by restriction an
algebraic isomorphism

C
∞ (𝑋√2) ∩ 𝐻 (𝑋√2) 󳨀→ C

∞ (𝑆𝑛) , (49)

for every 𝑘, and (49) yields by restriction an isomorphism𝐻𝑘 (𝑋√2) 󳨀→ 𝑉𝑘, (50)

which is unitary up to a dilation by a constant factor𝐶𝑘,𝑛 > 0.
Thus, we have󵄩󵄩󵄩󵄩]∗ (𝑠)󵄩󵄩󵄩󵄩𝐿2(𝑆𝑛) = 𝐶𝑘,𝑛 ‖𝑠‖𝐻(𝑋√2) (𝑠 ∈ 𝐻𝑘 (𝑋√2)) . (51)

Therefore, if (𝜎𝑘𝑗)𝑁𝑘𝑗=0 is an orthonormal basis of𝐻𝑘(𝑋√2),
then (𝐶−1𝑘,𝑛 ⋅ ]∗ (𝜎𝑘𝑗))𝑁𝑘𝑗=0 (52)

is an orthonormal basis of 𝑉𝑘. It follows that P𝑘,𝑛 in (2) is
given by

P𝑘,𝑛 = 1𝐶2𝑘,𝑛 (] × ])∗ (Π√2,𝑘) , (53)

where ] × ] : 𝑋√2 ×𝑋√2 → 𝑆𝑛 × 𝑆𝑛 is the product projection.
More explicitly, for q ∈ 𝑆𝑛 let 𝑆(q⊥) ≅ 𝑆𝑛−1 be the unit

sphere centered at the origin in the orthocomplement q⊥, and
let d𝑉𝑆(q⊥) be the Riemannian density on 𝑆(q⊥); then

P𝑘,𝑛 (q0, q1) = 1𝐶2𝑘,𝑛 ∫𝑆(q⊥0 ) ∫𝑆(q1⊥)Π√2,𝑘 (q0 + 𝑖p, q1
+ 𝑖p󸀠) d𝑉𝑆(q⊥0 ) (p) d𝑉𝑆(q1⊥) (p󸀠) .

(54)

2.6. Π𝑟,𝑘 and Conjugation. Conjugation 𝜎 : z 󳨃→ z
in C𝑛+1 leaves invariant the affine cone C𝑛 and every 𝑋𝑟.
Furthermore, it yields a Riemannian isometry of 𝑋𝑟 into
itself. For 𝑓 ∈ O(C𝑛 \ {0}), let us set

𝑓𝜎 (z) š 𝑓 (z). (55)

If 𝑓 ∈ O𝑘(C𝑛 \ {0}), then 𝑓𝜎 ∈ O𝑘(C𝑛 \ {0}).
Hence, if (𝑠𝑘𝑗)𝑗 ⊆ O𝑘(C𝑛 \ {0}) yields by restriction an

orthonormal basis of 𝐻𝑘(𝑋𝑟), then so does (𝑠𝜎𝑘𝑗)𝑗. Thus, for
any z0, z1 ∈ 𝑋𝑟, we have

Π𝑟,𝑘 (z0, z1) = ∑
𝑗

𝑠𝑘𝑗 (z0) ⋅ 𝑠𝑘𝑗 (z1)
= ∑

𝑗

𝑠𝜎𝑘𝑗 (z0) ⋅ 𝑠𝜎𝑘𝑗 (z1) = Π𝑟𝑘 (z1, z0)
= Π𝑟𝑘 (z0, z1).

(56)

3. Proof of Theorem 1

Proof of Theorem 1. Given q0, q1 ∈ 𝑆𝑛−1 with q1 ̸= ±q0, let 𝛾+
be the unique unit speed geodesic on 𝑆𝑛 such that 𝛾+(0) = q0
and 𝛾+(𝜗) = q󸀠 for some 𝜗 ∈ (0, 𝜋). Then

p0 fl ̇𝛾+ (0) ∈ 𝑆𝑛−1 (q⊥0 ) ,
p1 fl ̇𝛾+ (𝜗) ∈ 𝑆𝑛−1 (q⊥1 ) . (57)

The reverse geodesic 𝛾−(𝜗) š 𝛾(−𝜗) satisfies 𝛾−(0) = q,̇𝛾−(0) = −p0 and 𝛾−(𝜗󸀠) = q󸀠 for a unique 𝜗󸀠 = −𝜗 ∈ (−𝜋, 0).
Although they project down to the same locus in 𝑆𝑛,𝛾+ and 𝛾− correspond to distinct fibers of the circle bundle

projection 𝜋 : 𝑋(√2) → 𝐹𝑛. Let us express the (co)tangent
lift 𝛾± of the geodesics 𝛾± in complex coordinates, and set
p1 = ̇𝛾+(𝜗). Then

𝛾± (𝜃) = 𝛾± (𝜃) + 𝑖 ̇𝛾± (𝜃) = 𝑒−𝑖𝜃 (q0 ± 𝑖p0) = q1 ± 𝑖p1. (58)

In view of (26), we have

q0 ± 𝑖p0, q1 ± 𝑖p1 ∈ 𝜋−1√2 ([q0 ± 𝑖p0]) . (59)

On the other hand, [q0 + 𝑖p0] ̸= [q0 − 𝑖p0] ∈ 𝐹𝑛, since q0 + 𝑖p0
and q0 − 𝑖p0 are linearly independent in C𝑛+1.

Thus, we have the following.

Lemma 9. Suppose q0, q1 ∈ 𝑆𝑛 and q1 ̸= ±q0. Then the only
points [z] ∈ 𝐹𝑛 such that

]−1 (q0) ∩ 𝜋−1√2 ([z]) ̸= 0,
]−1 (q1) ∩ 𝜋−1√2 ([z]) ̸= 0 (60)

are [z+] = [q0 + 𝑖p0] ,[z−] = [q0 − 𝑖p0] . (61)
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ByTheorem 7, for fixed p and p󸀠 and 𝑘 → +∞, we have

Π√2,𝑘 (q0 + 𝑖p, q1 + 𝑖p󸀠) = 𝑂 (𝑘−∞) , (62)

unless p = ±p0 and p󸀠 = ±p1. Therefore, for a fixed 𝜗 ∈ (0, 𝜋)
integration in (54) may be localized in a small neighborhood
of (±p0, ±p1), perhaps at the cost of disregarding a negligible
contribution to the asymptotics.

Since however we are allowing 𝜗 to approach 0 or 𝜋 at a
controlled rate, we need to give a more precise quantitative
estimate of how small the previous neighborhood may be
chosen when 𝑘 → +∞.

To this end, let us introduce some further notation. Given
linearly independent a, b ∈ 𝑆𝑛, let us set

𝑅 (a, b) š spanR (a, b) ⊆ R
𝑛+1,

𝑅 (a, b)C fl 𝑅 (a, b) ⊗ C = spanC (a, b) ⊆ C
𝑛+1. (63)

Furthermore, for ‖k‖ ≤ 1, we shall set
𝑆± (k) š −1 ± √1 − ‖k‖2. (64)

A straightforward computation yields the following.

Lemma 10. Assume that q0 + 𝑖p0 ∈ 𝑋√2 and q1 + 𝑖p1 =𝑒−𝑖𝜗(q0 + 𝑖p0) with 𝜗 ∈ (0, 𝜋). Then any p ∈ 𝑆𝑛−1(q⊥0 ) with
p𝑡0p ≥ 0, respectively, p𝑡0p ≤ 0, may be written uniquely in the
form

p = (1 + 𝑆+ (k)) p0 + k, (65)

respectively

p = (1 + 𝑆− (k)) p0 + k, (66)

where k ∈ q⊥0 ∩ p⊥0 = 𝑅(q0, q1)⊥ (the Euclidean orthocomple-
ment) has norm ≤1 and

𝑆± (k) š −1 ± √1 − ‖k‖2. (67)

Proposition 11. Let us fix 𝐶 > 0, 𝛿 ∈ (0, 1/6) and 𝜖 > 𝛿. Then
there exist constants 𝐷, 𝜖1 > 0 such that the following holds.
Suppose that

(1) 𝐶𝑘−𝛿 < 𝜗 < 𝜋 − 𝐶𝑘−𝛿;
(2) q𝑗 + 𝑖p𝑗 ∈ 𝑋√2 for 𝑗 = 0, 1;
(3) q1 + 𝑖p1 = 𝑒−𝑖𝜗(q0 + 𝑖p0);
(4) k𝑗 ∈ q⊥0 ∩ q⊥1 for 𝑗 = 0, 1;
(5) 1 ≥ max{‖k0‖, ‖k1‖} ≥ 𝐶𝑘𝜖−1/2;
(6) p󸀠𝑗 = (1 + 𝑆𝑗(k𝑗))p𝑗 + k𝑗 ∈ 𝑆𝑛−1(q⊥𝑗 ) for 𝑗 = 0, 1, where𝑆𝑗 can be either one of 𝑆± (Lemma 10).

Then

dist𝐹𝑛 ([q0 + 𝑖p󸀠0] , [q1 + 𝑖p󸀠1]) ≥ 𝐷𝑘𝜖1−1/2 (68)

for every 𝑘 ≫ 0.

In view of Theorem 7, Proposition 11 implies the follow-
ing.

Corollary 12. Uniformly in the range of Proposition 11, we
have

Π√2,𝑘 (q0 + 𝑖p󸀠0, q1 + 𝑖p󸀠1) = 𝑂 (𝑘−∞) . (69)

Proof of Proposition 11. Let us set for 𝛾 ∈ [−𝜋, 𝜋]
Φ (𝛾, p󸀠0, p󸀠1) š 𝑒−𝑖𝛾 (q0 + 𝑖p󸀠0) − (q1 + 𝑖p󸀠1) . (70)

Let dist𝐹𝑛 be the restriction to 𝐹𝑛 of the distance function on
P𝑛. Then

dist𝐹𝑛 ([q0 + 𝑖p󸀠0] , [q1 + 𝑖p󸀠1])
= 1√2 min {󵄩󵄩󵄩󵄩󵄩Φ (𝛾, p󸀠0, p󸀠1)󵄩󵄩󵄩󵄩󵄩 : 𝛾 ∈ [0, 2𝜋]} . (71)

The factor in front is needed because while the Hopf map𝑆2𝑛+11 → P𝑛 is a Riemannian submersion, the projection𝑆2𝑛+1√2
→ P𝑛 is so only after a constant rescaling of the metric.

We are reduced to proving that in the given range there
exist constants 𝐷, 𝜖1 > 0 such that for every 𝑘 ≫ 0 and 𝛾 ∈[0, 2𝜋] 󵄩󵄩󵄩󵄩󵄩Φ (𝛾, p󸀠0, p󸀠1)󵄩󵄩󵄩󵄩󵄩 ≥ 𝐷𝑘𝜖1−1/2. (72)

We have

Φ(𝛾, p󸀠0, p󸀠1) = 𝑒−𝑖𝛾 (q0 + 𝑖p0 + 𝑖𝑆0 (k0) p0 + 𝑖k0)
− (𝑒−𝑖𝜗 (q0 + 𝑖p0) + 𝑖𝑆1 (k1) p1 + 𝑖k1)

= (𝐴q0 + 𝐵p0) + 𝑖 [𝑒−𝑖𝛾k0 − k1] ,
(73)

where

𝐴 fl (𝑒−𝑖𝛾 − 𝑒−𝑖𝜗) + 𝑖𝑆1 (k1) sin (𝜗) = cos (𝛾) − cos (𝜗)
+ 𝑖 [− sin (𝛾) + sin (𝜗) (1 + 𝑆1 (k1))] , (74)

𝐵 fl 𝑖 (𝑒−𝑖𝛾 − 𝑒−𝑖𝜗) + 𝑖 (𝑒−𝑖𝛾𝑆0 (k0) − 𝑆1 (k1) cos (𝜗))= sin (𝛾) (1 + 𝑆0 (k0)) − sin (𝜗) + 𝑖 (cos (𝛾) 𝑆0 (k0)− 𝑆1 (k1) cos (𝜗) + cos (𝛾) − cos (𝜗)) .
(75)

Regarding the two summands on the last line of (73), we
have𝐴q0 + 𝐵p0 ∈ 𝑅 (q0, q1)C ,𝑖 [𝑒−𝑖𝛾k0 − k1] ∈ 𝑅 (q0, q1)⊥ℎC , (76)

where ⊥ℎ denotes the Hermitian orthocomplement. Hence,󵄩󵄩󵄩󵄩󵄩Φ (𝛾, p󸀠0, p󸀠1)󵄩󵄩󵄩󵄩󵄩2 ≥ 󵄩󵄩󵄩󵄩󵄩𝑒−𝑖𝛾k0 − k1
󵄩󵄩󵄩󵄩󵄩2≥ (1 − 󵄨󵄨󵄨󵄨cos (𝛾)󵄨󵄨󵄨󵄨) [󵄩󵄩󵄩󵄩k0󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩k1󵄩󵄩󵄩󵄩2] . (77)
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Since 1 − | cos(𝛾)| vanishes exactly to second order at 𝛾 =0, 𝜋, 2𝜋, there exists𝐷 > 0 such that for 𝛾 ∈ [0, 2𝜋], we have
1 − 󵄨󵄨󵄨󵄨cos (𝛾)󵄨󵄨󵄨󵄨 ≥ 𝐷2min {𝛾2, (𝛾 − 𝜋)2 , (𝛾 − 2𝜋)2} . (78)

Given this and (77), we conclude that, under the present
hypothesis,󵄩󵄩󵄩󵄩󵄩Φ (𝛾, p󸀠0, p󸀠1)󵄩󵄩󵄩󵄩󵄩≥ 𝐷min {𝛾, 󵄨󵄨󵄨󵄨𝛾 − 𝜋󵄨󵄨󵄨󵄨 , 2𝜋 − 𝛾}max {‖k‖ , 󵄩󵄩󵄩󵄩󵄩k󸀠󵄩󵄩󵄩󵄩󵄩}≥ 𝐶𝐷min {𝛾, 󵄨󵄨󵄨󵄨𝛾 − 𝜋󵄨󵄨󵄨󵄨 , 2𝜋 − 𝛾} 𝑘𝜖−1/2.

(79)

Let us now pick 𝛿󸀠 with 𝜖 > 𝛿󸀠 > 𝛿 and assume

min {𝛾, 󵄨󵄨󵄨󵄨𝛾 − 𝜋󵄨󵄨󵄨󵄨 , 2𝜋 − 𝛾} ≥ 𝑘−𝛿󸀠 . (80)

Then 󵄩󵄩󵄩󵄩󵄩Φ (𝛾, p, p󸀠)󵄩󵄩󵄩󵄩󵄩 ≥ 𝐶𝐷𝑘(𝜖−𝛿󸀠)−1/2. (81)

This establishes (72) with 𝜖1 = 𝜖 − 𝛿󸀠, in the case where (80)
holds. Thus, we are reduced to assuming

min {𝛾, 󵄨󵄨󵄨󵄨𝛾 − 𝜋󵄨󵄨󵄨󵄨 , 2𝜋 − 𝛾} ≤ 𝑘−𝛿󸀠 . (82)

Then we also have |sin(𝛾)| ≤ 𝑘−𝛿󸀠 . Let us then look at the
first summand on the last line of (73). We have an Hermitian
orthogonal direct sum

𝑅 (q0, q1)C = 𝑅 (q0, p0)C= spanC (q0) ⊕ spanC (p0) . (83)

On the other hand, since sin(𝜗) vanishes exactly to first order
at 𝜗 = 0 and 𝜗 = 𝜋, there exists 𝐸 > 0 such that for 𝜗 ∈ (0, 𝜋)
under the assumptions of the lemma we have

sin (𝜗) ≥ 𝐸min {𝜗, 𝜋 − 𝜗} ≥ 𝐸𝐶𝑘−𝛿. (84)

Hence, in view of (75), we have for some𝐷1 > 0 and 𝑘 ≫ 0󵄩󵄩󵄩󵄩󵄩Φ (𝛾, p, p󸀠)󵄩󵄩󵄩󵄩󵄩 ≥ 󵄨󵄨󵄨󵄨𝐴q0 + 𝐵p0󵄨󵄨󵄨󵄨 ≥ |𝐵| ≥ |R (𝐵)|
= 󵄨󵄨󵄨󵄨sin (𝛾) (1 + 𝑆0 (k0)) − sin (𝜗)󵄨󵄨󵄨󵄨
≥ |sin (𝜗)| − 𝑘−𝛿󸀠 ≥ 𝐸𝐶𝑘−𝛿 − 𝑘−𝛿󸀠
≥ 12𝐸𝐶𝑘−𝛿 ≥ 12𝐸𝐶𝑘−1/6,

(85)

since 𝛿󸀠 > 𝛿 and 𝛿 < 1/6. This establishes (72) with 𝜖1 = 1/3
when (82) holds.

The proof of Proposition 11 is complete.

Equations (65) and (66) parametrize neighborhoods ofp0
and−p0, respectively.Therefore, Proposition 11 implies that in
(54) only a negligible contribution to the asymptotics is lost,
if integration in p and p󸀠 yields by restriction the shrinking
neighborhoods of ±p0 and ±p1, of radii 𝑂(𝑘𝜖−1/2).

This may be rephrased as follows. Let 󰜚 ∈ C∞
0 (R𝑛+1)

be even, supported in a small neighborhood of the origin,
and identically equal to one in a smaller neighborhood of
the origin.Then the asymptotics of (54) are unchanged, if the
integrand is multiplied by

[󰜚 (𝑘1/2−𝜖 (p − p0)) + 󰜚 (𝑘1/2−𝜖 (p + p0))]
⋅ [󰜚 (𝑘1/2−𝜖 (p󸀠 − p1)) + 󰜚 (𝑘1/2−𝜖 (p󸀠 + p1))] . (86)

In this way, the integrand splits into four summands. In
fact, only twoof these are nonnegligible for 𝑘 → +∞. Namely,
consider the summand containing the factor

󰜚 (𝑘1/2−𝜖 (p − p0)) 󰜚 (𝑘1/2−𝜖 (p󸀠 + p1)) . (87)

On its support, p lies in a shrinking neighborhood of p0
and p󸀠 in a shrinking neighborhood of −p1. Therefore, on the
same support q0 + 𝑖p lies in a shrinking neighborhood of q0 +𝑖p0, and q1 − 𝑖p󸀠 lies in a shrinking neighborhood of q1 − 𝑖p1.
Since

1√2 (q0 + 𝑖p0) ∧ 1√2 (q1 − 𝑖p1)
= 12 (q0 + 𝑖p0) ∧ 𝑒𝑖𝜗 (q0 − 𝑖p0) = −𝑖q0 ∧ p0

(88)

has unit norm, on the support of (87) [q0 + 𝑖p] and [q1 + 𝑖p󸀠]
remain at a distance≥2/3, say, in projective space.This implies
that as 𝑘 → +∞

Π√2,𝑘 (q0 + 𝑖p, q1 + 𝑖p󸀠) = 𝑂 (𝑘−∞) (89)

uniformly in (p,p󸀠) in the support of (87). A similar argument
applies to the summand containing the factor

󰜚 (𝑘1/2−𝜖 (p + p0)) 󰜚 (𝑘1/2−𝜖 (p󸀠 − p1)) . (90)

Thus, we may rewrite (54) as follows:

P𝑘,𝑛 (q0, q1) ∼ P𝑘,𝑛 (q0, q1)+ +P𝑘,𝑛 (q0, q1)− , (91)

where

P𝑘,𝑛 (q0, q1)± fl
1𝐶2𝑘,𝑛 ∫𝑆(q⊥0 ) ∫𝑆(q1⊥) 󰜚 (𝑘1/2−𝜖 (p ∓ p0))

⋅ 󰜚 (𝑘1/2−𝜖 (p󸀠 ∓ p1)) ⋅ Π√2,𝑘 (q0 + 𝑖p, q1
+ 𝑖p󸀠) d𝑉𝑆(q⊥0 ) (p) d𝑉𝑆(q1⊥) (p󸀠) .

(92)

As a further reduction, we need only deal with one of
P𝑘,𝑛(q0, q1)±.
Lemma 13. P𝑘,𝑛(q0, q1)± = P𝑘(q0, q1)∓.
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Proof of Lemma 13. Let us apply the change of integration
variable p 󳨃→ −p and p󸀠 󳨃→ −p󸀠 and apply (56). Since 󰜚 is
even, we get

P𝑘,𝑛 (q0, q1)− = 1𝐶2𝑘,𝑛 ∫𝑆(q⊥0 ) ∫𝑆(q1⊥) 󰜚 (𝑘1/2−𝜖 (p − p0))
⋅ 󰜚 (𝑘1/2−𝜖 (p󸀠 − p1))
⋅ Π√2,𝑘 (q0 + 𝑖p, q1 + 𝑖p󸀠)d𝑉𝑆(q⊥0 ) (p) d𝑉𝑆(q1⊥) (p󸀠)= P𝑘 (q0, q1)+.

(93)

Lemma 13 and (91) imply

P𝑘,𝑛 (q0, q1) ∼ 2R (P𝑘 (q0, q1)+) . (94)

In the definition of P𝑘(q0, q1)+, integration is over a
shrinking neighborhood of (p0, p1) ∈ 𝑆(q⊥0 ) × 𝑆(q1⊥). We can
thus make use of the parametrization (65) and write in (92):

p = p0 + 𝐴 (k0) ,
p󸀠 = p1 + 𝐴 (k1) , (95)

where we have set𝐴(k𝑗) š k𝑗 + 𝑆+ (k𝑗) p𝑗. (96)

It is also harmless to replacep−p𝑗 by k𝑗 in the rescaled cut-offs
in (92). Let us also set z𝑗 = q𝑗 + 𝑖p𝑗 and recall that z1 = 𝑒−𝑖𝜗z0.
We then obtain

P𝑘,𝑛 (q0, q1)+
= 1𝐶2𝑘,𝑛 ∫q⊥0 ∩q⊥1 ∫q⊥0 ∩q⊥1 󰜚 (𝑘1/2−𝜖k0) 󰜚 (𝑘1/2−𝜖k1)⋅ Π√2,𝑘 (z0 + 𝑖𝐴 (k0) , z1 + 𝑖𝐴 (k1))⋅V (k0, k1) dk0dk1,

(97)

whereV(0, 0) = 1.
Let us pass to rescaled integration variables k𝑗 󳨃→ k𝑗/√𝑘

in (97). Then

P𝑘,𝑛 (q0, q1)+
= 𝑘1−𝑛𝐶2𝑘,𝑛 ∫q⊥0 ∩q⊥1 ∫q⊥0 ∩q⊥1 󰜚 (𝑘−𝜖k0) 󰜚 (𝑘−𝜖k1)
⋅ Π√2,𝑘 (z0 + 𝑖√𝑘𝐴0𝑘 (k0) , z1 + 𝑖√𝑘𝐴1𝑘 (k1))
⋅V( k0√𝑘, k1√𝑘) dk0dk1,

(98)

with

𝐴𝑗𝑘 (k) fl k + √𝑘 ⋅ 𝑆+ ( k√𝑘) p𝑗. (99)

Let us consider the Szegö term in the integrand. In view
of (40), this is

Π√2,𝑘 (z0 + 𝑖√𝑘𝐴0𝑘 (k0) , z1 + 𝑖√𝑘𝐴1𝑘 (k1)) = √22𝑛
⋅ 𝑒𝑖𝑘𝜗Π1,𝑘 ( z0√2 + 1√𝑘 𝑖𝐴0𝑘 (k0)√2 , z0√2
+ 1√𝑘 𝑖𝑒

𝑖𝜗𝐴1𝑘 (k1)√2 ) .
(100)

Now the sums in the previous expression are just algebraic
sums in C𝑛+1; in order to apply the scaling asymptotics of
Theorem 8, we need to first express the argument of (100)
in terms of local Heisenberg coordinates on 𝑋1 centered at
z0/√2.
Lemma 14. Suppose z = q + 𝑖p ∈ 𝑋1 and choose a system of
HLC on𝑋1 centered at z. Then for 𝛿p ∼ 0 ∈ R𝑛+1 and 𝑒𝑖𝜗 ∈ 𝑆1
such that z + 𝑖𝑒𝑖𝜗𝛿p ∈ 𝑋1 we have

z + 𝑖𝑒𝑖𝜗𝛿p = z+𝑋1 (0, 𝑖𝑒𝑖𝜗𝛿p + 𝑅2 (𝜃; 𝛿p)) , (101)

for a suitable smooth function𝑅2(𝜃; ⋅) vanishing to second order
at the origin (in k).

Proof of Lemma 14. In view of (45), it suffices to prove the
statement on 𝑆2𝑛+11 , working with the HLC (44). Since z, z +𝑖𝑒𝑖𝜗𝛿p ∈ C𝑛, we have

0 = z𝑡z + 2𝑖𝑒𝑖𝜗z𝑡𝛿p − 𝑒2𝑖𝜗𝛿p𝑡𝛿p
= 2𝑖𝑒𝑖𝜗z𝑡𝛿p − 𝑒2𝑖𝜗 ‖𝛿p‖2 , (102)

so that 𝑖z𝑡𝛿p = 𝑒𝑖𝜗‖𝛿p‖2/2.
Let us look for 𝛽 > 0 and h ∈ z⊥ℎ (Hermitian

orthocomplement) such that

z + 𝑖𝑒𝑖𝜗𝛿p = 𝛽 (z + h) . (103)

If this is possible at all, then necessarily 𝛽 = 1/‖z + h‖, as‖z + 𝑖𝑒𝑖𝜗𝛿p‖ = 1. Then

z + 𝑖𝑒𝑖𝜗𝛿p = z+𝑆2𝑛+11 (0, h) . (104)

Assuming that (103) may be solved, then, taking the
Hermitian product with z on both sides of (103) and using
(102), we get

𝛽 = z𝑡 (z − 𝑖𝑒−𝑖𝜗𝛿p) = 1 − 𝑖𝑒−𝑖𝜗z𝑡𝛿p = 1 − 12 ‖𝛿p‖2> 0. (105)

With this value of 𝛽, let us set
h fl

1𝛽 (z + 𝑖𝑒𝑖𝜃𝛿p) − z, (106)
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so that (103) is certainly satisfied. We need to verify that h ∈
z⊥ℎ . Indeed we have

h𝑡z = 1𝛽 (1 + 𝑖𝑒𝑖𝜃𝛿p𝑡z) − 1 = 1𝛽 (1 − 12 ‖𝛿p‖2) − 1= 0. (107)

Since h = 𝑖𝑒𝑖𝜃𝛿p+𝑅2(𝛿p), the proof of the lemma is complete.

Notice that h is given for 𝛿p ∼ 0 by an asymptotic
expansion in homogeneous polynomials of increasing degree
in 𝛿p of the form

h ∼ 𝑖𝑒𝑖𝜃𝛿p + 12 ‖𝛿p‖2 z + 𝑖2𝑒𝑖𝜃 ‖𝛿p‖2 𝛿p + 14 ‖𝛿p‖4 z+ ⋅ ⋅ ⋅ . (108)

This holds on 𝑆2𝑛+11 , but a similar expansion obviously holds
on𝑋1, possibly with modified terms in higher degree.

Let us apply Lemma 14 with z = z0/√2 and 𝛿p𝑗 =𝑒𝑖𝜃(𝐴𝑗𝑘(k𝑗)/√2)/√𝑘 (we will set 𝜃 = 0 for 𝑗 = 0 and 𝜃 = 𝜗
for 𝑗 = 1). To this end, let us note that in view of (99) for𝑘 → +∞ there is an asymptotic expansion of the form

𝐴𝑗𝑘 (k) ∼ ∑
𝑗≥0

1𝑘𝑙/2𝑃𝑗,𝑙+1 (k) , (109)

where 𝑃𝑗,𝑙 is a homogeneous (vector valued) polynomial
function of degree 𝑙 and 𝑃𝑗1(k) = k. Hence,

𝛿p𝑗 = 𝑒𝑖𝜃√2𝑘𝐴𝑗𝑘 (k𝑗) ∼ 𝑒𝑖𝜃√2∑𝑗≥0 1𝑘(𝑙+1)/2𝑃𝑗,𝑙+1 (k𝑗)
= 𝑒𝑖𝜃√𝑘 k𝑗√2 + ⋅ ⋅ ⋅ .

(110)

Making use of (110) in (108) we obtain

h𝑘𝑗 ∼ ∑
𝑙≥1

1𝑘𝑙/2𝑄𝑗𝑙 (𝜃; k)
= 1√𝑘 (𝑖𝑒𝑖𝜃 k𝑗√2 +∑𝑙≥1 1𝑘𝑙/2𝑄𝑗,𝑙+1 (𝜃; k𝑗)) , (111)

where 𝑄𝑗𝑙(𝜃; ⋅) is a homogeneous polynomial function of
degree 𝑙 and we have emphasized the dependence on 𝑘.

Thus, we obtain for 𝑗 = 0 (with 𝜃 = 0) that
z0√2 + 1√𝑘 𝑖𝐴0𝑘 (k0)√2 = z0√2+𝑋1 (0, h𝑘0) , (112)

where

h𝑘0 ∼ 1√𝑘 (𝑖 k0√2 +∑𝑙≥1 1𝑘𝑙/2𝑄0,𝑙+1 (0; k0)) = 1√𝑘a𝑘0, (113)

with a𝑘0 defined by the latter equality. Similarly, for 𝑗 = 1
(with 𝜃 = 𝜗), we have

z0√2 + 1√𝑘 𝑖𝑒
𝑖𝜗𝐴1𝑘 (k1)√2 = z0√2+𝑋1 (0, h𝑘1) , (114)

where

h𝑘1 ∼ 1√𝑘 (𝑖𝑒𝑖𝜗 k1√2 +∑𝑙≥1 1𝑘𝑙/2𝑄1,𝑙+1 (𝜗; k1))
= 1√𝑘a𝑘1.

(115)

Let us return to (100). In view of Theorem 8, we get

Π1,𝑘 ( z0√2 + 1√𝑘 𝑖𝐴0𝑘 (k0)√2 , z0√2 + 1√𝑘 𝑖𝑒
𝑖𝜗𝐴1𝑘 (k1)√2 )

= Π1,𝑘 ( z0√2+𝑋1 1√𝑘a𝑘0, z0√2+𝑋1 1√𝑘a𝑘1)
∼ (𝑘𝜋)𝑛−1 𝑒𝜓2(a𝑘0 ,a𝑘1)
⋅ [1 + +∞∑

𝑏=1

𝑘−𝑏/2𝑃𝑏 (a𝑘0, a𝑘1)] .

(116)

We have

𝜓2 (a𝑘0, a𝑘1) ∼ 12𝜓2 (k0, 𝑒𝑖𝜗k1)
+∑
𝑙≥1

1𝑘𝑙/2𝑄𝑙+2 (𝜗; k0, k1) , (117)

where 𝑄𝑙(𝜗; ⋅, ⋅) is a homogeneous C-valued polynomial of
degree 𝑙. For any 𝑟 ≥ 1 and 𝑙1, . . . , 𝑙𝑟 ≥ 1, we have

𝑟∏
𝑗=1

1𝑘𝑙𝑗/2𝑄𝑙𝑗+2
(𝜗; k0, k1)

= 1𝑘∑𝑟𝑗=1 𝑙𝑗/2𝑄∑𝑟𝑗=1 𝑙𝑗+2𝑟
(𝜗; k0, k1) ,

(118)

where𝑄∑𝑟𝑗=1 𝑙𝑗+2𝑟
(𝜗; ⋅, ⋅) is homogeneous of degree∑𝑟

𝑗=1 𝑙𝑗 +2𝑟.
Since 𝑙𝑗 ≥ 1 for every 𝑗, we have ∑𝑟

𝑗=1 𝑙𝑗 + 2𝑟 ≤ 3∑𝑟
𝑗=1 𝑙𝑗.

One can see from this that

𝑒𝜓2(a𝑘0 ,a𝑘1)
∼ 𝑒(1/2)𝜓2(k0 ,𝑒𝑖𝜗k1) [1 +∑

𝑙≥1

1𝑘𝑙/2𝐵𝑙 (𝜗; k0, k1)] , (119)

where𝐵𝑙(𝜗; ⋅, ⋅) is a polynomial of degree ≤3𝑙, having the same
parity as 𝑙.



Journal of Complex Analysis 11

Similarly, recalling that 𝑃𝑏 has the same parity as 𝑏 and
degree ≤3𝑏, each summand 𝑘−𝑏/2𝑃𝑏(a𝑘0, a𝑘1) in (116) gives rise
to an asymptotic expansion in terms of the form

1𝑘𝑏/2 𝑟∏
𝑎=1

1𝑘𝑙𝑎/2𝑅𝑙𝑎+1 (𝜗; k0, k1)
= 1𝑘(𝑏+∑𝑟𝑎=1 𝑙𝑎)/2 𝑅̃∑𝑟𝑎=1 𝑙𝑎+𝑟 (𝜗; k0, k1) ,

(120)

where 𝑅𝑙(𝜗; ⋅, ⋅) and 𝑅̃𝑙(𝜗; ⋅, ⋅) are homogeneous polynomials
of the given degree, 𝑟 ≤ 3𝑏, and 𝑏 − 𝑟 is even. Then 3(𝑏 +∑𝑟
𝑎=1 𝑙𝑎) ≥ ∑𝑟

𝑎=1 𝑙𝑎 + 𝑟, and (𝑏 +∑𝑟
𝑎=1 𝑙𝑎) − (∑𝑟

𝑎=1 𝑙𝑎 + 𝑟) = 𝑏 − 𝑟
is also even. Hence, each summand 𝑘−𝑏/2𝑃𝑏(a𝑘0, a𝑘1) (𝑏 ≥ 1)
yields an asymptotic expansion of the form

∑
𝑙≥1

𝑘−𝑙/2𝑇𝑏𝑙 (𝜗; k0, k1) , (121)

where again each 𝑇𝑏𝑙 has the same parity as 𝑙 and degree ≤3𝑙.
Putting this all together, we obtain an asymptotic expan-

sion for the integrand in (98).

Lemma 15. For 𝑙 ≥ 0, there exist polynomials 𝑍𝑙(𝜗; ⋅, ⋅) of
degree ≤3𝑙 and parity (−1)𝑙, with 𝑍0(𝜗; ⋅, ⋅) = 1, such that

Π√2,𝑘 (z0 + 𝑖√𝑘𝐴0𝑘 (k0) , z1 + 𝑖√𝑘𝐴1𝑘 (k1))
⋅V( k0√𝑘, k1√𝑘) ∼ √22𝑛 𝑒𝑖𝑘𝜗 (𝑘𝜋)𝑛−1
⋅ 𝑒(1/2)𝜓2(k0 ,𝑒𝑖𝜗k1)∑

𝑙≥0

1𝑘𝑙/2𝑍𝑙 (𝜗; k0, k1) .
(122)

Proof of Lemma 15. The previous arguments yield an asymp-
totic expansion of the given form for the first factor. We need
only multiply the latter expansion by the Taylor expansion of
the second factor.

Since integration in (98) takes place over a poly-ball or
radius 𝑂(𝑘𝜖) in (q⊥0 ∩ q⊥1 )2, the expansion may be integrated
term by term. In addition, given that the exponent and the
cut-offs are even functions of (k0, k1), only terms of even
parity yield a nonzero integral. Hence, we may discard the
half-integer powers and obtain

P𝑘 (q0, q1)+ ∼ 𝑘1−𝑛𝐶2𝑘,𝑛 √22𝑛 𝑒𝑖𝑘𝜗 (𝑘𝜋)
𝑛−1∑

𝑙≥0

𝑘−𝑙𝑃̂𝑙 (𝜗)+ , (123)

where

𝑃̂𝑙 (𝜗)+ fl ∫
q⊥0 ∩q⊥1

∫
q⊥0 ∩q⊥1

󰜚 (𝑘−𝜖k0) 󰜚 (𝑘−𝜖k1)
⋅ 𝑒(1/2)𝜓2(k0 ,𝑒𝑖𝜗k1)𝑍2𝑙 (𝜗; k0, k1) dk0dk1.

(124)

We can slightly simplify the previous asymptotic expansion
as follows. First, as emphasized the dependence on (q0, q1)
is of course only through the angle 𝜗. In particular, in (124)

nothing is lost by assuming that q0 and q1 span the 2-plane{0} ×R2 ⊆ R𝑛+1, and therefore that q⊥0 ∩ q⊥1 = R𝑛−1 × {0}.
Furthermore, given (46), we have

𝜓2 (k0, 𝑒𝑖𝜗k1) = −𝑖 sin (𝜗) k0𝑡k1
− 12 󵄩󵄩󵄩󵄩k0 − cos (𝜗) k1󵄩󵄩󵄩󵄩2
− 12 sin (𝜗)2 󵄩󵄩󵄩󵄩k1󵄩󵄩󵄩󵄩2 .

(125)

With the change of variables

(k0
k1
) = √2(b0 + cot (𝜗) b1

( 1
sin (𝜗)) b1

) (126)

we obtain

𝜓2 (k0, 𝑒𝑖𝜗k1) = −12 󵄩󵄩󵄩󵄩b0󵄩󵄩󵄩󵄩2 − 𝑖b𝑡0b1− 12 (1 + 2𝑖 cot (𝜗)) 󵄩󵄩󵄩󵄩b1󵄩󵄩󵄩󵄩2 .
(127)

Since 𝑍2𝑙(𝜗, ⋅, ⋅) is even and has degree ≤6𝑙, we can write

𝑍2𝑙 (𝜗; b0 + cot (𝜗) b1, b1
sin (𝜗))

= 1
sin (𝜗)6𝑙𝑇𝑙 (𝜗; b0, b1) ,

(128)

where 𝑇𝑙(𝜗; ⋅, ⋅) is an even polynomial of degree ≤6𝑙, with
smooth bounded coefficients for 𝜗 ∈ [0, 𝜋]. Thus,

𝑃̂𝑙 (𝜗)+ = ( 2
sin (𝜗))𝑛−1 1

sin (𝜗)6𝑙
⋅ ∫

R𝑛−1
∫
R𝑛−1

𝑒−(1/2)‖b0‖2−𝑖b𝑡0b1−(1/2)(1+2𝑖 cot(𝜗))‖b1‖2
⋅ 󰜚 (𝑘−𝜖√2 (b0 + cot (𝜗) b1))⋅ 󰜚 (𝑘−𝜖√2 sin (𝜗)−1 b1) 𝑇𝑙 (𝜗; b0, b1) ⋅ db0db1.

(129)

There is a constant 𝐶 > 0 such that the support of

1 − 󰜚 (𝑘−𝜖√2 (b0 + cot (𝜗) b1))⋅ 󰜚 (𝑘−𝜖√2 sin (𝜗)−1 b1) (130)

is contained in the locus, where ‖b0, b1‖ ≥ 𝐶𝑘𝜖sin(𝜗). Under
the assumptions of the theorem, this implies, perhaps for a
different constant 𝐶 > 0, that ‖b0, b1‖ ≥ 𝐶𝑘𝜖−𝛿. On the other
hand, the exponent in (129) satisfies󵄨󵄨󵄨󵄨󵄨󵄨󵄨−12 󵄩󵄩󵄩󵄩b0󵄩󵄩󵄩󵄩2 − 𝑖b𝑡0b1 − 12 (1 + 2𝑖 cot (𝜗)) 󵄩󵄩󵄩󵄩b1󵄩󵄩󵄩󵄩2󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ −12 (󵄩󵄩󵄩󵄩b0󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩b1󵄩󵄩󵄩󵄩2) .
(131)

Given that 𝜖 > 𝛿 (statement of Proposition 11), we conclude
that only a negligible contribution to the asymptotics is lost,
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if the cut-off function is omitted and integration is now
extended to all of R𝑛−1 ×R𝑛−1.

We can thus rewrite (123) as follows:

P𝑘 (q0, q1)+ ∼ 1𝐶2𝑘,𝑛 √22 𝑒𝑖𝑘𝜗 ( 1𝜋 sin (𝜗))𝑛−1
⋅ ∑
𝑙≥0

𝑘−𝑙 1
sin (𝜗)6𝑙 𝑃̃𝑙 (𝜗)+ ,

(132)

where

𝑃̃𝑙 (𝜗)+ = ∫
R𝑛−1

∫
R𝑛−1

𝑒−(1/2)‖b0‖2−𝑖b𝑡0b1−(1/2)(1+2𝑖 cot(𝜗))‖b1‖2𝑇𝑙 (𝜗; b0,
b1) db0db1. (133)

Let us set 𝐵𝜗 = (1 + 𝑖 cot(𝜗))𝐼𝑛−1. The leading order
coefficient is

𝑃̃0 (𝜗)+ = ∫
R𝑛−1

𝑒−(1/2)(1+2𝑖 cot(𝜗))‖b1‖2
⋅ [∫

R𝑛−1
𝑒−𝑖b𝑡0b1−(1/2)‖b0‖2db0] db1 = (2𝜋)(𝑛−1)/2

⋅ ∫
R𝑛−1

𝑒−(1/2)(2+2𝑖 cot(𝜗))‖b1‖2db1 = 2(𝑛−1)/2𝜋𝑛−1
⋅ 1√det (𝐵𝜗) = (√2𝜋)

𝑛−1

⋅ sin (𝜗)(𝑛−1)/2 𝑒𝑖(𝜗/2−𝜋/4)(𝑛−1).
(134)

Given (134), (132), and (94),P𝑘(q0, q1) has an asymptotic
expansion for 𝑘 → +∞ with leading order term

2𝑛/2𝐶2𝑘,𝑛 1
sin (𝜗)(𝑛−1)/2 cos(𝑘𝜗 + (𝜗2 − 𝜋2 ) (𝑛 − 1)) . (135)

For any 𝑙, we can write

𝑃̃𝑙 (𝜗)+ = ∫
R𝑛−1

𝑒−(1/2)(1+2𝑖 cot(𝜗))‖b1‖2 [∫
R𝑛−1

𝑒−𝑖b𝑡0b1−(1/2)‖b0‖2𝑇𝑙 (𝜗; b0, b1) db0] db1
= ∫

R𝑛−1
𝑒−(1/2)(2+2𝑖 cot(𝜗))‖b1‖2T𝑙 (𝜗; b1) db1, (136)

whereT𝑙(𝜗; ⋅) is an even polynomial of degree ≤6𝑙.
Let us introduce the Fourier transform

F (c) = ∫
R𝑛−1

𝑒−(1/2)(2+2𝑖 cot(𝜗))‖b1‖2−𝑖b𝑡1cdb1
= (2𝜋)(𝑛−1)/2 sin (𝜗)(𝑛−1)/2
⋅ 𝑒𝑖(𝜗/2−𝜋/4)(𝑛−1)𝑒−(1/2)(2+2𝑖 cot(𝜗))−1‖c‖2 .

(137)

Then (136) is the result of applying an even differential
polynomial 𝑃𝑙(𝐷c) of degree ≤6𝑙 toF(c) and then evaluating
the result at c = 0.

Given this and (135), we conclude that

P𝑘 (q0, q1) = 2𝑛/2𝐶2𝑘,𝑛 ( 1
sin (𝜗))(𝑛−1)/2

⋅ [cos(𝑘𝜗 + (𝜗2 − 𝜋4 ) (𝑛 − 1)) ⋅ 𝐴 (𝜗)
+ sin(𝑘𝜗 + (𝜗2 − 𝜋4 ) (𝑛 − 1)) ⋅ 𝐵 (𝜗)] ,

(138)

where

𝐴 (𝜗) ∼ 1 + +∞∑
𝑙=1

𝑘−𝑙 𝐴 𝑙 (𝜗)
sin (𝜗)6𝑙 ,

𝐵 (𝜗) ∼ +∞∑
𝑙=1

𝑘−𝑙 𝐵𝑙 (𝜗)
sin (𝜗)6𝑙 ,

(139)

with 𝐴 𝑙 and 𝐵𝑙 smooth functions of 𝜗 on [0, 2𝜋].
Proof of Theorem 1 is complete.

4. Proof of Proposition 2

Proof of Proposition 2. The diagonal restriction P𝑘,𝑛(q, q)
may be computed in two different ways. On the one hand,
sinceP𝑘,𝑛(q, q) is constant, we have

P𝑘,𝑛 (q, q) = 𝑁𝑘,𝑛

vol (𝑆𝑛)
= 2
vol (𝑆𝑛) 𝑘𝑛−1(𝑛 − 1)! + 𝑂 (𝑘𝑛−2) .

(140)

On the other hand, (54) with q0 = q1 = q yields

P𝑘,𝑛 (q, q) = 1𝐶2𝑘,𝑛 ∫𝑆(q⊥) ∫𝑆(q⊥)Π√2,𝑘 (q + 𝑖p, q
+ 𝑖p󸀠) d𝑉𝑆(q⊥) (p) d𝑉𝑆(q⊥) (p󸀠)
= 1𝐶2𝑘,𝑛 ∫𝑆(q⊥) 𝐹𝑘 (q, p) d𝑉𝑆(q⊥) (p) ,

(141)

where𝐹𝑘 (q, p)
š ∫

𝑆(q⊥)
Π√2,𝑘 (q + 𝑖p, q + 𝑖p󸀠) d𝑉𝑆(q⊥) (p󸀠) . (142)

Again, integration in d𝑉𝑆(q⊥)(p󸀠) localizes in a shrinking
neighborhood of p. Hence, we may let

p󸀠 = p + 𝐴 (k) , 𝐴 (k) = k + 𝑆+ (k) p, (143)
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where k ∈ q⊥ ∩ p⊥, and introduce the cut-off 󰜚(𝑘1/2−𝜖k).
Passing to rescaled coordinates, and setting z = q + 𝑖p, we
get

𝐹𝑘 (q, p) = 1𝑘(𝑛−1)/2 ∫q⊥∩p⊥ 󰜚 (𝑘−𝜖k)
⋅ Π√2,𝑘 (z, z + 𝑖√𝑘𝐴𝑘 (k))V( k√𝑘) dk, (144)

where

𝐴𝑘 (k) = k + √𝑘𝑆+ ( k√𝑘) p,
V (0) = 1. (145)

By Lemma 15 (with z = z0 = z1, k0 = 0, k1 = k, 𝜗 = 0), we
have

Π√2,𝑘 (z, z + 𝑖√𝑘𝐴𝑘 (k)) ⋅V( k√𝑘)
∼ √22𝑛 (𝑘𝜋)𝑛−1 𝑒−(1/4)‖k‖2∑

𝑙≥0

1𝑘𝑙/2𝑍𝑙 (k) , (146)

for certain polynomials𝑍𝑙 of degree≤3𝑙 and parity (−1)𝑙, with𝑍0(⋅) = 1.
As before, the expansion may be integrated term by term

and, by parity, only the summands with 𝑙 even yield a nonzero
contribution. In addition, only a negligible contribution is
lost if the cut-off is omitted and integration is extended to all
of q⊥ ∩ p⊥ ≅ R𝑛−1. Therefore,

𝐹𝑘 (q, p)
∼ √22𝑛 𝑘(𝑛−1)/2𝜋𝑛−1 ∑

𝑙≥0

𝑘−𝑙 ∫
R𝑛−1

𝑒−(1/4)‖k‖2𝑍2𝑙 (k) dk
= 1√2 (𝑘𝜋)(𝑛−1)/2 + ⋅ ⋅ ⋅ .

(147)

Inserting this in (141), we obtain an asymptotic expansion

P𝑘,𝑛 (q, q) ∼ vol (𝑆𝑛−1)𝐶2𝑘,𝑛 1√2 ( 𝑘𝜋)(𝑛−1)/2 + ⋅ ⋅ ⋅ . (148)

Comparing (140) and (148), we obtain an asymptotic
expansion in descending powers of 𝑘, of the form
𝐶𝑘,𝑛

∼ [vol (𝑆𝑛) vol (𝑆𝑛−1)2√2 ⋅ (𝑛 − 1)!]1/2 (𝜋𝑘)−(𝑛−1)/4
+ ⋅ ⋅ ⋅ .

(149)
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