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1 Introduction

In this paper we consider theories living on D3-branes sitting at the tip of a Calabi-Yau

three-fold cone and the relation of their twisted compactifications on a sphere to AdS black

hole and black string physics. The holographic description of these twisted compactifica-

tions consists of solutions interpolating between AdS5 and AdS3×S2 vacua. These can be

interpreted as renormalization group (RG) flows from an ultraviolet (UV) four-dimensional

N = 1 conformal field theory (CFT) and an infrared (IR) two-dimensional N = (0, 2) one.

The right-moving central charge of the two-dimensional CFT has been computed in [1–3],

and successfully compared with the supergravity result for a variety of models. In [4] the

partition function of the boundary theory on T 2 × S2, the so-called topologically twisted

index [5–9], was computed in the Cardy limit β = −2πiτ → 0, where τ is the modular

parameter of the torus, and at finite N . It was found that [4]

logZ(n,∆|β) =
π2

6β
cl(n,∆/π) , (1.1)
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where cl(n,∆/π) is the left-moving trial central charge of the two-dimensional SCFT

(see (3.1)), n denotes the set of magnetic fluxes of the twisted compactification and ∆

denotes the set of chemical potentials for the global symmetries of the theory. If we further

compactify the black strings on a circle inside AdS3 adding a momentum, we obtain a

four-dimensional static black hole with a hvLif asymptotic behaviour [10]. As discussed in

details in [4, 10–12], a microscopic counting based on (1.1) correctly reproduces the entropy

of such black holes, which is just given by the Cardy formula in terms of the exact central

charge cCFT
l (n) of the two-dimensional SCFT.

It is the purpose of this paper to extend the previous picture to the rotating case, by

computing the relevant quantum field theory partition function and by finding rotating

black string solutions that can be embedded in consistent string compactifications.

From the field theory point of view we need to compute the refined topologically twisted

index [7], which is defined as the partition function of an N = 1 theory on T 2 × S2
ω with

a topological A-twist and an Ω-background label by a complex parameter ω on S2. It can

be also written as the trace

Z(n, y, ζ|q) = TrH
S2ω×S1

(−1)F qHLζ2J
∏
I

yQII , (1.2)

where q = e2πiτ , yI = ei∆I , and ζ = eiω/2 are the fugacities associated to the left-moving

Hamiltonian HL, the flavor charges QI and the angular momentum J along S2
ω. We will

show that, for a generic theory of D3-branes at toric (but not only) conical singularities,

the Cardy limit β = −2πiτ → 0 (at finite N) of the topologically twisted index reads

logZ(n,∆, ω|β) =
π2

6β
cl(n,∆/π)− (2ω)2

27β
(3c(n)− 2a(n)) , (1.3)

where c(n) and a(n) are the trial central charges (see (3.16)) of the four-dimensional SCFT

evaluated as functions of the magnetic fluxes.

From the gravity point of view, we will find a new class of rotating black strings that

can be embedded in AdS5× S5. In five-dimensional language, these are domain walls that

interpolate between AdS5 and a near horizon region consisting of a warped fibration of

BTZ over a sphere. To find these solutions, it is convenient to dimensionally reduce them

to four dimensions, as also suggested by the Cardy limit we are performing in field theory,

and construct the corresponding rotating asymptotically hvLif black holes. Luckily, a large

class of dyonic rotating black holes in four-dimensional N = 2 gauged supergravity have

been found recently in [13] and we will use these results. Using the 5D/4D relation, we

can first find the solutions in the so-called STU model in four-dimensional N = 2 gauged

supergravity coupled to vector multiplets, then uplift them to a five-dimensional gauged

supergravity, which is a consistent truncation of type IIB on AdS5 × S5, and, finally we

could uplift our solutions to type IIB. We will present the general class of solutions for the

STU model and, more generally, for symmetric models of gauged supergravity with vector

multiplets. Finding solutions in consistent truncations of type IIB compactifications on

more general Sasaki-Einstein manifolds is more complicated and we leave it for future work.
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We will then show that, for the twisted compactification of N = 4 super Yang-Mills

(SYM), the Legendre transform of (1.3) exactly reproduces the entropy of the dyonic

rotating black holes that can be embedded in AdS5 × S5. This is another instance of the

I-extremization principle introduced in [14, 15] and that has been successfully used to give

a microscopic explanation of the entropy of BPS black holes in diverse dimensions.

In this context, it is also interesting to rewrite the large N limit of (1.3) as

logZ(n,∆, ω|β) = i
∑
I

nI
∂W̃(∆|β)

∂∆I
+

iω2

24

∑
I,J,K

nInJnK
∂3W̃(∆|β)

∂∆I∂∆J∂∆K
, (1.4)

where

W̃(∆|β) =
16π3i

27β
a(∆/π) , (1.5)

is the on-shell value of the twisted superpotential evaluated on the Bethe vacuum [5, 9,

14] that dominates the index in the large N limit. The first term in (1.4) was already

derived in [4]. It appears in the same form in the expression of the three-dimensional

topologically twisted index at large N [14, 16, 17]. It has been called index theorem and it

is the field theory counterpart of the attractor mechanism of gauged supergravity [18–20].

It also appears, in a similar form, in the five-dimensional topologically twisted index at

large N [21].

The paper is organized as follows. In section 2 we review the definition of the refined

topologically twisted index on T 2×S2
ω. In section 3 we analyse the index in the Cardy limit

and derive (1.3). In section 4 we use the 4D/5D connection to explicitly construct black

string solutions that can be embedded in AdS5 × S5 and we compute the entropy of the

corresponding four-dimensional black holes. In section 5 we compare the field theory and

supergravity result finding complete agreement. We conclude in section 6 with discussions

and open problems.

2 The refined topologically twisted index

Consider an N = 1 gauge theory with vector and chiral multiplets in a representation

⊕IRI of the gauge group G, and a non-anomalous U(1)R symmetry in four dimensions.

The topologically twisted index for this class of gauge theories is defined as the (Euclidean)

partition function on T 2×Σg, with a partial topological A-twist along the genus g Riemann

surface Σg [7]. It depends on the complex structure of the torus q = e2πiτ , fugacities yI =

ei∆I and magnetic fluxes nI (that are parameterizing the twist) for the global symmetries

of the theory. In the case of g = 0 one can refine the index by the angular momentum on

S2 and introduce the fugacity ζ = eiω/2. The index can be computed using supersymmetric

localization and it is given by a matrix integral over the zero mode gauge variables x = eiu

parameterizing the Wilson lines on the two directions of the torus

u = 2π

∮
A-cycle

A− 2πτ

∮
B-cycle

A , (2.1)
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which are defined modulo

ui ∼ ui + 2πn+ 2πmτ , n ,m ∈ Z . (2.2)

The result is summed over a lattice of gauge magnetic fluxes m (up to gauge transforma-

tions) on Σg living in the co-root lattice Γh of the gauge group.

The refined topologically twisted index is thus explicitly given by a contour integral of

a meromorphic differential form [7]1

Z(m, x; n, y, ζ|q) =
1

|W|
∑
m∈Γh

∫
JK

( ∏
Cartan

dx

2πix
η(q)2

)
(−1)

∑
α>0 α(m)

∏
α∈G

(
θ1(xαζ |α(m)|; q)

iη(q)

)

×
∏
I

∏
ρI∈RI

|BI |−1

2∏
j=− |BI |−1

2

(
iη(q)

θ1(xρIyνI ζ2j ; q)

)sign(BI)

, (2.3)

summed over m ∈ Γh, where BI = ρI(m)−νI(n)+1 and |W| is the order of the Weyl group of

G. Here, α denotes the roots of G, and ρI , νI are the weights of the chiral multiplets under

the gauge and flavor symmetry group, respectively. Moreover, η(q) is the Dedekind eta

function and θ1(x; q) is a Jacobi theta function (see appendix A). Given the vanishing of the

gauge and the gauge-flavor anomalies, the integrand in (2.3) is a well-defined meromorphic

function on the torus.

Finally, the invariance of the superpotential of the theory W =
∑

aWa under global

symmetries imposes the constraint∏
I∈Wa

yI = 1 , or
∑
I∈Wa

∆I ∈ 2πZ , (2.4)

where the product and the sum are restricted to the fields entering in the monomial Wa.

We have a similar constraint on flavor magnetic fluxes∑
I∈Wa

nI = 2 , (2.5)

that we call the twisting condition and it corresponds to the cancellation of the spin con-

nection by the background R-symmetry gauge field.

3 The Cardy limit

In this section, we analyze the Cardy limit τ → i0+ of the refined topologically twisted

index of N = 1 theories that are associated with D3-branes at conical toric Calabi-Yau

three-fold singularities. When a four-dimensional N = 1 theory is compactified on S2

with a topological twist, it might flow to a family of N = (0, 2) SCFTs in the IR that

are labeled by a set of magnetic fluxes nI parameterizing the twist. The holographic dual

1Supersymmetric localization selects a particular contour of integration and the final result can be cast

in terms of the Jeffrey-Kirwan residue [7].
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to such a SCFT is a warped background AdS3 ×w Y7 in type IIB supergravity, where Y7

is topologically a fibration of Y5 over S2, with Y5 being the Sasaki-Einstein base of the

Calabi-Yau cone.

The right-moving central charge cr(n, r) and the gravitational anomaly k = cr − cl of

the N = (0, 2) SCFT read [1, 2]

cr(n, r) = 3 Tr γ3R
2(rI) = −3

[
dimG+

∑
I

dimRI(nI − 1) (rI − 1)2

]
,

k(n) = Tr γ3 = − dimG−
∑
I

dimRI(nI − 1) ,

(3.1)

where R(rI) is the matrix of R-charges for the fermionic fields in the theory and γ3 is

the two-dimensional chirality operator. The massless fermions arise as zero modes of four-

dimensional fields. The difference between the number of fermions of opposite chiralities is

easily computed using the Riemann-Roch theorem and is equal to − dimG for the gaugino

zero modes and − dimRI(nI − 1) for the zero modes of four-dimensional matter fields in

a representation RI [1, 2].2 The exact R-charges of the SCFT are obtained by extremizing

cr(n, r) with respect to a generic assignment of trial R-charges rI satisfying∑
I∈Wa

rI = 2 . (3.2)

This principle is known as c-extremization and it has been successfully compared with the

prediction of holography for a large class of twisted compactifications [1–3].3 In the large

N limit, for theories with a holographic dual, k = 0 and cl = cr [29].

In the following we will identify the modulus of the torus with the fictitious4 inverse

temperature β and work in the Cardy limit

β → 0 with β ≡ −2πiτ . (3.3)

The refined topologically twisted index as β → 0 can be written as

Z(m, u; n,∆, ω|β) ∼
∑
m∈Γh

∫
JK

( ∏
Cartan

idu e
−π

2

3β

) ∏
α∈G

e
− 1
β
g2(α(u))−ω

2

8β
α(m)2

×
∏
I

∏
ρI∈RI

e
1
β
BIg2(ρI(u)+νI(∆))+ ω2

4π3β
g3(π(BI+1))

,

(3.4)

where we used (A.6), (A.7), and

sign(B)

β

|B|−1
2∑

j=− |B|−1
2

g2(ρ(u) + νI(∆) + jω) =
B

β
g2(ρ(u) + νI(∆)) +

ω2

4π3β
g3(π(B + 1)) . (3.5)

2We use the conventions of [1, 2] that differ by a sign in the definition of γ3 compared to [4].
3For further developments see [4, 21–28].
4The elliptic genus is only counting extremal states and thus the temperature represented by Im τ is

fictitious.
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The polynomial functions gs(u), s = 2, 3, are defined in (A.8). We assumed that Re(ρ(u)+

νI(∆) + jω) > 0. As we will see, this condition is satisfied on the relevant saddle point and

in the regime of parameters that lead to a regular black hole, which in particular requires

ω to be imaginary.

Let us now focus on the terms proportional to ω2/β in (3.4), i.e.

Zω(m, u; n,∆|β) =
∏
α∈G

e
−ω

2

8β
α(m)2

∏
I

∏
ρI∈RI

e
ω2

4π3β
g3(π(BI+1))

. (3.6)

Remarkably, the dependence on gauge magnetic fluxes m drops out of (3.6) due to the

following anomaly cancellation conditions:∑
α∈G

α(m)2 +
∑
I

∑
ρI∈RI

(νI(n)− 1)ρI(m)2 = 0 , U(1)R-gauge2 ,

∑
I

∑
ρI∈RI

ρI(m)3 = 0 , gauge3 ,

∑
I

∑
ρI∈RI

ρI(m) = 0 , gravitational2-gauge ,

∑
I

∑
ρI∈RI

ρI(m)νI(n)2 = 0 , U(1)2
R-gauge ,

∑
I

∑
ρI∈RI

ρI(m)νI(n) = 0 , U(1)R-gravitational-gauge ,

(3.7)

which are satisfied for all consistent theories of D3-branes at conical singularities.5

We therefore find that

Zω(u; n,∆|β) =
∏
I

∏
ρI∈RI

e
− ω2

4π3β
g3(πνI(n))

. (3.8)

Hence, the refined twisted index (3.4) can be further simplified to

Z(m, u; n,∆, ω|β) ∼ Z0(m, u; n,∆|β)
∏
I

∏
ρI∈RI

e
− ω2

4π3β
g3(πνI(n))

, (3.9)

where Z0 is the unrefined twisted index in the Cardy limit [4]

Z0(m, u; n,∆|β) ∼
∑
m∈Γh

∫
JK

( ∏
Cartan

idu e
−π

2

3β

) ∏
α∈G

e
− 1
β
g2(α(u))

∏
I

∏
ρI∈RI

e
1
β
BIg2(ρI(u)+νI(∆))

.

(3.10)

Notice that the correction term is independent of u, ∆ and m, so we can easily write the

partition function for generic ω if we know the unrefined twisted index.

The unrefined twisted index in the Cardy limit — and at finite N — has been studied in

details in [4]. It can be evaluated by first resumming the geometric series associated with the

gauge magnetic fluxes m. Using the residue theorem, one can reduce the partition function

5Notice that, due to (2.5), the fluxes na effectively parameterize an R-symmetry.
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to a sum over Bethe vacua, the critical points of the twisted superpotential W(u; ∆|β)

obtained by dimensionally reducing the theory on T 2 [5, 14, 30].6 In the Cardy limit, one

particular vacuum dominates the partition function. For a theory of D3-branes at conical

singularities with SU(N) gauge groups the distribution of eigenvalues was found in [4]. It

is the same for all gauge groups and reads

ui − uj = − iβ

N
(i− j) i, j = 1, . . . , N . (3.11)

As shown in [34], this is actually a solution to the Bethe equations for arbitrary β. The

unrefined twisted index in the Cardy limit and at finite N can then be compactly written

as [4]

logZ0(n,∆|β) =
π2

6β
cl (n,∆/π) , as β → 0 , (3.12)

where cl(n,∆/π) is the trial left-moving central charge of the N = (0, 2) SCFT in the

IR.7 The result is consistent with the expectation that the topologically twisted index is

computing the elliptic genus of the two-dimensional SCFT. (3.12) is indeed nothing else

than the supersymmetric version of Cardy’s formula for the high-temperature behavior of

the partition function of a CFT. The result (3.12) was obtained by using (A.6), (A.7) and

assumes that Re(∆I) ∈ [0, 2π] and ∑
I∈Wa

∆I = 2π , (3.13)

for each term Wa in the superpotential.8 We see that ∆I/π effectively parameterize a

choice of R-charges for the fields of the theory. Notice also that our working condition

Re(ρ(u)+νI(∆)+jω) > 0 is satisfied if ω is imaginary, since the distribution of eigenvalues

satisfies (3.11).

Plugging back (3.12) into (3.9) we finally arrive at the following expression for the

Cardy limit of the refined twisted index

logZ(n,∆, ω|β) =
π2

6β
cl(n,∆/π)− ω2

4π3β

∑
I

dimRI g3(πnI)

=
π2

6β
cl(n,∆/π)− ω2

24β

(
TrR3(n)− TrR(n)

)
=
π2

6β
cl(n,∆/π)− (2ω)2

27β
(3c(n)− 2a(n)) , as β → 0 .

(3.14)

In order to write (3.14) we introduced the traces over four-dimensional fermionic fields

TrR3(rI) = dimG+
∑
I

dimRI(rI − 1)3 ,

TrR(rI) = dimG+
∑
I

dimRI(rI − 1) ,
(3.15)

6The Bethe vacua approach has been useful in the microscopic counting of states for many black holes

and black strings in diverse dimensions [4, 14, 21, 31–33].
7It can be obtained from (3.1) as cl(n,∆/π) = cr(n,∆/π)− k(n).
8The condition Re(∆I) ∈ [0, 2π] implies that

∑
I∈Wa

∆I cannot be zero. Among the possible choices

allowed by (2.4), only
∑
I∈Wa

∆I = 2π leads to a physically acceptable solution [4].

– 7 –
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where rI is the R-charge of the I-th chiral multiplet, related by

a(rI) =
9

32
TrR3(rI)−

3

32
TrR(rI) , c(rI) =

9

32
TrR3(rI)−

5

32
TrR(rI) , (3.16)

to the trial central charges of the four-dimensional N = 1 theory [35]. Notice that, due to

the twisting condition (2.5), the fluxes nI parameterize an integer choice of R-charges for

the chiral fields of the theory.

In the large N limit, a = c and cl = cr. We can thus further simplify (3.14) and write

logZ(n,∆, ω|β) =
π2

6β

(
cr(n,∆/π)− 8ω2

9π2
a(n)

)
, as β → 0 , N � 1 . (3.17)

For theories associated with D3-branes at toric Calabi-Yau singularities, we can always

choose a convenient parameterization of the general R-charges of the chiral fields satisfy-

ing (2.5) in terms of a minimal set of d quantities ra with

d∑
a=1

ra = 2 , (3.18)

where d is the number of global symmetries of the theory [36, 37]. In this convenient

parameterization, the central charge is a homogeneous function of degree three [38]

a(r) ≡ 9N2

64

d∑
a,b,c=1

cabcrarbrc , (3.19)

where cabc are proportional to the ’t Hooft anomaly coefficients. For a toric quiver cabc =

| det(va, vb, vc)|, where va ∈ Z3 are the integer vectors defining the toric diagram.9 More-

over, as shown in [4, 28], in the large N limit the two-dimensional central charge can be

written as

cr(n, r) = −32

9

d∑
a=1

na
∂a(ra)

∂ra
= −3N2

2

d∑
a,b,c=1

cabcnarbrc . (3.20)

It is convenient, also for comparison with other microstate counting for black holes and

black strings, to express all quantities in terms of the on-shell value of the effective twisted

superpotential of the theory, W̃(∆|β), which is by definition W(u; ∆|β) evaluated on the

Bethe vacuum solution (3.11). It is related to the a central charge of the four-dimensional

N = 1 theory as [4]

W̃(∆|β) =
16π3i

27β
a(∆/π) =

iN2

12β

∑
a,b,c

cabc∆a∆b∆c , for N � 1 . (3.21)

Combining (3.17) and (3.20) we can finally write the compact expression

logZ(n,∆, ω|β) = i

d∑
a=1

na
∂W̃(∆|β)

∂∆a
+

iω2

24

d∑
a,b,c=1

nanbnc
∂3W̃(∆|β)

∂∆a∂∆b∂∆c
. (3.22)

The first term in (3.22) was already derived in [4, section 5.3].

We now present two simple examples, N = 4 super Yang-Mills and the Klebanov-

Witten theory [39].

9We redefined chereabc ≡ 2
N2 c

there
abc in comparison with [28, eq. (2.7)].
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N = 4 super Yang-Mills. Our first example is the N = 4 super Yang-Mills (SYM)

theory whose N = 1 quiver is depicted below.

Nφ1,2,3 (3.23)

Here the circular node is a SU(N) gauge group and the loop around it denotes the adjoint

chiral multiplets φa, a = 1, 2, 3, interacting through the cubic superpotential

W = Tr (φ3 [φ1, φ2]) . (3.24)

We denote the chemical potentials associated to the chiral fields φa by ∆a, and assign the

flux na to each chiral field. Then, the invariance of (3.24) under the global symmetries of

the theory imposes the constraint

3∑
a=1

∆a = 2π . (3.25)

A similar constraint exists on the magnetic fluxes na, see (2.5). The trial central charges,

at finite N , are easily computed from (3.16) and read10

a(r) = c(r) =
27(N2 − 1)

32
r1r2r3 , (3.26)

with
∑3

a=1 ra = 2. The only nonzero anomaly coefficients are c123 = 1 and permuta-

tions thereof. For N = 4 SYM compactified on S2 the gravitational anomaly of the

two-dimensional N = (0, 2) theory is zero, k = 0, and thus cl = cr. The trial right-moving

central charge cr is given by (3.1),

cr(n, r) = −3(N2 − 1)(r1r2n3 + r2r3n1 + r1r3n2) . (3.27)

Extremizing (3.27) with respect to ra, a = 1, 2, we obtain

r̄N=4
a =

4na(na − 1)

ΘN=4
, a = 1, 2 , (3.28)

where we defined

ΘN=4 ≡ n2
1 + n2

2 + n2
3 − 2(n1n2 + n1n3 + n2n3) . (3.29)

Plugging (3.28) back into (3.27) we find the exact central charge of the 2D CFT as

cCFT
r (n) = 12(N2 − 1)

n1n2n3

ΘN=4
. (3.30)

Finally, the refined twisted index in the Cardy limit is given by (3.14),

logZN=4(n,∆|β) = −(N2 − 1)

8β

(
4∆1∆2n3 + 4∆2∆3n1 + 4∆1∆3n2 + ω2n1n2n3

)
. (3.31)

10For N = 4 SYM we have TrR(ra) = 0.
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The Klebanov-Witten theory. Our second example is the twisted compactification

of the Klebanov-Witten theory [39]. It is an N = 1 gauge theory with gauge group

SU(N) × SU(N) and two pairs of bi-fundamental chiral fields {Ai, Bj}, i, j = 1, 2, in the

representations (N,N) and (N,N), respectively. The matter content is described by the

quiver diagram

N N

Ai

Bj

(3.32)

and there is a quartic superpotential

W = Tr(A1B1A2B2 −A1B2A2B1) . (3.33)

We assign chemical potentials ∆a and fluxes na, a = 1, . . . , 4, to the fields {A1, A2, B1, B2}
in this order. The invariance of the superpotential (3.33) under the global symmetries of

the theory imposes the constraint

4∑
a=1

∆a = 2π . (3.34)

The twisting condition (2.5) also reads

4∑
a=1

na = 2 . (3.35)

The trial central charges of the four-dimensional theory (at finite N) are given by (3.16),

a(r) =
27N2

32

∑
a<b<c

rarbrc −
3

8
, c(r) =

27N2

32

∑
a<b<c

rarbrc −
1

4
, (3.36)

where again ra parameterize an R-symmetry of the theory and
∑4

a=1 ra = 2. For later

convenience we introduce the function

ΘKW(n) =
ς(n)

ϑ(n)
, (3.37)

where we defined

ς(n) ≡ 1

3

4
4∑

a=1

n3
a −

4∑
a,b,c=1

nanbnc

 ∑
a<b<c

nanbnc , ϑ(n) ≡
∑
a<b
( 6=c)

nanbn
2
c . (3.38)

The trial central charges of the two-dimensional N = (0, 2) theory in the IR read (3.1),

cr(n, r) = −3N2
∑
a<b
( 6=c)

rarbnc + 6 , k = 2 ,

cl(n, r) = cr(n, r)− k .

(3.39)
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Extremizing cr in (3.39) with respect to ra, a = 1, 2, 3, under the constraint
∑4

a=1 ra = 2,

yields the critical points

r̄KW
a =

12

na

n2
a

(
n2
a − 1

2

4∑
a=1

n2
a

)
−

∑
a<b<c<d

nanbncnd

4
4∑

a=1
n3
a −

4∑
a,b,c=1

nanbnc

, a = 1, 2, 3 . (3.40)

Substituting this back into (3.39) we obtain

cCFT
r (n) =

12N2

ΘKW

∑
a<b<c

nanbnc + 6 . (3.41)

Finally, the refined twisted index in the Cardy limit is given by (3.14),

logZKW(n,∆|β) = −N
2

2β

∑
a<b
( 6=c)

∆a∆bnc +
2π2

3β
− ω2N2

8β

∑
a<b<c

nanbnc . (3.42)

4 Rotating black strings in AdS5

In this section we consider rotating black string solutions in five-dimensional gauged su-

pergravity.11 Some of these solutions can be embedded in AdS5 × S5 and represent the

holographic dual of the field theory setting discussed in the previous section for N = 4

SYM. It is convenient, both from supergravity and field theory perspective, to perform a

dimensional reduction to a four-dimensional black hole which carries momentum along the

compactification circle. As we will see, it is the entropy of such black holes that can be

directly compared with the field theory microscopic counting performed in section 3.

As shown in [10], asymptotically AdS5 black string solutions of five-dimensional gauged

supergravity can be reduced to four-dimensional solutions in a gauged supergravity without

a maximally symmetric vacuum solution. In four dimensions the resulting black hole

solutions can be thought of as having runaway asymptotics of the hvLif type with particular

exponents as described in more detail in [13, section 3.1]. A similar construction was

successfully used to relate the Gutowski-Reall black holes in AdS5 and their generalizations

to four-dimensional black holes [41].

Here we want to generalize the original construction presented in [10] by allowing for

rotation. Since the 5D/4D relation actually provides a one-to-one map, we take the ap-

proach of first writing down the solutions in four dimensions, and then uplifting them to

five dimensions. The four-dimensional black holes preserve supersymmetry with a twist,

and the general solutions of this type that include rotation were recently found in [13]

for arbitrary symmetric models of gauged supergravity with vector multiplets. Here we

will discuss a particular subclass of symmetric models and will explicitly write down the

11To be more precise, we consider black strings with spherical topology and rotation along the sphere.

For rotating hyperbolic black strings with noncompact horizon, see [40].
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relevant solutions of [13]. We will discuss in particular the STU model that can be em-

bedded in AdS5×S5. Unfortunately, more general compactifications AdS5×SE5 based on

Sasaki-Einstein manifolds are not included in this construction since the known consistent

truncations contain hypermultiplets, see [42–44]. Additionally, these truncations do not yet

include all abelian isometries of the internal spaces to allow for an interesting comparison

with field theory.

4.1 The 5D/4D relation

Consider a five-dimensional N = 2 gauged supergravity theory coupled to nV vector mul-

tiplets. The bosonic fields are the metric, nV abelian gauge fields Ai(5) and real scalar

fields Li (i = 1, . . . , nV) parameterizing the manifold 1
6cijkL

iLjLk = 1. Here cijk is a

fully symmetric tensor appearing in the Chen-Simons terms and it corresponds to the ’t

Hooft anomaly coefficients of the dual N = 1 four-dimensional CFT [38, 45]. The rules for

reducing the bosonic fields along the circle x5 are the following [46–49]:

ds2
(5) = e2ϕ ds2

(4) + e−4ϕ
(

dx5 −A0
(4)

)2
, dx5 = dy ,

Ai(5) = Ai(4) + Re zi
(

dx5 −A0
(4)

)
,

Li = e2ϕ Im zi , e−6ϕ =
1

6
cijk Im zi Im zj Im zk .

(4.1)

Here ds2
(4) denotes the four-dimensional line element, AI(4) (I = 0, i) are the four-dimensional

abelian gauge fields and zi are the complex scalar fields in four dimensions. The four-

dimensional theory has nV abelian vector multiplets, parameterizing a special Kähler man-

ifold M with metric gij̄ , in addition to the gravity multiplet (thus a total of nV + 1 gauge

fields and nV complex scalars). The scalar manifold is defined by the prepotential F
(
XI
)
,

which is a homogeneous holomorphic function of sections XI ,

F
(
XI
)

=
1

6

cijkX
iXjXk

X0
. (4.2)

In N = 2 gauged supergravity in four dimensions the U(1)R symmetry, rotating the grav-

itini, is gauged by a linear combination of the abelian gauge fields. The coefficients are

called Fayet-Iliopoulos (FI) parameters gI and nV of them can be directly read off from

the five-dimensional theory: gi.
12 The last coefficient, g0, measuring how the Kaluza-Klein

gauge potential A0
(4) enters the R-symmetry, we choose to be vanishing since a standard

Kaluza-Klein reduction suffices our purposes here (as opposed to a more general Scherk-

Schwarz reduction, see [41]).

4.2 The 4D rotating solutions: asymptotics and near horizon

The definition of the four-dimensional models, as well as the subsequent solution, are most

commonly written in a duality covariant language in terms of symplectic vectors. We also

12In consistent models one can always apply an electric-magnetic duality transformation so that the

corresponding gauging becomes purely electric, i.e., gI = 0.
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extensively use the formalism where quantities are written in terms of the quartic invariant

I4 as explained in [13]. In particular, the model we are interested in is specified by the

prepotential (4.2), where the constant tensor cijk further satisfies the identity

4

3
δi(l cmpq) = cijk cj′(lm cpq)k′ δ

jj′ δkk
′
, (4.3)

from the requirement that the scalar manifold is a symmetric space. This guarantees the

existence of a rank 4 symplectic tensor, which upon contraction with a generic charge

vector Γ = {pI ; qI} defines the quartic form

I4(Γ) = −(p0q0 + piqi)
2 +

2

3
q0cijkp

ipjpk − 2

3
p0cijkqiqjqk + cijkp

jpkcilmqlqm , (4.4)

invariant under symplectic transformations. Subsequently we will use the quartic invariant

form coming from the contraction of the different symplectic objects in order to fully

characterize the solution. In the above formula, indices are raised and lowered with the

Kähler metric on the scalar manifold that depends on the prepotential (4.2), see [50] for the

complete set of conventions we follow. The condition (4.3) ensures that the inverse tensor

cijk also has constant entries and therefore the quartic form is not scalar dependent.13

The FI parameters can be encoded in a gauging vector

G = {gI = 0; g0 = 0, gi} , (4.5)

and we can evaluate the quartic invariant and its first derivative on the vector G,

I4(G) = 0, (I ′4)0(G) = −∂I4(G)

∂g0
=

2

3
cijkgigjgk , (4.6)

where the first derivative I ′4 also transforms covariantly as a vector. The vanishing of I4(G)

means that no AdS4 vacuum can exist in this supergravity model, and instead the nonzero

I ′4(G) signifies the hvLif asymptotics already anticipated to uplift to AdS5 when using the

rules (4.1).

Now, let us focus our attention to the near horizon geometry of the four-dimensional

black hole we are interested in. We want to generalize the solution discussed in [10] and first

found in [19] (and in [51] for the case with extra electric charges) to include angular momen-

tum J . Therefore, we are interested in a slightly restricted set of electromagnetic charges,

Γ = {p0 = 0, pi; q0, qi} , (4.7)

which, together with J will eventually specify the complete supersymmetric solution. In

terms of the five-dimensional rotating string, the pi and qi are the magnetic and electric

charges, while q0 is the momentum added along the compactification direction.14 The

13It is not difficult to see that the anomaly coefficients of a theory of D3-branes at a toric singularity

satisfy (4.3) only in the case ofN = 4 SYM. This is another reason why the class of solutions discussed in this

section cannot be immediately used for studying black strings in general Sasaki-Einstein compactifications.
14Comparing with the dual field theory setting of section 3, pi are associated with the fluxes na, the

electric charges qi are conjugated to the chemical potentials ∆a and q0 is conjugated to β. The precise

dictionary is spelled out in section 5.
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general near horizon geometry with a twist and rotation was written down in [13, section 4].

Here we just repeat the main ingredients and solve the attractor equation that determines

explicitly all quantities. Note that the chosen set of charges in general will lead to a non-

trivial NUT charge in the solution, so below we will restrict one of the electric charges

qi in a specific way in order to ensure regularity and write down the full solution in a

compact form.

The metric can be written in the form

ds2
4 = −e2u (rdt+ ω0)2 + e−2u

(
dr2

r2
+ v2

(
dθ2

∆(θ)
+ ∆(θ) sin2(θ) dφ2

))
, (4.8)

where

e−2u =
√
I4(I0) , vI0 = H0 + jG cos(θ) , v = 〈G,H0〉 = giβ

i . (4.9)

In the last equality we already used the definition of symplectic inner product and the

parameterization of the vector H0,

H0 = {0, βi;β0, βi} , (4.10)

parallel to the charge vector Γ. All remaining metric functions, as well as the scalars, are

uniquely fixed in terms of the vector H0. For the choice of gauging and electromagnetic

charges, we find from [13]

∆(θ) = 1 , ω0 = − j

v
sin2(θ)dφ , (4.11)

where we already imposed regularity of the metric, i.e. vanishing NUT charge, which we

check below, and used

I4(Γ, G,G,G) = I4(H0, G,G,G) = 0 . (4.12)

The symplectic sections at the horizon, in a suitable gauge, are fixed by

{XI ;FI} = − 1

2
√
I4(I0)

I ′4(I0) + iI0 , (4.13)

and we can recover the physical scalars zi = Xi/X0. We need to impose one standard

constraint among the magnetic charges stemming from the twisting condition,

〈G,Γ〉 = gip
i = −1 . (4.14)

Finally, the main attractor equation to be solved for H0 in terms of the charges reads

Γ =
1

4
I ′4 (H0,H0, G) +

1

2
j2 I ′4 (G) , (4.15)

together with the equation determining the angular momentum

J = − j

2

(
〈I ′4(G), I ′4(H0)〉 − 1

2
I4(H0,H0, G,G)〈G,H0〉

)
. (4.16)
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In principle, (4.15) and (4.16) can be solved for H0 and j in terms of the conserved charges

Γ,J . This determines the complete solution. However, the system of equations is not

always easy to simplify in full generality. In order to do so here, we impose the following

restriction on the charges,

I4(Γ,Γ,Γ, G) = 0 , (4.17)

which also ensures that we have a vanishing NUT charge. The above relation will generally

fix one of the electric charges qi in terms of other conserved charges. Using (4.17), together

with I4(G) = 0 and a multitude of special identities of the quartic invariant, spelled out

in [52, appendix A.3], we can find a general solution to (4.15) and then plug it in (4.16) to

finally arrive at the solution

H0 = − 1

2
√

Π

(
1

2
I ′4(Γ,Γ, G) +

(I4(Γ) + J 2)

Θ
I ′4(G)

)
,

j = − J√
Π
, v = 〈G,H0〉 =

Θ√
Π
,

(4.18)

where we defined for shorthand the combinations

Θ ≡ −1

4
I4(Γ,Γ, G,G) , Π ≡ 1

2
〈I ′4(Γ), I ′4(G)〉 − 1

4
I4(Γ,Γ, G,G) . (4.19)

Note that now we can evaluate any physical quantity of the solution in terms of the con-

served charges. The near horizon solution can be uniquely extended to fix the full black

hole flow to the asymptotic region using the formulae given in [13]. Here we are par-

ticularly interested in the entropy, which in terms of the parameters H0 and j has the

simple expression

S =
A

4GN
=

π

GN

√
I4(H0)− j2 , (4.20)

and in terms of the conserved charges, using more I4 identities from [52],

S =
π

GN

√
−I4(Γ)− J 2

Θ
. (4.21)

We can also define the chemical potential conjugate to the angular momentum as in [13],

w ≡ j

v
√
I4(H0)− j2

= − J√
Θ(−I4(Γ)− J 2)

. (4.22)

We finish the discussion of the general near horizon solution with the formula determining

the electric gauge fields,

AI(4) = −Θ5 I ′4(I0)I

Π2 Ξ(θ)
(rdt+ ω0)− pI cos(θ)dφ , (4.23)

where we have used the solution for H0 and j to simplify the formula, and for brevity we

defined the quantity

Ξ(θ) ≡ (−I4(Γ)− J 2) +
Θ

Π
J 2 sin2(θ) . (4.24)
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4.3 STU model

In the special case when nV = 3 with c123 = 1 (and cyclic permutations), and gaugings

gi = 1, i = 1, 2, 3, we have the so-called STU model. Upon uplift to five dimensions, it is

also embeddable in maximal gauged supergravity and follows from reduction of type IIB

supergravity on S5.

In this model the rotating solutions we described above are a generalization of the

black string solutions of [2]. In this case we find that

ISTU
4 (Γ) = 4 q0p

1p2p3 −
3∑
i=1

(piqi)
2 + 2

∑
i<j

qip
iqjp

j ,

ΘSTU = (p1)2 + (p2)2 + (p3)2 − 2(p1p2 + p1p3 + p2p3) ,

ΠSTU = (−p1 + p2 + p3)(p1 − p2 + p3)(p1 + p2 − p3) ,

(4.25)

under the constraint

p1 + p2 + p3 = −1 , (4.26)

in exact accordance with [2] for the case of spherical topology, g = 0. Notice that

ΘSTU −ΠSTU = 8p1p2p3 . (4.27)

4.3.1 Magnetic case

Let us first for simplicity consider the magnetic case, qi = 0. The constraint (4.17) is then

satisfied automatically. The Bekenstein-Hawking entropy in this case reads

SSTU =
π

GN

√
−4q0p1p2p3 − J 2

ΘSTU
, (4.28)

and the region of positivity (the charge parameter space where regular solutions exist)

was analyzed and shown to be non-empty in [2]. The inclusion of the angular momentum

naturally decreases or increases this region dependeing on the sign of ΘSTU. Note however

that due to the constraint (4.26) the solution does not allow a limit of vanishing charges.

If we explicitly evaluate the sections on the horizon from (4.13) as functions of the

spherical coordinate θ, we obtain

X0(θ) =
2p1p2p3√

ΘSTU ΞSTU(θ)
,

Xi(θ) =
piJ cos(θ)√

ΘSTU ΞSTU(θ)
+ i

pi(1 + 2pi)

ΘSTU
, i = 1, 2, 3 ,

(4.29)

where in the absense of electric charges qi we find

ΞSTU(θ) ≡ (−4q0p
1p2p3 − J 2) +

ΘSTU

ΠSTU
J 2 sin2(θ) . (4.30)

Moreover, the chemical potential conjugate to the angular momentum is given by

wSTU = − J√
ΘSTU(−4q0p1p2p3 − J 2)

. (4.31)
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The values of the sections XI at the south pole θ = 0 can be written as

X0
SP ≡ X0(θ)

∣∣∣
θ=0

= −2wSTUp1p2p3

J
,

Xi
SP ≡ Xi(θ)

∣∣∣
θ=0

= −wSTUpi + i
pi(1 + 2pi)

ΘSTU
, i = 1, 2, 3 .

(4.32)

Their values at the north pole θ = π can be obtained by sending wSTU → −wSTU and

J → −J . These become important later when we compare the entropy (4.28) with the

refined twisted index of N = 4 SYM.

Finally, we can explicitly write down the gauge fields that complete the specification

of the supersymmetric background,

A0
(4) =

2(ΘSTU)2 p1p2p3

ΠSTU ΞSTU(θ)
(rdt+ ωSTU

0 ) ,

Ai(4) =
(ΘSTU)2J pi cos(θ)

ΠSTU ΞSTU(θ)
(rdt+ ωSTU

0 )− pi cos(θ)dφ ,

(4.33)

with the one-form

ωSTU
0 =

J
ΘSTU

sin2(θ)dφ . (4.34)

4.3.2 Dyonic case

Adding non-vanishing electric charges qi is straightforward given our general results above.

The constraint (4.17) can be solved in this case by fixing one of the electric charges, e.g.

q3 = −q1 p
1 (1 + 2p1) + q2 p

2 (1 + 2p2)

p3 (1 + 2p3)
. (4.35)

The entropy is given by

SSTU
dyonic =

π

GN

√
−ISTU

4 (Γ)− J 2

ΘSTU
, (4.36)

in terms of the quantities defined in (4.25). The chemical potential conjugate to the angular

momentum is given by

wSTU
dyonic = − J√

ΘSTU(−ISTU
4 (Γ)− J 2)

, (4.37)

while the sections, using explicitly the relation (4.35), read

X0
dyonic(θ) =

2p1p2p3√
ΘSTU ΞSTU

dyonic(θ)
,

Xi
dyonic(θ) =

piJ cos(θ)√
ΘSTU ΞSTU

dyonic(θ)
+ i

pi(1 + 2pi)

ΘSTU

+
2p1p2p3

(1 + 2pi)
√

ΘSTU ΞSTU
dyonic(θ)

(
qi −

3∑
i=1

qi

)
, i = 1, 2, 3 .

(4.38)
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4.4 The 5D uplift

It is also straightforward to uplift to five dimensions the solutions described above, using

the general rules (4.1). In particular we can directly look at the STU model. We focus

only on some noteworthy features of the resulting near horizon solutions for rotating black

strings, which have the standard locally AdS5 asymptotics with a spatial boundary S1×S2,

and upon a further uplift on S5 become ten-dimensional solutions of type IIB supergravity.

The five-dimensional near horizon solution can be summarized as follows. The scalars

Li are constant (θ independent) and coincide with the scalars in the static case as presented

in [2],

Li = − pi (1 + 2pi)

(p1p2p3 ΠSTU)1/3
. (4.39)

The gauge fields in the purely magnetic case are given by

Ai(5) = −pi cos(θ)

(
dφ− J

2p1p2p3
dy

)
, (4.40)

where y is the fifth coordinate that is topologically a non-contractible circle. In the dyonic

case the gauge fields are supplemented with additional constant Wilson lines αidy with

the constraint
∑

i α
i = 0 as discussed in [51], where you can find the map between the

charges qi and the parameters αi. Notice that the electric charges from a five-dimensional

perspective do not alter the scalars, meaning that the attractor mechanism is qualitatively

different than its four-dimensional analogue and fixes not only the scalars, but also some

components of the gauge fields.

The metric, as already anticipated in the introduction, is a fibration of BTZ and S2

where in the limit J → 0 the fibration becomes trivial. The BTZ part is of course locally

isometric to AdS3, but the global difference is important in order to keep the relation to

four dimensions well-defined, and, therefore, to ensure that our construction here is correct.

Note that the length scales of the BTZ and the S2 do not depend on the angular momentum

J , which only leads to the nontrivial fibration. Thus, the length scale associated with the

two-dimensional right-moving central charge (3.30) remains unchanged,

RBTZR
2
S2 =

8p1p2p3

ΘSTU
. (4.41)

Let us finally note that the static magnetic near horizon limit of the black strings of [2]

was already found in [53] from a classification of supersymmetric geometries. The general-

izations here with electric charges and rotation were not considered in the classification as

it is crucial to allow for a globally BTZ spacetime.

5 I-extremization principle and microstates counting

We now consider the degeneracy of supersymmetric states of the N = 1 gauge theores on

S2
ω × T 2 discussed in section 3. The chemical potentials ∆a are conjugate to the flavor

charges, ω to the angular momentum on S2
ω and β to the momentum along one of the

cycles of the torus T 2. In a theory specified by the magnetic fluxes na, the number of
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supersymmetric states dmicro(na, ea, J |e0) with electric charges ea, a = 1, . . . , d, angular

momentum J and momentum e0 is then given by the Fourier/Laplace transform of the

refined index (3.14) with respect to the independent chemical potentials ∆a, a = 1, . . . , d,

ω, and β,

dmicro = − i

(2π)d+1

∮ d∏
a=1

d∆a

∫
iR

dβ

∫
dωδ

(
2π−

∑
a

∆a

)
Z(n,∆, ω|β)e−i

∑
a ∆aea−iωJ+βe0 .

(5.1)

We are considering theories of D3-branes at conical singularities and using the R-symmetry

parameterization introduced in section 3. The delta function in (5.1) imposes the analogous

of constraint (3.18). Due to this constraint, dmicro only depends on the d− 1 combinations

ea−ed, a = 1, . . . , d−1, corresponding to the flavor symmetries of the theory. In the Cardy

limit (β → 0), dmicro can be evaluated by a saddle point approximation

log dmicro(na, ea, J |e0) ≡ logZ(n,∆, ω|β)− i
∑
a

∆aea − iωJ + βe0

∣∣∣
∆̄a, ω̄, β̄

, (5.2)

where ∆̄a, ω̄, and β̄ are the critical points of the functional

I(n,∆, ω|β) ≡ logZ(n,∆, ω|β)− i
∑
a

∆aea − iωJ + βe0 , (5.3)

under the constraint
∑d

a=1 ∆a = 2π, with respect to ∆a, ω, and β,

∂∆aI(n,∆, ω|β)
∣∣∣
∆̄a, ω̄, β̄

= 0 , a = 1, . . . , d− 1 ,

∂ωI(n,∆, ω|β)
∣∣∣
∆̄a, ω̄, β̄

= ∂βI(n,∆, ω|β)
∣∣∣
∆̄a, ω̄, β̄

= 0 .
(5.4)

This procedure is the so-called I-extremization principle that has been used to give a

microscopic explanation of the entropy (density) of BPS black holes (strings) [4, 11, 14,

15, 21, 54] in diverse dimensions. It contains two basic pieces of information:

1. extremizing the index unambiguously determines the exact R-symmetry of the SCFT

in the IR;

2. the value of the index at its critical points is the (possibly regularized) number of

ground states.

We now apply this counting to the STU black holes discussed in section 4.3.

5.1 The case with ea = 0

Consider for simplicity ea = 0, a = 1, . . . , d. Now let us plug back the value for the refined

topologically twisted index in the Cardy limit (and at finite N) (3.14) into (5.3), obtaining

I(n,∆, ω|β) =
π2

6β
cl(n,∆/π)− (2ω)2

27β
(3c(n)− 2a(n))− iωJ + βe0 , (5.5)
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Extremizing it with respect to ∆a sets the trial left-moving central charge cl(n,∆/π) to its

exact value cCFT
l (n) in the IR — in accordance with the c-extremization principle [1, 2].15

Then, the extremization of I(n,∆, ω|β) with respect to β and ω yields.

β̄ = π

√
cCFT
l (n)

6

(
e0 −

27J2

16(3c(n)− 2a(n))

)−1

,

ω̄ = − 27i

8(3c(n)− 2a(n))
β̄J .

(5.6)

Notice that the extremal value of ω is purely imaginary thus justifying the assumptions

made in the derivation of (3.14) in section 3. Substituting (5.6) back into (5.3) we finally

obtain

log dmicro(n, J |e0) = 2π

√
cCFT
l (n)

6

(
e0 −

27J2

16(3c(n)− 2a(n))

)
. (5.7)

In the case of J = 0, this is the familiar Cardy formula for a two-dimensional CFT [55].

In order to compare (5.7) with the entropy of the STU black hole (4.28), we need to

go to large N for which cl = cr and c = a. Thus,

log dmicro(n, J |e0) = 2π

√
cCFT
r (n)

6

(
e0 −

27J2

16a(n)

)
, N � 1 . (5.8)

Plugging back the values for cCFT
r (n) and a(n) of N = 4 SYM, see (3.30) and (3.26),

into (5.8), we find that

log dN=4
micro(n, J |e0) = 2

√
2π

√
N2e0n1n2n3 − 2J2

ΘN=4
, N � 1 , (5.9)

where ΘN=4 is given in (3.29). Moreover, the values of the critical points (5.6) read

β̄N=4 =
√

2π
N2n1n2n3√

ΘN=4(N2e0n1n2n3 − 2J2)
,

ω̄N=4 = − 4i

N2n1n2n3
β̄N=4J .

(5.10)

Using the AdS5/CFT4 relation between gravitational and SCFT parameters at large N ,

π

2G
(5)
N

= N2 , (5.11)

where G
(5)
N = 2πGN, and upon identifying

na ≡ −2pa , a = 1, 2, 3 ,

e0 ≡
1

GN
q0 , J ≡ − 1

2GN
J ,

(5.12)

15The gravitational anomaly k is independent of ∆a, and extremizations of cl or cr are equivalent.
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we find that the entropy of the STU black hole (4.28) matches precisely our microscopic

expression for the number of ground states (5.9):

SSTU = log dN=4
micro(n, J |e0) . (5.13)

We further observe that

ω̄N=4 = −2πiwSTU , (5.14)

and the values of the scalars at the south pole (4.32) (or north pole) are mapped to the

critical points (5.10). Explicitly, we have

X0
SP, NP = − 1

π
β̄N=4 ,

Xa
SP, NP =

i

2π

(
∆̄N=4
a ± ω̄N=4

2
na

)
, a = 1, 2, 3 ,

(5.15)

where ∆̄a, a = 1, 2, are given in (3.28), ∆̄3 = 2π − ∆̄1 − ∆̄2 and ± refers to SP and NP,

respectively.16

5.2 Dyonic N = 4 super Yang-Mills

In this section we evaluate (5.1) for N = 4 SYM keeping ea, a = 1, 2, 3, nonzero. Explicitly,

we write

dmicro = − i

(2π)4

∮ 3∏
a=1

d∆a

×
∫

iR
dβ

∫
dωδ

(
2π −

∑
a

∆a

)
e
π2

6β
cr(n,∆/π)− (2ω)2

27β
a(n)−i

∑3
a=1 ∆aea−iωJ+βe0 , (5.16)

where cl(n,∆/π) and a(n) are given in (3.27) and (3.26), respectively. Again, in a saddle

point approximation we shall extremize

I(n,∆, ω|β) =
π2

6β
cr(n,∆/π)− (2ω)2

27β
a(n)− i

3∑
a=1

∆aea − iωJ + βe0 , (5.17)

under the constraint
∑3

a=1 ∆a = 2π, with respect to ∆1, ∆2, ω, and β. The critical points

of the I-functional (5.17) read

∆̄1

2π
=

n1(n1 − n2 − n3)

ΘN=4
− i

√
2n1n2n3 (2e1n1 − e2(n1 + n2 − n3)− e3(n1 − n2 + n3))

Θ
3/2
N=4

√
Qn1n2n3 − 2J2

,

∆̄2

2π
=

n2(−n1 + n2 − n3)

ΘN=4
− i

√
2n1n2n3 (2e2n2 − e1(n1 + n2 − n3)− e3(−n1 + n2 + n3))

Θ
3/2
N=4

√
Qn1n2n3 − 2J2

,

β̄ =
π
√

2N2n1n2n3√
ΘN=4(Qn1n2n3 − 2J2)

, ω̄ = − 4
√

2iπ√
ΘN=4(Qn1n2n3 − 2J2)

J , (5.18)

16Recall that ra = ∆a/π parameterize an R-symmetry of the theory.
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where we defined

Q ≡ e0N
2 − 2 ((e1 − e2) ((e1 − e3)n1 − (e2 − e3)n2) + (e1 − e3)(e2 − e3)n3)

ΘN=4
. (5.19)

Notice again that the extremal value of ω is purely imaginary in agreement with the assump-

tions made in section 3. Plugging the critical points (5.18) back into the I-functional (5.17)

we find

I
∣∣∣
crit.

(na, ea, J |e0) = 2
√

2π

√
Qn1n2n3 − 2J2

ΘN=4
(5.20)

+ 2πi
e1n1(−n1 + n2 + n3) + e2n2(n1 − n2 + n3) + e3n3(n1 + n2 − n3)

ΘN=4
.

Demanding the reality of the I-functional at its critical point fixes one of the charges, say

e3, in terms of the others. We can then write

e3 =
e1n1(n1 − n2 − n3) + e2n2(−n1 + n2 − n3)

(n1 + n2 − n3)n3
, (5.21)

and, therefore,

log dmicro(na, ea, J |e0) = 2
√

2π

√
Qn1n2n3 − 2J2

ΘN=4
. (5.22)

Quite remarkably, the constraint (5.21) is precisely the one that we obtained on the super-

gravity side, see (4.35), where we identify

ea =
1

2GN
qa , a = 1, 2, 3 . (5.23)

It would be very interesting to give a first principle derivation of this constraint. Finally,

using (5.11), (5.12), and (5.23), we find that the Bekenstein-Hawking entropy of four-

dimensional rotating dyonic black holes (4.36) matches (5.22):

SSTU
dyonic = log dmicro(na, ea, J |e0) . (5.24)

Notice that the expression for the entropy matches only after imposing the con-

straint (5.21).17 We observe that the relations (5.14) and (5.15) hold also in this case.

It is interesting to rewrite the combination (5.19) in terms of purely field theoretic

data, in particular ’t Hooft flavor anomalies. The chemical potentials ∆a are conjugated

to a basis Ra, a = 1, 2, 3, of R-symmetries that assign charge 2 to the a-th chiral multiplet

of N = 4 SYM and zero to the others. We can choose two independent flavor symmetries

Q1 = (R1−R3)/2 and Q2 = (R2−R3)/2. The ’t Hooft anomaly matrix is easily computed

from the multiplicity of fermionic zero-modes18 and reads

AAB = Tr γ3QAQB = N2

(
2− n1 − n3 1− n3

1− n3 2− n2 − n3

)
. (5.25)

17In particular, Qn1n2n3 = −2N4ISTU
4 (Γ)/π2 holds only if the charges satisfy (5.21).

18Recall that the difference between the number of fermionic zero-modes of opposite chiralities is equal

to − dimRI(nI − 1) for four-dimensional matter fields in a representation RI .
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We can then write (5.19) as

Q
N2

= e0 +
1

2

2∑
A,B=1

ẽAA
−1
AB ẽB , (5.26)

where ẽA = eA − e3 are the flavor charges. We see that the entropy depends only on a

particular combination of e0 and electric flavor charges. As we will see, this result extends

to more general quivers. The combination (5.26) is familiar from the Rademacher expansion

for asymptotically flat black holes [56, 57], where it is a consequence of the transformation

properties of the elliptic genus of the two-dimensional CFT. Our topologically twisted

index is expected to compute the elliptic genus of the IR CFT and relate to the quantum

entropy of black holes not just in the Cardy limit. The result, at finite N , is actually a

meromorphic function of ∆a, and has a complicated structure in terms of modular forms.

We expect that, for large N , this structure simplifies and gives results similar to those for

asymptotically flat black holes. In the latter case the meromorphicity of the elliptic genus

leads to interesting behavior, related to wall-crossing phenomena (see for example [58]).

It would be interesting to see if the same happens for the black holes discussed here once

quantum corrections are taken into account.

5.3 Microstate counting for a generic quiver

Although there is no gravitational dual at the moment, for completeness we count the

degeneracy of states for a generic theory of D3-branes at toric conical singularities.

We must extremize the analog of (5.17),

I(n,∆, ω|β) =
π2

6β
cr(n,∆/π)− (2ω)2

27β
a(n)− i

d∑
a=1

∆aea − iωJ + βe0 , (5.27)

with respect to ω, β and d chemical potential ∆a subject to the constraint
∑d

a=1 ∆a =

2π. It is convenient to introduce a basis of flavor symmetries QA = (RA − Rd)/2, A =

1, . . . , d − 1, where Ra is the basis of R-symmetries conjugated to the chemical potentials

∆a. Choosing a reference R-symmetry r0
a, we can parameterize

∆a

π
= r0

a + δa , a = 1, . . . , d ,

d∑
a=1

r0
a = 2 ,

d∑
a=1

δa = 0 ,
(5.28)

so that the two-dimensional R-symmetry matrix reads

R(∆a/π) = R0 +
d−1∑
A=1

δAQA , R0 ≡ R(r0
a) , (5.29)

and the two-dimensional trial central charge cr becomes

3 Tr γ3R(∆a/π)2 = 3 Tr γ3R
2
0 + 3

d−1∑
A,B=1

δAAABδB + 6

d−1∑
A=1

kAδA , (5.30)
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where

AAB = Tr γ3QAQB , kA = Tr γ3R0QA . (5.31)

Notice that AAB is the ’t Hooft anomaly matrix and is a function of the fluxes na. Plug-

ging it back into (5.27), and extremizing with respect to β, ω and the d − 1 independent

parameters δA we find

β̄ = π

√√√√ Tr γ3R2
0 − kAA

−1
ABkB

2(e0 + 1
2 ẽAA

−1
AB ẽB −

27
16a(n)J

2)
= π

√
cCFT
r (n)

6(e0 + 1
2 ẽAA

−1
AB ẽB −

27
16a(n)J

2)
,

ω̄ = − 27iβ̄

8a(n)
J , δ̄B = iA−1

AB

(
β̄

π
ẽA + ikA

)
, A,B = 1, . . . , d− 1 ,

(5.32)

where ẽA = eA − ed and, here and below, summation over repeated indices is understood.

In the first line we reconstructed the exact central charge cCFT
r (n) by observing that the

result must reduce to (5.6) for ea = 0. We also find the critical value of the functional (5.27)

I
∣∣∣
crit.

(na,ea,J |e0) = 2π

√
cCFT
r (n)

6

(
e0+

1

2
ẽAA

−1
AB ẽB−

27

16a(n)
J2

)
+πi

(
ẽAA

−1
ABkB−r

0
aea
)
.

(5.33)

By identifying the degeneracy of states with the real part of the I-functional, we finally find

Re log dmicro(na, ea, J |e0) = 2π

√
cCFT
r (n)

6

(
e0 +

1

2
ẽAA

−1
AB(n)ẽB −

27

16a(n)
J2

)
. (5.34)

We see that the field theory entropy can be completely written in terms of anomalies

and central charges of the four- and two-dimensional theories. It also depends on a very

particular combinations of electric charges and J . It would be interesting to see if, in the

dual black hole, the imaginary part of (5.33) vanishes as a consequence of the gravitational

BPS constraint on electric charges (4.17), as it happens for N = 4 SYM.

6 Discussion and outlook

In this paper we have studied a class of rotating black strings that can be embedded in

AdS5 × S5. In five-dimensional language, these are domain walls that interpolate between

AdS5 and a near horizon region consisting of a warped fibration of BTZ over a sphere,

thus generalizing the solutions of [2] by adding rotation. Upon compactification along the

BTZ circle, we find a rotating black hole with hvLif asymptotics. We have successfully

matched the entropy of such black holes with a field theory computation based on the

refined topologically twisted index of N = 4 SYM on T 2×S2
ω in the Cardy limit. We have

also computed the index in the Cardy limit at finite N for a generic N = 1 SCFT living

on the world-volume of D3-branes at toric (and not only) conical singularities.

Many interesting questions remain open. It would be very interesting to generalize the

gravity solutions that we have found in this paper to a generic compactification based on

Sasaki-Einstein manifolds and compare the entropy of the resulting four-dimensional black

holes with the field theory prediction of section 5.3. There are various obstacles to do that.
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First of all, consistent truncations to a five-dimensional gauged supergravity contaning only

vector multiplets exist just for AdS5×S5. The available truncations on AdS5×SE5 [42–44],

where SE5 is a five-dimensional Sasaki-Einstein manifold, involve hypermultiplets as well

and are more difficult to treat. Such truncations typically contain massive vector multiplets

and the hypermultiplets themselves have a vacuum expectation value that Higgses other

vectors. Therefore, the number of vector multiplets in the truncation needs not to be

equal to the number of global symmetries of the dual SCFT, since the latter correspond

to massless vectors in the bulk. It would be tempting to speculate that, as far as the near

horizon region is concerned, we should be able to use an effective supergravity containing

only massless vector multiplets associated with the global symmetries. This happens,

for example, in the matching of the entropy of some magnetically charged AdS4 black

holes [31, 32, 59]. Since a five-dimensional gauged supergravity with only vector multiplets

is completely specified by the tensor cijk, associated with the ’t Hooft anomalies of the dual

CFT, the entropy will be also a function of cijk, J and the magnetic and electric charges.

Indeed we found that the field theory prediction for the entropy given in section 5.3 can

be written just in terms of anomalies. However, we cannot immediately compare with our

supergravity results. The solutions found in this paper assume the validity of (4.3), which,

unfortunately, is not satisfied by the anomaly coefficients of a generic N = 1 SCFT of

D3-branes at singularities. From this perspective, it would be very interesting to remove

the technical assumption (4.3).

It would be also very interesting to see what part of our analysis can be extended to the

refined topologically twisted index on S1×S2
ω, which is much more difficult to analyse from

the field theory point of view. The refined topologically twisted index in three dimensions is

supposed to count the microstates of the magnetically charged and rotating asymptotically

AdS4 black holes found in [13]. We hope to report soon on the subject.
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A Asymptotic behavior of elliptic functions near q = 1

The Dedekind eta function is defined by

η(q) = η(τ) = q
1
24

∞∏
n=1

(1− qn) , Im τ > 0 , (A.1)
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and it has the following modular properties

η(τ + 1) = e
iπ
12 η(τ) , η

(
− 1

τ

)
=
√
−iτ η(τ) . (A.2)

Here, q = e2πiτ . The Jacobi theta function is also defined by

θ1(x; q) = θ1(u; τ) = −iq
1
8x

1
2

∞∏
k=1

(
1− qk

)(
1− xqk

)(
1− x−1qk−1

)
= −i

∑
n∈Z

(−1)neiu(n+ 1
2)eπiτ(n+ 1

2)
2

,

(A.3)

where x = eiu and q is as before. (A.3) has simple zeros in u at u = 2πZ + 2πτZ and no

poles. Its modular properties read

θ1(u; τ + 1) = e
iπ
4 θ1(u; τ) , θ1

(u
τ

;−1

τ

)
= −i

√
−iτ e

iu2

4πτ θ1(u; τ) . (A.4)

Furthermore, (A.3) satisfies the following useful formula

θ1 (qmx; q) = (−1)−m x−mq−
m2

2 θ1(x; q) , m ∈ Z . (A.5)

The asymptotic behavior of (A.1) and (A.3) near q = 1 (τ = i0) can be easily derived

by using their modular properties (A.2) and (A.4), respectively. This was already done

in [4, appendix A] and here we only quote the final result, i.e.

logη(β) =−1

2
log
( β

2π

)
− π

2

6β
+O

(
e−1/β

)
, (A.6)

logθ1(u;β) =−π
2

2β
− u

2

2β
− 1

2
log
( β

2π

)
+
π

β
usign[Re(u)]+log(sign[Re(u)])+O

(
e−1/β

)
.

Here we identified the complex structure of the torus τ with the fictitious inverse temper-

ature β as τ ≡ iβ/(2π). Therefore, for Re(u) > 0,

log

(
iη(q)

θ1(x; q)

)
∼ 1

β
g2(u) +

iπ

2
, as β → 0 , (A.7)

where we defined the polynomial functions

g2(u) =
u2

2
− πu+

π2

3
, g3(u) =

u3

6
− π

2
u2 +

π2

3
u . (A.8)
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[46] L. Andrianopoli, S. Ferrara and M.A. Lledó, Scherk-Schwarz reduction of D = 5 special and

quaternionic geometry, Class. Quant. Grav. 21 (2004) 4677 [hep-th/0405164] [INSPIRE].

[47] D. Gaiotto, A. Strominger and X. Yin, New connections between 4-D and 5-D black holes,

JHEP 02 (2006) 024 [hep-th/0503217] [INSPIRE].

[48] K. Behrndt, G. Lopes Cardoso and S. Mahapatra, Exploring the relation between 4-D and

5-D BPS solutions, Nucl. Phys. B 732 (2006) 200 [hep-th/0506251] [INSPIRE].

[49] G. Lopes Cardoso, J.M. Oberreuter and J. Perz, Entropy function for rotating extremal black

holes in very special geometry, JHEP 05 (2007) 025 [hep-th/0701176] [INSPIRE].

[50] L. Andrianopoli et al., N = 2 supergravity and N = 2 superYang-Mills theory on general

scalar manifolds: Symplectic covariance, gaugings and the momentum map, J. Geom. Phys.

23 (1997) 111 [hep-th/9605032] [INSPIRE].

[51] K. Hristov and S. Katmadas, Wilson lines for AdS5 black strings, JHEP 02 (2015) 009

[arXiv:1411.2432] [INSPIRE].

[52] N. Halmagyi, Static BPS black holes in AdS4 with general dyonic charges, JHEP 03 (2015)

032 [arXiv:1408.2831] [INSPIRE].

[53] H.K. Kunduri and J. Lucietti, Near-horizon geometries of supersymmetric AdS5 black holes,

JHEP 12 (2007) 015 [arXiv:0708.3695] [INSPIRE].

[54] A. Cabo-Bizet, V.I. Giraldo-Rivera and L.A. Pando Zayas, Microstate counting of AdS4

hyperbolic black hole entropy via the topologically twisted index, JHEP 08 (2017) 023

[arXiv:1701.07893] [INSPIRE].

[55] J.L. Cardy, Operator Content of Two-Dimensional Conformally Invariant Theories, Nucl.

Phys. B 270 (1986) 186 [INSPIRE].

[56] R. Dijkgraaf, J.M. Maldacena, G.W. Moore and E.P. Verlinde, A black hole Farey tail,

hep-th/0005003 [INSPIRE].

[57] J. Manschot and G.W. Moore, A Modern Farey Tail, Commun. Num. Theor. Phys. 4 (2010)

103 [arXiv:0712.0573] [INSPIRE].

[58] A. Dabholkar, S. Murthy and D. Zagier, Quantum Black Holes, Wall Crossing and Mock

Modular Forms, arXiv:1208.4074 [INSPIRE].

[59] N. Bobev, V.S. Min and K. Pilch, Mass-deformed ABJM and black holes in AdS4, JHEP 03

(2018) 050 [arXiv:1801.03135] [INSPIRE].

– 29 –

https://doi.org/10.1016/j.nuclphysb.2010.10.010
https://arxiv.org/abs/1008.0883
https://inspirehep.net/search?p=find+EPRINT+arXiv:1008.0883
https://doi.org/10.1007/JHEP04(2011)021
https://arxiv.org/abs/1008.0983
https://inspirehep.net/search?p=find+EPRINT+arXiv:1008.0983
https://doi.org/10.1016/S0370-2693(98)00567-X
https://arxiv.org/abs/hep-th/9803060
https://inspirehep.net/search?p=find+EPRINT+hep-th/9803060
https://doi.org/10.1088/0264-9381/21/19/013
https://arxiv.org/abs/hep-th/0405164
https://inspirehep.net/search?p=find+EPRINT+hep-th/0405164
https://doi.org/10.1088/1126-6708/2006/02/024
https://arxiv.org/abs/hep-th/0503217
https://inspirehep.net/search?p=find+EPRINT+hep-th/0503217
https://doi.org/10.1016/j.nuclphysb.2005.10.026
https://arxiv.org/abs/hep-th/0506251
https://inspirehep.net/search?p=find+EPRINT+hep-th/0506251
https://doi.org/10.1088/1126-6708/2007/05/025
https://arxiv.org/abs/hep-th/0701176
https://inspirehep.net/search?p=find+EPRINT+hep-th/0701176
https://doi.org/10.1016/S0393-0440(97)00002-8
https://doi.org/10.1016/S0393-0440(97)00002-8
https://arxiv.org/abs/hep-th/9605032
https://inspirehep.net/search?p=find+EPRINT+hep-th/9605032
https://doi.org/10.1007/JHEP02(2015)009
https://arxiv.org/abs/1411.2432
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.2432
https://doi.org/10.1007/JHEP03(2015)032
https://doi.org/10.1007/JHEP03(2015)032
https://arxiv.org/abs/1408.2831
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.2831
https://doi.org/10.1088/1126-6708/2007/12/015
https://arxiv.org/abs/0708.3695
https://inspirehep.net/search?p=find+EPRINT+arXiv:0708.3695
https://doi.org/10.1007/JHEP08(2017)023
https://arxiv.org/abs/1701.07893
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.07893
https://doi.org/10.1016/0550-3213(86)90552-3
https://doi.org/10.1016/0550-3213(86)90552-3
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B270,186%22
https://arxiv.org/abs/hep-th/0005003
https://inspirehep.net/search?p=find+EPRINT+hep-th/0005003
https://doi.org/10.4310/CNTP.2010.v4.n1.a3
https://doi.org/10.4310/CNTP.2010.v4.n1.a3
https://arxiv.org/abs/0712.0573
https://inspirehep.net/search?p=find+EPRINT+arXiv:0712.0573
https://arxiv.org/abs/1208.4074
https://inspirehep.net/search?p=find+EPRINT+arXiv:1208.4074
https://doi.org/10.1007/JHEP03(2018)050
https://doi.org/10.1007/JHEP03(2018)050
https://arxiv.org/abs/1801.03135
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.03135

	Introduction
	The refined topologically twisted index
	The Cardy limit
	Rotating black strings in AdS(5)
	The 5D/4D relation
	The 4D rotating solutions: asymptotics and near horizon
	STU model
	Magnetic case
	Dyonic case

	The 5D uplift

	I-extremization principle and microstates counting
	The case with e[a]=0
	Dyonic N=4 super Yang-Mills
	Microstate counting for a generic quiver

	Discussion and outlook
	Asymptotic behavior of elliptic functions near q=1

