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Abstract Single-propagator traces are the most elemen-
tary fermion Wick contractions which occur in numerical lat-
tice QCD, and are usually computed by introducing random-
noise estimators to profit from volume averaging. The addi-
tional contribution to the variance induced by the random
noise is typically orders of magnitude larger than the one
due to the gauge field. We propose a new family of stochastic
estimators of single-propagator traces built upon a frequency
splitting combined with a hopping expansion of the quark
propagator, and test their efficiency in two-flavour QCD with
pions as light as 190 MeV. Depending on the fermion bilinear
considered, the cost of computing these diagrams is reduced
by one to two orders of magnitude or more with respect to
standard random-noise estimators. As two concrete examples
of physics applications, we compute the disconnected contri-
butions to correlation functions of two vector currents in the
isosinglet ω channel and to the hadronic vacuum polariza-
tion relevant for the muon anomalous magnetic moment. In
both cases, estimators with variances dominated by the gauge
noise are computed with a modest numerical effort. Theory
suggests large gains for disconnected three and higher point
correlation functions as well. The frequency-splitting estima-
tors and their split-even components are directly applicable
to the newly proposed multi-level integration in the presence
of fermions.

1 Introduction

Disconnected fermion Wick contractions contribute to many
physics processes at the forefront of research in particle
and nuclear physics: the hadronic contribution to the muon
anomalous magnetic moment, K → ππ decays, nucleon
form factors, quantum electrodynamics and strong isospin-
breaking contributions to hadronic matrix elements, η′ prop-
agator to name a few. When computed numerically in lat-

a e-mail: tharris@tcd.ie

tice Quantum Chromodynamics (QCD) and if the distances
between the disconnected pieces are large, their variances are
dominated by the vacuum contribution. The latter are well
approximated by the product of variances of the connected
sub-diagrams the contractions are made of. The recently-
proposed multi-level Monte Carlo integration in the presence
of fermions [1,2] is particularly appealing for computing dis-
connected contractions, since the various sub-diagrams can
be computed (essentially) independently from each other,
thus making the scaling of the statistical error with the cost
of the simulation much more favorable with respect to the
standard Monte Carlo integration.

The simplest examples of this kind are the disconnected
Wick contractions of fermion bilinear two-point correlation
functions, where each single-propagator trace is usually com-
puted by introducing random-noise estimators [3–5]. As the
action of the auxiliary fields is already factorized, the multi-
level integration in the gauge field becomes highly profitable
once the variance of each connected sub-diagram is driven
by its intrinsic gauge noise. The random-noise contribution,
however, is typically orders of magnitude larger than the one
due to the gauge field, a fact which calls for more efficient
estimators in order to avoid the need of averaging over many
random-noise fields with large computational cost.

The aim of this paper is to fill this gap by introducing
a new family of stochastic estimators of single-propagator
traces which combine the newly introduced split-even esti-
mators with a frequency splitting and a hopping expansion
of the quark propagator. We test their efficiency by simu-
lating two-flavour QCD with pions as light as 190 MeV.
As a result, depending on the fermion bilinear considered,
the cost of computing single-propagator traces is reduced by
one to two orders of magnitude or more with respect to the
computational needs for standard random-noise estimators.
The frequency-splitting estimators can be straightforwardly
implemented in any standard Monte Carlo computation of
disconnected Wick contractions, as well as directly combined
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with the newly proposed multi-level integration in the pres-
ence of fermions.

In the next section we summarize basic facts about vari-
ances of generic disconnected Wick contractions, while those
of single-propagator traces are discussed in Sect. 3. The fol-
lowing section is dedicated to introduce stochastic estima-
tors of single-propagator traces of heavy quarks based on a
hopping expansion of the propagator, while in Sect. 5 we
introduce the split-even estimators for the difference of two
single-propagator traces also relevant for the muon anoma-
lous magnetic moment. The frequency-splitting estimators
are introduced in Sect. 6, where also the outcomes of their
numerical tests are reported. In Sect. 7 we discuss the impact
of these findings on two concrete examples of physics appli-
cations: the disconnected contributions to the correlator of
two electromagnetic currents in the isospin limit relevant for
the hadronic contribution to the muon anomalous magnetic
moment, and the propagator of the ω vector meson. The paper
ends with a short section of conclusions and outlook, fol-
lowed by some appendices where some useful notation and
formulas are collected.

2 Variances of disconnected Wick contractions

The connected correlation function of a generic disconnected
Wick contraction, made of two sub-diagrams1 W0(0) and
W1(x) centered at the origin and in x respectively, can be
written as

CW1W0
=

〈[
W1(x) − 〈W1(x)〉

][
W0(0) − 〈W0(0)〉

]〉
, (2.1)

with its variance given by

σ 2
CW1W0

=
〈[
W1(x) − 〈W1(x)〉

]2[
W0(0) − 〈W0(0)〉

]2〉

−C2
W1W0

. (2.2)

For large distances |x |,
σ 2
CW1W0

= σ 2
CW1

· σ 2
CW0

+ · · · , (2.3)

where

σ 2
CW0

=
〈[
W0(0) − 〈W0(0)〉

]2〉
(2.4)

and analogously for σ 2
CW1

, and the dots stand for exponen-

tially sub-leading effects. If the gauge fields in the regions
centered at the origin and in x are updated independently
in the course of a multi-level Monte Carlo, e.g. Refs. [1,2],
the statistical error of each of the two sub-diagrams CW0 and
CW1 decreases (essentially) proportionally to the inverse of

1 Without loss of generality we assume Wi (x) to be real.

the square root of the cost of the simulation. The overall sta-
tistical error on CW1W0 thus scales with the inverse of the
cost rather than with its square root. The above argument can
be iterated straightforwardly to multi-disconnected contrac-
tions.

Maybe the simplest example of this kind is a disconnected
Wick contraction of the correlator of two bilinear operators
for which, following Eq. (2.3), the variance is well approxi-
mated by the product of variances of two single-propagator
trace estimators.

3 Single-propagator traces

The single traces we are interested in are

t�,r (x) = −a�

a4 tr
[
�D−1

mr
(x, x)

]
, (3.1)

where Dmr is the massive Dirac operator with bare quark
mass mr (for definiteness we adopt the O(a)-improved
Wilson–Dirac operator, see Appendix A), a is the lattice
spacing, the factor

a� =
{

1 � = I, γ5, γμγ5, σμν

−i � = γμ
(3.2)

is chosen so that t�,r (x) is real, and σμν = i
2 [γμ, γν]. We are

interested in the zero three-momentum field2

t̄�,r (x0) = 1

L3

∑
x

a3 t�,r (x), (3.3)

whose expectation value is

s�,r = 〈t̄�,r (x0)〉 = a� 〈ψ̄r (x)�ψr (x)〉, (3.4)

where ψr is a quark flavour of mass mr , and L3 is the three-
dimensional lattice volume. The variance of t̄�,r (x0),

σ 2
t̄
�,r

= 〈t̄2
�,r

(x0)〉 − 〈t̄�,r (x0)〉2, (3.5)

can be written as

σ 2
t̄�,r

= a2
�

L3

∑
x

a3〈O�,rr (0, x) O
�,r ′r ′ (0)〉c, (3.6)

where

O�,rs (x) = ψ̄r (x)�ψs(x), (3.7)

2 Throughout this paper we focus on zero three-momentum fields only.
All techniques presented, however, are directly applicable to fields with
non-zero three momentum.
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the subscript c stands as usual for connected, and ψr ′ is a
second flavour3 of mass mr ′ = mr . The operator product
expansion would predict generically that σ 2

t̄�,r
diverges as

a−3. There are exceptions, however, depending on the sym-
metries preserved by the regularization and on the operator
implemented4. Moreover σ 2

t̄�,r
vanishes in the free-theory

limit g0 → 0, and the first non-zero contribution appears at
O(g4

0) or higher in perturbation theory.

3.1 Random-noise estimator

We introduce random auxiliary fields (random sources) [3,5]
defined so that all their cumulants are null with the exception
of the two-point functions which satisfy

〈ηaγ (x){ηbδ (y)}∗〉 = δabδγ δδxy, (3.8)

where a, b and γ, δ are colour and spin indices respectively,
and x, y are lattice coordinates. By using Eq. (3.8), it is
straightforward to prove that a random-noise estimator of
s�,r is given by

τ�,r (x) = − 1

a4Ns

Ns∑
i=1

Re
[
a�η

†
i (x)�{D−1

mr
ηi }(x)

]
, (3.9)

where ηi are Ns independent sources (colour and spin indices
omitted from now on). The variance of the zero-momentum
estimator

τ̄�,r (x0) = 1

L3

∑
x

a3 τ�,r (x), (3.10)

reads

σ 2
τ̄
�,r

= σ 2
t̄
�,r

− 1

2L3Ns

{
a2

�

∑
x

a3
〈
O

�,rr ′ (0, x)O
�,r ′r (0)

〉

+1

a

∑
x

a4 〈Prr ′(x)Pr ′r (0)〉
}

, (3.11)

where again ψr and ψr ′ are two degenerate flavours of mass
mr , and to simplify the notation we have introduced the usual
definition Prs = Oγ5,rs for the pseudoscalar density (no time-
dilution is used since we are interested in the estimator at all
times). The random-noise contribution to the variances in
Eq. (3.11) diverges proportionally to a−3 like the gauge one.
Both integrated correlators on the r.h.s. of Eq. (3.11), how-
ever, are colour enhanced with respect to the gauge noise and

3 If not present in the theory, a valence quark ψr ′ of mass mr can be
added to it [6].
4 If the regularization preserves the vector-flavour symmetry and its
conserved current is adopted, for instance, the corresponding variance
vanishes in the infinite volume limit.

Table 1 Overview of the ensembles and statistics used in this study. We
give the label, the spatial extent of the lattice, the hopping parameter
κ , the number of MDUs simulated after thermalization, the number
of independent configurations selected Ncfg, the pion mass Mπ , and
the product Mπ L . For F7, Ncfg = 100 configurations have been used
for estimating the variances while the final results for the two-point
functions have been obtained with Ncfg = 1200

id L/a κ MDU Ncfg Mπ (MeV) Mπ L

E5 32 0.13625 12,800 100 440 4.7

F7 48 0.13638 9,600 100 (1200) 268 4.3

G8 64 0.136417 820 25 193 4.1

they are of O(1) in the free theory, see Appendix B. The �-
dependent contribution is indeed the flavour-connected coun-
terpart of the disconnected contraction appearing in Eq. (3.6).
The �-independent term 〈PP〉, which is also integrated over
the time-coordinate, diverges proportionally to m−1

r when
mr → 0 due to the pion pole, giving large contributions
to the stochastic variances of all bilinears indistinctly. It is
interesting to notice that if we would not take the real part in
Eq. (3.9), the variances would be larger and �-independent
since the 〈O

�,rr ′ O�,r ′r 〉 contributions are dropped, and the
prefactor 1/(2Ns) goes into 1/Ns .

The random-noise contributions to the variances of the
standard stochastic estimators in Eq. (3.9) are thus expected
to be much larger than the gauge-noise with large ultraviolet
and infrared divergent terms.

3.2 Numerical tests

To test the efficiency of the various stochastic trace esti-
mators considered in this paper, we have simulated QCD
with two dynamical flavours discretized by the Wilson glu-
onic action and the O(a)-improved Wilson–Dirac operator
as defined in Appendix A. The details of the ensembles of
configurations considered, all generated by the CLS com-
munity [7–9], are listed in Table 1. The bare coupling con-
stant is always fixed so that β = 6/g2

0 = 5.3, corresponding
to a spacing of a = 0.065 fm. All lattices have a size of
2L × L3, periodic boundary conditions for gluons, (anti-)
periodic boundary conditions in (time) space directions for
fermions, and spatial dimensions always large enough so that
Mπ L ≥ 4. The pion mass ranges from 190 to 440 MeV. We
have always skipped an enough number of molecular dynam-
ics units (MDU) between two consecutive measurements so
that gauge-field configurations can be considered as indepen-
dent in the statistical analysis, see Refs. [9,10] and references
therein for more details.

The first primary observables that we have computed
are the estimators in Eq. (3.10) with Gaussian random
noise. Their variances are shown in Fig. 1 as a function
of the number of random-noise sources Ns for the ensem-
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Fig. 1 Variances of the standard random noise estimators defined in
Eq. (3.9) as a function of the number of random sources Ns for the
ensemble F7. The symbols S, P , Tjk , Ak and Vk stand for � = I , γ5,
σ jk , γkγ5 and γk respectively. The dashed lines indicate the gauge-noise
contributions to the variances computed in Sect. 6

ble F7. Data for the E5 and the G8 lattices show the same
qualitative behaviour. Variances go down linearly in 1/Ns

until the random-noise contribution becomes negligible, see
Eq. (3.11), after which a plateau corresponds to the gauge
noise (dashed lines). The first clear message from the data is
that the random-noise contribution to the variances is com-
parable for the various bilinears, as suggested by Eq. (3.11),
and it is orders of magnitude larger than the gauge noise.
Moreover, the latter can vary by orders of magnitude among
the various bilinears, see Sect. 6, with the densities having
the largest gauge noise while the currents the smallest one.

4 Hopping expansion of single-propagator traces

To investigate the contribution to trace variances from high-
frequency modes of the quark propagator, we first consider
single-propagator traces of heavy quarks. In this kinematic
regime the hopping expansion (HPE) is known to lead to
a significant reduction of the random-noise contribution to
trace variances [11–13]. For the O(a)-improved Wilson-
Dirac operator, it is natural to exploit the even-odd decompo-
sition to generalize the hopping parameter expansion [14] to

D−1
m = M2n,m + D−1

m H2n
m , (4.1)

where

M2n,m = 1

Dee + Doo

2n−1∑
k=0

Hk
m,

Hm = −
[
DeoD

−1
oo + DoeD

−1
ee

]
, (4.2)

and the subscript m has been omitted in the block matrices
of the even-odd decomposition of the Dirac operator, see
Appendix A for further details. The zero three-momentum
single-propagator traces in Eq. (3.3) can thus be decomposed
as

t̄�,r (x0) = t̄ M
�,r

(x0) + t̄ R
�,r

(x0), (4.3)

where

t̄ M
�,r

(x0) = − a�

aL3

∑
x

tr[�M2n,mr (x, x)], (4.4)

collects the first 2n contributions of the HPE while

t̄ R
�,r

(x0) = − a�

aL3

∑
x

tr
[
�

{
D−1
mr

H2n
mr

}
(x, x)

]
(4.5)

is the remainder. Notice that convergence of the expansion
is not required for Eq. (4.3) to be valid. For small n, t̄ M

�,r
can

be computed exactly and efficiently with 24 n4 applications
of M2n,mr , see Appendix C for more details. The second
contribution t̄ R

�,r
can be replaced by the noisy estimator

τ̄ R
�,r

(x0) = − 1

aL3Ns

∑
x

Ns∑
i=1

Re
{
a�

[
η

†
i H

n
mr

]
(x) �

[
D−1
mr

Hn
mr

ηi
]
(x)

}
.

(4.6)

A rough idea of the variance reduction achieved by the HPE
can be obtained in the free lattice theory, see Appendix B. For
a bare subtracted quark mass of amq = 0.3 and for n = 2,
the stochastic variances of the remainder τ̄ R

�,r
are between

one and two orders of magnitude smaller than those of the
standard estimators τ̄�,r . For n = 4 a further reduction of
approximately 4–8, depending on the bilinear, is obtained. If
we had defined the estimator of the remainder by applying
H2n
mr

to one source only, the variance in the free case would
increase approximately by a factor 2 or so. The ultraviolet
filtering of Hn

mr
on both random sources is thus beneficial

with respect to applying H2n
mr

to one source only.

4.1 Numerical tests

We have computed the single-propagator trace estimators
τ̄�,r , t̄ M

�,r
and τ̄ R

�,r
for n = 2 on all ensembles listed in Table 1

for several valence quark masses. For F7 and for the sub-
tracted bare quark mass amq,r = 0.3, the variances are
shown in Fig. 2 for the pseudoscalar density and for a spatial
component of the vector current respectively. Similar results
are obtained for other bilinears and/or for the E5 and the
G8 lattices. Furthermore, the variances are in the same ball-
park as the free theory values computed using the results of
Appendix B.3.
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Fig. 2 Variances of the random-noise estimators τ R
�,r

(remainder, open
blue symbols) for the pseudoscalar density (left) and the vector current
(right) as a function of the number of random sources Ns for the ensem-
ble F7, n = 2, and a bare quark mass of amq,r = 0.3. For comparison

the variances of the standard random noise estimators (filled red sym-
bols) and the gauge noise of t̄ M

�,r
(hopping, dashed red lines) for the same

mass are also shown
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Fig. 3 Variances for Ns = 1 of the random-noise estimators τ R
�,r

(remainder, open blue symbols) for the pseudoscalar density (left) and
the vector current (right) as a function of the bare quark mass amq for

the ensemble F7 and n = 2. For comparison the variances of the stan-
dard random noise estimators (filled red symbols) and the gauge noise
of t̄ M

�,r
(hopping, line symbols) for the same mass are also shown

A clear picture emerges: the bulk of the random-noise
contribution to σ 2

τ̄ �,r
is due to M2n,mr for all bilinears. Once

the latter is subtracted from the propagator and its contribu-
tion to t̄�,r is computed exactly, the random noise is reduced
by approximately one order of magnitude or more. Notice
that σ 2

t̄ M
�,r

is from 2 (pseudoscalar) up to 5 (vector) orders of

magnitude smaller than σ 2
τ̄ �,r

for Ns = 1.

In Fig. 3, σ 2
τ̄ R
�,r

for Ns = 1 and σ 2
t̄ M
�,r

multiplied by 10

both for n = 2 are shown as a function of the valence bare
subtracted quark mass amq,r for the pseudoscalar density
and the spatial component of the vector current. As expected
the variance reduction due to the subtraction of M2n,mr gets
larger and larger at heavier quark masses. In particular at
amq,r = 0.3 the variance of the remainder is approximately
one order of magnitude smaller than at the sea quark mass
value of amq,r = 0.00207. It is worth noting that even

at this light mass, the random-noise contribution to σ 2
τ̄ �,r

from M2n,mr is still significant for all bilinears. The vari-
ance reduction due to HPE, however, is only a factor 2 or
so.

All in all data suggest that at heavy masses an efficient esti-
mator of s

�,r
is obtained by computing t̄ M

�,r
exactly and the

remainder via the stochastic estimator τ̄ R
�,r

. Which is the opti-
mal order n and how many random sources Ns are required
for the remainder depend on the bilinear considered and on
the final target observable of interest, see Sect. 6.

5 Differences of single-propagator traces

To analyse the contribution to trace variances from low-
frequency modes of the quark propagator, we consider the
difference of two single-propagator traces with different
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masses. It is worth noting, however, that often the differ-
ence itself is a sub-diagram of the correlator of interest, e.g.
the disconnected contribution to the hadronic vacuum polar-
ization from the up, down and strange quarks in the exact
isospin limit. The estimator of the difference of two single-
propagator traces reads

t�,rs (x) ≡ t�,r (x) − t�,s (x)

= −a�

a4 tr
[
�{D−1

mr
(x, x) − D−1

ms
(x, x)}

]

= −a�

a4 (ms − mr )tr
[
�D−1

mr
D−1
ms

(x, x)
]
, (5.1)

where mr 	= ms . Its expectation value can be written as

s�,rs ≡ s�,r − s�,s = a�

{〈O�,rr (x)〉 − 〈O�,ss (x)〉
}

= a� (ms − mr )
∑
y

a4〈Srs(y) O�,sr (x))〉, (5.2)

where, to simplify the notation, we have introduced the usual
notation Srs = OI,rs for the scalar density. If we define the
zero three-momentum field as

t̄�,rs (x0) = 1

L3

∑
x

a3 t�,rs (x), (5.3)

its variance is given by

σ 2
t̄
�,rs

= a2
�

L3 (ms − mr )
2

×
∑

y1,y2,y3

a11〈Srs(y1) O�,sr (0, y2)Ss′r ′ (y3) O
�,r ′s′ (0)〉c,

(5.4)

where two extra valence fermions ψr ′ and ψs′ , with masses
mr ′ = mr and ms′ = ms respectively, are introduced if not
already present in the theory. This time the operator product
expansion generically predicts that σ 2

t̄
�,rs

diverges as a−1, i.e.

two powers less than in Eq. (3.6) thanks to the presence of
the squared-mass difference in the prefactor. Analogously
to Sect. 3, there are exceptions depending on the symme-
tries preserved by the regularization and on the discretization
chosen for the operator, and σ 2

t̄
�,rs

vanishes in the free-theory

limit with the first non-zero contribution appearing at O(g4
0)

or higher in perturbation theory.

5.1 Standard random-noise estimator

Maybe the simplest random-noise estimator of s�,rs is

θ�,rs (x) = − (ms − mr )

a4Ns

Ns∑
i=1

Re

×
[
a�η

†
i (x)�{D−1

mr
D−1
ms

ηi }(x)
]
, (5.5)

where the variance of its zero three-momentum counterpart

θ̄ �,rs(x0) = 1

L3

∑
x

a3 θ�,rs (x) (5.6)

is

σ 2
θ̄
�,rs

= σ 2
t̄
�,rs

− (ms − mr )
2

2L3Ns

×
⎧
⎨
⎩a2

�

∑
y1,y2,y3

a11
〈
Srs(y1)O�,ss′ (0, y2)Ss′r ′ (y3)O�,r ′r (0)

〉

+ 1

a

∑
y1,y2,y3

a12 〈Srs(y1)Pss′ (y2)Ss′r ′ (y3)Pr ′r (0)〉
⎫
⎬
⎭ .

(5.7)

Generically the random-noise contribution on the r.h.s of
(5.7) diverges proportionally to a−1 like the gauge variance.
The �-independent contribution 〈SPSP〉 is one of the spec-
tral sums introduced in Ref. [15]. It is integrated over one
time-coordinate more with respect to the first term, and it
gives large contributions to the stochastic variances of all
bilinears indistinctly. If we would not take the real part in
Eq. (5.5), the variances would be larger and �-independent
since the 〈SOSO〉 contributions are dropped, and the pref-
actor 1/(2Ns) goes into 1/Ns .

5.2 Split-even random-noise estimator

An alternative random-noise estimator of the difference of
two traces is

τ�,rs (x) = − (ms − mr )

a4Ns

Ns∑
i=1

Re

×
[
a� {η†

i D
−1
mr

}(x) � {D−1
ms

ηi }(x)
]
. (5.8)

The corresponding zero three-momentum field is

τ̄�,rs (x0) = 1

L3

∑
x

a3 τ�,rs (x) , (5.9)

and its variance reads

σ 2
τ̄
�,rs

= σ 2
t̄
�,rs

− a2
�
(ms − mr )

2

2L3Ns

×
∑

y1,y2,y3

a11
{〈
Srs(y1) O

�,ss′ (0, y2) Ss′r ′ (y3) O
�,r ′r (0)

〉

+ 〈
Prr ′ (y1) O

�,r ′s′ (0, y2) Ps′s(y3) O�,sr (0)
〉}

(5.10)

where again two extra valence fermion fields ψr ′ and ψs′
with masses mr ′ = mr and ms = ms′ are introduced if not
already present in the theory. Also this time the operator prod-
uct expansion predicts generically that σ 2

τ̄
�,rs

diverges as a−1,

but with respect to the standard random-noise estimator the
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Fig. 4 Variances of the standard θ�,rs (filled red symbols) and the split-
even τ�,rs (open blue symbols) estimators for differences of single-
propagator traces for the pseudoscalar density (left) and the vector cur-
rent (right) as a function of the number of random sources Ns for the

ensemble F7 and for the bare quark masses amq,r = 0.00207 and
amq,s = 0.0189 corresponding to the sea and approximately the strange
quark masses

(large) �-independent spectral sum 〈SPSP〉 is absent. The
first four-point correlation function on the r.h.s. of Eq. (5.10)
is the flavour-connected counterpart of the disconnected con-
traction appearing in Eq. (5.4), the second is analogous but
with scalar densities replaced by the pseudoscalar ones and
two flavour indices exchanged. Both integrated correlators
on the r.h.s. of Eq. (5.10) are colour enhanced with respect
to the gauge noise and they are of O(1) in the free theory,
see Appendix B.

The random-noise contributions to the variances of the
split-even estimators in Eq. (5.9) are thus expected to be sig-
nificantly smaller than for the standard estimators5 of differ-
ences of single-propagator traces. This is not surprising since
in this case both sources, ηi and η

†
i , are ultraviolet filtered by

a quark propagator and the variance has one integral less in
the time-coordinate analogously to the case of time-diluted
sources.6 With respect to the gauge variance, however, the
random-noise contribution is still expected to be larger.

5.3 Numerical tests

We have computed the two random-noise estimators in
Eqs. (5.6) and (5.9) on all ensembles listed in Table 1 and for
several pairs of quark masses. For F7 and for the bare valence
masses amq,r = 0.00207 and amq,s = 0.0189, correspond-
ing to the sea and approximately the strange quark masses
[9,16], the variances are shown in Fig. 4 for the pseudoscalar
density and for one spatial component of the vector current.

5 The split-even is an estimator for all times at once, as well as the
standard estimator in Eq. (5.6) we compare with. If time-dilution was
used in (5.6), the computation of the estimator for all times would have
been significantly more expensive.
6 By the same argument, if a split-line estimator localized in a given
region of space is chosen, the sum over y2 in Eq. (5.10) is restricted to
that region.

The variance of the standard estimators σ 2
θ̄
�,rs

(red filled sym-

bols) turns out to be essentially �-independent as suggested
by Eq. (5.7), and it is dominated by the spectral sum 〈SPSP〉.
The split-even estimators τ̄�,rs (x0) have much smaller vari-
ances.7 The reduction factor ranges from approximately one
order of magnitude for the scalar and pseudoscalar densities
up to around two orders of magnitude or more for the axial
and vector currents as well as for the tensor bilinear. A sim-
ilar reduction in the variance using the split-even estimator
is observed for ensembles with different sea-quark masses,
see Fig. 9 in Appendix D for the analogous figures for the E5
and G8 ensembles. The gauge noise is still smaller than the
random noise, but with the split-even estimator the number
Ns of random sources needed to approach the gauge noise is
moderate. It ranges from a few for the pseudoscalar density
up to O(100) for the vector current.

Considering that the estimators have the same cost per
noise source, the data show that the split-even random-noise
estimator is much more efficient than the standard one for
computing differences of single-propagator traces, and it
allows one to approach the gauge noise for all bilinears with
a moderate number of noisy sources.

6 Frequency-splitting of single-propagator traces

The results of the last two sections suggest to introduce a fam-
ily of frequency-splitting random-noise estimators of single-
propagator zero three-momentum traces defined as

7 The so called one-end trick estimator used in the context of twisted-
mass discretization of QCD is a particular case of split-even estimator,
for which significant numerical gain has been observed empirically
[17,18]. The analysis of the variances presented here applies straight-
forwardly to this estimator too, for which a Schwarz inequality between
its variance and the one of the standard estimator can also be derived.
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Table 2 The total cost of one evaluation of the FS estimator normalized
to the cost of one evaluation of the standard estimator, for examples of
the FS estimators on all ensembles. The cost of the split-even compo-
nents, τ�,rk rk+1

, is defined as the time for the two required inversions
per source, while the cost of the remainder, τ R

�,rm
, is the single inversion

required per source. The standard estimator requires one inversion at the
sea-quark mass mq,r0 per source. The relative cost of each component

is given with the number of times it is evaluated for each full evaluation
of the FS estimator, along with the bare subtracted quark masses which
define the estimator. Note that the overhead required to compute the
exact hopping terms is not included, which is performed only once per
configuration. For n = 2 HPE this quickly becomes negligible when
the FS estimator is evaluated multiple times

Ensemble Estimator k amq,rk Component Ns Rel. cost/Ns

E5 FS1 0 0.00557 τ�,r0r1
1 1.42

1 0.08 τ�,r1r2
3 0.66

2 0.3 τ R
�,r2

10 0.25

Total rel. cost 5.81

F7 FS1 0 0.00207 τ�,r0r1
1 1.26

1 0.1 τ R
�,r1

4 0.26

Total rel. cost 2.30

FS2 0 0.00207 τ�,r0r1
1 1.49

1 0.02 τ�,r1r2
1 0.80

2 0.06 τ�,r2r3
2 0.52

3 0.15 τ�,r3r4
3 0.36

4 0.3 τ R
�,r4

10 0.15

Total rel. cost 5.92

G8 FS1 0 0.00108 τ�,r0r1
1 1.33

1 0.01935 τ�,r1r2
1 0.51

2 0.1 τ R
�,r2

8 0.18

Total rel. cost 3.28

τ̄ fs
�,r1

(x0) = t̄ M
�,rm

(x0) + τ̄ R
�,rm

(x0) +
m−1∑
k=1

τ̄�,rk rk+1
(x0) (6.1)

where t̄ M
�,rm

, τ̄ R
�,rm

, and τ̄�,rk rk+1
are defined in Eqs. (4.4), (4.6),

and (5.9) respectively. The corresponding variances are given
by

σ 2
τ̄ fs
�,r1

= σ 2
t̄
�,r1

+
{
σ 2

τ̄ R
�,rm

− σ 2
t̄ R
�,rm

}

+
m−1∑
k=1

{
σ 2

τ̄
�,rk rk+1

− σ 2
t̄
�,rk rk+1

}
, (6.2)

where the various terms on the r.h.s are defined in Sects. 4
and 5. At high momenta (heavy masses) the contribution from
t̄ M
�,rm

, responsible for the bulk of the variance of the standard
random-noise estimator, is computed exactly with a limited
number of probing vectors, and only the remainder τ̄ R

�,rm
is

estimated by a random-noise estimator. The low-frequency
contributions τ�,rk rk+1

can then be estimated by the very effi-
cient split-even estimator. It is rather clear that splitting the
single-propagator traces in several parts whose contributions
come from different frequency regions is beneficial. It allows
us to design a customized estimator for each contribution
which profits from its own peculiarities. An important ingre-

dient in this analysis is the fact that solvers invert the Dirac
operator with heavier quark masses at a lower numerical cost.

6.1 Numerical tests

The best choice of the number of mass differences, the values
of the masses, and the order of the HPE for defining the
frequency-splitting estimators in Eq. (6.1) depends on many
factors: the bilinear of interest, the target mass, the solver
chosen for inverting the Dirac operators and its particular
implementation, etc. It is not the aim of this paper to optimize
with respect to all these factors8 but, provided a reasonable
choice is made, our goal is to give a numerical proof that
the frequency-splitting estimators are efficient and allow to
reduce significantly the numerical cost for computing single-
propagator traces. To this aim we have implemented two such
estimators:

• FS1 is the simplest frequency-splitting estimator with one
mass difference only. The masses are amq = 0.00207
and 0.1, τ̄�,r0r1

and τ̄ R
�,r1

are defined with Ns = 1 and
4 respectively per full evaluation of the estimator. Each

8 Computing variances for such an optimization is cheap because it
requires a few sources only.
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Fig. 5 Variances of the two frequency-splitting estimators FS1 and
FS2 (see the main text for explanations) for the pseudoscalar density
(left) and the vector current (right) for the ensemble F7 and for the
target mass amq = 0.00207 corresponding to the sea quark mass. On
the horizontal axis, Ns is the number of times the frequency-splitting
estimator is evaluated and averaged over for each gauge configuration.
For comparison the variances of the standard random-noise estimators

(filled red symbols) are also shown, where in this case Ns coincides
with the number of random sources processed and averaged over for
each gauge configuration. Each evaluation of the FS1 and FS2 estima-
tors cost approximately 2.5 and 6 times the standard one respectively,
see Table 2 for details. In the right plot, the continuum line represents
the linear term of a linear fit in 1/Ns of the points, while the dashed line
is the constant term corresponding to the gauge noise

evaluation of this estimator costs approximately 2.5 times
more than evaluating one random source for the standard
estimator.9 See Table 2 for a detailed comparison of the
relative cost of the estimators for our particular imple-
mentation.

• FS2 is defined by 4 mass splittings corresponding to the
masses amq = 0.00207, 0.02, 0.06, 0.15, 0.3, and the
corresponding random-noise estimators are defined with
Ns = 1, 1, 2, 3, and 10 random sources respectively.
Each application of this estimator costs approximately 6
times with respect to evaluating one random source for
the standard estimator, see Table 2.

In both cases the solver used is the generalized conjugate
residual (GCR) algorithm preconditioned by a Schwarz alter-
nating procedure (SAP) and local deflation as implemented
in openQCD-1.6 [19].

In Fig. 5 we show the variances of FS1, FS2 and of the stan-
dard estimator as a function of Ns , the number of evaluations
of each of them per gauge configuration. A clear message
emerges: a large gain is obtained for both frequency-splitting
estimators with mild differences in efficiency between them.
The FS1 is slightly better for the scalar and pseudoscalar
densities, while FS2 is more efficient for the vector, axial-
vector and tensor bilinears. In particular, the variance of FS1
is approximately 20 and 15 times smaller than the one of the
standard estimators for the scalar and pseudoscalar densities
respectively. Taking into account that one application of FS1

9 We do not include the preparatory cost for computing t̄ M
�,rn

since it
becomes quickly negligible after few evaluations of the random-noise
components of the estimator.

costs approximately 2.5 more, the gain in computation cost
is 8 and 6 for the scalar and pseudoscalar10 densities respec-
tively. For the vector and the axial-vector, the variance of
FS2 is approximately 2 orders of magnitude smaller than the
one of the standard estimators. As the FS2 is 6 times more
expensive, the gain in computational cost is approximately a
factor 15. For the tensor the factor gained reaches approxi-
mately 20. Figure 10 of Appendix D depicts examples of the
frequency-splitting estimators for the E5 and G8 ensembles,
which illustrate similar orders of magnitude of improvement.
In the vector channel, the improvement is even greater closer
to the physical point.

It is worth noting that for the scalar, pseudoscalar and the
tensor bilinears just one or a few evaluations of the frequency-
splitting estimators are needed for the variance to be com-
parable to the gauge noise. For the axial-vector and vector
currents O(10) and O(100) evaluations of the FS2 estimators
are required to reach the same goal. As a result, in all cases the
gauge noise is reached with a limited and affordable number
of evaluations of the frequency-splitting estimators. If neces-
sary the frequency-splitting estimator can be easily combined
with low-mode averaging [20,21] and its variants [22].

7 Numerical tests for two-point functions

In this section we discuss the numerical results for two rep-
resentative examples of disconnected contributions to two-

10 If we had used U (1) sources instead of Gaussian ones, the standard
estimator for the pseudoscalar density would have a variance smaller
by approximately a factor 3 on this lattice. We prefer to use Gaussian
sources for all bilinears, however, for which the theoretical analysis is
simpler.
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Fig. 6 Left: variance of the disconnected contribution in Eq. (7.1) with
x0/a = 10 using the standard (red filled squares) and split-even estima-
tor (blue open squares). The stochastic noise of the split-even estimator

is comparable with the gauge noise after Ns ∼ 256. Right: the discon-
nected contribution using the split-even estimator from Ncfg = 1200
gauge configurations

point functions, which are the simplest correlation functions
with a non-trivial time dependence composed only of single-
propagator traces. We use the estimators proposed in Sects. 5
and 6 to confirm the expected improvement over the standard
estimator, and check the factorization formula for the vari-
ance given in Sect. 2.

7.1 Split-even estimator for electromagnetic current

As alluded to in Sect. 5, an important application of the split-
even estimator is the determination of the disconnected con-
tribution to the correlation function of two electromagnetic
currents with three light flavours. In the isospin limit, this
gives rise to a difference of single-propagator traces as in
Eq. (5.1) with r and s corresponding to the up/down and
strange quark flavours respectively. In particular the correla-
tor

Crs
V V (x0) = − L3

3L0

3∑
k=1

∑
y0

a
〈
t̄γk ,rs(x0 + y0) t̄γk ,rs(y0)

〉
,

(7.1)

determines the light disconnected contribution, via the
time-momentum representation [23], of the leading-order
hadronic vacuum polarization, once each current is renor-
malized by ZV = 0.74636(70) [24] and the correct electric
charge factor of 1/9 is included.

In the left-hand panel of Fig. 6, we show the variance of
this correlation function for x0/a = 10 computed by using
the standard (red filled squares) and split-even estimators
(blue open squares) in Eqs. (5.6) and (5.9) respectively. A
reduction of the variance of up to four orders of magnitude is
obtained with the split-even estimator (two orders of magni-
tude in the cost), which starts to be comparable to the gauge

noise for Ns ∼ 256. As expected, the variance is practi-
cally constant in x0 and well-described by the factorization
formula in Eq. (2.3) when the averaging over time and the
polarizations of the current are taken into account.

In the right-hand panel of Fig. 6 our best estimate of
the correlation function using the split-even estimator is
shown using an increased number of gauge configurations,
with respect to those used for estimating the variances, of
Ncfg = 1200. This in turn corresponds to a relative statistical
precision of approximately 10% to the disconnected light-
quark part of the muon anomalous magnetic moment com-
ing from contributions to the integral up to time-distances
of 1.5 fm. If the integral is computed up to 3.0 fm or so,
the relative statistical error grows up to 70%, calling for the
multi-level integration to determine the contribution from the
long distance part of the integrand. To properly renormalize
the correlator each current has to be multiplied by the fac-
tor ZV which brings a negligible error with respect to the
statistical error of the bare correlator.11

7.2 Frequency-splitting estimator for isoscalar vector
currents

In spectroscopic applications, disconnected diagrams arise
generically in isoscalar channels. The vector channel, for
instance, contains the contribution

Cr
VV (x0) = − L3

3L0

3∑
k=1

∑
y0

a
〈
t̄γk ,r (x0 + y0) t̄γk ,r (y0)

〉
.

(7.2)

11 Improving the vector current goes beyond the scope of this paper.
All formulas, however, can be found in Refs. [25,26].

123



Eur. Phys. J. C (2019) 79 :586 Page 11 of 17 586

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

σ
2
·a

6

Ns

Cr
V V

standard

FS2

-20

0

20

40

60

80

100

1 10 100 1000 0 2 4 6 8
x0/a

a3Cr
V V × 106

FS2

Fig. 7 Left: variance of the disconnected contribution in Eq. (7.2) with
x0/a = 10 using the standard estimator (red filled squares) versus the
number of sources, and the FS2 estimator (blue open squares) versus the
number of its evaluations per gauge configuration. Recall each evalua-
tion of the FS2 estimator costs approximately 6 times the standard one,

see Table 2. Right: the disconnected contribution using the FS2 estima-
tor from Ncfg = 1200 gauge configurations. With the same number of
configurations and the same numerical cost, no signal is observed with
the standard estimator

To evaluate this correlation function, we use the FS2 esti-
mator introduced in Sect. 6 for both single-propagator traces.
In the left plot of Fig. 7 we show the variances of the stan-
dard estimator (filled symbols) against the number of sources,
and the improved FS2 estimator (open symbols) against the
number of its evaluations per gauge configuration. The gauge
variance is approached with about Ns ∼ 256 evaluations of
the FS2 estimator, similarly to the case of the one-point func-
tion of Sect. 6. In this case, while the disconnected piece gives
only a small contribution to the isoscalar channel at interme-
diate hadronic distances, its variance quickly dominates the
statistical error at large distances. The improved estimator
thus allows the full correlation function to be resolved at
much larger distances.

8 Conclusions

The numerical computation of disconnected Wick contrac-
tions is challenging in lattice QCD because (a) their vari-
ances are dominated by the vacuum contribution, which in
turn implies that statistical errors remain constant with the
distance of the disconnected pieces while the signal typically
decreases exponentially, and (b) averaging each disconnected
sub-diagram over the volume tends to be numerically expen-
sive because the quark propagators must be re-computed at
each lattice point.

A milestone for solving the second problem was the intro-
duction of random-noise estimators [3–5] which allow one to
sum over many or all source points stochastically. However
for single-propagator traces, the simplest among the discon-
nected sub-diagrams, such estimators tend to have variances
which are typically orders of magnitude larger than the intrin-

sic gauge noise. An a priori theoretical analysis of the vari-
ances is thus mandatory for deciding how to define exactly
the stochastic observables.

Luckily the random-noise contribution to the variances
can be re-expressed in the form of simple integrated corre-
lation functions of local composite operators, a fact which
allows us to use the quantum field theory machinery for ana-
lyzing the origin of the statistical errors and eventually to
reduce them.

As a result, we have introduced new stochastic observ-
ables for single-propagator traces: the split-even and the
frequency-splitting estimators for difference of two traces
and for single traces respectively. The former needs from
a few random sources for the pseudoscalar density up to
O(100) for the vector current to approach the gauge noise.
The reduction in numerical cost with respect to the standard
estimator ranges from one order of magnitude for the scalar
and pseudoscalar densities up to around two orders of mag-
nitude or more for the axial and vector currents as well as
for the tensor bilinear. Just one or a few evaluations of the
frequency-splitting estimators are needed for the variances
of the scalar, pseudoscalar and tensor bilinears to be compa-
rable to the gauge noise, while for the axial-vector and vector
currents O(10) and O(100) evaluations are required to reach
the same goal. In this case the reduction of the computational
cost with respect to the standard estimator is of one order of
magnitude or so depending on the bilinear. In all cases con-
sidered the variances of the stochastic estimators reach the
level of the intrinsic gauge noise with a moderate number of
evaluations per gauge configuration.

The use of these new estimators significantly speeds up
the computation of disconnected fermion Wick contractions
which contribute to many physics processes at the forefront of
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research in particle and nuclear physics: the hadronic contri-
bution to the muon anomalous magnetic moment, K → ππ

decays, nucleon form factors, quantum electrodynamics and
strong isospin-breaking contributions to hadronic matrix ele-
ments, η′ propagator, etc. As an example we have shown
their potential for computing the disconnected contribution
to the light-quark contribution to the muon anomalous mag-
netic moment and to the correlator of two singlet vector cur-
rents. Theory suggests large gains for disconnected three and
higher point correlation functions as well. To solve or miti-
gate the problem (a) alluded to at the beginning of this sec-
tion, the next step is to combine these estimators with the
newly proposed multi-level integration in the presence of
fermions [1,2].
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Appendix A: O(a)-improved Wilson–Dirac operator

The massive O(a)-improved Wilson–Dirac operator is def-
ined as [27,28]

Dm = Dw + δDv + m, (A.1)

where m is the bare quark mass, Dw is the massless Wilson-
Dirac operator

Dw = 1

2

{
γμ(∇∗

μ + ∇μ) − ∇∗
μ∇μ

}
, (A.2)

γμ are the Dirac matrices, and the summation over repeated
indices is understood. The covariant forward and backward
derivatives ∇μ and ∇∗

μ are defined to be

a∇μψ(x) = Uμ(x)ψ(x + μ̂) − ψ(x),

a∇∗
μψ(x) = ψ(x) −U †

μ(x − μ̂)ψ(x − μ̂), (A.3)

where Uμ(x) are the link fields. The clover term is defined
as

δDvψ(x) = a cSW

i

4
σμν F̂μν(x)ψ(x), (A.4)

where the field strength of the gauge field is

a2 F̂μν(x) = 1

8

{
Qμν(x) − Qνμ(x)

}
(A.5)

with

Qμν(x) = Uμ(x)Uν(x + μ̂)U †
μ(x + ν̂)U †

ν (x)

+Uν(x)U
†
μ(x − μ̂ + ν̂)U †

ν (x − μ̂)Uμ(x − μ̂)

+U †
μ(x − μ̂)U †

ν (x − μ̂ − ν̂)

×Uμ(x − μ̂ − ν̂)Uν(x − ν̂)

+U †
ν (x − ν̂)Uμ(x − ν̂)Uν(x + μ̂ − ν̂)U †

μ(x).

(A.6)

A.1: Hopping expansion

By applying the standard even-odd decomposition of the
Wilson–Dirac operator

Dm =
(
Dee Deo

Doe Doo

)
, (A.7)

see Ref. [29] for unexplained notation, it is straightforward
to verify that

D−1
m = 1

Dee + Doo

1

1 − Hm
, (A.8)

where

Hm = −
[
DeoD

−1
oo + DoeD

−1
ee

]
, (A.9)

and for clarity the subscript m has been omitted in the block
matrices of the even/odd decomposition defined in Eq. (A.7).
It follows that

D−1
m = M2n,m + D−1

m H2n
m , (A.10)

where

M2n,m = 1

Dee + Doo

2n−1∑
k=0

Hk
m . (A.11)
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Appendix B: Bilinear chains in the free case

The propagator of a free Wilson fermion is

S(x − y) = 〈ψ(x)ψ̄(y)〉 =
∫

BZ

d4 p

(2π)4 K−1(p) eip(x−y),

(B.1)

where

K (p) = iγμ p̄μ + M(p), M(p) = m + a

2
p̂2, (B.2)

with

p̄μ = 1

a
sin(pμa), p̂μ = 2

a
sin

( pμa

2

)
, (B.3)

and as usual p̄2 = p̄μ p̄μ and p̂2 = p̂μ p̂μ.

B.1: Two-point correlators

The integrated two-point correlation functions of non-singlet
bilinears are
∑

x

a3
〈
O

�,rr ′ (0, x)O
�,r ′r (0)

〉

= −12
∫

BZ

d3p
(2π)3

{
b� G(p,mr )G(p,mr ′)

+ c� p̄2F(p,mr ) F(p,mr ′)
}

(B.4)

where

F(p,m) =
∫

BZ

dp0

2π

1

p̄2 + M2(p)
,

G(p,m) =
∫

BZ

dp0

2π

M(p)

p̄2 + M2(p)
, (B.5)

and

b� =
{

1 � = I, γ5, γμ, σμν

−1 � = γμγ5

c� =

⎧
⎪⎪⎨
⎪⎪⎩

−1 � = I
1 � = γ5

1 − 2
3 (1 − δμ0) � = γμ, γμγ5

−1 + 2
3 (2 − δμ0 − δν0) � = σμν

(B.6)

By using

K †(p)K (p) = K (p)K †(p) = p̄2 + M2(p),

K †(p) = γ5K (p)γ5, (B.7)

it is straightforward to obtain
∑
y

a4〈Prr ′(y)Pr ′r (0)〉

= −12
∫

BZ

d4 p

(2π)4

p̄2 + Mr (p)Mr ′(p)

[ p̄2 + M2
r (p)][ p̄2 + M2

r ′(p)] ,

where Mr (p) is evaluated at the bare mass of mr .

B.2: Four-point correlators

The integrated four-point correlation functions of non-singlet
bilinears we are interested in are

∑
y1,y2,y3

a11〈Prr ′(y1) O�,r ′s′ (0, y2) Ps′s(y3) O�,sr (0)
〉

= −12 a2
�

∫

BZ

d3p
(2π)3 F(p,mr )F(p,ms) (B.8)

and
∑

y1,y2,y3

a11〈Srs(y1) O�,ss′ (0, y2) Ss′r ′(y3) O�,r ′r (0)
〉

= −12
∫

BZ

d3p
(2π)3

{
b� [K (p,mr ,ms)]2

+ c� p̄2[H(p,mr ,ms)]2
}
, (B.9)

where

H(p,mr ,ms) =
∫

BZ

dp0

2π

Mr (p) + Ms(p)

[ p̄2 + M2
r (p)][ p̄2 + M2

s (p)] ,
(B.10)

K (p,mr ,ms) =
∫

BZ

dp0

2π

Mr (p)Ms(p) − p̄2

[ p̄2 + M2
r (p)][ p̄2 + M2

s (p)] ,
(B.11)

and mr ′ = mr and ms′ = ms . Finally
∑

y1,y2,y3

a12〈Srs(y1)Pss′(y2)Ss′r ′(y3)Pr ′r (0)〉

= −12
∫

BZ

d4 p

(2π)4

1

{ p̄2 + M2
r (p)}{ p̄2 + M2

s (p)} ,
(B.12)

where again we are interested in the case mr ′ = mr and
ms′ = ms .

B.3: Variance of the HPE remainder

In the free theory, the variance of the noisy estimator of the
remainder in Eq. (4.6) is

σ 2
τ̄ R
�,m

= 6

L3Ns

∫
d3 p

(2π)3

{
J0,n(p,m)J1,n(p,m)

+[I1,2n(p,m)]2a2
�b� + [I0,2n(p,m)]2 p̄2 a2

� c�

}

(B.13)

where

J0,n(p,m) =
∫

BZ

dp0

2π

{
(c1,n(p))

2 p̄2 + (c0,n(p))
2
}

(B.14)
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Fig. 8 Two schemes of probing vectors suitable for a matrix whose
generic column has non-zero entries on the sites within the shaded
region. Left: the probing vectors have support, e.g. white squares, on
one point of each of the squared blocks. The column of the matrix

M2n,m corresponding to (x/a) = (4, 4) has non-zero entries only in the
shaded region where the probing vector is zero. Right: as on the left but
for smaller blocks labeled even and odd

J1,n(p,m) =
∫

BZ

dp0

2π

(c1,n(p))2 p̄2 + (c0,n(p))2

p̄2 + M2(p)
(B.15)

I0,n(p,m) =
∫

BZ

dp0

2π

c1,n(p)M(p) − c0,n(p)

p̄2 + M2(p)
(B.16)

I1,n(p,m) =
∫

BZ

dp0

2π

c1,n(p) p̄2 + c0,n(p)M(p)

p̄2 + M2(p)
(B.17)

with

cm,n =
(n−m)/2∑

k=0

(
n

2k+m

)
(c0,1)

n−(2k+m)(c1,1)
2k+m(− p̄2)k,

m = 0, 1, (B.18)

and

c0,1(p) = 4 − a2 p̂2/2

am + 4
, c1,1(p) = − a

am + 4
, (B.19)

where the highest k in the sum (B.18) is the last integer
value, i.e. either (n − m)/2 or (n − m − 1)/2. If the noise
estimator of the remainder in Eq. (4.6) would have been
defined by applying H2n

m to one source vector only, its vari-
ance would be as in Eq. (B.13) but with the replacement
J0,n(p,m)J1,n(p,m) → (1/a)J1,2n(p,m).

Appendix C: Exact computation of the first 2n terms in
the HPE

The matrix M2n,m in Eq. (4.2) is sparse. Its diagonal elements
can thus be computed with a few applications of M2n,m on
a well chosen set of probing vectors. Following Ref. [30], if
for a matrix M there exist K probing vectors v0, . . . , vK−1

which satisfy12

K−1∑
k=0

vki v
k
j = δi j for all i, j where Mi j 	= 0, (C.1)

then the diagonal elements ofM are given by (no summation
over i)

Mi i =
K−1∑
k=0

vki u
k
i , where uk = Mvk . (C.2)

The non-zero elements of M2n,m are those that connect
two lattice sites x and y with ‖x − y‖1 < na, while the
matrix is dense in the spin and colour indices. For a lat-
tice which can be decomposed in hypercubic blocks of size
(2na)4, an obvious scheme to define the set of probing vec-
tors which satisfies the condition (C.1) is

vk(x) =
{

1 k = ics + 12 l2n(x)

0 otherwise
(C.3)

where ics = 1, . . . , 12 indicates the spin-colour index and
l2n(x) = (x0/a) mod 2n+2n · [(x1/a) mod 2n]+ · · · is the
lexicographical index labeling the sites in any given block.
This scheme, illustrated in Fig. 8 for n = 2, requires K =
192 n4 probing vectors because one vector is required for
each of the spin-colour components for every site in the block.

A more efficient scheme, already outlined in Ref. [32],
is depicted in the right-hand panel of Fig. 8, where even-

12 In Ref. [31] probing vectors were introduced in the context of lattice
QCD to define stochastic estimators of traces of the full quark propa-
gator.
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Fig. 9 The figures analogous to Fig. 4 comparing the variances of the standard (red) and split-even (blue) estimators in the pseudoscalar (left) and
vector (right) channels for ensembles E5 (top) and G8 (bottom)

odd blocks of half the linear size of the previous ones are
introduced. The probing vectors are defined by

vk(x) =
{

1 k = ics + 12 {p + 2 ln(x)}
0 otherwise

(C.4)

where as before ics indicates the spin-colour index, p = 0, 1
is the parity of the block, and again ln(x) is the lexicograph-
ical index labeling the sites in any given block. This scheme
requires just K = 24 n4 vectors, which is a factor 8 fewer
than the first one.

Appendix D: Numerical tests on E5 and G8 ensembles

In this appendix we include the results for the split-even esti-
mators and examples of the frequency-splitting estimators for
the E5 and G8 ensembles, which have a larger and smaller
quark mass than the F7 ensemble described in the text, see
Table 1. In addition we provide a more detailed comparison
of the relative cost between the frequency-splitting and stan-
dard estimators for our particular implementation for each
ensemble in Table 2.

D.1: Split-even estimators

Figure 9 depicts the variances of the standard and split-even
estimators for the differences of single-propagator traces for
the E5 (top) and G8 (bottom) ensembles in the pseudoscalar
(left) and vector (right) channels. The quark masses are cho-
sen to be the sea and strange quark masses as before. In the
pseudoscalar channel it is again observed that the variance
saturates with the gauge variance after just a few random
sources. In both channels, the variance increases as the sea
quark mass is lowered. However, in each channel, the split-
even estimator results in a consistent reduction in the variance
which is quite independent of the sea-quark mass.

D.2: Frequency-splitting estimators

The analogous figures to Fig. 5 for examples of frequency-
splitting estimators are shown in Fig. 10 for the E5 (top) and
G8 (bottom) ensembles for the pseudoscalar (left) and vec-
tor (right) channels. The cost for one full evaluation of the
estimator relative to the cost of the evaluation of the standard
estimator is shown in Table 2 along with the values of the
quark masses and choices of Ns for each component, which
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Fig. 10 The figures analogous to Fig. 5 comparing the variances of the standard (red) and frequency-splitting (blue) estimators in the pseudoscalar
(left) and vector (right) channels for ensemble E5 (top) and G8 (bottom)

define the estimators. For the lighter sea-quark mass ensem-
ble, the G8 ensemble, accounting for the increased relative
cost of about a factor 3.3, the gain in the computational cost
for the FS1 estimator is approximately a factor 3 in the pseu-
doscalar channel, and about a factor 30 in the vector channel,
one of the best cases. This demonstrates the effectiveness of
the strategy as the physical point is approached even without
any particular fine-tuning of the parameters.
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