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Abstract: In N ≥ 2 superconformal Chern-Simons-matter theories we construct the in-

finite family of Bogomol’nyi-Prasad-Sommerfield (BPS) Wilson loops featured by constant

parametric couplings to scalar and fermion matter, including both line Wilson loops in

Minkowski spacetime and circle Wilson loops in Euclidean space. We find that the connec-

tion of the most general BPS Wilson loop cannot be decomposed in terms of double-node

connections. Moreover, if the quiver contains triangles, it cannot be interpreted as a super-

matrix inside a superalgebra. However, for particular choices of the parameters it reduces

to the well-known connections of 1/6 BPS Wilson loops in Aharony-Bergman-Jafferis-

Maldacena (ABJM) theory and 1/4 BPS Wilson loops in N = 4 orbifold ABJM theory.

In the particular case of N = 2 orbifold ABJM theory we identify the gravity duals of a

subset of operators. We investigate the cohomological equivalence of fermionic and bosonic

BPS Wilson loops at quantum level by studying their expectation values, and find strong

evidence that the cohomological equivalence holds quantum mechanically, at framing one.

Finally, we discuss a stronger formulation of the cohomological equivalence, which implies

non-trivial identities for correlation functions of composite operators in the defect CFT

defined on the Wilson contour and allows to make novel predictions on the corresponding

unknown integrals that call for a confirmation.
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1 Introduction

The study of Bogomol’nyi-Prasad-Sommerfield Wilson loops (BPS WLs) have yielded

tremendous insights into supersymmetric gauge theories. In particular, vacuum expec-

tation values of BPS WLs can be computed exacly using localization techniques [1, 2], so

providing functions of the coupling constants that interpolate between weak and strong

coupling regimes. Therefore, for theories admitting holographic dual descriptions BPS

WLs represent one of the most important tests of the AdS/CFT correspondence [3–7].

In three-dimensional superconformal Chern-Simons-matter (SCSM) theories many in-

teresting results on BPS WLs have been obtained in recent years. One of the most im-

portant aspects is that one can construct BPS operators either generalizing the gauge

connection to include couplings solely to matter bosons (bosonic WLs) [8–12] or including

couplings both to bosonic and fermionic fields (fermionic WLs) [13]. While the construction

of BPS WLs in N ≥ 2 SCSM quiver theories has been extensively investigated [8–17], most

of the results on fermionic BPS WLs have been limited to operators with connections that

can be written as 2 × 2 block diagonal matrices. When taking the trace, these operators

correspond to linear combinations of WLs connecting adjacent nodes. Recently, new BPS

WLs in N = 4 circular quiver SCSM theories with alternating levels have been constructed

in [18], which are described by more general connections that cannot be decomposed as

linear combinations of double-node connections. This result suggests that the general form

of BPS fermionic WLs may have a richer structure waiting to be explored.

The main goal of this paper is to investigate the most general BPS WL in N ≥ 2

SCSM theories featured by parametric couplings to scalar and fermion matter.1 For a

generic quiver N = 2 SCSM theory with (anti)bifundamental and/or (anti)fundamental

matter fields, we write the most general expression for a WL containing arbitrary couplings

to bosons and fermions and study under which conditions the operator preserves half of

the supersymmetries. It turns out that with fixed preserved supercharges there is only one

bosonic 1/2 BPS WL, while there is an infinite family of parametric fermionic 1/2 BPS

WLs whose connection is in general a non-block-diagonal matrix. In addition, in the N = 2

case the connection does not have necessarily the structure of a superconnection of a given

supergroup. This is the main novelty of our classification.

As a check of our construction we reproduce the already known operators for the

Aharony-Bergman-Jafferis(-Maldacena) (ABJ(M)) and N = 4 orbifold ABJM theories [16–

18]. As a new result we provide the classification of fermionic 1/2 BPS WLs for the N = 2

orbifold ABJM theory [22]. For the subset of operators that can be obtained by an orbifold

quotient of the 1/2 BPS WL in ABJ(M) theory, we identify the corresponding gravity duals

following the orbifold decomposition strategy in [18].

For the new infinite family of fermionic BPS WLs that we construct, it is mandatory

to investigate how they behave at quantum level and understand how the parametric de-

pendence enters their expectation values. At classical level, generalizing what happens

in ABJ(M) theory and N = 4 SCSM theory [13–15, 17], we prove that all the fermionic

1In this paper we consider only line and circle WLs with constant couplings to scalars, although more

general WLs with contour dependent couplings have been also studied [19–21].
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WLs, independently of their couplings, are cohomologically equivalent to the bosonic one,

i.e. Wfer = Wbos +Q(something) where Q is a supercharge preserved by all the operators.

Whether and how this relation gets promoted at quantum level is a crucial question to be

answered when comparing fermionic and bosonic expectation values. In fact, if the coho-

mological equivalence survives quantum corrections, it implies that the expectation values

of all the fermionic BPS WLs are equal to the expectation value of the bosonic operator,

and therefore they can all be computed by the same matrix model [2, 23, 24]. However, one

important subtlety that we have to take into account when comparing expectation values

is framing [2]. In fact, since the localization procedure always leads to framing-one results,

we expect this to be the correct regularization scheme where the classical cohomological

equivalence translates into 〈Wfer〉1 = 〈Wbos〉1. This problem has been already investigated

at first few perturbative orders for particular kinds of WLs both in ABJ(M) and N = 4

models [2, 23–31]. In this paper we extend this anaysis to general N = 2 SCSM theories.

Up to two loops, using the arguments and speculations in [30] we find that the bosonic and

fermionic BPS WLs have the same framing-one expectation values not only in ABJ(M)

theory but also in a generic N = 2 SCSM theory.

This is already a strong indication that the cohomological equivalence might be valid

at quantum level, at framing one, in any N = 2 SCSM theory, although a truly non-

trivial check would come at higher orders where the particular choice of the superpotential

characterizing the model would enter.

At classical level the expansion of Wfer in powers of its bosonic and fermionic cou-

plings leads to a stronger cohomological equivalence that translates into an infinite number

of non-trivial Q-identities [14]. For any N ≥ 2 SCSM theory, up to two loops and at

framing one these identities lead to non-trivial vanishing conditions for the correlators of

the corresponding bosonic and fermionic operators (see eq. (4.8)). We make the educated

conjecture that these identities survive at higher orders and discuss the novel constraints

that follow for three-loop, framing-one integrals, and the implications for the defect CFT

defined on the Wilson contour.

As a by-product of our analysis, we provide the two-loop expression for the framing-zero

and framing-one expectation values of all the fermionic BPS WLs. While the framing-one

result is parameter independent, being equal to the bosonic expectation value, the framing-

zero result exhibits a non-trivial dependence on the parameters that feature the couplings

to matter fields.

The rest of the paper is organized as follows. In section 2, we provide the general

classification of 1/2 BPS WLs in a generic N = 2 SCSM theory, both on a line in Minkowski

spacetime and on a circle in Euclidean space. We distinguish the cases of matter with

canonical and non-canonical conformal dimensions. In section 3 we apply the previous

results to the construction of BPS WLs in N = 2 orbifold ABJM theory and study the

gravity duals of operators that can be obtained as orbifold quotients of 1/2 BPS WLs in

ABJ(M) theory. Section 4 is devoted to the perturbative calculation of the WL expectation

values, the discussion of the cohomological equivalence, its stronger version and its non-

trivial consequences. Our conclusions are then collected in section 5. In appendix A we

give spinor conventions in Minkowski and Euclidean signatures. In appendices B and C

– 3 –
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we review the WLs in ABJ(M) theory and N = 4 orbifold ABJ(M) theory, together with

their gravity duals. As a check of our classification we also reproduce the known WLs by

applying our general recipe. Appendix D contains some details of section 2. Finally, in

appendix E we give the Lagrangian and Feynman rules of the general N = 2 SCSM theory

that would be useful to the calculations of the integrals in appendix F.

2 BPS WLs in N = 2 CS-matter theories

For a generic N = 2 SCSM quiver theory we construct the most general class of 1/2 BPS

WLs featured by constant parametric couplings to matter fields. In subsection 2.1, we give

full details of the classification for the case of line BPS WLs in Minkowski spacetime. We

discuss cohomological equivalence between bosonic and fermionic operators and provide a

toy-model example of a quiver theory to make manifest the novel features of WLs in N = 2

SCSM models. In subsection 2.2, we introduce the circle BPS WLs in Euclidean spacetime

signature. These operators are the relevant observables in the context of localization and

their non-trivial expectation value can be generically captured by matrix model integrals.

In subsection 2.3, the classification is slightly generalized to the case of connections in-

volving repeated nodes. Finally, in subsection 2.4 we briefly discuss the case of fields with

non-canonical conformal dimensions.

2.1 Line BPS WLs in Minkowski spacetime

In three-dimensional Minkowski spacetime, we consider a generic quiver N = 2 SCSM

theory with gauge group
∏n
a=1 U(Na)ka , where ka indicate the CS levels that can be non-

vanishing or vanishing. The gauge sector of the theory is organized into n N = 2 vector

multiplets, which in the Wess-Zumino gauge read (we refer to appendix A for spinor con-

ventions)

V(a) = 2iθ̄θσ(a) + 2θ̄γµθA(a)
µ +

√
2iθ2θ̄χ̄(a) −

√
2iθ̄2θχ(a) + θ2θ̄2D(a) a = 1, . . . , n (2.1)

whereas the matter sector is described by sets of Nab chiral multiplets in the bifundamental

representation of arbitrary pairs of nodes U(Na)×U(Nb)

Z i(ab) = Zi(ab) +iθ̄γµθ∂µZ
i
(ab)−

1

4
θ̄2θ2∂µ∂µZ

i
(ab) +

√
2θζi(ab)−

i√
2
θ2θ̄γµ∂µζ

i
(ab) +θ2F i(ab) (2.2)

with i = 1, . . . , Nab. In general, for a different (ab) pair, the i index in eq. (2.2) varies

in a different range. For a = b, Z i(aa) describe Naa matter chiral multiplets in the ad-

joint representation of U(Na). We also allow for the presence of Na0 matter multiplets

in the fundamental representation of U(Na) and N0a multiplets in the antifundamental

representation, denoted by Z i(a0) and Z i(0a) respectively.

Complex conjugated matter fields, belonging to the anti-bifundamental representation

of U(Na) × U(Nb), are defined as [Zi(ab)]
† = Z̄

(ba)
i , [ζi(ab)]

† = ζ̄
(ba)
i , [F i(ab)]

† = F̄
(ba)
i , with

i = 1, 2, · · · , Nab.

In superspace language the lagrangian of the theory is given by

L = LCS + Lk + Lsp (2.3)
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where

LCS = −
∑
a

ka
8πi

∫ 1

0
dtTr

(
D̄αV(a)etV

(a)
Dαe−tV

(a))∣∣
θ2θ̄2

Lk = −
∑
a,b

Tr
[
Z̄(ba)
i e−V

(a)Z i(ab)e
V(b)]∣∣

θ2θ̄2
(2.4)

whereas Lsp is the superpotential term that we do not write explicitly, as it is not relevant

for the construction of BPS WLs and for the perturbative investigation at the order we

work. Here we have defined Dα = ∂α + iθ̄βγµβα∂µ, D̄α = ∂̄α + iγµαβθβ∂µ.

For non-vanishing ka levels, writing (2.4) in components and extracting the equations

of motion for the auxiliary fields of the vector multiplets we obtain2

σ(a) =
2π

ka

∑
b

(Zi(ab)Z̄
(ba)
i − Z̄(ab)

i Zi(ba))

χ(a) = −4π

ka

∑
b

(ζi(ab)Z̄
(ba)
i − Z̄(ab)

i ζi(ba)) a = 1, . . . , n

χ̄(a) = −4π

ka

∑
b

(Zi(ab)ζ̄
(ba)
i − ζ̄(ab)

i Zi(ba)) (2.5)

General superconformal transformations of the component fields read

δA(a)
µ =

1

2
(χ̄(a)γµΘ + Θ̄γµχ

(a)), δσ(a) = − i

2
(χ̄(a)Θ + Θ̄χ(a))

δZi(ab) = iΘ̄ζi(ab), δZ̄
(ab)
i = iζ̄

(ab)
i Θ

δζi(ab) = (−γµDµZ
i
(ab) − σ

(a)Zi(ab) + Zi(ab)σ
(b))Θ− Zi(ab)ϑ+ iF i(ab)Θ̄

δζ̄
(ab)
i = Θ̄(γµDµZ̄

(ab)
i − Z̄(ab)

i σ(b) + σ(a)Z̄
(ab)
i )− ϑ̄Z̄(ab)

i − iF̄
(ab)
i Θ (2.6)

where Θ ≡ θ+xµγµϑ, Θ̄ ≡ θ̄−ϑ̄xµγµ are linear combinations of (θ, θ̄) spinors parametrizing

Poincaré supersymmetry transformations, and (ϑ, ϑ̄) ones parameterizing superconformal

transformations.3 The definition of covariant derivative can be found in (E.3).

The 1/2 BPS WLs. We construct WLs defined along the timelike infinite straight line

xµ = (τ, 0, 0), which preserve half of the supersymmetries. Decomposing the spinorial

charges as in (A.6), without loss of generality we choose the preserved supercharges to be

Q+, Q̄−, S+, S̄−, i.e. we require the operator to be invariant under

δ = θ̄−Q+ + Q̄−θ+ + ϑ̄−S+ + S̄−ϑ+ (2.7)

In the rest of the paper we will shortly identify the preserved supercharges with the corre-

sponding θ+, θ̄−, ϑ+, ϑ̄− parameters.

2Through the paper we use the convention that repeated flavor i indices are summed, while summations

on node indices a, b, c · · · are explicitly indicated. Repeated node indices with no explicit sum are meant to

be fixed.
3Here we only consider the case where matter fields in the chiral multiplets have canonical conformal

dimensions. The more general case will be discussed in section 2.4. The difference does not appear when

we focus on Poincaré supercharges.
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The first kind of 1/2 BPS operator is the so-called bosonic WL defined as [8]

Wbos = Pe−i
∫
dτLbos(τ) (2.8)

where the n× n connection matrix is given by

Lbos = diag(A
(1)
0 − σ

(1), A
(2)
0 − σ

(2), · · · , A(n)
0 − σ(n)) (2.9)

It is easy to check that this operator is invariant under (2.7).

Using equations of motion (2.5) for σ(a), a = 1, 2, · · · , n, this generalized connection

ends up including quadratic couplings to matter scalars. However, as usually happens

in three dimensions, we can look for more general operators with connections containing

couplings also to fermions. We then consider the fermionic operator

Wfer = Pe−i
∫
dτLfer(τ) (2.10)

with a n× n connection [13]

Lfer = Lbos +B + F (2.11)

where Lbos is given in (2.9), whereas the B and F entries

B(ab) =
∑
c

(Rcabi
jZi(ac)Z̄

(cb)
j +RcabijZ

i
(ac)Z

j
(cb)

+Scab
i
jZ̄

(ac)
i Zj(cb) + Scab

ijZ̄
(ac)
i Z̄

(cb)
j )

F(ab) = m̄ab
i ζ

i
(ab)+ + niabζ̄

(ab)
i− ≡ [M̄ζ ](ab) + [Nζ̄ ](ab) (2.12)

contain couplings to bilinear scalars and linear fermions respectively, parametrized by to-

be-determined matrices and vectors.

The requirement for Wfer to be 1/2 BPS can be traded with the search for a Grassmann

odd matrix G satisfying [13, 32]

δLfer = ∂τG+ i[Lfer, G] (2.13)

Inserting decomposition (2.11) for Lfer this condition splits into a set of Grassmann even

and odd constraints, respectively

δB = i[F,G]

δF = ∂τG+ i[Lbos +B,G] (2.14)

From the Grassmann odd one we obtain4

G = −iM̄Zθ+ + iNZ̄ θ̄−, [B,G] = 0 (2.15)

where we have defined

[M̄Z ](ab) ≡ m̄ab
i Z

i
(ab), [NZ̄ ](ab) ≡ niabZ̄

(ab)
i (2.16)

4For the straight line it is sufficient to focus on super-Poincaré symmetries, since once these supercharges

are preserved also the superconformal ones are automatically preserved.

– 6 –
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Using G in (2.15) in the Grassmann even part of eq. (2.14) we eventually obtain non-trivial

relations among the coefficients

Rcabi
j = m̄ac

i n
j
cb, Scab

i
j = niacm̄

cb
j

Rcabij = Scab
ij = m̄ac

i m̄
cb
j = niacn

j
cb = 0 (2.17)

In particular, they imply the following relation

B = M̄ZNZ̄ +NZ̄M̄Z (2.18)

It is easy to check that this expression automatically satisfies the second condition in (2.15).

Solutions to constraints (2.17) exhibit several interesting features:

• Setting a = b = c in the second line of (2.17) we obtain m̄aa
i = niaa = 0 (no summation

on a = 1, · · · , Naa). Therefore, although adjoint matter may appear in the theory,

adjoint fermion fields ζi(aa) or ζ̄
(aa)
i can never appear in the connection. In other

words, the diagonal blocks of the connection contain only bosonic couplings.

• For a 6= b fixed, the B(ab) and F(ab) entries can be simultaneously non-vanishing.

Therefore, in general the Lfer connection is not a superconnection, i.e. it does not

give a representation of a supergroup. However, this does not contradict what has

been already found for ABJM and N = 4 orbifold ABJM theories where Lfer are

indeed superconnections for the U(N1|N2) supergroup. In fact, as we show below

discussing a toy model, the conditions B(ab) 6= 0, F(ab) 6= 0 can occur simultaneously

only when the quiver diagram contains triangles.

• Finally, constraints m̄ab
i m̄

ba
j = niabn

j
ba = 0 following from (2.17) imply that if a positive

chirality fermion appears in F(ab) (m̄ab
i 6= 0), then all fermion fields of positive chirality

in F(ba) must be absent (m̄ba
i = 0). Similarly, if fermion fields of both chiralities appear

in F(ab), then F(ba) = 0.

To summarize, for a generic N = 2 SCSM theory we have constructed bosonic and

fermionic 1/2 BPS WLs (2.8) and (2.10) with connections

Lbos = diag(A
(1)
0 − σ

(1), A
(2)
0 − σ

(2), · · · , A(n)
0 − σ(n))

Lfer = Lbos +B + F, B = M̄ZNZ̄ +NZ̄M̄Z , F = M̄ζ +Nζ̄

[M̄Z ](ab) = m̄ab
i Z

i
(ab), [NZ̄ ](ab) = niabZ̄

(ab)
i

[M̄ζ ](ab) = m̄ab
i ζ

i
(ab)+, [Nζ̄ ](ab) = niabζ̄

(ab)
i− (2.19)

In particular, a generic fermionic connection has the following structure

Lfer =


A

(1)
0 − σ(1) +B(11) B(12) + F(12) · · · B(1n) + F(1n)

B(21) + F(21) A
(2)
0 − σ(2) +B(22) · · · B(2n) + F(2n)

...
...

. . .
...

B(n1) + F(n1) B(n2) + F(n2) · · · A(n)
0 − σ(n) +B(nn)

 (2.20)
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with the caveat that some of the bosonic and fermionic couplings may be forced to be ab-

sent, as discussed above. We note that the fundamental and antifundamental fields do not

appear explicitly in the connection, but the connection may depend on them through σ(a).

Similarly, we can construct bosonic and fermionic 1/2 BPS WL W̃bos, W̃fer preserving

the complementary set of supercharges θ−, θ̄+, ϑ−, ϑ̄+. The corresponding connections read

L̃bos = diag(A
(1)
0 + σ(1), A

(2)
0 + σ(2), · · · , A(n)

0 + σ(n))

L̃fer = L̃bos + B̃ + F̃ , B̃ = −(M̄ZNZ̄ +NZ̄M̄Z), F̃ = M̄ζ −Nζ̄

[M̄Z ](ab) = m̄ab
i Z

i
(ab), [NZ̄ ](ab) = niabZ̄

(ab)
i

[M̄ζ ](ab) = m̄ab
i ζ

i
(ab)−, [Nζ̄ ](ab) = niabζ̄

(ab)
i+ (2.21)

where the constant parameters m̄ab
i , niab satisfy the same constraints (2.17).

Cohomological equivalence. For ABJ(M) and N = 4 SCSM theories the full para-

metric family of fermionic BPS WLs has been shown to be (classically) cohomologically

equivalent to the bosonic WL [13–15, 17, 18]. This means that the difference between a

given fermionic operator and the bosonic one can be written as Q(something), with Q
being a suitable linear combination of conserved supercharges shared by the two operators.

We now prove that this property holds also in the N = 2 setting: the general fermionic

1/2 BPS WL with connection (2.11) is classically Q-equivalent to the bosonic 1/2 BPS WL

with connection (2.9).

According to the analysis of [13, 14], this is the case if we manage to find κ, Λ and Q
quantities that satisfy

κΛ2 = B, QΛ = F, QLbos = 0

QF = ∂τ (iκΛ) + i[Lbos, iκΛ] (2.22)

Using (2.14), it is easy to see that in the present case a solution to the above equations is

given by

κ = 1, Λ = M̄Z +NZ̄ , Q = Q+ + Q̄− (2.23)

This solution implies the classical identity

Wfer −Wbos = QV (2.24)

where V is a known function of the gauge and matter fields of the theory.

A triangular quiver toy model. Aimed at highlighting novel properties of the 1/2

BPS WLs that we have constructed, we consider the simple case of a N = 2 SCSM theory

associated to a triangle quiver diagram, as given in figure 1.

Specifying the general WL construction to this case, a particular solution to the BPS

conditions in (2.17) takes the form

Lfer =

 A(1) m̄1ζ1+ 0

0 A(2) 0

n3ζ̄
3
− n3m̄

1Z̄3Z1 + m̄2ζ2+ A(3)

 (2.25)

– 8 –
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Aμ
(1)

Aμ
(2)

Aμ
(3)

Z1 ζ1

Z3 ζ3
Z2 ζ2

Z
1
ζ
1

Z
3
ζ
3

Z
2
ζ
2

k1 k2

k3

Figure 1. The quiver diagram of a toy model N = 2 SCSM theory.

where

A(1) = A
(1)
0 +

2π

k1
(−Z1Z̄

1 − Z3Z̄
3)

A(2) = A
(2)
0 +

2π

k2
(Z̄1Z1 + Z̄2Z2)

A(3) = A
(3)
0 +

2π

k3
(−Z2Z̄

2 + Z̄3Z3) (2.26)

Notably, Lfer has a block entry which contains a sum of both bosonic and fermionic field

combinations. As a consequence, the full connection ceases to be a supermatrix.

It is easy to see that a necessary condition for this feature to appear is the presence of a

triangle in the quiver diagram. In fact, non-diagonal entries in (2.20) connecting adjacent

nodes may contain both bilinear scalar terms B(a a+1) and linear fermion ones F(a a+1).

While the fermionic entry corresponds to a fermionic arrow connecting the two nodes, the

bosonic bilinear can be formed only passing by the third vertex of the triangle. Therefore,

models with suitably chosen matter content allow for the existence of matrix entries in the

WL connection that exhibit mixed Grassmann parity.

Operators with this structure have no counterpart in the classification of N = 4 and

N = 6 models, where the underlying dynamics of the fermionic WLs seems to be captured

by a gauge supergroup (this is particularly manifest in the Higgsing derivation of the 1/2

BPS operators [32, 33]). It would be interesting to understand the implications of the

existence of these WLs, especially in terms of a string dual description at strong coupling.

Lightlike WLs. We can also construct bosonic and fermionic BPS WLs along the light-

like infinite straight line xµ = (τ, τ, 0). The corresponding connections read

Lbos = diag(A
(1)
0 +A

(1)
1 , A

(2)
0 +A

(2)
1 , · · · , A(n)

0 +A
(n)
1 )

Lfer = Lbos +B + F, B = M̄ZNZ̄ +NZ̄M̄Z , F = M̄ζ +Nζ̄

[M̄Z ](ab) = m̄ab
i Z

i
(ab), [NZ̄ ](ab) = niabZ̄

(ab)
i

[M̄ζ ](ab) = m̄ab
i ζ

i
(ab)1, [Nζ̄ ](ab) = niabζ̄

(ab)
i1 (2.27)

where the constant parameters m̄ab
i , niab satisfy constraints (2.17). Index 1 in the last line

indicates the first component of a spinor in the standard spinorial notation ψα, α = 1, 2.
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The lightlike bosonic WL is 3/4 BPS with preserved supercharges

θ2, θ̄2, ϑ1, ϑ̄1, ϑ2, ϑ̄2 (2.28)

whereas the lightlike fermionic WL is 1/2 BPS with preserved supercharges

θ2, θ̄2, ϑ2, ϑ̄2 (2.29)

2.2 Circle BPS WLs in Euclidean space

The previous procedure can be easily generalized to construct 1/2 BPS WLs along the

circle xµ = (cos τ, sin τ, 0) in Euclidean space. The computational steps follow closely the

ones of the Minkowskian case, thus we report only the final result.

In a generic N = 2 SCSM theory, the bosonic and fermionic WLs can be written as

Wbos = TrPe−i
∮
dτLbos(τ), Wfer = TrPe−i

∮
dτLfer(τ) (2.30)

with connections

Lbos = diag(A(1)
µ ẋµ + iσ(1), A(2)

µ ẋµ + iσ(2), · · · , A(n)
µ ẋµ + iσ(n))

Lfer = Lbos +B + F, B = −i(M̄ZNZ̄ +NZ̄M̄Z), F = M̄ζ −Nζ̄

[M̄Z ](ab) = m̄ab
i Z

i
(ab), [NZ̄ ](ab) = niabZ̄

(ab)
i

[M̄ζ ](ab) = m̄ab
i ζ

i
(ab)+, [Nζ̄ ](ab) = niabζ̄

(ab)
i− (2.31)

Note that ζi(ab)+ = iu+ζ
i
(ab), ζ̄

(ab)
i− = iζ̄

(ab)
i u−, with the spinorial couplings u± being defined

in (A.12). They are non-trivial functions of the contour, whereas the scalar couplings are

still contour independent. The supercharges preserved by Wbos and Wfer are

ϑ = −iγ3θ, ϑ̄ = −θ̄iγ3 (2.32)

Similarly, we can construct 1/2 BPS bosonic and fermionic WLs W̃bos, W̃fer preserving

complementary supercharges, ϑ = iγ3θ, ϑ̄ = θ̄iγ3 and corresponding to

L̃bos = diag(A
(1)
0 − iσ(1), A

(2)
0 − iσ(2), · · · , A(n)

0 − iσ(n))

L̃fer = L̃bos + B̃ + F̃ , B̃ = i(M̄ZNZ̄ +NZ̄M̄Z), F̃ = M̄ζ +Nζ̄

[M̄Z ](ab) = m̄ab
i Z

i
(ab), [NZ̄ ](ab) = niabZ̄

(ab)
i

[M̄ζ ](ab) = m̄ab
i ζ

i
(ab)−, [Nζ̄ ](ab) = niabζ̄

(ab)
i+ (2.33)

In both cases it is not difficult to prove that the classical cohomological equivalence

in (2.24) still holds.

2.3 More general 1/2 BPS WLs

The previous class of 1/2 BPS WLs can be generalized to include extra operators con-

structed in the following way.
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We arbitrarily select a subset of n′ nodes of the quiver diagram and label the corre-

sponding gauge fields as A(sa′ ), with a′ = 1′, 2′, · · · , n′ and sa′ ∈ {1, 2, · · · , n}. Note that n′

can be greater or smaller than n, and each node can be either not chosen or chosen more

than once. For example, for n = 4, we may choose n′ = 3 with sa′ = 1, 1, 3, or n′ = 5 with

sa′ = 1, 1, 3, 4, 4.

Along the line xµ = (τ, 0, 0) in Minkowski spacetime we construct the bosonic 1/2 BPS

WL with connection

Lbos = diag(A
(s1′ )
0 − σ(s1′ ), A

(s2′ )
0 − σ(s2′ ), · · · , A(sn′ )

0 − σ(sn′ )) (2.34)

It is easy to prove that this operator preserves the θ+, θ̄−, ϑ+, ϑ̄− supercharges.

More generally, starting from the most general ansatz we can construct the fermionic

1/2 BPS WL with connection

Lfer = Lbos +B + F

B = M̄ZNZ̄ +NZ̄M̄Z , F = M̄ζ +Nζ̄

[M̄ζ ](a′b′) = m̄
(a′b′)
i ζi(sa′sb′ )+

, [Nζ̄ ](a′b′) = ni(a′b′)ζ̄
(sa′sb′ )
i−

[M̄Z ](a′b′) = m̄
(a′b′)
i Zi(sa′sb′ )

, [NZ̄ ](a′b′) = ni(a′b′)Z̄
(sa′sb′ )
i (2.35)

Imposing the operator to preserve the θ+, θ̄−, ϑ+, ϑ̄− supercharges, leads to non-trivial

constraints for the constant parameters∑
c′,sc′=c

m̄
(a′c′)
i m̄

(c′b′)
j =

∑
c′,sc′=c

ni(a′c′)n
j
(c′b′) = 0 (2.36)

where we sum over c′, whereas indices a′, b′, c, i, j are kept fixed. Again, the fundamental

and antifundamental fields do not appear explicitly in the connection, but the connection

may depend on them through σ(sa′ ).

2.4 The case of matter fields with non-canonical dimensions

In SCSM theories with N ≥ 3 supersymmetries, the matter fields always have canonical

R-charges since the R-symmetry group SO(N ) is non-Abelian. For theories with N = 2

supersymmetry the situation is different, as the R-symmetry can mix with other U(1) flavor

symmetries present in the theory. In this case the R-charges of matter fields have to be

determined by F-maximization [34] and generically they turn out to be non-canonical (we

informally call these matter fields non-canonical). In this section we briefly discuss how to

construct BPS WLs in this case.

We consider the UV theory on S3. The metric on S3 of radius r is

ds2 =

(
1 +
|x|2

4r2

)−2[
(dx1)2 + (dx2)2 + (dx3)2

]
(2.37)

where xµ = (x1, x2, x3) are stereographic coordinates on S3 and |x|2 = (x1)2 +(x2)2 +(x3)2.

Given the vielbeins Eaµ =
(
1 + |x|2

4r2

)−1
eaµ, ea = (dx1, dx2, dx3), the gamma matrices are

defined as Γµ = Eaµγa, γµ = eaµγa, where γµ are the three-dimensional gammas in eq. (A.8).
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The Killing spinors Θ, Θ̄ satisfy

DµΘ = ΓµΘ̃, DµΘ̃ = − 1

4r2
ΓµΘ

DµΘ̄ = − ¯̃ΘΓµ, Dµ
¯̃Θ =

1

4r2
Θ̄Γµ (2.38)

Note that Θ, Θ̄ are independent, and are different from the ones in (2.6). The solution can

be found in [1] and reads

Θ =
1√

1 + |x|2
4r2

(θ + xµγµϑ), Θ̃ =
1√

1 + |x|2
4r2

(
ϑ− xµγµ

4r2
θ

)

Θ̄ =
1√

1 + |x|2
4r2

(θ̄ − ϑ̄xµγµ), ¯̃Θ =
1√

1 + |x|2
4r2

(
ϑ̄+ θ̄

xµγµ
4r2

)
(2.39)

When r → ∞, Θ, Θ̄ go back to Θ, Θ̄ introduced in eq. (2.6), with Θ̃ going to ϑ and ¯̃Θ

going to ϑ̄. The superconformal transformations of A
(a)
µ , σ(a), Zi(ab), Z̄

(ab)
i can be obtained

from (2.6) by simply replacing γµ with Γµ and Θ, Θ̄ with (2.39), while the superconformal

transformations of the fermions in the chiral multiplets are

δζi(ab) = (−ΓµDµZ
i
(ab) − σ

(a)Zi(ab) + Zi(ab)σ
(b))Θ−

2∆(ab)

3
Zi(ab)Γ

µDµΘ + iF i(ab)Θ̄

δζ̄
(ab)
i = Θ̄(ΓµDµZ̄

(ab)
i − Z̄(ab)

i σ(b) + σ(a)Z̄
(ab)
i ) +

2∆(ba)

3
Z̄

(ab)
i DµΘ̄Γµ − iΘF̄

(ab)
i (2.40)

where ∆(ab) are the R-charges of the matter fields.

Usually, the action for the non-canonical matter is not superconformal in the UV. But

one can construct actions which are invariant under supersymmetries generated by the left-

invariant Killing spinors [34, 35]. In stereographic coordinates, the left-invariant Killing

spinors take the form

DµΘ =
i

2r
ΓµΘ ⇒ ϑ =

i

2r
θ

DµΘ̄ = − i

2r
Θ̄Γµ ⇒ ϑ̄ =

i

2r
θ̄

(2.41)

and transformations (2.40) restricted to left-invariant Killing spinors read

δζi(ab) = (−ΓµDµZ
i
(ab) − σ

(a)Zi(ab) + Zi(ab)σ
(b))Θ−

i∆(ab)

r
Zi(ab)Θ + iF i(ab)Θ̄

δζ̄
(ab)
i = Θ̄(ΓµDµZ̄

(ab)
i − Z̄(ab)

i σ(b) + σ(a)Z̄
(ab)
i )−

i∆(ba)

r
Θ̄Z̄

(ab)
i − iΘF̄

(ab)
i (2.42)

In many cases the theory flows to an IR fixed point with superconformal symmetry. At this

point the R-charges ∆(ab) are determined by F-maximization [34], modulo some flat direc-

tions associated to the transformations of the R-charges which leave the partition function

in the matrix model invariant [36]. This is related to the invariance of the transformartion

rules in (2.42) under the shift

∆(ab) → ∆(ab) + δ(a) − δ(b), σ(a) → σ(a) − i
δ(a)

r
(2.43)
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Along a general contour xµ(τ) on S3, we construct the bosonic WL with connection

Lbos = diag(A(1)
µ ẋµ + i|ẋ|σ(1), A(2)

µ ẋµ + i|ẋ|σ(2), · · · , A(n)
µ ẋµ + i|ẋ|σ(n)) (2.44)

Using the shift transformation (2.43), we can also construct fermionic WLs with non-

canonical matter satisfying the condition

∆(ab) = 1/2 + δ(a) − δ(b) (2.45)

The fermionic WL has connection

Lfer = Lbos +B + F + C

C = −diag(δ(1), δ(2), · · · , δ(n))|ẋ|/r
B = −i|ẋ|(M̄ZNZ̄ +NZ̄M̄Z), F = |ẋ|(M̄ζ +Nζ̄)

[M̄Z ](ab) = m̄ab
i Z

i
(ab), [NZ̄ ](ab) = niabZ̄

(ab)
i

[M̄ζ ](ab) = m̄ab
i u+ζ

i
(ab), [Nζ̄ ](ab) = niabζ̄

(ab)
i u−

m̄ac
i m̄

cb
j = niacn

j
cb = 0 (2.46)

where on the xµ contour the u±(τ) spinors satisfy

Γµẋ
µu± = ±|ẋ|u±, u+u− = −u−u+ = −i, u+u+ = u−u− = u+Dτu− = u−Dτu+ = 0

(2.47)

The bosonic and fermionic WLs are locally BPS with preserved supercharges

Γµẋ
µΘ = −|ẋ|Θ, Θ̄Γµẋ

µ = −|ẋ|Θ̄ (2.48)

To make the WLs globally BPS, we need to choose the contour to be a great circle. Here

we discuss two special cases.

In the first case, we choose the great circle xµ = 2r(cos τ, sin τ, 0) in S3. Using (2.46)

with |ẋ| = r, we obtain the connections of bosonic and fermionc WLs

Lbos = diag(A(1)
µ ẋµ + irσ(1), A(2)

µ ẋµ + irσ(2), · · · , A(n)
µ ẋµ + irσ(n))

Lfer = Lbos +B + F + C

C = −diag(δ(1), δ(2), · · · , δ(n))

B = −ir(M̄ZNZ̄ +NZ̄M̄Z), F = r(M̄ζ −Nζ̄)

[M̄Z ](ab) = m̄ab
i Z

i
(ab), [NZ̄ ](ab) = niabZ̄

(ab)
i

[M̄ζ ](ab) = m̄ab
i ζ

i
(ab)+, [Nζ̄ ](ab) = niabζ̄

(ab)
i−

m̄ac
i m̄

cb
j = niacn

j
cb = 0 (2.49)

with u± being the spinors defined in (A.12). The preserved supercharges are

ϑ = − i

2r
γ3θ, ϑ̄ = − i

2r
θ̄γ3 (2.50)

Using (2.41) we can write preserved supersymmetries as θ2, θ̄1.
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As a second case, we consider the great circle obtained by the stereographic projection

of the straight line xµ = (0, 0, τ) from R3 to S3, along which we define

u+α =

(
1

0

)
, u−α =

(
0

i

)
uα+ = (0,−1) , uα− = (i, 0) (2.51)

Here |ẋ| = (1 + τ2

4r2
)−1, and (2.47) are satisfied. The connections of bosonic and fermionic

WLs take the form

Lbos = diag(A(1)
µ ẋµ + i|ẋ|σ(1), A(2)

µ ẋµ + i|ẋ|σ(2), · · · , A(n)
µ ẋµ + i|ẋ|σ(n))

Lfer = Lbos +B + F + C

C = −diag(δ(1), δ(2), · · · , δ(n))|ẋ|/r
B = −|ẋ|(M̄ZNZ̄ +NZ̄M̄Z), F = |ẋ|(M̄ζ +Nζ̄)

[M̄Z ](ab) = m̄ab
i Z

i
(ab), [NZ̄ ](ab) = niabZ̄

(ab)
i

[M̄ζ ](ab) = m̄ab
i ζ

i
(ab)2, [Nζ̄ ](ab) = niabζ̄

(ab)
i1

m̄ac
i m̄

cb
j = niacn

j
cb = 0 (2.52)

In the limit r → ∞, the corresponding WL is along an infinite straight line and the

preserved supersymmetries are half of the Poincaré supersymmetries, i.e. θ2 and θ̄1. Instead,

conformal supersymmetries can be preserved only if there is no non-canonical matter in

the theory.

3 N = 2 orbifold ABJM theory

In this section we give full details for an explicit example of N = 2 SCSM theory that

admits a gravity dual description, namely the case of the N = 2 orbifold of ABJM theory.

In this case, exploiting our knowledge of the gravity duals of the 1/2 BPS WLs in ABJM

theory [13, 33], after introducing the classification we identify the gravity duals of some

1/2 BPS and non-BPS WLs in the N = 2 orbifolded version.

In the rest of this section we heavily refer to appendix B where the construction of 1/2

BPS WLs and their gravity duals is reviewed for the ABJ(M) theory.

3.1 1/2 BPS WLs

The N = 2 orbifold ABJM theory can be obtained starting from U(rN)k×U(rN)−k ABJM

model and performing the Zr quotient as in [22].5 In the usual notations of ABJM theory,

5For ABJM two different orbifold projections can be applied, which lead to N = 2 and N = 4 quotients.

Here we focus on the N = 2 orbifold, whereas the N = 4 case is reviewed in appendix C.
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which we summarize in appendix B, the fields are decomposed as

Aµ = diag(A(1)
µ , A(2)

µ , · · · , A(r)
µ ), Bµ = diag(B(1)

µ , B(2)
µ , · · · , B(r)

µ )

φ1,2 = diag(φ
(1)
1,2, φ

(2)
1,2, · · · , φ

(r)
1,2), ψ1,2 = diag(ψ1,2

(1), ψ
1,2
(2), · · · , ψ

1,2
(r))

φ3 =



0 φ
(r)
3

φ
(1)
3 0

φ
(2)
3

. . .

. . . 0

φ
(r−1)
3 0


, φ4 =



0 φ
(1)
4

0 φ
(2)
4

. . .
. . .

0 φ
(r−1)
4

φ
(r)
4 0



ψ3 =



0 ψ3
(1)

0 ψ3
(2)

. . .
. . .

0 ψ3
(r−1)

ψ3
(r) 0


, ψ4 =



0 ψ4
(r)

ψ4
(1) 0

ψ4
(2)

. . .

. . . 0

ψ4
(r−1) 0


(3.1)

where Aµ and Bµ are the gauge connections associated to U(rN)k and U(rN)−k respec-

tively, whereas in SU(4) R-symmetry notations φI=1,...,4 and the corresponding ψ̄I fermions

build up the matter multiplets in the bifundamental representation of the gauge group.

Orbifold decomposition (3.1) corresponds to choosing the unbroken supercharges as

θ12 = θ̄34 = θ, θ34 = θ̄12 = θ̄, ϑ12 = ϑ̄34 = ϑ, ϑ34 = ϑ̄12 = ϑ̄. The resulting N = 2 theory is

described by the quiver diagram in figure 2a.

In order to make contact with the classification of the previous section we have to

temporarily use the alternative notation defined in the quiver diagram of figure 2b. In

equations, the two sets of conventions are related as

A(`)
µ = A(`)

µ , B(`)
µ = A(r+`)

µ

φ
(`)
I = (Z

(`)
1 , Z

(`)
2 , Z̄3

(`), Z̄
4
(`))

ψI(`) = (−ζ(`)
2 , ζ

(`)
1 ,−ζ̄4

(`), ζ̄
3
(`)) (3.2)

A similar change of notations for the ABJ(M) case is detailed in appendix B. We will refer

to the notations of figure 2a and 2b as to the ABJM and N = 2 notation, respectively.

The use of N = 2 notation allows to easily exploit the results of section 2 for writing

down the connection of 1/2 BPS fermionic WLs. They are given by the general recipe (2.19)

with

σ(`) =
2π

k
(Z

(`)
1 Z̄1

(`) + Z
(`)
2 Z̄2

(`) − Z̄
3
(`−1)Z

(`−1)
3 − Z̄4

(`)Z
(`)
4 )

σ(r+`) =
2π

k
(Z̄1

(`)Z
(`)
1 + Z̄2

(`)Z
(`)
2 − Z

(`)
3 Z̄3

(`) − Z
(`−1)
4 Z̄4

(`−1)) (3.3)
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Bμ
(ℓ)

Aμ
(ℓ)

Aμ
(ℓ+1)

Bμ
(ℓ+1)

-k

k

k

-k
ϕ3
(ℓ-1) ψ(ℓ-1)

4 ϕ4
(ℓ) ψ(ℓ)

3 ϕ3
(ℓ+1) ψ(ℓ+1)

4

ϕ4
(ℓ-1) ψ(ℓ-1)

3 ϕ3
(ℓ) ψ(ℓ)

4 ϕ4
(ℓ+1) ψ(ℓ+1)

3

ϕ1,2
(ℓ) ψ(ℓ)

1,2 ϕ1,2
(ℓ+1) ψ(ℓ+1)

1,2

(a)

Aμ
(r+ℓ)

Aμ
(ℓ)

Aμ
(ℓ+1)

Aμ
(r+ℓ+1)

-k

k

k

-k
Z3
(ℓ-1) ζ3

(ℓ-1)
Z4
(ℓ) ζ4

(ℓ)
Z3
(ℓ+1) ζ3

(ℓ+1)

Z4
(ℓ-1) ζ4

(ℓ-1)
Z3
(ℓ) ζ3

(ℓ)
Z4
(ℓ+1) ζ4

(ℓ+1)

Z1,2
(ℓ) ζ1,2

(ℓ)
Z1,2
(ℓ+1) ζ1,2

(ℓ+1)

(b)

Figure 2. The quiver diagram of N = 2 orbifold ABJM theory in (a) ABJM notation and (b)

N = 2 notation. We have omitted the complex conjugates of the matter fields.

and non-vanishing blocks of M̄Z , NZ̄ , M̄ζ , Nζ̄ matrices given by

[M̄Z ](`,r+`) = m̄1
(`)Z

(`)
1 + m̄2

(`)Z
(`)
2 , [M̄Z ](r+`,`+1) = m̄3

(`)Z
(`)
3 , [M̄Z ](r+`+1,`) = m̄4

(`)Z
(`)
4

[NZ̄ ](`,r+`+1) = n
(`)
4 Z̄4

(`), [NZ̄ ](`+1,r+`) = n
(`)
3 Z̄3

(`), [NZ̄ ](r+`,`) = n
(`)
1 Z̄1

(`) + n
(`)
2 Z̄2

(`) (3.4)

[M̄ζ ](`,r+`) = m̄1
(`)ζ

(`)
1+ + m̄2

(`)ζ
(`)
2+, [M̄ζ ](r+`,`+1) = m̄3

(`)ζ
(`)
3+, [M̄ζ ](r+`+1,`) = m̄4

(`)ζ
(`)
4+

[Nζ̄ ](`,r+`+1) = n
(`)
4 ζ̄4

(`)−, [Nζ̄ ](`+1,r+`) = n
(`)
3 ζ̄3

(`)−, [Nζ̄ ](r+`,`) = n
(`)
1 ζ̄1

(`)− + n
(`)
2 ζ̄2

(`)−

The parameters are subject to the following constraints

m̄1,2
(`)m̄

3,4
(`−1) = m̄1,2

(`)m̄
3,4
(`) = n

(`)
1,2n

(`−1)
3,4 = n

(`)
1,2n

(`)
3,4 = 0 (3.5)

Having in mind to find out the gravity duals of these WLs we now translate the

connections back to ABJM notation. Mimicking what is done in appendix B for the

ABJ(M) case (see eq. (B.12)), we first redefine the parameters as

m̄1
(`) =

√
4π

k
ᾱ

(`)
2 , m̄2

(`) = −
√

4π

k
ᾱ

(`)
1 , m̄3

(`) = −
√

4π

k
δ4

(`), m̄4
(`) =

√
4π

k
δ3

(`)

n
(`)
1 =

√
4π

k
β2

(`), n
(`)
2 = −

√
4π

k
β1

(`), n
(`)
3 =

√
4π

k
γ̄

(`)
4 , n

(`)
4 = −

√
4π

k
γ̄

(`)
3 (3.6)

Constraints (3.5) now read

ᾱ
(`)
1,2δ

3,4
(`−1) = ᾱ

(`)
1,2δ

3,4
(`) = γ̄

(`)
3,4β

1,2
(`) = γ̄

(`)
3,4β

1,2
(`+1) = 0 (3.7)
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Then, expressing the 1/2 BPS operator Wfer in terms of N = 2 orbifold ABJM fields (3.2),

we can rewrite the matrix connection as

Lfer =

(
A f1

f2 B

)
(3.8)

where for r ≥ 5 the explicit expressions of the matrix blocks read

A =



A(1) 0 h
(1)
1 h

(r−1)
3 0

0 A(2) 0
. . . h

(r)
3

h
(1)
3 0 A(3) . . . h

(r−3)
1

. . .
. . .

. . . 0 h
(r−2)
1

h
(r−1)
1 h

(r−3)
3 0 A(r−1) 0

0 h
(r)
1 h

(r−2)
3 0 A(r)



B =



B(1) 0 h
(1)
4 h

(r−1)
2 0

0 B(2) 0
. . . h

(r)
2

h
(1)
2 0 B(3) . . . h

(r−3)
4

. . .
. . .

. . . 0 h
(r−2)
4

h
(r−1)
4 h

(r−3)
2 0 B(r−1) 0

0 h
(r)
4 h

(r−2)
2 0 B(r)


(3.9)

f1 =


f

(1)
1 f

(1)
3 f

(r)
5

f
(1)
5 f

(2)
1

. . .
. . .

. . . f
(r−1)
3

f
(r)
3 f

(r−1)
5 f

(r)
1

 , f2 =


f

(1)
2 f

(1)
6 f

(r)
4

f
(1)
4 f

(2)
2

. . .
. . .

. . . f
(r−1)
6

f
(r)
6 f

(r−1)
4 f

(r)
2


with definitions

A(`) = A
(`)
0 +

2π

k

[
(−1 + 2β2

(`)ᾱ
(`)
2 )φ

(`)
1 φ̄1

(`) + (−1 + 2β1
(`)ᾱ

(`)
1 )φ

(`)
2 φ̄2

(`)

−2β1
(`)ᾱ

(`)
2 φ

(`)
1 φ̄2

(`) − 2β2
(`)ᾱ

(`)
1 φ

(`)
2 φ̄1

(`)

+(1− 2δ4
(`−1)γ̄

(`−1)
4 )φ

(`−1)
3 φ̄3

(`−1) + (1− 2δ3
(`)γ̄

(`)
3 )φ

(`)
4 φ̄4

(`)

]
B(`) = B

(`)
0 +

2π

k

[
(−1 + 2β2

(`)ᾱ
(`)
2 )φ̄1

(`)φ
(`)
1 + (−1 + 2β1

(`)ᾱ
(`)
1 )φ̄2

(`)φ
(`)
2

−2β1
(`)ᾱ

(`)
2 φ̄2

(`)φ
(`)
1 − 2β2

(`)ᾱ
(`)
1 φ̄1

(`)φ
(`)
2

+(1− 2δ4
(`)γ̄

(`)
4 )φ̄3

(`)φ
(`)
3 + (1− 2δ3

(`−1)γ̄
(`−1)
3 )φ̄4

(`−1)φ
(`−1)
4

]
h

(`)
1 =

4π

k
δ4

(`+1)γ̄
(`)
3 φ

(`)
4 φ̄3

(`+1), h
(`)
3 =

4π

k
δ3

(`)γ̄
(`+1)
4 φ

(`+1)
3 φ̄4

(`)

h
(`)
2 =

4π

k
δ3

(`+1)γ̄
(`)
4 φ̄4

(`+1)φ
(`)
3 , h

(`)
4 =

4π

k
δ4

(`)γ̄
(`+1)
3 φ̄3

(`)φ
(`+1)
4 (3.10)
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f
(`)
1 =

√
4π

k
(ᾱ

(`)
1 ψ1

(`)+ + ᾱ
(`)
2 ψ2

(`)+), f
(`)
3 =

√
4π

k
γ̄

(`)
3 ψ3

(`)−, f
(`)
5 =

√
4π

k
γ̄

(`)
4 ψ4

(`)−

f
(`)
2 =

√
4π

k
(ψ̄

(`)
1−β

1
(`) + ψ̄

(`)
2−β

2
(`)), f

(`)
4 = −

√
4π

k
ψ̄

(`)
3+δ

3
(`), f

(`)
6 = −

√
4π

k
ψ̄

(`)
4+δ

4
(`)

In the case of shorter orbifold quivers (r = 2, 3, 4), the connections get slightly modified by

boundary effects. We report their explicit expressions in appendix D.

We note that in this case, compared with the general N = 2 quiver models, the full

connection (3.8) is still given by a proper supermatrix.

It is interesting to observe that the subset of 1/2 BPS operators (3.8)–(3.10) identified

by the condition

ᾱ
(`)
1,2 = ᾱ1,2, β1,2

(`) = β1,2, γ̄
(`)
3,4 = γ̄3,4, δ3,4

(`) = δ3,4 (3.11)

correspond to direct orbifold projections of the 1/6 BPS Wfer of the ABJ(M) theory

defined in (B.3). Among them, it is possible to select the ones which arise from the

orbifold projection of 1/2 BPS WLs W1/2 in ABJ(M) defined in (B.13), after setting

β1,2 = α1,2/|α|2, γ̄3,4 = δ3,4 = 0.

Similarly, from results in section 2 we obtain the 1/2 BPS WLs W̃fer that preserve

supercharges complementary to the ones of Wfer, and among them we can select the WLs

corresponding to the projections of the W̃fer and W̃1/2 operators of ABJ(M) theory defined

in (B.6) and (B.13).

3.2 Gravity duals

Given the known gravity dual configurations of 1/2 BPS WLs W1/2 and W̃1/2 in ABJM

theory, we can perform their orbifold projection and identify the (anti-)M2-brane solutions

dual to WLs in N = 2 orbifold ABJM theory. In general, this operation may break SUSY.

Nonetheless, as we now show some BPS configurations survive, which are dual to particular

1/2 BPS WLs constructed in the previous section.

The N = 2 orbifold ABJM theory is dual to M-theory in AdS4 × S7/(Zrk × Zr) back-

ground with metric

ds2 = R2

(
1

4
ds2

AdS4
+ ds2

S7/(Zrk×Zr)

)
(3.12)

where the AdS4 metric is given in (B.17) and the S7 one in (B.19), respectively.

In this case the Zrk × Zr quotient is realized by imposing the following identification

on the C4 coordinates

(z1, z2, z3, z4) ∼ e
2πi
rk (z1, z2, z3, z4), (z1, z2, z3, z4) ∼ (e

2πi
r z1, e

− 2πi
r z2, z3, z4) (3.13)

This is equivalent to requiring (see eq. (B.18))

ζ ∼ ζ − 8π

rk
, φ1 ∼ φ1 −

4π

r
(3.14)
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As reviewed in appendix B.2, the general solution to the Killing spinor equations in

M-theory on AdS4 × S7 background reads [10, 33]

ε = u
1
2h(ε1 + xµγµε2)− u−

1
2 γ3hε2 µ = 0, 1, 2 (3.15)

where ε1, ε2 are two constant Majorana spinors satisfying γ012εi = εi, i = 1, 2, and h is

given in eq. (B.22).

We decompose the Killing spinors on the basis of gamma matrices eigenstates as

in (B.27), (B.25) where θi are associated to the Poincaré supercharges, while ϑi are the

superconformal supercharges. Imposing the orbifold projection in (3.14) leads to the con-

straints

L∂ζ ε = L∂φ1 ε = 0 (3.16)

where the definition of spinorial Lie derivative with respect to a Killing vector K is [37]

LKε = Kµ∇µε+
1

4
∇µKνΓµνε (3.17)

Here we convert gamma matrices with tangent space indices to the ones with curved space

indices using the vielbein of S7. Eq. (3.16) leads then to the constraints

(γ3\ + γ58 + γ47 + γ69)εi = (γ3\ − γ58)εi = 0, i = 1, 2 (3.18)

which on the ηi spinors defined in (B.26) translates into

t1 + t2 + t3 + t4 = 0, t1 − t2 = 0 (3.19)

Therefore, the only surviving eigenstates correspond to

(t1, t2, t3, t4) = (+ +−−), (−−++) (3.20)

and we are led to ε1 = θ2 ⊗ η2 + θ7 ⊗ η7 and ε2 = ϑ2 ⊗ η2 + ϑ7 ⊗ η7.

Redefining

θ2 ≡ θ, θ7 ≡ θ̄, ϑ2 ≡ ϑ, ϑ7 ≡ ϑ̄, η2 ≡ η, η7 ≡ η̄ (3.21)

we finally obtain the two Killing spinors surviving the orbifold projection

ε1 = θ ⊗ η + θ̄ ⊗ η̄, ε2 = ϑ⊗ η + ϑ̄⊗ η̄ (3.22)

The corresponding field theory is in fact N = 2 superconformal invariant.

Comparing (3.21) with (B.32), it turns out that the relation of SUSY parameters in

ABJM and N = 2 orbifold ABJM theories is the following

θ12 = θ̄34 = θ, θ34 = θ̄12 = θ̄, ϑ12 = ϑ̄34 = ϑ, ϑ34 = ϑ̄12 = ϑ̄ (3.23)

As reviewed in appendix B, in ABJM theory the 1/2 BPS operator W1/2[ᾱI ] is dual

to an M2-brane wrapping the cycle in S7/Zk specified by ᾱI given in eq. (B.34). Similarly,

W̃1/2[ᾱI ] is dual to an anti-M2-brane wrapping the same cycle [33]. On the other hand,
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as described in the previous section, orbifolding W1/2[ᾱI ] and W̃1/2[ᾱI ] leads to WLs in

N = 2 orbifold ABJM theory. Therefore, performing the same orbifold projection on the

corresponding gravity dual solutions, we obtain the (anti)-M2-brane configurations dual to

a particular subset of WLs of the N = 2 theory.

In general, when the ᾱI parameters (B.14) appearing in the L1/2[ᾱI ] connection (B.13)

satisfy ᾱ1α
1 + ᾱ2α

2 6= 0, ᾱ3α
3 + ᾱ4α

4 6= 0, the resulting operators and their dual con-

figurations are non-BPS. However, for special choices of the parameters this may happen.

Precisely,

• When ᾱ3,4 = 0, the WL in N = 2 orbifold ABJM theory and its dual M2-brane in

AdS4 × S7/(Zrk × Zr) are 1/2 BPS. The WL preserves supercharges θ+, θ̄−, ϑ+, ϑ̄−,

and is just a special case of the 1/2 BPS operator Wfer of the previous subsection.

• When ᾱ1,2 = 0, the WL and its dual M2-brane are 1/2 BPS. The WL preserves

supercharges θ−, θ̄+, ϑ−, ϑ̄+, and is a special case of the 1/2 BPS WL W̃fer of the

previous subsection.

A similar investigation can be performed for W̃1/2[ᾱI ] with |α|2 6= 0, which leads to the

same conclusions. For ᾱ3,4 = 0 or ᾱ1,2 = 0 the resulting WLs are BPS and preserve sets of

supercharges that are complementary to the ones already listed.

4 BPS WLs at quantum level

We now promote WLs to quantum operators and consider the problem of evaluating their

vacuum expectation values (vev’s). Similarly to what happens in the ABJ(M) theory, vev’s

of BPS WLs along a timelike straight line introduced in section 2.1 are constants that can

be trivially normalized to one. Instead, non-trivial vev’s can be obtained for circular

BPS operators in Euclidean space defined in section 2.2. These can be evaluated by using

localization techniques and the output turns out to be a non-trivial function of the couplings

that interpolates between the weak coupling result obtained via ordinary perturbation

theory and the strong coupling result possibly obtained by holographic methods.

In this context it becomes particularly important to understand whether and how the

classical cohomological Q-equivalence between Wbos and Wfer discussed in subsection 2.1

gets promoted at quantum level. In fact, if we manage to prove that under suitable condi-

tions the equivalence survives quantum corrections, then using the Q charge to localize the

functional integral we can conclude that the expectation value of the general parametric-

dependent Wfer is identical to the one of Wbos, making them effectively quantum equivalent

and independent of the choice of the parameters.

In the case of ABJ(M) theory this problem has been extensively analysed [25–27] and

it has been shown that its solution is deeply interconnected with the choice of a fram-

ing regularization for the perturbative definition of the WL. Precisely, the cohomological

equivalence at quantum level leads to [13]

〈Wbos〉
(ABJ(M))
1 = 〈Wfer〉

(ABJ(M))
1 (4.1)

where the subscript indicates that the identity holds only at framing one [2].
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With a direct perturbative computation we are now going to show that, up to two

loops, the problem of studying the quantum cohomological equivalence between circular

Wfer and Wbos in generic N = 2 SCSM models can be mapped to the parallel problem

in ABJ(M) theory. Using the speculations in [30], we can thus conclude that the classical

cohomological equivalence can be promoted at quantum level, at least at two loops, if

we work at framing one. Indeed, the two-loop result supports a stronger version of the

Q-equivalence, which we probe at three loops in subsection 4.2.

4.1 The perturbative analysis

In order to test the cohomological equivalence at quantum level, it is convenient to consider

the difference between the expectation values of fermionic and bosonic WLs, order by order

in perturbation theory. At classical level, the cohomological equivalence

Wfer −Wbos = QV (4.2)

can be expanded as [13]
∞∑
n=1

TrP(e−i
∮
dτLbos(τ)Wn) = QV (4.3)

where the Wn expressions arise from the expansion of e−i
∮

(Lfer−Lbos) = e−i
∮

(B+F ) inside

the WL (see eq. (2.11)). The label n indicates the total number of scalar and fermion fields

in the product. As follows from the explicit expressions of B and F in (2.31), at a given

order n the Wn function is built up by p powers of B, which is quadratic in the scalar fields,

and q powers of F , such that 2p + q = n (in particular, when n is odd the corresponding

Wn contains an odd number of spinors F ). As an example, we report the first few even

terms in (4.3)

W2 = −i

∮
dτB(τ)−

∮
dτ1>2F (τ1)F (τ2)

W4 = −
∮
dτ1>2B(τ1)B(τ2) + i

∮
dτ1>2>3

[
B(τ1)F (τ2)F (τ3) + F (τ1)B(τ2)F (τ3)

+F (τ1)F (τ2)B(τ3)
]

+

∮
dτ1>2>3>4F (τ1)F (τ2)F (τ3)F (τ4)

W6 = i

∮
dτ1>2>3B(τ1)B(τ2)B(τ3) +

∮
dτ1>2>3>4

[
B(τ1)B(τ2)F (τ3)F (τ4)

+B(τ1)F (τ2)B(τ3)F (τ4) +B(τ1)F (τ2)F (τ3)B(τ4) + F (τ1)B(τ2)B(τ3)F (τ4)

+F (τ1)B(τ2)F (τ3)B(τ4) + F (τ1)F (τ2)B(τ3)B(τ4)
]

−i

∮
dτ1>2>3>4>5

[
B(τ1)F (τ2)F (τ3)F (τ4)F (τ5) + F (τ1)B(τ2)F (τ3)F (τ4)F (τ5)

+F (τ1)F (τ2)B(τ3)F (τ4)F (τ5) + F (τ1)F (τ2)F (τ3)B(τ4)F (τ5)

+F (τ1)F (τ2)F (τ3)F (τ4)B(τ5)
]

−
∮
dτ1>2>3>4>5>6F (τ1)F (τ2)F (τ3)F (τ4)F (τ5)F (τ6) (4.4)

The structure of higher order terms clearly follows. Here
∮
dτ1>2>···>j means integrals over

the contour parameters τ1, . . . , τj satisfying τ1 > τ2 > · · · > τj .
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It has been shown, for the first few orders in [13] and proved at all orders in [14], that

at classical level the Q-equivalence in (4.2) follows from a stronger set of identities that read

TrP(e−i
∮
dτLbos(τ)Wn) = QVn, n = 1, 2, . . . (4.5)

that is, every single term in the summation (4.3) is cohomologically trivial for a suitable

choice of the Vn function (see appendix D in [14] for their explicit forms).

As already mentioned, in the ABJ(M) case when we move to quantum level and com-

pute expectation values at framing one, no anomalies arise and relation (4.2) implies

〈Wfer〉1 = 〈Wbos〉1 (4.6)

which in turns can be written as

∞∑
n=1

〈TrP(e−i
∮
dτLbos(τ)W2n)〉1 = 0 (4.7)

Here we have already neglected Wn for n odd, since strings of an odd number of F would

have vanishing expectation values.

An interesting question is whether at quantum level and framing one, identities (4.5)

remain true separately, as this would imply the non-trivial results

〈TrP(e−i
∮
dτLbos(τ)W2n)〉1 = 0, n = 1, 2, . . . (4.8)

We devote the rest of this section to the two-loop evaluation of (4.7) and the discussion of

identities (4.8).

To this aim we assume CS levels ka to be of the same order k, and all the WL parameters

m̄ab
i and niab to be of order 1/

√
k. In particular, this implies that a given W2m term in (4.7)

starts contributing at order O(1/km). Therefore, in order to obtain the full result up to

order 1/k2 we need to evaluate the terms in (4.7) involving correlators with W2 and W4

up to two loops and show that at framing one either their sum vanishes or they vanish

separately. As a by-product, we also compute the two-loop expectation values of bosonic

and general fermionic WLs at framing zero.

We focus on euclidean circle WLs (2.30) with connections (2.31). Moreover, for sim-

plicity we restrict to quiver theories without adjoint or (anti-)fundamental matter. The

more general case can be similarly worked out, but the results are more involved.

We organize our calculation as follows. We first compute Wbos at one and two loops,

with relevant diagrams shown in figures 3 and 4. Then we consider equation (4.7) and

evaluate correlators involving W2,W4 as defined in (4.4). We compute the correlator with

a W2 insertion at one and two loops (figures 5 and 6) whereas the term with W4 starts

directly at two loops (figure 7). Writing the bosonic connection as Lbos = A + S (and

consequently Lfer = A+S +B+F ), in these figures A insertions on the contour represent

gauge connections, B and F insertions indicate quantities defined in (2.31), whereas S

stays for the scalar bilinears which arise from σ(a), a = 1, 2, · · · , n in Lbos when we use

equations of motion (2.5).
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A

A

Figure 3. One-loop Feynman diagram for 〈Wbos〉f . Wavy lines represent gauge fields.

1-loop

A

A

(a)

A

AA

(b)

+ +

AA

AA

AA

AA

AA

AA

(c)

S

S

(d)

Figure 4. Two-loop Feynman diagrams for 〈Wbos〉f . Here S stays for the scalar bilinears which

arise from σ(a), a = 1, 2, · · · , n in Lbos when we use equations of motion (2.5).

F

F

Figure 5. One-loop Feynman diagram for 〈TrP(e−i
∮
dτLbos(τ)W2)〉f . F indicates the fermionic

quantities defined in (2.31).

+

B

S

S

B

(a)

1-loop

F

F

(b)

A

FFA

F

FAF

F

+ +

(c)

FF

AA

AA

FF

AF

AF

FA

FA

+ + +

(d)

Figure 6. Two-loop Feynman diagrams for 〈TrP(e−i
∮
dτLbos(τ)W2)〉f . Here B indicates the bosonic

quantities defined in (2.31).
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B

B

(a)

+

FF

FF

FF

FF

(b)

Figure 7. Two-loop Feynman diagrams for 〈TrP(e−i
∮
dτLbos(τ)W4)〉f .

The interesting observation is that a full fledged computation of all these Feynman

diagrams is not required, as we can heavily rely on the results already present in the

literature for a WL in pure CS theory [38] and 1/2 and 1/6 WLs in ABJ(M) theory [10–

12, 25–27, 29, 30]. In fact, at the order we are working the internal vertices involving

superpotential interactions do not play any role, and we have to deal only with pure gauge

vertices and minimal couplings of matter fields to gauge vectors. Therefore, the difference

between diagrams in ABJ(M) theory and any N = 2 SCSM model is only due to the differ-

ent matter content, that is the different number of matter multiplets linking pairs of quiver

nodes. It follows that at this order diagrams in the two theories differ only by the overall

combinatorial factor, whereas the corresponding integrals are the same. Clearly, if we were

to consider higher order corrections to Wn correlators the specific structure of the super-

potential would generally kick in and different models might display different behaviours.

A long but straightforward evaluation of the diagrams leads to the results that can

be found in appendix F. For each diagram we extract the color factor and the parametric

dependence coming from the WL expansion, and indicate with italic capital letters the

corresponding integrals that include both combinatorics and any other factors coming from

the Feynman rules listed in appendix E. We stress that some of the fermionic diagrams

can give rise to more than one integral, which differ by the order of the fermions along the

contour. We present the results at framing f , meaning that f can be either zero or one.

Summing over all the contributions in each figure and using constraints (2.17), we

obtain for Wbos

3 =
∑
a

N2
a

ka
I(f)

3

4 =
∑
a,b

(Nab +Nba)N
2
aNb

k2
a

(I(f)
4a + I(f)

4d) +
∑
a

N3
a

k2
a

(I(f)
4b + I(f)

4c )

+
∑
a

Na

k2
a

(−I(f)
4b + J (f)

4c ) (4.9)
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for W2

5 =
∑
a,b

m̄ab
i n

i
baNaNbI

(f)
5

6 =
∑
a,b

[
m̄ab
i n

i
ba(I

(f)
6a + I(f)

6b + I(f)
6c + I(f)

6d)

+m̄ba
i n

i
ab(−I

(f)
6a + I(f)

6b + J (f)
6c + J (f)

6d )
]N2

aNb

ka
(4.10)

for W4

7 =
∑
a,b,c

[
m̄ab
i n

i
bam̄

ac
j n

j
ca

(
I(f)

7a + I(f)
7b

)
+m̄ba

i n
i
abm̄

ca
j n

j
ac

(
I(f)

7a + J (f)
7b

)]
NaNbNc (4.11)

The exact expression of the I,J integrals can be found in appendix F. In particular, from

their explicit expression it follows that

I(f)
6a = − 1

π
I(f)

4d I(f)
7a =

1

4π2
I(f)

4d (4.12)

We stress that these results are common to any N ≥ 2 SCSM theory, ABJ(M) models

included. Therefore, the explicit values of the integrals can be extracted from the literature

on the pure Chern-Simons theory [38] and ABJ(M) theory [10–12].

At generic framing it is known that [30]

I(f)
3 = −πif, I(f)

4a + I(f)
4d =

π2

4
, I(f)

4b = −π
2

6
, I(f)

4c = −π
2

2
f2, J (f)

4c = 0 (4.13)

whereas the ones appearing in (4.10), (4.11) are explicitly known only at framing zero [25–

27, 30]

I(0)
5 = I(0)

6a = I(0)
6b = I(0)

6d = J (0)
6d = 0, I(0)

6c = −J (0)
6c = −π

2
, I(0)

7b = J (0)
7b =

3

32
(4.14)

However, it can be checked numerically that both I(f)
4a and I(f)

4d are framing independent.

Therefore, since at framing zero I(0)
4d = I(0)

6a = I(0)
7a = 0, at generic framing we obtain

I(f)
4a =

π2

4
, I(f)

4d = I(f)
6a = I(f)

7a = 0 (4.15)

Using redefinitions (B.12) for the parameters and choosing βI = αI/|α|2, γ̄I = δI = 0,

expressions (4.10)–(4.11) reduce to W2,W4 terms for the expansion of 〈W1/2 −Wbos〉f in

ABJ(M) theory. Therefore, using the arguments and the well-based speculations of [30] for

1/2 BPS WLs in ABJ(M) theory, we obtain that at framing one

I(1)
5 = I(1)

6b + I(1)
6c = I(1)

6b + J (1)
6c = I(1)

6d = J (1)
6d = I(1)

7b = J (1)
7b = 0 (4.16)
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Therefore, we can conclude that at framing one diagrams 5–7 are identically vanishing

5 = 6 = 7 = 0 for f = 1 (4.17)

and the cohomological equivalence between Wbos and Wfer holds for any N ≥ 2 SCSM

theory, i.e.

〈Wfer〉1 − 〈Wbos〉1 = 0 up to two loops (4.18)

Actually, we find a much stronger result. In fact, results (4.17) imply that

〈TrP(e−i
∮
dτLbos(τ)W2)〉1 = 〈TrP(e−i

∮
dτLbos(τ)W4)〉1 = 0 (4.19)

separately. This is nothing but eq. (4.8) that we expect to hold quantum mechanically as

a consequence of the classical relations in (4.5).

We stress that the cohomological equivalence up to two loops and framing one and its

stronger version are still valid when there are adjoint and fundamental matter fields in the

theory.

Specializing these findings to the ABJ(M) theory, we find that Wbos is cohomological

equivalent not only to the 1/2 BPS fermionic operator [13], but also to generic 1/6 BPS

fermionic WLs introduced in [16, 17], at least at the order we are working. Similarly, in

N = 4 circular quiver SCSM theory with alternating levels, the fermionic 1/4 BPS WLs

introduced in [18] are also quantum mechanically cohomological equivalent to the bosonic

1/4 BPS WL up to two loops.

Exploiting results (4.13) and summing up all the contributions in (4.9) we obtain the

general result for Wbos in N = 2 SCSM models up to two loops and generic framing

〈Wbos〉f =
∑
a

{
Na−

πifN2
a

ka
+
π2[−(3f2 + 1)N3

a +Na]

6k2
a

}
+
∑
a,b

π2(Nab +Nba)N
2
aNb

4k2
a

+O

(
1

k3

)
(4.20)

Similarly, we can now use results (4.14) in eq. (4.10)–(4.11) and obtain the two-loop ex-

pression

〈Wfer −Wbos〉0 = −
∑
a,b

(m̄ab
i n

i
ba − m̄ba

i n
i
ab)
πN2

aNb

2ka
(4.21)

+
∑
a,b,c

(m̄ab
i n

i
bam̄

ac
j n

j
ca + m̄ba

i n
i
abm̄

ca
j n

j
ac)

3NaNbNc

32
+O

(
1

k3

)

In particular, this shows that at framing zero cohomological equivalence is in general bro-

ken.
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By combining (4.21) with (4.20) evaluated at f = 0 we also obtain the framing zero

result for Wfer up to two loops

〈Wfer〉0 =
∑
a

[
Na +

π2(−N3
a +Na)

6k2
a

]
(4.22)

+
∑
a,b

[
π2(Nab +Nba)N

2
aNb

4k2
a

− (m̄ab
i n

i
ba − m̄ba

i n
i
ab)
πN2

aNb

2ka

]

+
∑
a,b,c

(m̄ab
i n

i
bam̄

ac
j n

j
ca + m̄ba

i n
i
abm̄

ca
j n

j
ac)

3NaNbNc

32
+O

(
1

k3

)
The result displays a non-trivial parametric dependence on the fermion couplings, and thus

it is different for different WLs.

More interestingly, at framing one, independently of the choice of the parametric cou-

plings we find

〈Wbos〉1 = 〈Wfer〉1 =
∑
a

{
Na −

πiN2
a

ka
+
π2[−4N3

a +Na]

6k2
a

}
+
∑
a,b

π2(Nab +Nba)N
2
aNb

4k2
a

+O

(
1

k3

)
(4.23)

In particular, both 〈Wbos〉1 and 〈Wfer〉1 can in principle be evaluated by using localization

techniques [2]. The result, expanded at second order, should match (4.23).

Specializing our results to the ABJ(M) theory and normalizing the operators properly,

we find

〈Wbos〉f
N1 +N2

= 1−πif(N1 −N2)

k
+

π2

6k2

[
− (3f2 + 1)(N2

1 +N2
2 )

+(3f2 + 7)N1N2 + 1
]

+O

(
1

k3

)
〈Wfer −Wbos〉0

N1 +N2
=
π2N1N2

2k2

{
3[(ᾱIβ

I)2 + (γ̄Iδ
I)2]− 4(ᾱIβ

I + γ̄Iδ
I)
}

+O

(
1

k3

)
〈Wfer〉0
N1 +N2

= 1 +
π2

6k2

{
−N2

1 −N2
2 +

{
9[(ᾱIβ

I)2 + (γ̄Iδ
I)2]

−12(ᾱIβ
I + γ̄Iδ

I) + 7
}
N1N2 + 1

}
+O

(
1

k3

)
(4.24)

4.2 A conjecture

As already stressed, the two-loop computation of the previous section displays an important

feature which could lead to far reaching consequences, if confirmed at higher orders. In

fact, using in (4.7) the shorthand 〈TrP(e−i
∮
dτLbos(τ)W2n)〉1 ≡ 〈W2n〉1, up to order 1/k2 we

find not only 〈W2〉1 + 〈W4〉1 = 0, but also 〈W2〉1 = 0 and 〈W4〉1 = 0, separately. At order

1/k this is trivially realized, since only the W2 correlator can be constructed, but at order

1/k2 this is a non-trivial statement.

Repeating the analysis of [30], this property can be understood as follows. If we tem-

porarily consider WL operators with non-trivial winding m, as a rule of thumb it can be

– 27 –



J
H
E
P
1
1
(
2
0
1
8
)
1
4
5

B

BB

(a)

BB

FF BB

FF

B

B

F

F

B

B

F

F B

B F

F B

BF

F

+ + + + +

(b)

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

+ + + + +

(c)

Figure 8. Three-loop Feynman diagrams for 〈TrP(e−i
∮
dτLbos(τ)W6)〉f .

argued that, independently of framing, a generic perturbative diagram has a polynomial

dependence on m, whose leading power is m2[r/2] where r is the number of contour inser-

tions, that is the number of contour integrations. Up to two loops this property has been

tested explicitly in [30]. Focusing on the two-loop diagrams in figure 6 and 7 contributing

to the W2 and W4 correlators, at framing one the only potentially non-vanishing contri-

butions come from diagrams 6b, 6c and 7b. These diagrams produce contributions to W2

and W4 correlators that display different leading powers in the winding number. Precisely,

contributions to 〈W2〉 go as m2, while the ones contributing to 〈W4〉 go as m4. Thus, at non-

trivial winding, cohomological equivalence in ABJ(M) forces the two correlators to vanish

separately. We note that at this order what plays a crucial role in assigning different powers

of m to W2 and W4 correlators is the fact that scalar eye-like diagrams 6a and 7a vanish. If

this were not the case, since they appear in both correlators the winding argument would

get spoiled. However, the eye-like diagram is vanishing at framing zero by analytical contin-

uation in dimensional regularization, and is shown to be framing-independent numerically.

Reinforced by this preliminary result, we can then reasonably believe that a similar

pattern may survive at higher orders, so allowing to conjecture that 〈W2n〉1 = 0 at any

order in perturbation theory, with the definition of W2n in (4.3).

The validity of these identities implies strong constraints on the (unknown) integrals

at a given perturbative order. As a non-trivial example, we consider (4.8) at three loops.

At this order we should prove that 〈W2〉1, 〈W4〉1 and 〈W6〉1 vanish separately.

In particular, focusing on 〈W6〉1 the corresponding contributions arise from diagrams

in figure 8. We note that these diagrams do not contain superpotential vertices, and are

then common to all N ≥ 2 SCSM theories, ABJ(M) theory included.
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The corresponding analytic expressions read

8 =
∑
a,b,c,d

[m̄ab
i n

i
bam̄

ac
j n

j
cam̄

ad
k n

k
da(I

(f)
8a + I(f)

8c)

+m̄ba
i n

i
abm̄

ca
j n

j
acm̄

da
k n

k
ad(I

(f)
8a + J (f)

8c )

+m̄ab
i n

i
bam̄

ac
j n

j
cam̄

db
k n

k
bd(I

(f)
8b +K(f)

8c)]NaNbNcNd

+
∑
a,b

(m̄ab
i n

i
ba)

3NaNb(2I
(f)
8a + J (f)

8b + L(f)
8c) (4.25)

where the explicit expression of the integrals can be found in appendix F (see eq. (F.12)).

It follows that conjecture (4.8) for n = 3 forces the framing-one integrals to satisfy the

non-trivial identities

I(1)
8a + I(1)

8c = I(1)
8a + J (1)

8c = I(1)
8b +K(1)

8c = 2I(1)
8a + J (1)

8b + L(1)
8c = 0 (4.26)

Again we expect to be able to refine this set of constraints by a direct analysis of the explicit

expression of the integrals. Moreover, it would be important to check these relations by

evaluating explicitly all the integrals. This is a quite hard task which goes beyond the

scopes of the present paper.

We conclude with an important observation. If rigorously proved, identities (4.8) would

have strong implications for the defect CFT defined on the bosonic Wilson contour. In fact,

for any local or nonlocal operator O localized on the contour of the WL, the expression

〈〈O〉〉f ≡
〈TrP(e−i

∮
dτLbos(τ)O)〉f

〈TrPe−i
∮
dτLbos(τ)〉f

(4.27)

defines correlations functions in the one-dimensional defect CFT on the circle. Interestingly,

the defect CFT would depend on the framing we choose. In this language identities (4.8)

would read

〈〈W2n〉〉1 = 0, n = 1, 2, · · · (4.28)

These equations would then impose strong constraints on the defect CFT with interesting

implications on the corresponding boostrap program.

5 Conclusions

In this paper we have investigated the class of 1/2 BPS WLs in N = 2 SCSM theories fea-

tured by constant parametric couplings to matter scalars and fermions. Beyond the bosonic

WL that contains only couplings to scalars, we have found an infinite family of fermionic

WLs. In general, the corresponding connections cannot be decomposed as double-node

connections and cannot be interpreted as superconnections of a supergroup. Nonetheless,

the new fermionic 1/2 BPS WLs are classically cohomologically equivalent to the bosonic

1/2 BPS WLs.

In order to exemplify the general results, we have revisited the case of ABJ(M) theory

and N = 4 orbifold ABJ(M) in N = 2 language, and studied in details the N = 2 orbifold
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ABJM theory. In N = 4 and N = 2 orbifold ABJM theories, some of the newly found

BPS WLs can be obtained from the orbifold decomposition of the 1/2 BPS WLs in ABJM

theory. For these operators we have identified the corresponding gravity duals by direct

orbifolding the brane configurations dual to 1/2 BPS WLs in ABJM theory. Whether

gravity duals of more general BPS WLs can be identified is an important open question

that requires further investigation.

We have discussed the cohomological equivalence of the fermionic and bosonic BPS

WLs at quantum level by studying their expectation values up to two loops. In fact, since

at this order the superpotential couplings do not enter, it happens that the arguments and

well-based speculations of [30] lead to cohomological equivalence in any N = 2 CS-matter

models as in ABJ(M) theory. We have further conjectured that in general the cohomological

equivalence may occur in the stronger version of eq. (4.8). Since this condition would have

far-reaching implications for the defect CFT defined on the bosonic WL contour, we plan

to further investigate it in the future.

For the ordinary WLs along closed curves in gauge theories, we can take the trace in

any representation of the gauge group. In four dimensional N = 4 super Yang-Mills theory,

the BPS WLs in higher dimensional representations have elegant holographic description

in terms of D-branes [39–43] or bubbling geometries [44–46]. For 1/2 BPS fermionic WLs

in ABJ(M) theory, the trace can also be taken in higher dimensional representations of

the supergroup U(N1|N2) [47]. As we already stressed, in general the connection Lfer

constructed here is not a superconnection with respect to a supergroup. This raises the

question whether, for these WLs along closed curves, we can take the trace in some analog of

higher dimensional representations mentioned above. We would like to leave this interesting

question for further work.
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A Spinor conventions in three dimensions

In this appendix we collect our spinor conventions, both in Minkowski and Euclidean

signatures.
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A.1 Minkowski spacetime

In three-dimensional Minkowski spacetime we follow the convention in [33, 48], where the

reader can find more details. We use coordinates xµ = (x0, x1, x2) and metric ηµν =

diag(−+ +). We choose gamma matrices

γµ β
α = (iσ2, σ1, σ3) (A.1)

where σ1,2,3 are the Pauli matrices. They satisfy γµγν = ηµν + εµνργρ with ε012 = 1. Note

the spinor index α = 1, 2.

The charge conjugate of spinors is defined as

θ̄α = θ∗α, θ̄∗α = θα (A.2)

The spinor indices are raised and lowered as

θα = εαβθβ , θα = εαβθ
β (A.3)

where ε12 = −ε12 = 1. We also define the shorthand notation

θψ = θαψα, (γµθ)α = γµ β
α θβ , (θγµ)α = θβγµ α

β , θγµψ = θαγµ β
α ψβ (A.4)

On the straight line xµ = (τ, 0, 0), we introduce the bosonic spinors

u±α =
1√
2

(
1

∓i

)
, uα± =

1√
2

(∓i,−1) (A.5)

and decompose a generic spinor as

θα = u+αθ− + u−αθ+ (A.6)

where θ± are one-component Grassmann numbers. The product of two spinors now reads

θψ = i (θ+ψ− − θ−ψ+) (A.7)

A.2 Euclidean space

In Euclidean space we follow the spinor conventions of [48]. We use coordinates xµ =

(x1, x2, x3) and metric δµν = diag(+ + +). We choose gamma matrices

γµ β
α = (−σ2, σ1, σ3) (A.8)

that satisfy γµγν = δµν + iεµνργρ with ε123 = 1.

The spinor indices are raised and lowered as

θα = εαβθβ , θα = εαβθ
β (A.9)

where ε12 = −ε12 = 1.
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In Euclidean space θ̄ and θ are independent spinors. For a general spinor θ one can

define θ† that satisfies

θ∗α = θ†α, θα∗ = −θ†α, θ†α∗ = θα, θ†∗α = −θα (A.10)

Formally one has θ†† = −θ.
We use the shorthand notation

θψ = θαψα, (γµθ)α = γµ β
α θβ , (θγµ)α = θβγµ α

β , θγµψ = θαγµ β
α ψβ (A.11)

For the circle xµ = (cos τ, sin τ, 0), we choose the u±α spinors as

u+α =
1√
2

(
e−

iτ
2

e
iτ
2

)
, u−α =

i√
2

(
−e−

iτ
2

e
iτ
2

)

uα+ =
1√
2

(
e

iτ
2 ,−e−

iτ
2

)
, uα− =

i√
2

(
e

iτ
2 , e−

iτ
2

) (A.12)

We decompose spinors in Euclidean space formally in the same way as in Minkowski space-

time, see eq. (A.6). The product of two spinors is still given in (A.7). However, the u±
spinors are defined differently, and in particular in Euclidean space they are not constant.

B BPS WLs in ABJ(M) theory

In this appendix, we review 1/6 and 1/2 BPS WLs in ABJ(M) theory, including both line

WLs in Minkowski spacetime and circle WLs in Euclidean space [10–13, 16, 17]. We also

reproduce these known WLs using the general construction of sections 2.1 and 2.2 valid

for generic N = 2 SCSM theories. This requires a notational translation from what we

call ABJ(M) notations to N = 2 notations, which we describe in details. For 1/2 BPS line

WLs in Minkowski spacetime we also review the construction of (anti-)M2-brane duals in

M-theory.

B.1 1/6 BPS line WLs in Minkowski spacetime

The U(N1)k × U(N2)−k ABJ(M) theory [6, 7, 49] is usually written in manifest SU(4)

R-symmetry notations. Gauge fields Aµ, Bµ corresponding to the two nodes of the quiver

diagram in figure 9a are linked by φI , ψ
I , I = 1, 2, 3, 4 bosonic and fermionic matter fields

in the bifundamental representation of the gauge group and in the fundamental of the

R-symmetry group. The SUSY parameters are θIJ , θ̄IJ , ϑIJ , ϑ̄IJ with

θIJ = −θJI , (θIJ)∗ = θ̄IJ , θ̄IJ =
1

2
εIJKLθ

KL

ϑIJ = −ϑJI , (ϑIJ)∗ = ϑ̄IJ , ϑ̄IJ =
1

2
εIJKLϑ

KL
(B.1)

Here θIJ , θ̄IJ are related to Poincaré supercharges, and ϑIJ , ϑ̄IJ are related to supercon-

formal charges.
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k -k
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ϕ
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(2)
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Z1,2 ζ1,2

Z3,4 ζ3,4

Z
1,2

ζ
1,2

Z
3,4

ζ
3,4

(b)

Figure 9. The quiver diagram of ABJ(M) theory in (a) ABJM notations and (b) N = 2 notations.

In Minkowski spacetime, the bosonic 1/6 BPS WL along the line xµ = (τ, 0, 0) is

defined as in (2.8) with connection matrix [10–12]

Lbos = diag

(
A0 +

2π

k
RIJφI φ̄

J , B0 +
2π

k
RIJ φ̄

JφI

)
RIJ = diag(−1,−1, 1, 1) (B.2)

Fermionic 1/6 BPS WL Wfer can also be constructed as in (2.10), which correspond to the

superconnection [16, 17]

Lfer =

 A0 + 2π
k U

I
JφI φ̄

J
√

4π
k (ᾱIψ

I
+ + γ̄Iψ

I
−)√

4π
k (ψ̄I−β

I − ψ̄I+δI) B0 + 2π
k U

I
J φ̄

JφI

 (B.3)

where the couplings to matter are featured by constant parameters

U IJ =


−1 + 2β2ᾱ2 −2β1ᾱ2

−2β2ᾱ1 −1 + 2β1ᾱ1

1− 2δ4γ̄4 2δ3γ̄4

2δ4γ̄3 1− 2δ3γ̄3

 (B.4)

ᾱI = (ᾱ1, ᾱ2, 0, 0), βI = (β1, β2, 0, 0), γ̄I = (0, 0, γ̄3, γ̄4), δI = (0, 0, δ3, δ4)

satisfying the BPS constraints

ᾱ1,2δ
3,4 = γ̄3,4β

1,2 = 0 (B.5)

The corresponding preserved supercharges are θ12
+ , θ

34
− , ϑ

12
+ , ϑ

34
− .

Similarly, along the line xµ = (τ, 0, 0) we can define W̃bos, W̃fer operators with connec-

tions

L̃bos = diag

(
A0 −

2π

k
RIJφI φ̄

J , B0 −
2π

k
RIJ φ̄

JφI

)

L̃fer =

 A0 − 2π
k U

I
JφI φ̄

J
√

4π
k (ᾱIψ

I
− + γ̄Iψ

I
+)√

4π
k (−ψ̄I+βI + ψ̄I−δ

I) B0 − 2π
k U

I
J φ̄

JφI

 (B.6)

where the constant parameters are the same as in (B.2), (B.4) and satisfy the same con-

straints (B.5). The preserved supercharges θ12
− , θ

34
+ , ϑ

12
− , ϑ

34
+ are complementary to the

ones preserved by Wbos,Wfer.
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Wbos and Wfer operators are cohomologically equivalent, and that is their difference is

Q(something), where Q is a supercharge preserved by both WLs. Similarly, one can prove

that W̃bos, W̃fer are cohomologically equivalent.

In order to make contact with the general WL construction presented in the main

text, we rewrite the ABJ(M) theory in N = 2 superspace formalism. This is obtained by

identifying N = 6 and N = 2 SUSY parameters as

θ12 = θ̄34 = θ θ34 = θ̄12 = θ̄ ϑ12 = ϑ̄34 = ϑ ϑ34 = ϑ̄12 = ϑ̄ (B.7)

The ABJ(M) theory in N = 2 superspace formalism has only SU(2) R-symmetry

invariance manifest and corresponds to the quiver diagram in figure 9b. The two sets of

fields are related by

Aµ = A(1)
µ , Bµ = A(2)

µ , φI = (Z1, Z2, Z̄
3, Z̄4), ψI = (−ζ2, ζ1,−ζ̄4, ζ̄3) (B.8)

Using the general construction of WL operators in section 2 and adapting it to the

ABJ(M) case, we find that the Wbos and Wfer operators along the line xµ = (τ, 0, 0) and

preserving supercharges θ+, θ̄−, ϑ+, ϑ̄−, have connections (2.19), with the gauge auxiliary

fields given by

σ(1) =
2π

k
(Z1Z̄

1 + Z2Z̄
2 − Z̄3Z3 − Z̄4Z4)

σ(2) =
2π

k
(Z̄1Z1 + Z̄2Z2 − Z3Z̄

3 − Z4Z̄
4) (B.9)

and matrix couplings

M̄Z =

(
m̄1Z1 + m̄2Z2

m̄3Z3 + m̄4Z4

)

NZ̄ =

(
n3Z̄

3 + n4Z̄
4

n1Z̄
1 + n2Z̄

2

)

M̄ζ =

(
m̄1ζ1+ + m̄2ζ2+

m̄3ζ3+ + m̄4ζ4+

)

Nζ̄ =

(
n3ζ̄

3
− + n4ζ̄

4
−

n1ζ̄
1
− + n2ζ̄

2
−

)
(B.10)

The coupling parameters satisfy the BPS constraints

m̄1,2m̄3,4 = n1,2n3,4 = 0 (B.11)

It is now easy to verify that redefining the parameters as

m̄1 =

√
4π

k
ᾱ2, m̄2 = −

√
4π

k
ᾱ1, m̄3 = −

√
4π

k
δ4, m̄4 =

√
4π

k
δ3

n1 =

√
4π

k
β2, n2 = −

√
4π

k
β1, n3 =

√
4π

k
γ̄4, n4 = −

√
4π

k
γ̄3

(B.12)
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and using relations (B.8) between the two sets of conventions, we reproduce exactly the

ABJ(M) WLs in (B.2), (B.3). Similarly, from the general construction in section 2 for BPS

WLs W̃bos, W̃fer and applying the same notational translation, we reproduce the ABJ(M)

WLs with connections (B.6). This is a consistency check of our general construction.

B.2 1/2 BPS line WLs and their gravity duals

For special values of the parameters in (B.4) the number of supercharges preserved by Wfer,

W̃fer can enhance. For instance, it has been proved [13] that connections

L1/2[ᾱI ] =

A0 + 2π
k

(
δIJ −

2αI ᾱJ
|α|2

)
φI φ̄

J
√

4π
k ᾱIψ

I
+√

4π
k ψ̄I−

αI

|α|2 B0 + 2π
k

(
δIJ −

2αI ᾱJ
|α|2

)
φ̄JφI


L̃1/2[ᾱI ] =

A0 − 2π
k

(
δIJ −

2αI ᾱJ
|α|2

)
φI φ̄

J
√

4π
k ᾱIψ

I
−

−
√

4π
k ψ̄I+

αI

|α|2 B0 − 2π
k

(
δIJ −

2αI ᾱJ
|α|2

)
φ̄JφI

 (B.13)

with constant parameters

ᾱI = (ᾱ1, ᾱ2, ᾱ3, ᾱ4), αI ≡ (ᾱI)
∗, |α|2 ≡ ᾱIαI 6= 0 (B.14)

give rise to 1/2 BPS fermionic operators W1/2[ᾱI ], W̃1/2[ᾱI ] that preserve complementary

supercharges
ᾱIθ

IJ
+ , εIJKLα

JθKL− , ᾱIϑ
IJ
+ , εIJKLα

JϑKL−

ᾱIθ
IJ
− , εIJKLα

JθKL+ , ᾱIϑ
IJ
− , εIJKLα

JϑKL+

(B.15)

These operators can be obtained from (B.3) and (B.6) with constant parameters (B.4) by

setting β1,2 = α1,2

|α|2 , γ̄3,4 = δ3,4 = 0 and performing a R-symmetry rotation (ᾱ1, ᾱ2, 0, 0)→
(ᾱ1, ᾱ2, ᾱ3, ᾱ4).

For these 1/2 BPS operators gravity duals have been found [13, 33], which we now

review.

The ABJM theory is dual to M-theory in AdS4 × S7/Zk background

ds2 = R2

(
1

4
ds2

AdS4
+ ds2

S7/Zk

)
(B.16)

where the metric of AdS4 is

ds2
AdS4

= u2(−dt2 + dx2
1 + dx2

2) +
du2

u2
(B.17)

and embedding S7 in C4 as [10]

z1 = cos
β

2
cos

θ1

2
eiξ1 , ξ1 = −1

4
(2φ1 + χ+ ζ)

z2 = cos
β

2
sin

θ1

2
eiξ2 , ξ2 = −1

4
(−2φ1 + χ+ ζ)

z3 = sin
β

2
cos

θ2

2
eiξ3 , ξ3 = −1

4
(2φ2 − χ+ ζ)

z4 = sin
β

2
sin

θ2

2
eiξ4 , ξ4 = −1

4
(−2φ2 − χ+ ζ) (B.18)
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we can write

ds2
S7 =

1

4

[
dβ2 + cos2 β

2

(
dθ2

1 + sin2 θ1dϕ
2
1

)
+ sin2 β

2

(
dθ2

2 + sin2 θ2dϕ
2
2

)
+ sin2 β

2
cos2 β

2
(dχ+ cos θ1dϕ1 − cos θ2dϕ2)2

+

(
1

2
dζ + cos2 β

2
cos θ1dϕ1 + sin2 β

2
cos θ2dϕ2 +

1

2
cosβdχ

)2]
(B.19)

Here β, θ1,2 ∈ [0, π], ξ1,2,3,4 ∈ [0, 2π], so that φ1,2 ∈ [0, 2π], χ ∈ [0, 4π], ζ ∈ [0, 8π]. The

M-theory cycle is taken along the ζ direction.

The orbifold projection is realized by the Zk identification

(z1, z2, z3, z4) ∼ e
2πi
k (z1, z2, z3, z4) (B.20)

or equivalently ζ ∼ ζ − 8π
k .

The general solution to the Killing spinor equations in M-theory on AdS4 × S7 back-

ground reads [10, 33]

ε = u
1
2h(ε1 + xµγµε2)− u−

1
2 γ3hε2 µ = 0, 1, 2 (B.21)

where ε1, ε2 are two constant Majorana spinors satisfying γ012εi = εi, i = 1, 2, and

h = e
β
4

(γ34−γ7\)e
θ1
4

(γ35−γ8\)e
θ2
4

(γ46+γ79)e
ξ1
2
γ3\e

ξ2
2
γ58e

ξ3
2
γ47e

ξ4
2
γ69 (B.22)

Here γA, A = 0, · · · , 9, \ are the eleven dimensional gamma matrices, and γ0123456789\ = 1.

We decompose γA in terms of gamma matrices γa=0,1,2 in R1,2 and Γp=3,··· ,9,\ in C4 ∼= R8

as
γa = −γa ⊗ Γ, a = 0, 1, 2

γp = 1⊗ Γp, p = 3, · · · , 9, \
(B.23)

Correspondingly, ε1, ε2 get decomposed into direct products of Grassmann odd spinors θ,

ϑ in R1,2 and Grassmann even spinors η in C4 ∼= R8

ε1 ∼ θ ⊗ η ε2 ∼ ϑ⊗ η (B.24)

The ε1 decomposition is related to Poincaré supercharges θ and the ε2 one is related to

superconformal charges ϑ.

We write the η spinors in terms of gamma matrix eigenstates (a similar procedure

applies also to ϑ)

Γ3\η = it1η, Γ58η = it2η, Γ47η = it3η, Γ69η = it4η (B.25)

with tI = ± for I = 1, 2, 3, 4. They satisfy t1t2t3t4 = 1 as a consequence of the constraint

γ012ε1 = ε1. The εi Killing spinors can then be expressed as a linear combination of eight

eigenstates

(t1, t2, t3, t4) = (+ + ++), (+ +−−), (+−+−), (+−−+),

(−+ +−), (−+−+), (−−++), (−−−−) (B.26)
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where each of them corresponds to one real degree of freedom. In the order of (B.26), we

then write

ε1 =
8∑
i=1

θi ⊗ ηi , ε2 =
8∑
i=1

ϑi ⊗ ηi (B.27)

For the Killing spinor (B.21), the quotient (B.20) leads to the constraint

L∂ζ ε = 0 (B.28)

which gives

(γ3\ + γ58 + γ47 + γ69)εi = 0, i = 1, 2 (B.29)

which on the decomposition (B.25) translates into

t1 + t2 + t3 + t4 = 0 (B.30)

The surviving states in (B.26) are then

(t1, t2, t3, t4) = (+ +−−), (+−+−), (+−−+),

(−+ +−), (−+−+), (−−++) (B.31)

Defining
θ2 = θ12 = −θ21, θ3 = θ13 = −θ31, θ4 = θ14 = −θ41

θ5 = θ23 = −θ32, θ6 = −θ24 = θ42, θ7 = θ34 = −θ43

ϑ2 = ϑ12 = −ϑ21, ϑ3 = ϑ13 = −ϑ31, ϑ4 = ϑ14 = −ϑ41

ϑ5 = ϑ23 = −ϑ32, ϑ6 = −ϑ24 = ϑ42, ϑ7 = ϑ34 = −ϑ43

η2 = η12 = −η21, η3 = η13 = −η31, η4 = η14 = −η41

η5 = η23 = −η32, η6 = −η24 = η42, η7 = η34 = −η43

(B.32)

we obtain

ε1 =
1

2
θI ⊗ ηI , ε2 =

1

2
ϑI ⊗ ηI (B.33)

where I runs from 2 to 7.

The 1/2 BPS operator W1/2[ᾱI ] along the line xµ = (τ, 0, 0) and corresponding to the

superconnection L1/2[ᾱI ] in (B.13) is dual to an M2-brane embedded as t = σ0, x1 = x2 =

0, u = σ1, ζ = σ2 and localized at a point specified by the complex vector [33]

αI

|α|
=

(
cos

β

2
cos

θ1

2
e−

i
4

(2φ1+χ+ζ), cos
β

2
sin

θ1

2
e−

i
4

(−2φ1+χ+ζ),

sin
β

2
cos

θ2

2
e−

i
4

(2φ2−χ+ζ), sin
β

2
sin

θ2

2
e−

i
4

(−2φ2−χ+ζ)

)
(B.34)

The 1/2 BPS WL W̃1/2[ᾱI ] is dual to an anti-M2-brane at the same position that is specified

by ᾱI .

The gravity duals of the 1/2 BPS WLs in ABJ(M) theory are helpful for identifying

the gravity duals of some BPS WLs in N = 4 orbifold ABJM theory [18, 33], as we will

review in the next appendix, and for identifying the gravity duals of some WLs in N = 2

orbifold ABJM theory as described in section 3.
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B.3 Circle WLs in Euclidean space

In the Euclidean version of the ABJ(M) theory we can define BPS WLs along the circle

xµ = (cos τ, sin τ, 0) (B.35)

In ABJ(M) notations, 1/6 BPS operators Wbos, Wfer, W̃bos, W̃fer correspond to supercon-

nections

Lbos = diag

(
Aµẋ

µ − 2πi

k
RIJφI φ̄

J , Bµẋ
µ − 2πi

k
RIJ φ̄

JφI

)

Lfer =

 Aµẋ
µ − 2πi

k U
I
JφI φ̄

J
√

4π
k (ᾱIψ

I
+ + γ̄Iψ

I
−)√

4π
k (−ψ̄I−βI + ψ̄I+δ

I) Bµẋ
µ − 2πi

k U
I
J φ̄

JφI


L̃bos = diag

(
Aµẋ

µ +
2πi

k
RIJφI φ̄

J , Bµẋ
µ +

2πi

k
RIJ φ̄

JφI

)

L̃fer =

 Aµẋ
µ + 2πi

k U
I
JφI φ̄

J
√

4π
k (ᾱIψ

I
− + γ̄Iψ

I
+)√

4π
k (ψ̄I+β

I − ψ̄I−δI) Bµẋµ + 2πi
k U

I
J φ̄

JφI

 (B.36)

with the same constant parameters RIJ , U
I
J , ᾱI , β

I , γ̄I , δ
I in (B.2), (B.4). Wbos, Wfer

operators preserve supercharges

ϑ12 = −iγ3θ
12, ϑ34 = iγ3θ

34 (B.37)

whereas W̃bos, W̃fer preserve the complementary set

ϑ12 = iγ3θ
12, ϑ34 = −iγ3θ

34 (B.38)

Wbos, W̃bos are related by a R-symmetry rotation I = 1, 2 ↔ I = 3, 4, whereas the Wfer,

W̃fer operators are related by a R-symmetry rotation I = 1, 2↔ I = 3, 4 plus a parameter

redefinition ᾱI ↔ γ̄I , β
I ↔ δI .

1/2 BPS operators W1/2[ᾱI ], W̃1/2[ᾱI ] can also be defined in Euclidean signature. They

correspond to connections

L1/2[ᾱI ] =

Aµẋ
µ − 2πi

k

(
δIJ −

2αI ᾱJ
|α|2

)
φI φ̄

J
√

4π
k ᾱIψ

I
+

−
√

4π
k ψ̄I−

αI

|α|2 Bµẋ
µ − 2πi

k

(
δIJ −

2αI ᾱJ
|α|2

)
φ̄JφI


L̃1/2[ᾱI ] =

Aµẋ
µ + 2πi

k

(
δIJ −

2αI ᾱJ
|α|2

)
φI φ̄

J
√

4π
k ᾱIψ

I
−√

4π
k ψ̄I+

αI

|α|2 Bµẋ
µ + 2πi

k

(
δIJ −

2αI ᾱJ
|α|2

)
φ̄JφI

 (B.39)

The W1/2[ᾱI ] operator preserves supercharges

ᾱIϑ
IJ = −iᾱIγ3θ

IJ , εIJKLα
JϑKL = iγ3εIJKLα

JθKL (B.40)

while W̃1/2[ᾱI ] preserves complementary supercharges

ᾱIϑ
IJ = iᾱIγ3θ

IJ , εIJKLα
JϑKL = −iγ3εIJKLα

JθKL (B.41)
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ϕi

(2ℓ-2)ψ(2ℓ-2)
 ϕ

(2ℓ-1)ψ(2ℓ-1)
 ϕi

(2ℓ)ψ(2ℓ)


Aμ
(2ℓ-1)

Bμ
(2ℓ)

k -k

(a)

Z1
(2ℓ-2) ζ1

(2ℓ-2)
Z4
(2ℓ-1) ζ4

(2ℓ-1)
Z1
(2ℓ) ζ1

(2ℓ)

Z2
(2ℓ-2) ζ2

(2ℓ-2)
Z3
(2ℓ-1) ζ3

(2ℓ-1)
Z2
(2ℓ) ζ2

(2ℓ)

Aμ
(2ℓ-1)

Aμ
(2ℓ)

k -k

(b)

Figure 10. The quiver diagram of N = 4 orbifold ABJM theory in (a) ABJM notations and (b)

N = 2 notations.

C BPS WLs in N = 4 orbifold ABJM theory

As a further check of our general construction we now apply it to the case of N = 4 orbifold

ABJM theory and show that, under a suitable change of notations, it reproduces the known

1/4 BPS WLs found in [18].

General circular quiver N = 4 SCSM theories were constructed in [50, 51], while

the special case of N = 4 orbifold ABJM theory was introduced in [22]. For gauge group

[U(N)k×U(N)−k]
r it can be obtained by applying a Zr quotient to the U(rN)k×U(rN)−k

ABJM theory. The SU(4) R-symmetry is broken to SU(2)×SU(2), and we decompose the

R-symmetry index as

I = 1, 2, 4, 3→ i = 1, 2, ı̂ = 1̂, 2̂ (C.1)

We can write the theory in ABJM notations as in figure 10a, or in N = 2 notations,

as in figure 10b, under the supercharge identifications θ11̂ = θ̄22̂ = θ, θ22̂ = θ̄11̂ = θ̄,

ϑ11̂ = ϑ̄22̂ = ϑ. The two notations are related by

A(2`−1)
µ = A(2`−1)

µ , B(2`)
µ = A(2`)

µ

φ
(2`)
i = (Z

(2`)
1 , Z̄2

(2`)), φ
(2`−1)
ı̂ = (Z

(2`−1)
4 , Z̄3

(2`−1))

ψı̂(2`) = (ζ
(2`)
1 , ζ̄2

(2`)), ψi(2`−1) = (−ζ(2`−1)
4 ,−ζ̄3

(2`−1)) (C.2)

From the results in section 2 we obtain the 1/4 BPS WL Wbos, Wfer in N = 2 notations

with connections

Lbos = diag(A(1)
µ − σ(1), A(2) − σ(2), · · · , A(2r) − σ(2r))

Lfer = Lbos +B + F, B = M̄ZNZ̄ +NZ̄M̄Z , F = M̄ζ +Nζ̄ (C.3)

with

σ(2`−1) =
2π

k
(Z

(2`−2)
1 Z̄1

(2`−2) + Z
(2`−1)
4 Z̄4

(2`−1) − Z̄
2
(2`−2)Z

(2`−2)
2 − Z̄3

(2`−1)Z
(2`−1)
3 )

σ(2`) =
2π

k
(Z̄1

(2`)Z
(2`)
1 + Z̄4

(2`−1)Z
(2`−1)
4 − Z(2`)

2 Z̄2
(2`) − Z

(2`−1)
3 Z̄3

(2`−1)) (C.4)
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The nonvanishing blocks of the matrices M̄Z , NZ̄ , M̄ζ , Nζ̄ are

[M̄Z ](2`−1,2`) = m̄4
(2`−1)Z

(2`−1)
4 , [M̄Z ](2`,2`+1) = m̄2

(2`)Z
(2`)
2

[M̄Z ](2`,2`−1) = m̄3
(2`−1)Z

(2`−1)
3 , [M̄Z ](2`+1,2`) = m̄1

(2`)Z
(2`)
1

[NZ̄ ](2`−1,2`) = n
(2`−1)
3 Z̄3

(2`−1), [NZ̄ ](2`,2`+1) = n
(2`)
1 Z̄1

(2`)

[NZ̄ ](2`,2`−1) = n
(2`−1)
4 Z̄4

(2`−1), [NZ̄ ](2`+1,2`) = n
(2`)
2 Z̄2

(2`)

[M̄ζ ](2`−1,2`) = m̄4
(2`−1)ζ

(2`−1)
4+ , [M̄ζ ](2`,2`+1) = m̄2

(2`)ζ
(2`)
2+

[M̄ζ ](2`,2`−1) = m̄3
(2`−1)ζ

(2`−1)
3+ , [M̄ζ ](2`+1,2`) = m̄1

(2`)ζ
(2`)
1+

[Nζ̄ ](2`−1,2`) = n
(2`−1)
3 ζ̄3

(2`−1)−, [Nζ̄ ](2`,2`+1) = n
(2`)
1 ζ̄1

(2`)−

[Nζ̄ ](2`,2`−1) = n
(2`−1)
4 ζ̄4

(2`−1)−, [Nζ̄ ](2`+1,2`) = n
(2`)
2 ζ̄2

(2`)− (C.5)

with constraints on the parameters

m̄4
(2`−1)m̄

3
(2`−1) = m̄4

(2`−1)m̄
2
(2`−2) = m̄4

(2`−1)m̄
2
(2`) = 0

m̄1
(2`)m̄

2
(2`) = m̄1

(2`)m̄
3
(2`−1) = m̄1

(2`)m̄
3
(2`+1) = 0

n
(2`−1)
3 n

(2`−1)
4 = n

(2`−1)
3 n

(2`−2)
1 = n

(2`−1)
3 n

(2`)
1 = 0

n
(2`)
2 n

(2`)
1 = n

(2`)
2 n

(2`−1)
4 = n

(2`)
2 n

(2`+1)
4 = 0 (C.6)

By redefining the parameters as

m̄1
(2`) =

√
4π

k
ᾱ

(2`)

1̂
, m̄2

(2`) = −
√

4π

k
δ2̂

(2`)

m̄3
(2`−1) =

√
4π

k
δ2

(2`−1), m̄4
(2`−1) = −

√
4π

k
ᾱ

(2`−1)
1

n
(2`)
1 =

√
4π

k
β1̂

(2`), n
(2`)
2 =

√
4π

k
γ̄

(2`)

2̂

n
(2`−1)
3 = −

√
4π

k
γ̄

(2`−1)
2 , n

(2`−1)
4 = −

√
4π

k
β1

(2`−1) (C.7)

and taking into account relations (C.2), we can write the 1/4 BPS WL along the line

xµ = (τ, 0, 0) in ABJM notations.

The connection of the bosonic 1/4 BPS WL Wbos reads

Lbos = diag(A(1),B(2), · · · ,A(2r−1),B(2r)) (C.8)
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whereas, for r ≥ 3 the connection of the fermionic 1/4 BPS WL Wfer is

Lfer =



A(1) f
(1)
1 h

(1)
1 h

(2r−1)
2 f

(2r)
2

f
(1)
2 B(2) f

(2)
1 h

(2)
1 h

(2r)
2

h
(1)
2 f

(2)
2 A(3) f

(3)
1

. . .

h
(2)
2 f

(3)
2 B(4) . . .

. . .
. . .

. . .
. . .

. . . h
(2r−3)
1

. . .
. . .

. . . f
(2r−2)
1 h

(2r−2)
1

h
(2r−1)
1 h

(2r−3)
2 f

(2r−2)
2 A(2r−1) f

(2r−1)
1

f
(2r)
1 h

(2r)
1 h

(2r−2)
2 f

(2r−1)
2 B(2r)


(C.9)

and for r = 2 it is

Lfer =


A(1) f

(1)
1 h

(1)
1 + h

(3)
2 f

(4)
2

f
(1)
2 B(2) f

(2)
1 h

(2)
1 + h

(4)
2

h
(3)
1 + h

(1)
2 f

(2)
2 A(3) f

(3)
1

f
(4)
1 h

(4)
1 + h

(2)
2 f

(3)
2 B(4)

 (C.10)

Here we have defined

A(2`−1) = A
(2`−1)
0 − 2π

k

(
U(2`−1)

i
jφ

(2`−2)
i φ̄j(2`−2) + U(2`−1)

ı̂
̂φ

(2`−1)
ı̂ φ̄̂(2`−1)

)
B(2`) = B

(2`)
0 − 2π

k

(
U(2`)

i
jφ̄
j
(2`)φ

(2`)
i + U(2`)

ı̂
̂φ̄
̂
(2`−1)φ

(2`−1)
ı̂

)
f

(2`−1)
1 =

√
4π

k

(
ᾱ

(2`−1)
1 ψ1

(2`−1)+ + γ̄
(2`−1)
2 ψ2

(2`−1)−

)
f

(2`)
1 =

√
4π

k

(
ψ̄

(2`)

1̂− β
1̂
(2`) − ψ̄

(2`)

2̂+
δ2̂

(2`)

)
f

(2`−1)
2 =

√
4π

k

(
ψ̄

(2`−1)
1− β1

(2`−1) − ψ̄
(2`−1)
2+ δ2

(2`−1)

)
f

(2`)
2 =

√
4π

k

(
ᾱ

(2`)

1̂
ψ1̂

(2`)+ + γ̄
(2`)

2̂
ψ2̂

(2`)−

)
h

(2`−1)
1 = −2π

k
U(2`−1)

ı̂
jφ

(2`−1)
ı̂ φ̄j(2`), h

(2`)
1 = −2π

k
U(2`)

ı̂
jφ̄
j
(2`)φ

(2`+1)
ı̂

h
(2`−1)
2 = −2π

k
U(2`−1)

i
̂φ

(2`)
i φ̄̂(2`−1), h

(2`)
2 = −2π

k
U(2`)

i
̂φ̄
̂
(2`+1)φ

(2`)
i (C.11)
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with constant parameters

U(2`−1)
i
j = diag

(
1− 2ᾱ

(2`−2)

1̂
β1̂

(2`−2),−1 + 2γ̄
(2`−2)

2̂
δ2̂

(2`−2)

)
U(2`−1)

ı̂
̂ = diag

(
1− 2ᾱ

(2`−1)
1 β1

(2`−1),−1 + 2γ̄
(2`−1)
2 δ2

(2`−1)

)
U(2`)

i
j = diag

(
1− 2ᾱ

(2`)

1̂
β1̂

(2`),−1 + 2γ̄
(2`)

2̂
δ2̂

(2`)

)
U(2`)

ı̂
̂ = diag

(
1− 2ᾱ

(2`−1)
1 β1

(2`−1),−1 + 2γ̄
(2`−1)
2 δ2

(2`−1)

)
U(2`−1)

ı̂
j = diag

(
2ᾱ

(2`−1)
1 β1̂

(2`),−2γ̄
(2`−1)
2 δ2̂

(2`)

)
U(2`−1)

i
̂ = diag

(
2ᾱ

(2`)

1̂
β1

(2`−1),−2γ̄
(2`)

2̂
δ2

(2`−1)

)
U(2`)

ı̂
j = diag

(
2ᾱ

(2`+1)
1 β1̂

(2`),−2γ̄
(2`+1)
2 δ2̂

(2`)

)
U(2`)

i
̂ = diag

(
2ᾱ

(2`)

1̂
β1

(2`+1),−2γ̄
(2`)

2̂
δ2

(2`+1)

)
(C.12)

The parameters are subject to the constraints

ᾱ
(2`−1)
1 δ2

(2`−1) = ᾱ
(2`−1)
1 δ2̂

(2`−2) = ᾱ
(2`−1)
1 δ2̂

(2`) = 0

ᾱ
(2`)

1̂
δ2

(2`) = ᾱ
(2`)

1̂
δ2̂

(2`−1) = ᾱ
(2`)

1̂
δ2̂

(2`+1) = 0

γ̄
(2`−1)
2 β1

(2`−1) = γ̄
(2`−1)
2 β1̂

(2`−2) = γ̄
(2`−1)
2 β1̂

(2`) = 0

γ̄
(2`)

2̂
β1

(2`) = γ̄
(2`)

2̂
β1̂

(2`−1) = γ̄
(2`)

2̂
β1̂

(2`+1) = 0 (C.13)

We have exactly reproduced the fermionic 1/4 BPS WL in [18] preserving supercharges

θ11̂
+ , θ22̂

− , ϑ11̂
+ , ϑ22̂

− (C.14)

Similarly, from the 1/2 BPS WL W̃fer in section 2, we can construct a 1/4 BPS WL

in N = 4 orbifold ABJM theory that preserves supercharges θ11̂
− , θ22̂

+ , ϑ11̂
− , ϑ22̂

+ .

In general, we do not know how to construct the gravity duals of BPS WLs in N = 4

orbifold ABJM, directly. However, for WLs that can be obtained by an orbifold quotient of

the 1/2 BPS operators of the ABJM theory, we can exploit their known gravity duals [18, 33]

and obtain the corresponding ones in N = 4 orbifold ABJM theory by taking their orbifold

quotient.

The N = 4 orbifold ABJM theory is dual to M-theory in AdS4 × S7/(Zrk × Zr) space-

time [22, 52, 53]

ds2 = R2

(
1

4
ds2

AdS4
+ ds2

S7/(Zrk×Zr)

)
(C.15)

where the metric of AdS4 is given in (B.17), the metric of S7 in (B.19), and the Zrk × Zr
quotient is generated by

(z1, z2, z3, z4) ∼ e
2πi
rk (z1, z2, z3, z4), (z1, z2, z3, z4) ∼ (e

2πi
r z1, e

2πi
r z2, z3, z4) (C.16)

which is equivalent to

ζ ∼ ζ − 8π

rk
, χ ∼ χ− 4π

r
, ζ ∼ ζ − 4π

r
(C.17)
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Performing the quotient of the 1/2 BPS operators W1/2[ᾱI ] and W̃1/2[ᾱI ] in ABJM theory

corresponding to connections (B.13), we obtain 1/2 or 1/4 BPS WL in N = 4 ABJM

theory, depending on the value of ᾱI . The operator coming from W1/2[ᾱI ] is dual to an

M2-brane that wraps a cycle in the internal space specified by ᾱI , whereas the operator

from W̃1/2[ᾱI ] is dual to an anti-M2-brane that wraps the same interval cycle.

D Connections for 1/2 BPS WL in N = 2 orbifold ABJM

In this appendix we collect the connections for 1/2 BPS WL in N = 2 orbifold ABJM

when r = 4, 3, 2. With definitions (3.10), we have for r = 4

A =


A(1) 0 h

(1)
1 + h

(3)
3 0

0 A(2) 0 h
(2)
1 + h

(4)
3

h
(3)
1 + h

(1)
3 0 A(3) 0

0 h
(4)
1 + h

(2)
3 0 A(4)



B =


B(1) 0 h

(1)
4 + h

(3)
2 0

0 B(2) 0 h
(2)
4 + h

(4)
2

h
(3)
4 + h

(1)
2 0 B(3) 0

0 h
(4)
4 + h

(2)
2 0 B(4)



f1 =


f

(1)
1 f

(1)
3 0 f

(4)
5

f
(1)
5 f

(2)
1 f

(2)
3 0

0 f
(2)
5 f

(3)
1 f

(3)
3

f
(4)
3 0 f

(3)
5 f

(4)
1

 , f2 =


f

(1)
2 f

(1)
6 0 f

(4)
4

f
(1)
4 f

(2)
2 f

(2)
6 0

0 f
(2)
4 f

(3)
2 f

(3)
6

f
(4)
6 0 f

(3)
4 f

(4)
2

 (D.1)

for r = 3

A =

A(1) h
(2)
3 h

(1)
1

h
(2)
1 A(2) h

(3)
3

h
(1)
3 h

(3)
1 A(3)

 , B =

B(1) h
(2)
2 h

(1)
4

h
(2)
4 B(2) h

(3)
2

h
(1)
2 h

(3)
4 B(3)



f1 =

 f
(1)
1 f

(1)
3 f

(3)
5

f
(1)
5 f

(2)
1 f

(2)
3

f
(3)
3 f

(2)
5 f

(3)
1

 , f2 =

 f
(1)
2 f

(1)
6 f

(3)
4

f
(1)
4 f

(2)
2 f

(2)
6

f
(3)
6 f

(2)
4 f

(3)
2

 (D.2)

and for r = 2

A =

(
A(1) + h

(1)
1 + h

(1)
3 0

0 A(2) + h
(2)
1 + h

(2)
3

)

B =

(
B(1) + h

(1)
2 + h

(1)
4 0

0 B(2) + h
(2)
2 + h

(2)
4

)

f1 =

(
f

(1)
1 f

(1)
3 + f

(2)
5

f
(2)
3 + f

(1)
5 f

(2)
1

)

f2 =

(
f

(1)
2 f

(1)
6 + f

(2)
4

f
(2)
6 + f

(1)
4 f

(2)
2

)
(D.3)
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E Lagrangian and Feynman rules

In Minkowski spacetime, from the superspace lagrangian (2.4) we obtain the relevant terms

in components

LCS =
∑
a

ka
4π
εµνρTr

(
A(a)
µ ∂νA

(a)
ρ +

2i

3
A(a)
µ A(a)

ν A(a)
ρ

)
Lk =

∑
a,b

Tr(−DµZ̄
(ba)
i DµZi(ab) + iζ̄

(ba)
i γµDµζ

i
(ab)) (E.1)

By standard Wick rotation, the lagrangian in Euclidean space is given by

LCS = −
∑
a

ika
4π
εµνρTr

(
A(a)
µ ∂νA

(a)
ρ +

2i

3
A(a)
µ A(a)

ν A(a)
ρ

)
Lk =

∑
a,b

Tr(DµZ̄
(ba)
i DµZi(ab) − iζ̄

(ba)
i γµDµζ

i
(ab)) (E.2)

Here the definitions of covariant derivatives are

DµZ
i
(ab) = ∂µZ

i
(ab) + iA(a)

µ Zi(ab) − iZi(ab)A
(b)
µ , (E.3)

Dµζ
i
(ab) = ∂µζ

i
(ab) + iA(a)

µ ζi(ab) − iζi(ab)A
(b)
µ (E.4)

We work in Landau gauge for vector fields. Tree and one-loop propagators are drawn in

figure 11. In dimensional regularization, d = 3−2ε, their explicit expressions at tree level are

〈A(a)
µ p

q(x)A(b)
ν r

s(y)〉(0) = δabδspδ
q
r

i

ka

Γ(3
2 − ε)
π

1
2
−ε

εµνρ(x− y)ρ

|x− y|3−2ε

〈Zi(ab)p
q(x)Z̄

(cd)
j r

s(y)〉(0) = δdaδ
c
bδ
i
jδ
s
pδ
q
r

Γ(1
2 − ε)

4π
3
2
−ε

1

|x− y|1−2ε

〈ζi(ab)p
q
α(x)ζ̄

(cd)
j r

sβ(y)〉(0) = iδdaδ
c
bδ
i
jδ
s
pδ
q
r

Γ(3
2 − ε)

2π
3
2
−ε

γµα
β(x− y)µ

|x− y|3−2ε
(E.5)

whereas their one-loop corrections read

〈A(a)
µ p

q(x)A(a)
ν r

s(y)〉(1) = δspδ
q
r

∑
b

(Nab+Nba)Nb

ka

Γ2(1
2−ε)

4π1−2ε

(
δµν

|x−y|2−4ε
− ∂µ∂ν |x−y|

4ε

4ε(1+2ε)

)

〈ζi(ab)p
q
α(x)ζ̄

(cd)
j r

sβ(y)〉(1) = −iδdaδ
c
bδ
i
jδ
s
pδ
q
rδ
β
a

(
Na

ka
+
Nb

kb

)
Γ2(1

2−ε)
8π2−2ε

1

|x−y|2−4ε
(E.6)

Here the latic indices p, q, r, s are color indices.

From the lagrangians in (E.2) the cubic vertices of figure 12 are given by

−
∑
a

ka
6π

∫
d3xεµνρA(a)

µ p
q(x)A(a)

ν q
r(x)A(a)

ρ r
p(x)

−
∑
a,b

∫
d3xζ̄

(ba)
i p

q(x)γµ[A(a)
µ q

r(x)ζi(ab)r
p(x)− ζi(ab)q

r(x)A(b)
µ r

p(x)] (E.7)
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1-loop 1-loop

Figure 11. Above: the tree propagators of gauge, scalar and fermionic fields. Below: the one-loop

propagators of gauge and fermionic fields, respectively.

Figure 12. The pure gauge vertex, and the mixed gauge-fermion vertex coming from the minimal

coupling lagrangian.

F Details on the perturbative computation

In this appendix we give the explicit expressions of the intergrals corresponding to diagrams

in figures 3–8. The intergrals are defined as

3 =
∑
a

N2
a

ka
I(f)

3 (F.1)

4a =
∑
a,b

(Nab +Nba)N
2
aNb

k2
a

I(f)
4a, 4b =

∑
a

N3
a −Na

k2
a

I(f)
4b

4c =
∑
a

N3
a

k2
a

I(f)
4c +

∑
a

Na

k2
a

J (f)
4c , 4d =

∑
a,b

(Nab +Nba)N
2
aNb

k2
a

I(f)
4d (F.2)

5 =
∑
a,b

m̄ab
i n

i
baNaNbI

(f)
5 (F.3)

6a =
∑
a,b

(m̄ab
i n

i
ba − m̄ba

i n
i
ab)
N2
aNb

ka
I(f)

6a

6b =
∑
a,b

(m̄ab
i n

i
ba + m̄ba

i n
i
ab)
N2
aNb

ka
I(f)

6b

6c =
∑
a,b

(m̄ab
i n

i
baI

(f)
6c + m̄ba

i n
i
abJ

(f)
6c )

N2
aNb

ka

6d =
∑
a,b

(m̄ab
i n

i
baI

(f)
6d + m̄ba

i n
i
abJ

(f)
6d )

N2
aNb

ka
(F.4)
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7a =
∑
a,b,c

(m̄ab
i n

i
bam̄

ac
j n

j
ca + m̄ba

i n
i
abm̄

ca
j n

j
ac)NaNbNcI(f)

7a

7b =
∑
a,b,c

(m̄ab
i n

i
bam̄

ac
j n

j
caI

(f)
7b + m̄ba

i n
i
abm̄

ca
j n

j
acJ

(f)
7b )NaNbNc (F.5)

8a =

[∑
a,b

2(m̄ab
i n

i
ba)

3NaNb +
∑
a,b,c,d

(m̄ab
i n

i
bam̄

ac
j n

j
cam̄

ad
k n

k
da

+m̄ba
i n

i
abm̄

ca
j n

j
acm̄

da
k n

k
ad)NaNbNcNd

]
I(f)

8a

8b = +
∑
a,b,c,d

m̄ab
i n

i
bam̄

ac
j n

j
cam̄

db
k n

k
bdNaNbNcNdI

(f)
8b +

∑
a,b

(m̄ab
i n

i
ba)

3NaNbJ
(f)
8b

8c =
∑
a,b,c,d

[m̄ab
i n

i
bam̄

ac
j n

j
cam̄

ad
k n

k
daI

(f)
8c + m̄ba

i n
i
abm̄

ca
j n

j
acm̄

da
k n

k
adJ

(f)
8c

+m̄ab
i n

i
bam̄

ac
j n

j
cam̄

db
k n

k
bdK

(f)
8c]NaNbNcNd +

∑
a,b

(m̄ab
i n

i
ba)

3NaNbL
(f)
8c (F.6)

Using the Feynman rules in appendix E, the integral from figure 3 is given by

I(f)
3 = −i

Γ(3
2 − ε)
π

1
2
−ε

∮
dτ1>2

εµνρẋ
µ
1 ẋ

ν
2x

ρ
12

|x12|3−2ε
(F.7)

where we have defined xi ≡ x(τi), xij ≡ xi − xj and
∮
dτ1>2 means a double contour

integral over τ1 > τ2.

With similar notations, from figure 4 we obtain

I(f)
4a = −

Γ2(1
2 − ε)

4π1−2ε

∮
dτ1>2

ẋ1 · ẋ2

|x12|2−4ε

I(f)
4b = −

Γ3(3
2 − ε)

2π
5
2
−3ε

∮
dτ1>2>3

∫
d3x

ẋµ1 ẋ
ν
2 ẋ

ρ
3ε
αβγεµασενβλεργη(x− x1)σ(x− x2)λ(x− x3)η

|x− x1|3−2ε|x− x2|3−2ε|x− x3|3−2ε

I(f)
4c = −

Γ2(3
2 − ε)

π1−2ε

∮
dτ1>2>3>4

(
εµνλẋ

µ
1 ẋ

ν
2 ẋ

λ
12ερσηẋ

ρ
3ẋ

σ
4 ẋ

η
34

|x12|3−2ε|x34|3−2ε
+ (1432)

)
J (f)

4c = −
Γ2(3

2 − ε)
π1−2ε

∮
dτ1>2>3>4

εµνλẋ
µ
1 ẋ

ν
3 ẋ

λ
13ερσηẋ

ρ
2ẋ

σ
4 ẋ

η
24

|x13|3−2ε|x24|3−2ε

I(f)
4d =

Γ2(1
2 − ε)

4π1−2ε

∮
dτ1>2

|ẋ1||ẋ2|
|x12|2−4ε

(F.8)

with the symbol (1423) in I(f)
4c indicating the term obtained from the first one by permuting

τ1,2,3,4 → τ1,4,2,3.

Similarly, from figures 5–8 we obtain

I(f)
5 = −i

Γ(3
2 − ε)

2π
3
2
−ε

∮
dτ1>2

(
|ẋ1||ẋ2|u+(τ1)γµu−(τ2)xµ12

|x12|3−2ε
− (21)

)
(F.9)

I(f)
6a = −

Γ2(1
2 − ε)

4π2−2ε

∮
dτ1>2

|ẋ1||ẋ2|
|x12|2−4ε
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I(f)
6b = i

Γ2(1
2 − ε)

8π2−2ε

∮
dτ1>2

(
|ẋ1||ẋ2|u+(τ1)u−(τ2)

|x12|2−4ε
− (21)

)
I(f)

6c = −
Γ3(3

2 − ε)
4π

7
2
−3ε

∮
dτ1>2>3

∫
d3x

[
ẋµ1εµνρ(x− x1)ρ

|x− x1|3−2ε

×|ẋ2||ẋ3|u+(τ2)γσγ
νγλu−(τ3)(x− x2)σ(x− x3)λ

|x− x2|3−2ε|x− x3|3−2ε
− (231) + (312)

]
J (f)

6c = −
Γ3(3

2 − ε)
4π

7
2
−3ε

∮
dτ1>2>3

∫
d3x

[
ẋµ1εµνρ(x− x1)ρ

|x− x1|3−2ε

×|ẋ3||ẋ2|u+(τ3)γσγ
νγλu−(τ2)(x− x3)σ(x− x2)λ

|x− x3|3−2ε|x− x2|3−2ε
− (231) + (312)

]
I(f)

6d = −
Γ2(3

2 − ε)
2π2−2ε

∮
dτ1>2>3>4

(
ẋµ1 ẋ

ν
2 |ẋ3||ẋ4|εµνρxρ12u+(τ3)γσu−(τ4)xσ34

|x12|3−2ε|x34|3−2ε

+(3412) + (4123)− (2341)

)
J (f)

6d = −
Γ2(3

2 − ε)
2π2−2ε

∮
dτ1>2>3>4

(
ẋµ1 ẋ

ν
2 |ẋ4||ẋ3|εµνρxρ12u+(τ4)γσu−(τ3)xσ43

|x12|3−2ε|x43|3−2ε

+(3412) + (4123)− (2341)

)
(F.10)

I(f)
7a =

Γ2(1
2 − ε)

16π3−2ε

∮
dτ1>2

|ẋ1||ẋ2|
|x12|2−4ε

I(f)
7b = −

Γ2(3
2 − ε)

4π3−2ε

∮
dτ1>2>3>4

(
|ẋ1||ẋ2|u+(τ1)γµu−(τ2)xµ12

|x12|3−2ε

×|ẋ3||ẋ4|u+(τ3)γνu−(τ4)xν34

|x34|3−2ε
− (2341)

)
J (f)

7b = −
Γ2(3

2 − ε)
4π3−2ε

∮
dτ1>2>3>4

(
|ẋ2||ẋ1|u+(τ2)γµu−(τ1)xµ12

|x21|3−2ε

×|ẋ4||ẋ3|u+(τ4)γνu−(τ3)xν43

|x43|3−2ε
− (2341)

)
(F.11)

I(f)
8a = −

Γ3(1
2 − ε)

64π
9
2
−3ε

∮
dτ1>2>3

|ẋ1||ẋ2||ẋ3|
|x12|1−2ε|x13|1−2ε|x23|1−2ε

I(f)
8b = −i

Γ2(1
2 − ε)Γ(3

2 − ε)
32π

9
2
−3ε

∮
dτ1>2>3>4

(
|ẋ1||ẋ2||ẋ3||ẋ4|u+(τ3)γµu−(τ4)xµ34

|x12|2−4ε|x34|3−2ε

+(3412)− (4123)− (2341)− (2143)− (4321)− (1432) + (3214)

)
J (f)

8b = −i
Γ2(1

2 − ε)Γ(3
2 − ε)

32π
9
2
−3ε

∮
dτ1>2>3>4

(
|ẋ1||ẋ3||ẋ2||ẋ4|u+(τ2)γµu−(τ4)xµ24

|x13|2−4ε|x24|3−2ε

−(2341)− (1432) + (2143)

)
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I(f)
8c = i

Γ3(3
2 − ε)

8π
9
2
−3ε

∮
dτ1>2>3>4>5>6

(
|ẋ1||ẋ2|u+(τ1)γµu−(τ2)xµ12

|x12|3−2ε

×|ẋ3||ẋ4|u+(τ3)γµu−(τ4)xµ34

|x34|3−2ε

|ẋ5||ẋ6|u+(τ5)γµu−(τ6)xµ56

|x56|3−2ε
− (234561)

)
J (f)

8c = −i
Γ3(3

2 − ε)
8π

9
2
−3ε

∮
dτ1>2>3>4>5>6

(
|ẋ2||ẋ1|u+(τ2)γµu−(τ1)xµ21

|x21|3−2ε

×|ẋ4||ẋ3|u+(τ4)γµu−(τ3)xµ43

|x43|3−2ε

|ẋ6||ẋ5|u+(τ6)γµu−(τ5)xµ65

|x65|3−2ε
− (234561)

)
K(f)

8c = −i
Γ3(3

2 − ε)
8π

9
2
−3ε

∮
dτ1>2>3>4>5>6

(
|ẋ1||ẋ2|u+(τ1)γµu−(τ2)xµ12

|x12|3−2ε

×|ẋ3||ẋ6|u+(τ3)γµu−(τ6)xµ36

|x36|3−2ε

|ẋ5||ẋ4|u+(τ5)γµu−(τ4)xµ54

|x54|3−2ε

+(561234)− (612345)− (216543)− (654321) + (165432)

)
L(f)

8c = i
Γ3(3

2 − ε)
8π

9
2
−3ε

∮
dτ1>2>3>4>5>6

(
|ẋ1||ẋ4|u+(τ1)γµu−(τ4)xµ14

|x14|3−2ε
(F.12)

×|ẋ5||ẋ2|u+(τ5)γµu−(τ2)xµ52

|x52|3−2ε

|ẋ3||ẋ6|u+(τ3)γµu−(τ6)xµ36

|x36|3−2ε
− (456123)

)
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