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1 Introduction

The research fields of flux compactifications of string theories and of black hole physics in

lower dimensions have been cross-fertilized repeatedly. The structure of BPS black holes

near their horizons, the so-called attractor region, has inspired the search for flux vacua,

while the nontrivial features of flux vacua have been useful in extending the toolkit of

relevant Ansätze for black holes in the lower dimensional compactifications.

Recently, the understanding of BPS black hole solutions in AdS spacetimes has pro-

gressed considerably, so that the connection to higher dimensional compactifications can

be explored. In four spacetime dimensions, BPS black hole solutions in gauged super-

gravity have been obtained for Fayet-Iliopoulos gaugings, starting with the work of [1, 2],

which showed the existence of regular spherically symmetric BPS black holes. Subsequent

extensions uncovered fully analytic solutions for symmetric models [3–7].

For theories resulting from string and M-theory reductions, one generally has to extend

the scope to include hypermultiplets. Examples of black hole solutions including flows for

hypermultiplets have been discussed in the framework of consistent reductions of M-theory

on coset spaces to four dimensional gauged supergravity [8], resulting in regular numerical
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solutions [9, 10]. These examples are particularly interesting because the consistent reduc-

tion allows for a lift of the solutions to M-theory, in order to obtain solutions to the eleven

dimensional theory.

In this paper, we consider a more general framework, exploring asymptotically AdS4
black holes in M-theory, assuming internal Sasaki-Einstein seven-dimensional manifolds M7

which are not cosets and which are regular, meaning that they can be written as a circle

fibration over a six dimensional Kähler-Einstein base space M6. A static black hole solution

corresponds to a continuous deformation of this Sasaki-Einstein manifold along a radial

direction, terminating at the black hole horizon, where an attractor solution with enhanced

symmetry arises [11, 12]. Our starting point to obtain the relevant flow equations is the

classification of BPS solutions in M-theory in [13], which we use to define an appropriate

ansatz for static, asymptotically AdS4, black holes preserving two supercharges.1

The result is a set of flow equations that are formally identical with the known flow

equations for gauged supergravity models arising from M-theory reductions. More specif-

ically, in the case of symmetric models, the four-dimensional flow equations of [9] can be

cast in a form involving the I4 quartic invariant, following [6]. The equations we find in this

paper have exactly the same form, but with I4 replaced by the Hitchin functional [15] on

M6; the main equation is given in (3.49) below. This result gives an M-theory explanation

of the reformulation in [6], and shows that it is valid for non-symmetric models as well.2

While we are not aware of any reductions of M-theory to four dimensional supergravity

on general Kähler-Einstein base spaces, the form of the flow equations we find makes it

tantalising to conjecture that such reductions might indeed be possible to carry out in

more general situations than cosets. This might be important also in view of the recent

mathematical progress in finding such spaces: a stability condition was recently proved [17],

which has already been yielding concrete results [18].

This paper is organised as follows. In section 2 we give our general strategy for obtain-

ing black hole solutions from M-theory, specified to an ansatz for static solutions that only

depend on the radial variable. We impose that ansatz to obtain a set of flow equations for

the radial evolution of fields in terms of conserved charges of the eleven dimensional theory.

We then proceed in section 3 to further specify these flow equations to the case of asymp-

totically AdS4 solutions, by changing to variables that naturally appear in four dimensions.

This is made systematic by the use of polyform language and of the Hitchin functional on

the Kähler base space, which we use to define appropriate operators that appear in four

dimensional theories. Finally, section 4 is devoted to a short overview of the BPS flow

equations for static black holes in gauged supergravity and the comparison with the flow

equations obtained from the M-theory reduction. Given that the match extends beyond

the cases connected to coset spaces, we discuss various possibilities and future directions

towards connecting more general gauged supergravity models to M-theory reductions on

Kähler spaces.

1One might also have considered using the formalism of [14] to find solutions in type II theories rather

than in M-theory. The supercharges of AdS black holes, however, are not immediately compatible with

the structure considered in [14]; one would need to extend it by doubling the amount of internal spinors

one considers.
2Progress in non-symmetric models was also achieved recently in [16].
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2 Black hole flow equations from eleven dimensions

In this section, we consider static backgrounds of eleven dimensional supergravity on a six

dimensional Kähler manifold times a circle, assuming that two supercharges are preserved.

We start by giving a short review of the M-theory BPS backgrounds of [13], which preserve

an SU(5) structure and generically allow for a single supercharge. We then spell out our

ansatz to obtain static black hole backgrounds, which we then implement to obtain flow

equations for the moduli that interpolate between AdS2×S2 and AdS4.

2.1 BPS solutions of eleven-dimensional supergravity

The bosonic fields of D = 11 supergravity consist of a metric, g, and a three-form potential

A with four-form field strength F = dA. The action for the bosonic fields is given by

S =
1

2κ2

∫

d11x
√−gR− 1

2
F ∧ ∗F − 1

6
C ∧ F ∧ F , (2.1)

where F = dC. The equations of motion are thus given by

Rµν −
1

12

(

FµρλσF ν
ρλσ − 1

12
gµνF

2

)

= 0 , (2.2a)

d ∗11 F +
1

2
F ∧ F = 0 . (2.2b)

We are interested in bosonic solutions to the equations of motion that preserve at least one

supersymmetry, as described in [13]. The presence of a Killing spinor implies the existence

of a Killing vector which we will assume to be timelike throughout this paper. The metric

can then be written as a time fibration over a ten-dimensional manifold, M10, as

ds2 = −∆2(dt+ ω)2 +∆−1ds2(M10) . (2.3)

Here, ∆ and ω are a function and a one-form on M10, which is assumed to be equipped

with an SU(5) structure (J(5),Ω(5)), where J(5) is the symplectic (1, 1) form and Ω(5) is the

holomorphic (5, 0) form. There is a single general constraint on the torsion classes of this

SU(5) structure, given by

ReW5 = −12 d ln∆ , (2.4)

where the two one-form torsion classes W4 and W5 are defined as

W4 = J(5)xdJ(5) , W5 = ReΩ(5)xd(ReΩ(5)) . (2.5)

Here, AxB denotes the standard contraction of the components of an n-form, A, with the

first n indices of an m-form, B, for m > n. The four-form field strength is fixed in terms

of these data as

F = −d [(dt+ ω) ∧ J(5)] + Λ

+
1

2
∗ d

(

∆−3/2ReΩ(5)

)

− 1

2
∗
[

J(5) ∧ d
(

∆−3/2ReΩ(5)

)]

∧ J(5) (2.6)

− 1

16
∗
[

(W5 + 4W4)∆
−3/2ReΩ(5)

]

.
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Here, ∗ denotes the Hodge dual on M10 and Λ is a (2, 2) four-form on the base that satisfies

the constraint

J(5)xΛ = 2 dω . (2.7)

Note that (2.7) can be solved by decomposing Λ in terms of a primitive (2, 2) form and

the symplectic form J(5), as in the original derivation of [13]. However, we prefer the

constraint (2.7), as the relevant Ansätze for black hole solutions are naturally given in

terms of Λ.

2.2 Black hole Ansatz

In order to describe black hole solutions, one must make assumptions on the form of the

manifold M10 in (2.3). Here, we are ultimately interested in static, spherically symmetric

black hole solutions asymptotic to the product of AdS4 with a regular Sasaki-Einstein

manifold. With these assumptions, the solution may only depend on a single, radial,

variable, so we assume the manifold M10 to be the product of a radial direction R+,

parametrised by a coordinate r, and a nine-dimensional circle fibration:

M10 = R+ ×M9 , S1 →֒ M9 → M8 . (2.8)

Here, M8 is an eight dimensional base manifold and the S1 will ultimately correspond

to the circle fibration of the regular Sasaki-Einstein manifold. One may consider various

assumptions on the form of the manifold M8 and the circle fibration over it, corresponding

to solutions in various spacetime dimensions. For spherically symmetric black hole solutions

in AdS4, M8 must have an SU(2) isometry and will be taken to be itself a product:

M8 = S2 ×M6 , (2.9)

where S2 is a round sphere. The S1 in (2.8) will in general be fibred over both the S2 and

the M6. It then follows that M9 can also be thought of as a fibration of M7 over S2, where

M7 is the total space of the fibration of the S1 over M6: S
1 →֒ M7 → M6.

At r → ∞, the geometry should be asymptotic to a vacuum solution;3 for simplicity in

this paper we will achieve this by imposing that M7 should be a Sasaki-Einstein manifold

at infinity. M6 then has to be asymptotic at r → ∞ to a Kähler-Einstein manifold of

positive curvature. Again for simplicity, as we anticipated, we will take M6 to be Kähler

along the entire flow, or in other words for any r.

Assuming dependence on the single radial variable, denoted by r, the four-form field

strength simplifies as well, since

W5 = −12 d ln∆ ⇔ d
(

∆−3/2ReΩ(5)

)

= 0 . (2.10)

3To be more precise, regular AdS4 black hole solutions such as [2] are asymptotic at r → ∞ to a solution

with AdS4 × M7 metric, but where a magnetic flux for the graviphoton is also present: this is a remnant

of the magnetic charge that does not die out at infinity. This kind of asymptotics was dubbed “magnetic

AdS” in [19].
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It follows that the second line in (2.6) vanishes identically. In addition, we note that the

spherical symmetry we assumed does not allow the four-form to have a single leg on the

sphere, so that we must impose that the third line of (2.6) vanishes as well, as

W5 + 4W4 = 0 . (2.11)

The final form for the gauge field field strength reads

F = −d [(dt+ ω) ∧ J(5)] + Λ , (2.12)

where the magnetic component Λ is still subject to (2.7) above. In order to satisfy the

Bianchi identity dF = 0, moreover, Λ must be closed. Note that the assumption of spherical

symmetry does not imply that the rotational one-form ω is identically zero, as it can have

a nontrivial component along the internal S1 in (2.8). It is straightforward to consider

rotating solutions in AdS4 along similar lines, by assuming all metric components to depend

on more than the radial variable and allowing ω to have components along the sphere.

With this Ansatz, we can be more explicit about the equation of motion for the three-

form gauge field, which will be useful in the following. Inserting (2.12) in the equation of

motion for the gauge field in (2.2a), we find

d ∗11 F +
1

2
F ∧ F = d

[

(dt+ ω) ∧
(

∗(Λ− J(5) ∧ dω)− J(5) ∧
(

Λ− 1

2
J(5) ∧ dω

))]

+ d
(

∆−3 ∗ dJ(5)

)

+
1

2
Λ ∧ Λ , (2.13)

so that each of the two terms in the right hand must vanish separately. It turns out that

the constraint (2.7) is precisely equivalent to the timelike component under the derivative

in (2.13), so that the three-form equation of motion reduces to a Poisson equation for J(5)

on M10, as

d
(

∆−3 ∗ dJ(5)

)

+
1

2
Λ ∧ Λ = 0 . (2.14)

In order to define an electric charge associated to the three-form, one needs to strip off a

derivative, so that a three-form λ exists with the property Λ = dλ, at least locally. One may

then define a conserved electric charge by integrating over an appropriate seven-cycle Ω7:

Q =

∫

Ω7

(

∆−3 ∗ dJ(5) +
1

2
λ ∧ Λ

)

. (2.15)

We will make this more precise later for our class of solutions.

We have now taken care of the supersymmetry equations, of the Bianchi identity

dF = 0 (by requiring Λ to be closed), and of the flux equation of motion (2.13). By [13] it

now follows that the Einstein equations (2.2a) are also satisfied.

2.3 Flow equations

We now start imposing the assumptions spelled out above, taking the metric on M10 to be

given by

ds2 = −∆2(dt+ ω)2 + e2Wdr2 + e2V θ2 + ds2(M8) , (2.16)
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where eW and eV are functions of r and we reabsorbed the factor of ∆ from all the spatial

directions, compared to (2.3), for simplicity. The one-form, θ, here is assumed to correspond

to the S1 fibration over M8 in (2.8), so that it is of the type

θ = dψ +A , (2.17)

where A is a one-form on M8 and ψ is an angular coordinate. In any case, we will not use

this parametrisation below. We will assume the manifold M8 to have an SU(4) structure

(J(4),Ω(4)), and we will restrict to the case

dJ(4) = 0 , dΩ(4) = iE eV θ ∧ Ω(4) , (2.18)

where the real one-form θ and e2V are the quantities appearing in (2.16). Similarly, E

represents one of the torsion classes on M8.
4 When embedded in M10 as in (2.8), both

the torsion E and e2V are in general promoted to real functions of the radial variable

parametrizing R+. However, in this paper we will only consider Kähler deformations, and

thus we will assume E to be a constant, since it would only depend on complex structure

moduli. The conditions (2.18) are met in the case that we will be eventually interested in,

as anticipated at the beginning of section 2.2: M8 = S2 ×M6, with M6 a Kähler-Einstein.

In that case, J(4) will be factorized in the obvious way; Ω(4) will be of the form e ∧ eiξΩ(3),

where e is a (1, 0) form on the S2, and Ω(3) a (3, 0) form on M6. Notice that there are

several e’s that one can pick on the S2, rotated by an SO(3), corresponding to the fact

that our solutions will have two supercharges.

The deformations of the Kähler form correspond to vector multiplet moduli in a lower

dimensional supergravity truncation, when that exists. These can be defined by expand-

ing on a basis {ωp} of the (1, 1) cohomology on M8, on which the Kähler form can be

expanded as

J(4) = tp ωp , (2.19)

where the tp are the Kähler moduli. We will work directly with the Kähler form, without

enforcing this expansion, using generic identities such as

∗4 ω =
1

2
J(4) ∧ J(4) ∧ ω − (J(4)xω)

1

3!
J(4) ∧ J(4) ∧ J(4) , (2.20)

for any (1, 1) form ω. We also define the volume of M8 as

V4 =

∫

1

4!
[J(4)]

4 =

∫

Ω(4) ∧ Ω̄(4) . (2.21)

In terms of these objects, the SU(5) structure on M10 in (2.16) is given by the forms

J(5) = ∆eW+V dr ∧ θ +∆ J(4) , Ω(5) = ∆5/2 (eWdr + i eV θ) ∧ Ω(4) , (2.22)

which satisfy the defining condition J(5) ∧ Ω(5) = 0, as well as

dJ(5) =
(

∂r(∆ J(4))−∆eW+V dθ
)

∧ dr ,

dΩ(5) =
(

∂r ln
(

∆5/2
√

V4e
V
)

− E eW−V
)

dr ∧ Ω(5) .
(2.23)

4One could consider turning on more such classes, but we restrict to this case for simplicity.

– 6 –



J
H
E
P
1
2
(
2
0
1
5
)
1
1
1

In deriving this, we assumed that all complex structure moduli on M8 are frozen, so that

the derivative of a (p, q)-form on M8 is again a (p, q)-form. The relevant torsion classes

then read

W4 = J(4)x

(

∆−1∂r(∆ J(4))− eW+V dθ
)

dr ,

W5 = −8
(

∂r ln
(

∆5/2
√

V4e
V
)

− E eW−V
)

dr .
(2.24)

This can be used in (2.4) and (2.11), to obtain

∂r ln
(

∆
√

V4e
V
)

= E eW−V ,

J(4)x∂rJ(4) − eW+V J(4)xdθ = −∆−1∂r∆ , (2.25)

respectively.

We now turn to the remaining objects in (2.12), namely the rotational one-form ω

and the four-form Λ. Since we are interested in solutions that appear static from a four-

dimensional point of view, ω may not have any components along those directions, but we

will allow for a nontrivial component along the circle parametrized by θ, so as to obtain a

nontrivial charge for the associated Kaluza-Klein gauge field. We therefore take

ω = M θ , (2.26)

where M is a function of the radial variable only. Similarly, we adopt the following Ansatz

for the four-form Λ:

Λ = d [C ∧ θ] + Π , C ≡ B +M ∆ J(4) (2.27)

where B is a (1, 1) form and Π is a constant (2, 2) form flux, both defined on M8. Note that

the first term in (2.27) is chosen so that B can be interpreted as the B-field of Type IIA

string theory; its components upon expansion on a basis as in (2.19) are identified with the

vector multiplet axions from a four-dimensional point of view [8]. Possible hyper-scalars in

four dimensions would be described by adding (3, 1) forms in the total derivative in (2.27),

but we have set these to zero in this paper. Furthermore, we require the condition

Π ∧Π = 0 , (2.28)

in order to ensure that there is a local expression for the electric charges defined in (2.15),

which demands that Π ∧Π be trivial in cohomology.

More explicitly, let us consider the electric charges (2.15) carried by the field strength

along the various seven-cycles Ωp. These read

Qp ≡
1

Np

∫

Ωp

(

∗F +
1

2
A ∧ F

)

(2.29)

=
1

Np

∫

Ωp

(

∆−1eV−W ∗4
(

∂r(∆ J(4))−∆eW+V dθ
)

+
1

2
C ∧ C ∧ dθ + C ∧Π

)

∧ θ ,

where the normalisation constant Np is the volume of Ωp for trivial moduli. Note that this

definition would indeed be impossible without the condition (2.28), as one would not be

able to write the eight-form F ∧ F as a total derivative.
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The definition (2.29) can be viewed as a first order flow equation for the Kähler form;

it can be recast as

Q = eV−W ∂r

(

1

3!
J(4) ∧ J(4) ∧ J(4)

)

− e2V
1

2
J(4) ∧ J(4) ∧ dθ+

1

2
C ∧C ∧ dθ+C ∧Π . (2.30)

We used the second of (2.25) and the identity (2.20). For convenience we have combined

the electric charges into a six-form Q, with the understanding that the actual charges are

the components of this form along an appropriate basis on M8, following (2.29):

Qp =
1

Np

∫

Ωp

Q ∧ θ . (2.31)

From the three-form equation of motion and the definition (2.29), one finds the important

constraint

dθ ∧Q ≃ 0 . (2.32)

≃ stands for cohomological equality, so that the integral of the left hand side of (2.32)

vanishes upon integration over M8.

The evolution of the two-form B is described by a flow equation obtained by insert-

ing (2.27) into the constraint (2.7). When written in components along M8 and along

dr ∧ θ, one finds

∆−1e−V−W∂rC +∆−1J(4)x(C ∧ dθ +Π) = 2M dθ ,

∆−1J(4)x(∂rC) = 2 ∂rM . (2.33)

We used the definition (2.26) to compute the right hand side.

There is a final flow equation, corresponding to the conserved angular momentum

along the U(1) isometry ξ dual to θ. This is naturally computed by the (matter modified)

Komar integral associated to ξ, the so called Noether potential. In appendix B we give

a short discussion of the steps required to define this conserved integral. A bottom-up

approach is explained in some detail in [20] for the closely related case of five-dimensional

supergravity, which contains ordinary gauge fields instead of the three-form. However, the

same steps can be followed to obtain a Komar integral, which can be written as

q0 ≡
1

N9

∫

M9

(

∗dξ + (ξ ·A) ∧ ∗F +
1

3
(ξ ·A) ∧A ∧ F

)

=
1

N9

∫

M9

[

∆−1e3V−W 1

4!
[J(4)]

4 ∂r(∆
2e−2V M)

+ (C −M ∆ J(4)) ∧
(

eV−W ∂r

(

1

3!
J(4) ∧ J(4) ∧ J(4)

)

− e2V
1

2
J(4) ∧ J(4) ∧ dθ

)

+
2

3
C ∧ C ∧

(

1

2
C ∧ dθ +Π

)]

∧ θ , (2.34)

where the normalisation constant N9 is the volume of M8 × S1 for trivial moduli. The

interested reader can find more details on the general definition of conserved charges dual

to Killing vectors in [21] and references therein.

The flow equations (2.25), (2.30), (2.33), (2.34) for the Kähler moduli and the B field

describe the full flow of the solution. In the following, we proceed to recast the same set

of equations in a form that is more suggestive from the four-dimensional point of view.
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3 Four-dimensional black holes

In the previous discussion, we emphasized the properties of the eight-dimensional compact

manifold M8, so that the lower-dimensional interpretation is somewhat obscured. Indeed,

by choosing appropriate Ansätze for M8 one may hope to describe solutions in various

spacetime dimensions. In this section, we will focus on black holes in four dimensions,

taking M8 = S2 × M6, with the S2 having the role of the space surrounding the black

hole, as was already anticipated by our choice of Ansatz explained around (2.18). We then

recast the flow equations in terms of variables most natural for a gauged supergravity in

four dimensions, using the language of polyforms defined on M6.

We stress that our approach is not tied a priori to any truncations or reductions of

M-theory, as it represents a rewriting of the M-theory BPS conditions relevant for solutions

with an asymptotic AdS4 factor. In particular, we specialise the eleven-dimensional BPS

conditions to a generic internal Kähler manifold, M6, where all the Kähler moduli are

allowed to flow, while the complex structure moduli are frozen for simplicity. This choice

of degrees of freedom is motivated by the fact that it matches with the bosonic degrees of

freedom of an N = 2 gauged supergravity in four dimensions, coupled to vector multiplets

and the universal hypermultiplet, but such a truncation may or may not exist, depending

on the choice forM6. Examples where a four-dimensional supergravity truncation exists are

provided by choosing M6 to be the base of Sasaki-Einstein which is also a coset manifold,

leading to the consistent truncations of [8]. In that case, our flow equations can be also

derived from the resulting four-dimensional supergravity [9]. Another example can be found

by freezing all Kähler moduli on M6 except the overall volume, which leads to the universal

truncation of [22]. In general, such a truncation to a four dimensional gauged theory is

not known to exist and our flow equations describe genuinely eleven-dimensional solutions

with an asymptotic AdS4 factor. However, the scalar flows we obtain for a general M6 have

exactly the same structure as the corresponding BPS flow equations for four-dimensional

gauged supergravity, as we discuss in more detail in the next section.

3.1 Four-dimensional Ansatz

We now adopt a convenient Ansatz for a four-dimensional solution, reparametrising the

objects introduced in the previous section, so as to bring them closer to the natural objects

appearing in four-dimensional supergravities. In particular, this is consistent with the

special case of the consistent reductions described in [8].

We henceforth assume that M8 = S2 ×M6, with the metric

ds2(M8) = e2V γ2eKe2χds2(S2) + e−V ds2(M6) , (3.1)

where χ parametrises the sphere modulus and the function γ will be defined shortly. M6

is a Kähler manifold with Kähler form denoted by J, and we define its volume as

vol3 =
1

3!
J ∧ J ∧ J , e−K =

∫

M6

vol3 , (3.2)

where e−K parametrises the volume modulus.
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We reparametrise the metric functions in (2.16) as

e2φ/3 = eV eK/3γ , ∆ = e2φ/3eUeK/6γ , eW = e2φ/3e−UeK/6 , (3.3)

while the Kähler form and the volume of M8 take the form

J(4) = e4φ/3e2χeK/3volS2 + e−2φ/3eK/3J ,

V4 = e−2φ/3e2χeK/3 . (3.4)

Here, volS2 is the volume of the S2. Note that at this point these equalities define a change

of variables rather than a further refinement of our Ansatz.

These redefinitions lead to the following Ansatz for the metric and four-form field

strength, describing four-dimensional solutions

ds211 = e2V γ2eK
(

−γ2e2U (dt+M θ)2 + e−2Udr2 + e2χds2(S2)
)

+ e−V ds2(M6) + e2V θ2

= e2V γ2e−Kds24 + e−V ds2(M6) + e2V
(

θ − γ2e2UM dt
)2

(3.5)

F = −d
[

(dt+ ω) ∧
(

e2φdr ∧ θ +∆ J(4)

)]

+ d [(B +M ∆ J(4)) ∧ θ] + Π , (3.6)

where in the second line we rewrote the metric in a way that exhibits the asymptotically

AdS4 static metric, given by

ds24 = −e2Udt2 + e−2Udr2 + e2χds2(S2) . (3.7)

The quantities ∆ and J(4) are as in (3.3) and (3.4) respectively, while the functions φ, U , χ

and M and the metric on M6 all depend on r only. The one-form θ is as in (2.17), where

the connection, A, has components both in the internal M6 and in the external S2. The

function, γ, is related to M by

M = −e−Ue−K/2γ−2
√

1− γ2 , (3.8)

so that γ = 1 corresponds to a static metric in eleven dimensions. Finally, we choose the

flux Π to be

Π = −p ∧ volS2 , (3.9)

where p is a (1, 1) form on M6, so that (3.9) solves (2.28). The expressions (3.5)–(3.6) agree

with the Ansatz taken for the special case of the consistent reductions described in [8].

As we have a four-dimensional flow in mind, one of the charges will be special: the

charge in (2.30) that corresponds to a flux over M6 × U(1), which is to be viewed as

the internal space. This particular charge is the Freud-Rubin parameter of the AdS4
compactification, usually denoted as e0. We therefore decompose Q in (2.30) in a four-

form, q, and a six-form on M6:

Q = −q ∧ volS2 + e0 e
−Kvol3 ; (3.10)

we used the definitions in (3.2). Similarly, we decompose each of C ≡ B+M ∆ J(4) and dθ

in terms of forms on M6, as

C = c0 volS2 + c =
(

M e2φe2χ eUγ eK/2
)

volS2 + b+M eUeK/2γ J ,

dθ = p0 volS2 +m , (3.11)
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where c and m are two-forms and c0 and p0 are zero-forms. Note that we also gave the

explicit expressions for c0 and c in terms of the four-dimensional axions b, as in (2.27),

assuming that the component of the B-field on the sphere vanishes, consistently with our

Ansatz for the four-dimensional fields.

Using these definitions in (2.30), one obtains the flow equations

e0 e
−Kvol3 = eUeK/2γ−1 ∂r

(

e−2φ
)

vol3 −
1

2
γ−2J ∧ J ∧m+

1

2
c ∧ c ∧m (3.12a)

−q = eUe−K/2 ∂r

(

e2χe−K 1

2
J ∧ J

)

− p0
1

2
J ∧ J− e2φe2χ J ∧m

+ c ∧
(

1

2
p0 c+ c0m− p

)

. (3.12b)

These must be supplemented by the two scalar equations in (2.25), which read

∂r

(

eUeφeχ
)

= E eφeχeK/2γ ,

∂r

(

eUeK/2e2χγ
)

= γ−1p0 + γ−1e2φe2χ(Jxm) .
(3.13)

It is now straightforward to manipulate (3.12a) and (3.13) into a form that can be

viewed as a scalar flow in a four-dimensional supergravity theory.

∂re
−2φ = e−UeK/2γ ∗6

[

e0 vol3 +
1

2
e−K

(

γ−2J ∧ J− c ∧ c
)

∧m

]

, (3.14a)

∂r
(

eχ+U
)

=
1

2
eχeK/2γ ∗6

[

(e0e
2φ+2E) vol3+

1

2
e−K e2φ

(

γ−2J ∧ J−c ∧ c
)

∧m

]

, (3.14b)

eχ+U∂r

(

eχeK/2γ
)

= I0 + p0 , (3.14c)

where we defined the shorthand

I0 =
1

2
e2χe−K ∗6

(

−γ2(e2φe0 + 2E) vol3 +
1

2
e−K e2φ

(

J ∧ J+ γ2c ∧ c
)

∧m)

)

, (3.15)

which will be useful in the following.

We now turn to the axionic flow equation (2.33), starting from the components along

M6, which can be recast as

eχ+U∂r

(

eχeK/2γ c
)

= e2χe2φγ eUeK/2M m− e2χe2φJx(c ∧ dθ) + I0 c+ p , (3.16)

where we used the definitions (3.3), (3.11) and (3.14c). Similarly, the remaining components

of (2.33) along the sphere and dr ∧ θ can be recast in the form

(

eUe−K/2γ ∂rM − p0e−2χe−K M
)

vol3 =

1

2
e−K J ∧ J ∧

(

dc− e2φM m+ e−UeK/2γ−1e2φJx(c ∧m)
)

(3.17a)

M ∂re
−2φ = e−Ue−K γ−1 ∗6

(

eK/2M J ∧ J ∧m− e−Uγ−1c ∧ J ∧m

)

, (3.17b)

to which we will return in due course.
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Using the axionic flow equation (3.16), it is now straightforward to rewrite the defini-

tion of q in (3.12b) as a flow equation for the Kähler moduli in the form

eχ+U∂r

(

eχeK/2

(

1

2
γ c ∧ c− 1

2
γ−1 J ∧ J

))

=

q+ I0
(

J ∧ J+ γ2c ∧ c
)

− e2φe2χ γ−2J ∧m (3.18)

+ e2φe2χ
(

2 γ eUeK/2Mm− Jx(m ∧ c)
)

∧ c .

This flow equation can be thought of as determining the behaviour of the Kähler moduli

residing in J, given that the axions are similarly determined by the flow equation (3.16).

Finally, we turn to the conserved charge (2.34), which can also be recast using the

Ansatz adapted to four dimensions as

eχ+U∂r

(

eχeK/2f0

)

= q0 −
(

I0 −
1

2
e2φe2χe−K ∗6 (J ∧ J ∧m)

)

γ−1f0 (3.19)

+ e2χeK/2γ (e2φe0 + 2E)

(

eUM + e−K/2 1

6
γ ∗6 (c ∧ c ∧ c)

)

,

where we used the shorthand

f0 = 2 eUe−K/2M + e−K ∗6
(

1

6
γ c ∧ c ∧ c− 1

2
γ−1 J ∧ J ∧ c

)

. (3.20)

This completes the relevant flow equations. However, there are still global constraints,

some of which we already alluded to above. For example, the flow must satisfy the con-

straint (2.32), which upon decomposition on M6 reads as

p0e0 e
−Kvol3 − q ∧m = 0 . (3.21)

An additional constraint arises from the requirement (2.18) on the complex structure Ω(4),

in the special case where a fibration over a sphere is involved. In particular, this leads to

a fixed Chern class of the U(1) fibration, which translates to the condition

E p0 = n ∈ Z . (3.22)

Here, we conventionally take n = 1 for a sphere, while negative n corresponds to the case

of hyperbolic horizon, which is also allowed and can be treated in exactly the same way,

without modifying the flow equations above.

As a summary, in this section we have specialized the flow equations found in section 2.3

to the case of M8 = S2 × M6; this resulted in equations (3.14)–(3.19), together with

the constraints (3.21)–(3.22). In section 3.3, we will recast these equations in polyform

language, which will make them much more compact.

3.2 Hitchin functional

In order to cast the set of flow equations found above in a more systematic way, we find it

useful to work with polyforms, namely with formal sums of forms of different dimensions.
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(From now on, all our forms will be polyforms, and for that reason we will just drop the

prefix “poly”.) In particular, these will allow us to use the language of pure spinors and

of generalized complex structures [15, 23]. These have proven most useful when dealing

with the complexities of having two different spinors in the internal six-dimensional space

M6 in flux compactifications (see for example [24, 25]). In this paper we will need a

relatively simpler instance of those techniques; we give in this section a lightning review of

the main ideas.

We will focus especially on the definition of the Hitchin functional I4, which turns out

to provide a natural structure to express the flow equations. As has emerged already in

previous work [26, 27], the Hitchin functional plays a role very similar to the so called

quartic invariant of N = 2 supergravity coupled to vector multiplets with a symmetric

scalar manifold.

The first thing to notice is that differential forms on M6 are a representation of a

Clifford algebra of signature (6, 6). The “gamma matrices” are given by the operators

ΓA ≡ {∂mx, dxm∧}m=1,...,6 . (3.23)

Since {∂mx, ∂nx} = 0 = {dxm∧, dxn∧} and {∂mx, dxn∧} = δnm, the ΓA satisfy indeed a

Clifford algebra, with respect to the metric

I ≡
(

0 16
16 0

)

. (3.24)

Since the ∂m are (pointwise) a basis for the tangent bundle T , and the dxm are a basis for

the cotangent bundle T ∗, one can think of I as a metric on T ⊕ T ∗.

Thus a form on M6 can be thought of as a spinor, in the sense that it is acted upon by

the gamma matrices ΓA. We can then apply to it the general theory of spinors in diverse

dimensions. A pure spinor φ is a form whose annihilator Ann(φ) ⊂ T ⊕T ∗ is of dimension

6 — in other words, there are six linear combinations of the ΓA that annihilate φ. One

usually also requires φ to have non-zero norm

(φ, φ̄) 6= 0 . (3.25)

Here, we used the Mukai pairing, ( , ) of two polyforms, defined as the function such that

(A ∧ λ(B))6 ≡ (A,B)
1

V6
vol6 , (3.26)

where 6 denotes keeping the six-form part only, and on a k-form we define λωk ≡ (−)⌊
k
2
⌋ωk;

vol6 denotes the volume form on the manifold and V6 its integral, so that (3.26) is indepen-

dent of the volume. Note that (3.26) is antisymmetric (in six dimensions), while (3.25) is

required in order for Jφ to be hermitian with respect to the metric I we introduced earlier.

To a pure spinor, one can associate in a natural way an almost complex structure Jφ

(namely a notion of “holomorphic index”) on T ⊕ T ∗, essentially by declaring Ann(φ) to

be the “holomorphic” subspace. Jφ is also called a generalized almost complex structure.
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At every point on M6 it can be viewed as a 12×12 matrix (since T ⊕T ∗ has dimension 12)

which squares to −112. It has a block structure:

J A
B =

(

Am
n Bmn

Cmn Dm
n

)

(3.27)

The requirement that it should square to −112 translates into four algebraic identities

involving the tensors A, B, C, D. Pointwise on M6, the correspondence with the pure

spinors can be inverted: namely, to a J on T ⊕T ∗ that squares to −112, one can associate

point by point a pure spinor φ.

A famous example of pure spinor is a (3, 0) form Ω, when it exists; this is annihilated

by wedging with holomorphic one-forms dzi and contracting with anti-holomorphic vectors

∂īx. Another example, which will be more relevant for us, is the formal exponential φ =

eiJ ≡ 1 + iJ − 1
2J

2 − i
6J

3 on M6. This is annihilated by the six operators of the form

∂mx−iJmndx
n∧. In this case, the generalized almost complex structure is, in the language

of (3.27), Jφ =
(

0 −J−1

J 0

)

. More generally, φ = eb+iJ, with b any real two-form, is also

pure. In this case,

Jφ =

(

1 0

b∧ 0

)(

0 −J−1

J 0

)(

1 0

−b∧ 0

)

. (3.28)

Our definitions so far make sense in every even dimensions. In six dimensions, we have

a nice characterization of pure spinors. Consider any real even form ρ on M6, and consider

the 12×12 matrix

QAB ≡ (ρ,ΓABρ) (3.29)

We define5

I4(ρ) ≡ − 1

12
tr(Q2) ≡ 1

12
QABQAB =

1

12
(ρ,ΓABρ)(ρ,Γ

ABρ) (3.30)

Note that we defined the functional I4 with a different overall sign compared to most

literature (e.g. [15]), for the sake of a more natural connection to supergravity in later

sections. If I4(ρ) > 0, then

J ≡ Q
√

−tr(Q2)/12
(3.31)

squares to −112: it is a generalized almost complex structure. There should then exist an

associated pure spinor. Indeed one can find it, and it has a simple expression:

φ = ρ+ iρ̂ , ρ̂ = −1

3
J · ρ ≡ −1

6
JABΓ

ABρ . (3.32)

From (3.31) we also find I4(ρ) =
1
4 (ρ̂, ρ)

2.

As an example of how this procedure works, let us consider the polyform ρ = 1 + q4,

with q4 a four-form. In this case, in the language of (3.27), we get A = D = 0, Bmn =

− 2
4!
√
g ǫ

mnpqrsqpqrs ≡ − 2√
g q̃

mn (where vol6 =
√
gdx1 ∧ . . . ∧ dx6 in the chosen coordinates)

and Cmn = −(q̃xq4). In defining the bivector q̃ we have never invoked any metric; we

5Indices here are raised and lowered using the metric I in (3.24).
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have chosen a volume form, which eventually disappears from the final results. Now I4
is proportional to the Pfaffian of q̃. This eventually produces a ρ̂ such that ρ + iρ̂ is a

pure spinor. The two-form part of ρ̂ is proportional to J = 1√
Pf(q̃)

q̃xq. So, for a given

four-form q4, we get an explicit way of finding a two-form J such that J ∧ J = q4. In

practice, this requires computing all the 4 × 4 minors of q̃; for example, in flat indices,

(q̃xq)12 = q̃34q1234 + . . . = q̃34q̃56 + . . ., where the . . . denote permutations.

Let us now also record some definitions very closely related to I4. We have defined it

as a function (of degree 4) of a single form ρ, but we can extend it to mean a completely

symmetric function of four forms:

I4(α1, α2, α3, α4) ≡ (α1,ΓABα2)(α3,Γ
ABα4) + perm. . (3.33)

Likewise, we can define a cubic function I ′4 of three forms α1, α2, α3:

I ′4(α1, α2, α3) ≡
2

3

(

(α1,ΓABα2)Γ
ABα3+(α2,ΓABα3)Γ

ABα1+(α3,ΓABα1)Γ
ABα2

)

. (3.34)

Notice that

(α,ΓABβ) = (β,ΓABα) (3.35)

for any forms α and β; this follows from (ΓAα, β) = −(α,ΓAβ). The function I ′4 now takes

values in the space of forms.

The normalization in (3.34) is such that formally I ′4(ρ, ρ, ρ) = δρ(I4(ρ, ρ, ρ, ρ)). Recall-

ing (3.32) and (3.31), this also happens to be

I ′4(ρ, ρ, ρ) = 2QABΓ
ABρ = −6 (ρ̂, ρ)ρ̂ . (3.36)

Note that we have stripped off any symmetrisation factors from I4(α1, α2, α3, α4), so that

whenever two or more arguments coincide, these reappear, so that

I4(α1) ≡
1

4!
I4(α1, α1, α1, α1) . (3.37)

For brevity, we also define the shorthand

I ′4(α1) ≡
1

3!
I ′4(α1, α1, α1) . (3.38)

Together with (3.37) this is the only instance where a single argument appears.

Along these lines we can also define a “second derivative” I ′′4 (α, β), which is now a

matrix that acts on a form and gives another form. In particular we have

I ′′4 (ρ, ρ) =
2

3

(

(ρ,ΓABρ)Γ
AB + 2ΓABρ(ρ,ΓAB ·)

)

. (3.39)

Notice that I ′′4 (ρ, ρ)ω = I ′4(ρ, ρ, ω).
Having defined the functional I4, we will now argue that it essentially plays the same

role as the quartic invariant I4 that sometimes appears in four-dimensional supergravity

theories. In the context of BPS black holes, there are two contexts in which this quartic

invariant plays a role.
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First, in asymptotically Minkowski black holes, the entropy can be written as
√

I4(Γ),
where Γ is a vector of electric and magnetic charges. This can be reproduced from type

II in ten dimensions [27]: the story goes roughly as follows. The attractor equation reads

schematically [27, 28] f = Reφ, where f is an internal form that collects the charges and φ

is a pure spinor. (When the internal space M6 is a Calabi-Yau, in IIA we have φ = eiJ, in

IIB φ = Ω.) This equation can be solved by applying (3.32) above to f = ρ. Notice that

this makes sense only if I4(f) > 0. This is related to the fact that the black hole entropy

is proportional to
∫
√

I4(f).

Second, and more relevant for our present purposes, the supergravity BPS equations for

asymptotically AdS4 were written out for static backgrounds in [9] and can be reformulated6

in terms of the quartic invariant I4 as in [6]. The formal properties of the quartic invariant

I4 that were important in [6] were equations (2.10), (B.4)–(B.6) in that paper. Very close

analogues of those equations are valid for I4: [6, eq. (2.10)] becomes

I ′4(ρ, ρ, ω) = 2(ρ̂, ρ)J · ω + 4(ρ, ω) ρ (3.40a)

= −2(ρ̂, ρ) ∗ λω − 4(ρ, ω)ρ+ 8(ρ̂, ω)ρ̂ . (3.40b)

The first expression, (3.40a), is always valid, while (3.40b) holds if ω satisfies the prop-

erty (ΓAφ−, ω) = (ΓAφ̄−, ω) = 0, where φ− is a pure spinor compatible with φ. (In the

“generalized Hodge diamond”, see e.g. [25, eq. (A.20)], this means that ω belongs to the

central column.) For our applications φ = eiJ, φ− = Ω, and this means that ω should be a

(k, k)-form.

The analogues of [6, eqs. (B.4)–(B.6)] become

I ′4(I
′
4(ρ)) = −16 I4(ρ)

2 ρ (3.41a)

I ′4(I
′
4(ρ), I

′
4(ρ), ρ) = 8 I4(ρ)I

′
4(ρ) , I ′4(I

′
4(ρ), ρ, ρ) = −8 I4(ρ)ρ (3.41b)

I ′4(I
′
4(ρ), ρ, ω) = 2 (I ′4(ρ), ω) ρ+ 2 (ρ, ω) I ′4(ρ) . (3.41c)

We will show these properties in appendix A.

3.3 Polyform language

Using the definitions of the previous subsection, we can reformulate the flow equations of

subsection 3.1 in terms of a pure spinor on the Kähler base M6. We therefore consider

φ = eb+iJ (3.42)

where b, J, are the B-field and Kähler forms on M6, as defined in subsection 3.1. For this

case, we find the relation

(φ, φ̄) = −8 i e−K , (3.43)

where e−K is the volume defined in (3.2). We define a normalised pure spinor as

V =
1√

8 e−K
φ =

1√
8 e−K

eb+iJ , (3.44)

6Note that in [6] this was done in the special case without hypermultiplets, but the result can be extended

trivially to theories with hypermultiplets, as will be shown in section 4.
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for convenience in connecting with four-dimensional supergravity in the next section. One

can now define a new polyform variable encompassing the Kähler moduli and axions

through V and the scale factor eχ as

H = 2 eχ Im (e−iαV) , (3.45)

The additional phase eiα is a priori arbitrary, but is fixed by our M-theory reduction as

eiα = γ − i
√

1− γ2 , (3.46)

with γ as in (3.8). Listing separately the 0-, 2-, 4- and 6-form parts, we find

H =
1√
2
eχeK/2

(

γ , γ c ,
1

2
γ c ∧ c− 1

2
γ−1 J ∧ J , f0

)T

, (3.47)

where f0 is the six-form given in (3.20). Note that we use the combination c ≡ b+M ∆ J

defined in (2.27), for brevity.

Similarly, we define two more polyforms, Γ, containing the charges, and P , containing

the gauging in four dimensions, given by

Γ ≡ 1√
2

(

p0 + p+ q+ q0 e
−Kvol3

)

,

P ≡ 1√
2
e2φm+

1√
2
(e0e

2φ + 2E) e−Kvol3 , (3.48)

k ≡ 1√
2
m+

1√
2
e0 e

−Kvol3 ,

where we also defined an additional polyform, k, for future convenience.

Using now (3.40b), the flow equations (3.14c), (3.16), (3.18) and (3.19) can be assem-

bled into the single polyform equation

eχ+U∂rH =
1

4
I ′4(H,H, P ) + Γ , (3.49)

while the additional scalar flow equations (3.14a) and (3.14b) take the form

∂re
−2φ = −2 e−(U+χ) (H, k) (3.50)

∂r
(

eχ+U
)

= −(H, P ) . (3.51)

The final conditions to be imposed are the constraints (3.17), which can be written

in a rather compact form by drawing some inspiration from their counterparts in four-

dimensional supergravity that will be described in the next section. Starting from (3.17a),

one can verify that it is equivalent to the condition

A+ α′ − 2 e−U (Ĥ, P ) = 0 , (3.52)

where ρ̂ is the imaginary part of the pure spinor defined in (3.45). Here, A is defined in

terms of H as

A+ α′ =
1

2
e−2χ (H, ∂rH) , (3.53)
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so that it matches with the definition of the Kähler connection for vector multiplet scalars

in a four-dimensional supergravity theory. Similarly, (3.17b) leads to the condition

A+ α′ = −2E e−Kγ−1M . (3.54)

Finally, we consider the constraint (3.21), which takes the form

(Γ, k) = 0 . (3.55)

in terms of the objects defined in (3.48). Using (3.22) it is simple to show that (Γ, P ) is

then identified with the integer n, appearing in that relation.

This concludes the reformulation of the relevant flow equations in terms of polyforms.

We have repackaged all the flow equations as (3.49), (3.50), (3.51) (3.54). In the next

section, we will see how these equations are formally identical to the flow equations for

four-dimensional black holes.

4 Comparison with four dimensions

In this section, we compare the flow equations obtained in the previous section to the flow

equations in four-dimensional supergravity. We establish a formal equivalence, and we

comment on the conceptual differences.

4.1 Four-dimensional flows

In this subsection we give some details on the structure of the BPS equations for black

holes in four-dimensional gauged supergravity theories and discuss the relation to the higher

dimensional flow equations presented above. The flow equations for static, asymptotically

AdS4, 1/4-BPS black holes were derived in [9, 29] for generic models involving vector and

hyper multiplets.

We therefore consider the BPS flow equations given in [9], which describe solutions

with metric of the type

ds24 = −e2Udt2 + e−2Udr2 + e2χ ds2(S2) , (4.1)

which is the four-dimensional metric one obtains upon dimensional reduction of (3.5) along

θ and M6. The relevant variable for the vector multiplet scalars is the section, V , which
can be written in components in terms of scalars XI as

V =

(

XI

FI

)

, FI =
∂F

∂XI
, (4.2)

where I = 0, . . . , nv. F is a holomorphic function of degree two, called the prepoten-

tial,which we will always consider to be cubic:

F = −1

6
cijk

XiXjXk

X0
, (4.3)
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for completely symmetric cijk, and now i = 1, . . . nv. The section V is subject to the

constraint

〈V̄ ,V〉 = i , (4.4)

where < ,> stands for the symplectic inner product. As defined here, the section V is

uniquely determined by the physical scalar fields, ti≡Xi/X0, up to a local U(1) transfor-

mation. The Kähler potential is given by

e−K = i
1

6
cijk(t

i − t̄i)(tj − t̄j)(tk − t̄k) . (4.5)

The real and imaginary parts of the section V are not independent, but are related by

Re (V) = 8 I ′4(Im (V)) , (4.6)

where we used the so called quartic invariant function I4(Γ), which is a quartic function

of a vector, Γ, taking values in R
2nv+2 (just like the real and imaginary parts of V); the

prime denotes differentiation with respect to the argument. For symmetric cubic models

described by (4.3), I4 is a quartic polynomial: in terms of the central charge Z(Γ) and of

its Kähler covariant derivative Zi(Γ) ≡ DiZ(Γ), one has

I4(Γ) = −(p0q0 + piqi)
2 +

2

3
q0 cijkp

ipjpk − 2

3
p0 cijkqiqjqk + cijkp

jpk cilmqlqm

=
(

Z Z̄ − Zi Z̄
i
)2 − cmijZ̄

iZ̄j cmklZkZl +
2

3
Z̄ cijkZiZjZk +

2

3
Z cijkZ̄

iZ̄jZ̄k , (4.7)

where in the second line we omitted the argument, Γ, in all central charges for brevity. In

this case, I4 satisfies various interesting properties, including (3.41). For the more general

case of homogeneous models, there is no closed expression of I4 in terms of the components

of the argument Γ. However, there exists an extension of the second definition in (4.7), in

terms of special geometry invariants [30, 31], which is a degree four homogeneous rational

function of the central charges, but not a polynomial as in (4.7).

Here, we will consider generic models and use the second derivative denoted as

I ′′4 (Γ,Γ) = 2
∂2I4(Γ)

∂Γ ∂Γ
. (4.8)

We write two arguments Γ to stress that for symmetric models this can be promoted to

a quadratic form; for a more general model, this is only defined as written. Using the

definition of I4, we find the identity

1

2
I4(Γ, 2ImV , 2ImV) = 8 〈Im(V),Γ〉 ImV + 16 〈Re(V),Γ〉ReV − 2 JΓ . (4.9)

where J denotes the symplectic complex structure defined in terms of the vector multiplet

couplings, for any N = 2 supergravity. Note that this holds for both the symmetric case

in (4.7) and for the more general models, since the additional non-polynomial terms drop

out when evaluated on the symplectic section itself.
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With these data, we can recast the flow equations for the vector multiplet scalars and

the metric scale factors, eU , eχ, presented in [9], as

eU+χ∂rH =
1

4
I ′4(H,H, P ) + Γ , (4.10)

∂re
U+χ = 〈P,H〉 , (4.11)

A+ α′ + 2 e−URe 〈e−iαV , P 〉 = 0 , (4.12)

where the variable H is given by

H ≡ 2 eχ Im (e−iαV) . (4.13)

The symplectic vector, P = (P I , PI), is related to the moment maps of the hypermultiplet

sector, which describe the gauging of the theory. Here, we focus on models including a single

hypermultiplet, in line with the simplifying assumption of frozen complex structure moduli

in the previous sections, but the extension to add more hypermultiplets is straightforward.

For the case at hand, the SU(2) triplet of moment maps P x, x = 1, 2, 3, can be truncated

to a single vector P 3 ≡ P , with P 1 = P 2 = 0, by allowing only the dilaton to be nontrivial,

while the remaining three scalars of the hyper multiplet vanish. This corresponds to our

choice of trivial B field along the non-compact directions and vanishing three-form modes

in the ansatz of the previous section. The resulting BPS flow equation for the dilaton,

eφ, reads

∂re
−2φ = −2 e−U−χ〈H, k〉 , (4.14)

where k is the Killing vector associated to P , which in the case at hand is given by

k = e−2φ ∂φP . (4.15)

Finally, we must impose two global constraints arising from the spherical symmetry,

one ensuring that the Killing spinor be constant over the sphere, and one coming from the

fermionic sector of the hypermultiplets. These can be written as

〈Γ, P 〉 = n ∈ Z , 〈Γ, k〉 = 0 , (4.16)

respectively. Note that the integer n can be arbitrary, with negative values corresponding

to static black holes with hyperbolic horizon, but we only consider n = 1 in this paper for

simplicity.

We can now match the equations we have obtained to those in section 3.3. We see

that (4.10), (4.11), (4.12), (4.14) are formally identical to (3.49), (3.50) (3.51), (3.54),

upon viewing the various symplectic vectors of this section as the component vectors of

polyforms, and identifying the Mukai pairing with the symplectic inner product as

〈 , 〉 ≡ ( , ) . (4.17)

It follows that we may identify the variables H in (3.45) and (4.13) and take the moment

map P and the Killing vector k of the hypermultiplet target space to be given by the

expressions in (3.48), while the scale factors for the metric and the dilaton on the two sides

are trivially identified.
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4.2 Properties of solutions

The task of finding analytic solutions to the flow equations (4.10)–(4.12) and (4.14) is rather

hard in the general case. Here, we comment on some general features of the solutions. We

will first discuss the asymptotic AdS4 region and the black hole AdS2×S2 attractor. We will

then turn to the analytical form of the solution in the case with constant dilaton [6, 7]. In

the general case with flowing hypermultiplets, regular numerical example solutions exist [9].

Asymptotic AdS4. In order to obtain the conditions at infinity, we assume constant

physical scalars, while the metric functions behave as

eχ = r +O(r0) , eU = I4(P )1/4 r +O(r0) , (4.18)

where we used the requirement that RAdS = I4(P )−1/4 is the radius of the asymptotic

AdS4. It follows that the variable H = A r for some constant vector A, which by (4.10) is

H =
1

2
I4(P )−3/4 I

′

4(P ) r +O(r0) . (4.19)

Imposing a constant dilaton at the AdS4 we also obtain its value by setting the right hand

side of (4.14) to zero:

〈H, k〉 = 0 ⇒ 〈I ′4(P ), k〉 = 0 . (4.20)

This can be solved explicitly for the class of gaugings in (3.48), as it turns out to be linear

in the dilaton. The reason is that the difference R = P − e2φk =
√
2E e−Kvol3 is a vector

with a single component, a so-called very small vector, satisfying the properties

I4(R) = I ′4(R) = 0 , I4(R,R,Γ1,Γ2) = −〈R,Γ1〉 〈R,Γ2〉 , (4.21)

for any Γ1, Γ2, by definition. The condition (4.20) can now be solved as

3 〈I ′4(k), R〉+ 4 I4(k) e
2φ = 0 ⇒ e2φ =

3 〈R, I ′4(k)〉
4 I4(k)

, (4.22)

which can be evaluated for any particular model. From the M-theory point of view, this

condition translates to the requirement that the internal manifold M6 is Kähler-Einstein,

so that the S1 fibration over it is Sasaki-Einstein.

Attractor geometries. The other interesting point is at the horizon of the extremal

black hole described by the BPS flows, where all physical scalars are again constant [11, 12].

The geometry is now AdS2 × S2 and the various fields behave as

eχ = eχ0 +O(r) , eU = eU0r +O(r2) , (4.23)

where χ0, U0 are constants, so that H in (4.13) is a constant vector. We then evalu-

ate (4.10)–(4.12) and (4.14) to obtain the following set of algebraic equations for the values

of the scalar fields at the attractor point:

1

4
I ′4(H,H, P ) + Γ = 0 , (4.24a)

〈P,H〉 = 〈k,H〉 = 0 . (4.24b)

Here P is now understood to contain the constant value of the dilaton, which is to be found

by (4.24b), once (4.24a) is solved for H in terms of P and Γ.
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Solutions with constant dilaton. It is interesting to point out that the subset (4.10)–

(4.12) for a constant dilaton can be integrated in the general case [7]. Here, we point out

that some of these solutions can be embedded in the system above, by arranging that (4.14)

is trivially satisfied.

In order to ensure a constant dilaton, one must set to zero the quantity 〈H, k〉 in (4.14),

in which case the remaining equations become identical to the ones in [7] for a constant

gauging equal to P in (3.48). Turning this around, we may simply consider the solution

for general constant gauging and evaluate the additional condition of vanishing 〈H, k〉, so
that we obtain a constrained set of solutions embedded in the theory including the dilaton.

The solution of [7] is expressed in terms of a polynomial with vector coefficients as

eU+χH =
6

√

I4(P )
I ′4(P ) r3 +A2 r

2 +A1 r ; (4.25)

the explicit expressions for A1 and A2 in terms of P and of the charge Γ can be found

in [7, section 3.1]. A constant dilaton solution to the flow equations of the previous section

is obtained by setting to zero the inner product of k with each of the vectors appearing

in (4.25). The first is trivially satisfied, since it is the boundary condition for the AdS4
vacuum at infinity (4.20), so that it provides the constant value for the dilaton (4.22).

The remaining conditions represent two nontrivial constraints that can be interpreted as

restricting the possible charge vector

〈A1, k〉 = 〈A2, k〉 = 0 , (4.26)

upon using the explicit expressions in [7].

Whether such solutions are realised depends on the regularity of the horizon for the

charges restricted by (4.26), or in other words, by the compatibility of the value (4.22) for

the dilaton at infinity with the system of equations (4.24a)–(4.24b). In order to illustrate

this more concretely, we consider the class in [6], for which the Kähler phase is constant

and (4.26) take the simple form

I4(Γ,Γ,Γ, P ) = 0 , I4(Γ,Γ, P, k) = 0 . (4.27)

Both of these are linear in the dilaton, so that they can be compared to (4.26), resulting in

− 〈I ′4(Γ), R〉
〈I ′4(Γ), k〉

=
3 〈R, I ′4(k)〉
4 I4(k)

, −I4(Γ,Γ, R, k)

I4(Γ,Γ, k, k)
=

3 〈R, I ′4(k)〉
4 I4(k)

. (4.28)

For any given model of the class we consider, specified by R and k, the conditions (4.28)

can be solved explicitly in terms of the components of Γ.

4.3 Lifting to eleven dimensions

Formally, the eleven-dimensional flow equations of section 3.3 and the four-dimensional

flow equations of the previous subsection are identical. This raises the hope that one could

solve them by using the same strategies used to solve the flow equations in four dimensions,

which we just reviewed in the previous subsection.
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One should be careful, however, to distinguish between the I4 in four-dimensional

supergravity and the one we used in our M-theory approach. To stress the difference, let

us call these Isugra4 and IHit
4 respectively.

These two are not exactly the same. A first difference is that IHit
4 as defined in (3.33)

makes sense for any forms αi, whether in cohomology or not, whereas Isugra4 is a function

of the charges, which are in cohomology.7 One can then consider the restriction of IHit
4

on the cohomology; this is now a space of finitely many parameters. However, even this

is not exactly the same as Isugra4 . The reason can be seen by going back to the defini-

tion (3.30), (3.33); it contains terms of the type (α1,ΓABα2). Since there is no integral

over B6 in this expression, each of the entries of this 12×12-dimensional matrix is a func-

tion on B6, not a constant. Hence I4 will in general not be a number, but a function on

B6. Thus, even the restriction of IHit
4 to cohomology is not the same as Isugra4 .8 We can say

that in a sense IHit
4 involves higher Kaluza-Klein modes, while Isugra4 does not. Physically,

we expect this difference to be related to the black hole being smeared or localized in the

internal directions.

These considerations make it harder than it might seem to solve the flow equations

of section 3.3. We will not fully analyse their properties in this paper; what follows is a

preliminary analysis.

The simplest case is M6 being a coset G/H. In this case, the M-theory reduction on

M7 (the U(1) fibration over M6), which is a coset as well, was worked out in [8]; it turns out

to be a consistent truncation, and it results in an N = 2 gauged supergravity. In general,

such a reduction proceeds via identifying a certain finite set of forms that are closed under

the exterior d and the Hodge ∗. These are not always easy to find, but in the coset case a

natural candidate is given by left-invariant forms. Evaluating IHit
4 on these forms should

not involve higher Kaluza-Klein modes. (In the language of footnote 8, the two-form amn

will be itself an invariant two-form, and so on.) So in this case our formalism recovers the

M-theory solutions that one would obtain by uplifting the four-dimensional supergravity

solutions using the fact that the reduction of [8] is a consistent truncation.

In more general situations, the situation is less clear. Recall first from section 2.2 that

our M6 is assumed to be a Kähler-Einstein manifold of positive curvature at infinity and

remains Kähler along the flow. On such an M6, which is not a coset, we expect that the

higher Kaluza-Klein modes will indeed appear into IHit
4 , and considerably complicate the

task of showing that solution exist.

Let us first think about an attractor solution. In that case, the relevant equations

are (4.24). Already solving (P,H) = 0 looks like a challenge, since it contains a wedge

product which is not an integral. Suppose however we can solve it, and let us move

7Remember, however, that the charges should also satisfy (2.32).
8A perhaps more intrinsic way of phrasing this is the following. One can divide the matrix (α1,ΓABα2)

in four 6×6 blocks, just like in (3.27), according to whether the indices A and B describe a vector or a

one-form. For example, the block amn = (α1, ι∂m
ι∂n

α2) will be a two-form; there will also be a bi-vector

block bmn, and blocks cmn, dm
n, sections of T ⊗T ∗. In terms of these blocks, I4 = − 1

6
(amnb

mn+cmndm
n).

We can now expand each of the blocks in a basis on B6; the two-form amn, for example, will be a sum

over all the possible two-forms on B6. There is no reason a priori that this sum should truncate to only

the terms in cohomology. A similar logic applies to the other terms in the sum. Thus, even if the entries

α1, . . . , α4 are harmonic, evaluating IHit
4 (α1, α2, α3, α4) involves non-harmonic forms and tensors.
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on (4.24a). Let us take Γ to be in the cohomology of M7. (In a reduction one also includes

forms that are not in the cohomology, but the components of Γ along those would be

related to massive vectors, and would not be associated to conserved charges.) These are

forms in the cohomology of M6 such that (2.32) holds. In general, even if H and P are in

cohomology, IHit
4

′ is not necessarily in cohomology, for the same reasons discussed above for

IHit
4 . However, if H is the real part of a closed pure spinor, the situation simplifies a bit. If

for simplicity we set the B field (namely, the axions) to zero, we have H = Re(eiθeiJ), where

J is a Kähler form. Now, (3.40a) (applied to the case ρ = H, ω = P ) contains J∧ω and Jxω;

if J is Kähler and ω is in cohomology, both these forms will be in cohomology as well (this is

the famous Lefschetz Sl(2,R) action on the cohomology of a Kähler manifold). So the left

hand side of (4.24a) is in cohomology. However, Γ is not just closed: it is even harmonic.

We can try to show that the left hand side of (4.24a) is harmonic by using (3.40b), which we

can do since P is a sum of (k, k)-forms. This contains (P, Ĥ); if we can arrange for this to be

constant on M6, we have then shown that the left-hand side of (4.24a) is harmonic, and we

have reduced (4.24a) to a finite-dimensional equation. Unfortunately, just like (P,H) = 0,

also (P, Ĥ) = const. is hard because of the absence of an integral in the pairing ( , ) (recall

its definition (3.26)). Indeed, the presence of equalities involving wedges of forms without

integrals was one of the key assumptions in the above-mentioned reduction on cosets [8,

section 2.2], which is precisely the case which we previously argued to work.

Thus, already finding solutions in the attractor limit is non-trivial. For the full flow,

the problems look still harder. Given that currently explicit solutions are only known in

the case with constant dilaton, one would have to first impose that condition. At this point

one might hope to use the general formulas in [7], replacing everywhere IHit
4 for Isugra4 . This

would however requires a long series of properties (see appendix A.3 of that paper) that

we have not proved to be valid in general for IHit
4 . Another option is to also assume that

the Kähler phase is constant. To impose both this and the constant dilaton, we have to

satisfy (4.26); then one can use the solutions in [6], which assume a smaller set of properties

of I4; these are (3.40) and (3.41), which we prove in appendix A. The problem is once again

that (4.26) are non-trivial to satisfy; in fact, these are even harder than (4.24a), where at

least two of the entries was one of the two pure spinors defining the geometry of M6.

In spite of all these difficulties, we think that the formal similarities between the black

hole flow equations for four-dimensional supergravity and for M-theory are strong enough

that they suggest the existence of black hole solutions for a general Kähler-Einstein M6 of

positive curvature. Such solutions have not been found before: the M-theory reduction on

the M7 obtained as S1-fibrations over M6 have not been worked out in general, and thus for

general M6 there is no known relationship with any four-dimensional effective Lagrangian.

In view of our results, it would be interesting to work out such a reduction, to find more

conclusive evidence for the existence of our black holes. This would presumably happen

adapting to eleven dimensions the formalism in [26], probably taking into account some of

the caveats in [32]. In the formalism of those papers, one needs a “special” basis of forms,

closed under the exterior differential d and the Hodge star ∗, but not necessarily harmonic.

A natural candidate on M7 is simply given by the pullback of the harmonic forms on M6,

which are not all harmonic after the pullback.
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Such a program is also interesting in view of the recent surge of results in Kähler-

Einstein manifolds with positive curvature. Beyond the cosets mentioned earlier, it was

once a bit hard to produce examples; it required some application of the continuity

method [33, 34] or in some limited setting the solution of certain ODEs [35]. In the

toric case, the existence of a Kähler-Einstein metric is equivalent to the barycenter of the

toric polytope being the origin [36, 37].

More recently, the old Yau-Tian-Donaldson conjecture has been proven [17]: it relates

the existence of a Kähler-Einstein metric to an algebraic-geometrical condition called K-

stability. While this might condition might seem hard to implement for practical examples,

it has already yielded some concrete results: for example the proof [18] of the existence

of a Kähler-Einstein metric on certain threefolds with 2-torus action [38], which generalize

toric manifolds.
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A Some properties of the Hitchin functional

In this appendix we are going to derive the crucial properties (3.40) of the Hitchin func-

tional I4.

Let us start by deriving some preliminary results. First, notice that

(φ,ΓABφ) = 0 . (A.1)

This holds because φ only has non-zero pairing with φ̄, and two gamma matrices are not

enough to turn φ into φ̄. (For more details on this type of logic, see for example [39,

section 2.1].) Recalling now that ρ = Reφ, ρ̂ = Imφ, we obtain

(ρ̂,ΓAB ρ̂) = QAB , (ρ,ΓAB ρ̂) = 0 (A.2)

Now, by definition we get I ′4(ρ̂, ρ̂, ρ̂) = 2QABΓ
AB = 6 (ρ̂, ρ)ρ. Using (3.36) we get (3.41a).

Very similar steps also show (3.41b).

The identity (3.40b) is harder to obtain. Let us first introduce a ket-bra notation:

α(β, ·) ≡ |α〉〈β| . (A.3)

We will make extensive use of the Fierz identity9

|α〉〈β| = 1

64

12
∑

k=1

2k

k!
(β,ΓA1...Ak

α)ΓAk...A1 . (A.4)

9The numerical factors in (A.4) and (A.5) are slightly unusual; this is due to the fact that the Clifford

algebra ΓA,ΓB = IAB is also slightly unusual, as it misses a factor of 2.
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We will also need the formula

ΓABΨkΓ
AB = (3− (6− k)2)Ψk , (A.5)

where Ψk is a bispinor of degree k. Here we mean an element of the tensor product space

of two Clifford(6, 6) spinors, namely of two differential forms. This is a 64×64-dimensional

space; one should not get confused by the fact that a single differential form can also be

viewed as a bispinor for ordinary Clifford(6) spinors on M6.

As a warm-up, let us apply this formalism to a pure spinor φ = ρ+ iρ̂. If we consider

|φ〉〈φ| in (A.4), all the bilinears (φ,ΓA1...Ak
φ) = 0 except when k = 6. (In some contexts

this is even given as a definition of pure spinor.) So

|φ〉〈φ| = 1

6!
(φ,ΓA1...A6φ)Γ

A6...A1 . (A.6)

If we apply (A.5) to this we get

ΓAB|φ〉〈φ|ΓAB = 3|φ〉〈φ| . (A.7)

As a check, we can multiply this from the right by ρ; we get QABΓ
ABφ = 3i(ρ̂, ρ)φ, which

is essentially (3.32).

Let us now apply the same method to |ρ〉〈ρ|. Among the bilinears (ρ,ΓA1...Ak
ρ), all

those with odd k vanish by chirality. The case k = 0 vanishes because the pairing (3.26) is

antisymmetric; the case k = 4 vanishes because

(ρ,ΓABCDρ) = (ΓDCBAρ, ρ) = −(ρ,ΓDCBAρ) = −(ρ,ΓABCDρ) . (A.8)

This leaves us only with the k = 2, 6, 10 bilinears. The k = 10 bilinear can actually be

related to the k = 2 case with the help of the chirality operator Γ = Γ1 . . .Γ12. Moreover,

the k = 2 bilinear is nothing but (ρ,ΓABρ) = QAB. All in all (A.4) gives

|ρ〉〈ρ| = − 1

32
QABΓ

AB(1 + Γ) +
1

6!
(ρ,ΓA1...A6ρ)Γ

A6...A1 . (A.9)

If we now use (A.5) on this, we get

ΓAB|ρ〉〈ρ|ΓAB =
13

32
QABΓ

AB(1 + Γ) +
3

6!
(ρ,ΓA1...A6ρ)Γ

A6...A1

=
1

2
QABΓ

AB(1 + Γ) + 3|ρ〉〈ρ| .
(A.10)

Using now (3.39) and the definition of I ′4 it is easy to obtain (3.40a).

Finally, using (A.7) we also obtain

ΓAB|ρ〉〈ρ̂|ΓAB + ΓAB|ρ̂〉〈ρ|ΓAB = 3 (|ρ〉〈ρ̂|+ |ρ̂〉〈ρ|) . (A.11)

Using this, (A.2), and the definition (3.34), one obtains (3.41c).
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B The Noether potential

Consider a generic Lagrangian L inD dimensions that depends on fields that we collectively

call φ and their derivatives. Assuming general covariance, a diffeomorphism along a vector

ξµ induces the following transformation on the Lagrangian

δξL = ∂µ(ξ
µL) , (B.1)

On the other hand, one can perform a general variation of the action to obtain the equations

of motion E, up to a boundary term linear in the field variations δφ, that we indicate by θµ

δL = E δφ+ ∂µθ
µ(δφ) . (B.2)

When the generic variation is assumed to be a diffeomorphism, the two expressions must

coincide:

∂µ(ξ
µL) = E δφ+ ∂µθ

µ(δξφ) . (B.3)

It then follows that there exists a current associated with any field configuration:

Jµ = θµ(δξφ)− ξµL ⇒ ∂µJ
µ = −E δφ , (B.4)

which is conserved when the configuration is a solution to the equations of motion. This

is known as the Noether current associated to the diffeomorphism generated by ξµ. As

shown in [40], any conserved current locally constructed from fields can be written as the

divergence of an antisymmetric tensor, using the equations of motion. It follows that one

can locally define the so called Noether potential through

Jµ = ∂νQ
µν , (B.5)

which also depends linearly on ξµ.

The existence of these objects allows for a definition of a charge associated with back-

grounds for which ξµ is a symmetry. This passes through the definition of a generator of

symmetries on the space of all solutions viewed as a manifold (i.e. the phase space), the so

called symplectic current

Ωµ(δφ, δξφ) = δθµ(δξφ)− δξθ
µ(δφ) , (B.6)

and is identified with the variation of the corresponding Hamiltonian associated with the

symmetries. In the case that ξµ is a symmetry of the solution at hand, δξφ and consequently

Ω vanish identically, reflecting the existence of an irrelevant, or pure gauge, direction in

the solution space. This current can be computed by variation of (B.4), as

Ωµ(δφ, δξφ) = δJµ −Πµ
ξ , (B.7)

Πµ
ξ ≡ δξθ

µ(δφ)− δ(ξµL) . (B.8)

In this paper we consider only diffeomorphisms ξµ along rotational Killing vectors, which

correspond to angular momentum. By the requirement that the cycles used in the various

integrals are invariant under the rotational Killing vectors, it turns out that the integral of

Πµ
ξ over any spatial section vanishes, so we will disregard its presence in the following.
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The definition of the conserved charge can be given by computing the integral of (B.7)

over the total spatial manifold Σ as
∫

Σ
Ω = δ

∫

S1

Q− δ

∫

S2

Q = 0 , (B.9)

where we used the Gauss theorem and S1,2 are D−2-dimensional spacial hypersurfaces. In

the last equality, we imposed that ξµ is a symmetry, so that Ωµ vanishes. The conserved

charge can then be defined through

Q =

∫

S
Q , (B.10)

which is independent of the hypersurface.

We now briefly specialise these ideas to the case of a Lagrangian describing a gauge

three-form interacting with gravity through terms at most quadratic in derivatives, assum-

ing that the Lagrangian does not contain any bare gauge fields. After a diffeomorphism

and a general variation of the Lagrangian, one finds

θµ(δφ) = 2 (Lµνρσ
G ∇ρδgσν −∇ρLρνµσ

G δgσν) + 2Lµνρσ
F δAνρσ , (B.11)

where we defined the derivatives of the Lagrangian with respect to the four-form field

strength and the Riemann tensor as

Lµνρσ
F =

∂L
∂Fµνρσ

, Lµνρσ
G =

∂L
∂Rµνρσ

. (B.12)

Using these results, Noether potential reads

Qµν = 2Lµνρσ
G ∇ρξσ − 4∇ρLµνρσ

G ξσ + 2 (ξλAλρσ)Lµνρσ
F .

This expression can be used in (B.10) to obtain a conserved charge associated to a rotational

isometry ξµ. In this paper, we apply this formalism to the slightly more involved case of

the bosonic sector of eleven dimensional supergravity, which does contain bare gauge fields.

Nevertheless, the procedure above can be followed in exactly the same way, to obtain (2.34)

in the case of a rotational Killing vector, defining an angular momentum charge.
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