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Abstract 

Obesity and Substance Use Disorder (SUD) are chronic relapsing disorders characterized by 

pathological craving. Evidence suggests that craving can be prompted by the exposure to 

food or drug-related cues, and that current non-invasive brain stimulation techniques can be 

used to down-regulate craving. However, there is limited available information about (i) the 

influence of internal and external factors on the neural responses to food and drug cues, and 

(ii) on the neurobiological mechanisms beyond non-invasive brain stimulation applied to 

obesity. 

In my thesis, I provide a systematic meta-analytical and fMRI investigation of these issues, 

demonstrating that several internal and external factors modulate the neural correlates of 

craving in obesity and SUD, and that excitatory deep TMS induces plastic changes in the 

neurofunctional brain organization in sample of obese individuals. 

In the general introduction (Chapter 1), I describe the core neural networks involved in food 

and drug craving, within a unitary framework that accounts for the influence of several 

internal and external factors that modulate the neural responses to cues, in both obesity and 

SUD. 

In Chapter 2, I combine a novel toolbox based on hierarchical clustering algorithm 

(Clustering the Brain, CluB) with the Activation Likelihood Estimation method to meta-

analyze 22 studies on the influence of weight-status (healthy-weight vs. obese), sensory 

modality of stimulus presentation (visual vs. gustatory), and satiety state (hungry vs. 

satiated) on the neural responses to food cues. In particular, evidence from such main and 

interaction effects are taken as a benchmark to test the validity of the main neurocognitive 

theories of overeating and obesity. 

In Chapter 3, I use the same method to meta-analyze 64 neuroimaging studies on the 

influence of addiction severity (addiction to legal vs. illegal substances) and treatment status 

(treatment-seeking vs. not-seeking treatment) on the neural drug cue-reactivity in SUD. 

Evidence from the main and interactive effects will be taken as a benchmark to discuss one 

of the most influential theories on the influence of treatment status and drug availability on 

the neural responses to drug cues.  

An in-depth analysis of the meta-analytical method employed in Chapter 2 and Chapter 3 is 

reported in Appendix A, where I describe two validation studies demonstrating that CluB 

can (i) reliably extract a set of spatially coherent clusters of activations from a database of 

stereotactic coordinates, and (ii) test for factor-specific clusters of convergent activation 

within designs that cannot be usually implemented in a meta-analytical study. 
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In Chapter 4, I assess the neurofunctional changes associated with a 5-weeks deep rTMS 

treatment targeting the bilateral insular and prefrontal cortices to induce weight-loss and 

reducing food craving in a sample of 17 obese individuals undergoing excitatory (N=9) 

versus sham (N=8) stimulation. In particular, I apply a novel data-driven method on resting-

state fMRI data to test that hypothesis that real, compared to sham, deep rTMS can induce 

plastic changes in the brain functional organization of key areas involved in food craving. 

Finally, I conclude with Chapter 5, where I integrate my findings into a unitary theoretical 

framework for the disorders of the motivation, discussing their implications for basic 

research and translational medicine. 
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Chapter 1 – General Introduction 

 

1.1. “Bad habits” share a common neurobiological basis 

It may be surprising that seemingly distant actions, such as eating a slice of pizza and 

smoking a cigarette, share largely overlapping neural substrates. However, the remarkable 

overlap between feeding and addiction is ancient, and it can be dated to about 1000 million 

years ago, when some of the neurotransmitters that mediate incentive behaviors evolved 

(Walker et al., 1996). Of those, dopamine (DA) is a major neurotransmitter of an highly 

preserved neurobiological mechanism that mediate the feeding behavior in different species, 

including humans (Gelperin, 1986). 

DA-containing neurons project from the midbrain (ventral tegmental area, or VTA, and 

substantia nigra, or SN) to the ventral (nucleus accumbens or NAc) and dorsal striatal 

(caudate, putamen) complex (Butler and Hodos, 2005), and they likely evolved to facilitate 

the repetition of behaviors that sustain life and that result in a rewarding outcome, such as 

primary rewards (e.g., water, food, sex). To promote these adaptive behaviors, 

mesocorticolimbic DA neurons send ascending projections to, and receive projections from, 

brain regions involved in autonomic responses (hypothalamus, brainstem), memory 

(hippocampus), emotional reactivity and salience processing (amygdala, insula), and 

cognitive control (prefrontal cortex or PFC, anterior cingulate cortex or ACC). This 

collection of brain structures and neural pathways constitutes the so-called human “reward 

system” (Figure 1.1). If this neurobiological mechanism promotes adaptive behaviors, what 

has to do with maladaptive conditions such as addiction to drugs of abuse? 

Crucially, both food and drugs have the capability of stimulating DA increase in key nodes 

of the reward system (Di Chiara and Imperato, 1988, Di Chiara et al., 1993, Bassareo and 

Di Chiara, 1999). Drugs of abuse, including heroin, cocaine, amphetamine, alcohol, and 

marijuana, exert their pharmacological effects on the reward system, activating mesolimbic 

DA neurons and their associated opioid receptors (Koob, 1992, Koob, 1996, Wise, 1996): 

by mimicking the neurobiological mechanisms that mediate the incentive motivation to 

pursue primary rewards, drugs of abuse can “hijack” the brain by signaling the presence of 

a huge benefit for the organism, facilitating the repetition of drug-seeking behaviors (Nesse 

and Berridge, 1997). As a consequence, drugs of abuse exert their pharmacological and 

motivational effects via the same neurobiological mechanism that evolved to reinforce the 

behaviors that are useful to address primary biological needs, such as eating.  
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Figure 1.1. Brain areas involved in reward processing | The main subcortical and cortical structures of the 

reward system are displayed on an anatomical brain template. The statistical map is the result of an automated 

neuroimaging meta-analysis (association test, p > .01 FDR-corrected) of reward-related studies performed by 

means of Neurosynth (www.neurosynth.org/analyses/topics/v4-topics-400/332). Slice coordinates are reported 

in MNI stereotaxic space. ACC, Anterior Cingulate Cortex; aINS, anterior insula; AMY, amygdala; CAU, 

caudate nucleus; NAc/VS, Nucleus accumbens/ventral striatum; OFC, orbitofrontal cortex; THAL, thalamus; 

vmPFC, ventromedial prefrontal cortex; VTA/SN, ventral tegmental area/substantia nigra. 

 

Perhaps unsurprisingly, the dysregulation of both food and drug intake is linked, at least in 

part, to an aberrant functioning of the reward system. In humans, one of the earliest evidence 

pointing to a shared pathophysiology between obesity and substance-use disorder (SUD) 

comes from a seminal paper by Wang and colleagues (Wang et al., 2001). By means of 

Positron Emission Tomography (PET) and [C-11]raclopride (a radioligand for the D2 DA 

receptors), the authors observed a marked reduction of D2 receptor availability in the 

striatum of obese compared to healthy-weight individuals; further, in obese subjects, D2 

receptor availability correlated with the Body-Mass Index (BMI, an indirect measure of 

adiposity) such that the higher the BMI, the lower the availability of D2 receptors (Wang et 

al., 2001). Because lower striatal D2 receptor availability was also observed in SUD, 

including heroin (Wang et al., 1997), cocaine (Volkow et al., 1993), and alcohol dependence 

(Hietala et al., 1994), the authors suggested that a D2 receptor deficiency is associated with 

the addictive behavior, irrespective of the type of reward (Wang et al., 2001).  

Indeed, accumulating evidence suggests that reward system malfunctions are not only 

observed in obesity and SUD, but they are also present in other disorders of the motivation, 
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including, for example, internet pornography addiction (Brand et al., 2016), and gambling 

disorder (Limbrick-Oldfield et al., 2017). In other words, reward system dysfunctions seem 

to be involved in every situation where “habits”, whether they are directed toward 

biologically relevant (e.g., food, sex) or irrelevant stimuli (e.g., drugs, gambling), become 

“bad” and out of control. 

Since the publication of the seminal work by Wang and colleagues in 2001 (Wang et al., 

2001), there has been an explosive growth in the number of neuroimaging studies, including 

PET and functional Magnetic Resonance Imaging (fMRI), published on obesity and 

addiction (Figure 1.2). As the reader shall see in the next sections, much of the 

neuroscientific research in these fields focused on the study of the neural correlates of 

craving, that is a strong and compelling desire to seek, and to consume, a reward. In 

particular, human neuroimaging research has been dominated by the use of the “cue-

reactivity” paradigm: a simple experimental procedure that consists in the examination of 

the physiological, behavioral, and subjective responses to the controlled exposure to food or 

drug-related stimuli. 

 

 

 

Figure 1.2. PubMed search for neuroimaging studies on obesity and addiction | Number of 

neuroimaging studies published from year 1995 to 2019 for the two queries: “neuroimaging AND 

obesity” (green) and “neuroimaging AND addiction” (red). PubMed search performed on September 

28th, 2020.

 

In what follows, I will first describe the major brain circuits underlying cue-reactivity in 

obesity and SUD. Then, based on the available neuroimaging literature, I will discuss the 

influence of the main internal and external factors that modulate the neural reactivity to cues 

in obesity and SUD, in light of a unitary model. In particular, I will focus on the use of meta-



 

 

 

6 

analytical approaches: these are making it possible the testing of complex effects according 

to factorial designs (e.g., the interaction between drug cues, treatment status and nature of 

the drug of abuse), by combining information coming from disparate sources in ways that 

single prospective studies cannot afford. 

Finally, I will discuss the role of brain-centred treatments in the management of obesity and 

addiction, with particular reference to the effects of non-invasive brain stimulation and 

modulation techniques, such as the Transcranial Magnetic Stimulation (TMS) and the 

transcranial Direct Current Stimulation (tDCS), in the reduction of craving.

 

1.2. Images of desire: the neural correlates of cue-reactivity 

An effective description of the experience of the cue-induced craving, and of its real-life 

consequences, is reported in Childress et al. 1993, page 1: “Jimmy1 pulls out of the graveled 

driveway onto the smooth asphalt surface of the road. It feels so good to drive again after 

the long months in “rehab.” No heroin use in over 6 months. 'Not bad’, he congratulates 

himself. But as he takes the exit into the old neighborhood, his bowels begin to growl. He 

breaks out in sweat, gripping the steering wheel and trying to ignore the raw, acid taste in 

the back of his throat. Yawning, eyes watering, he feels mounting panic, and the desire for 

drugs begins to burn in the pit of his stomach. ‘So much for good intentions’, he mutters, 

turning toward a familiar alley and the drug that will make everything right again.” 

(Childress et al., 1993). The mere sight, or spontaneous thought, of a cue (e.g., the street) 

associated with a reward (e.g., heroin) can be a powerful trigger of craving, and it can 

override long-term goals (e.g., quitting heroin use), leading to relapse (Niaura et al., 1988, 

Courtney et al., 2016). Notwithstanding the obvious differences between the two rewards, it 

is reasonable to expect a similar scenario in individuals who try to stick on a diet: the simple 

sight of a fast-food sign near home may frustrate the efforts to lose weight. The cue-reactivity 

paradigm, combined with neuroimaging techniques, offers a window into the neural circuits 

that mediate those processes. These include, of course, not only the sensory, hedonic, and 

motivational reactions to such cues, but also higher-order attentional, decision-making, and 

inhibitory control processes.  

Dovetailing with the complexity of the phenomenon, several reviews (Dagher, 2012, 

Garrison and Potenza, 2014, Giuliani et al., 2018) and meta-analyses (Chase et al., 2011, 

 

 
1 Not the real name of the patient, as the authors specified in their manuscript. 
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Kühn and Gallinat, 2011, van der Laan et al., 2011, Engelmann et al., 2012, Brooks et al., 

2013, Schacht et al., 2013, Huerta et al., 2014, Kennedy and Dimitropoulos, 2014, Pursey et 

al., 2014, van Meer et al., 2015) have highlighted the role of a distributed network of brain 

regions that are recruited during endogenous (e.g., spontaneous thoughts, mental imagery) 

and exogenous (e.g., perceptual) cue-reactivity. From a functional point of view, these can 

be broadly categorized into two main circuits: those underlying the sensory, hedonic, and 

motivational reactions to cues (cue-reactivity), and those supporting the regulation and 

valuation of such cue-reactivity (cue-regulation) through higher-order attentional, decision-

making, and inhibitory control processes (Figure 1.3). Even if the former is more tightly 

related with “bottom-up” processes prompted by the exposure to cues, and the latter is more 

tightly linked to “top-down” control processes, it is important to underline that these two 

circuits do not always operate in antithesis and, as such, they do not represent a dual “go/no-

go” system. 

 

 

Figure 1.3. Schematic representation of the main brain circuits involved in the reactivity and 

regulation of food and drug cues | The major brain networks identified in cue-reactivity studies can 

be broadly categorized into a “cue-reactivity” network, subserving sensory, hedonic, and 

motivational reactions to cues (red), and into a “cue-regulation” network, involved in also higher-

order attentional, decision-making, and inhibitory control processes (blue). Dotted circles represent 

medial structures on lateral surface. ACC, anterior cingulate cortex; AMY, amygdala; CAU, caudate; 

dlPFC, dorsolateral prefrontal cortex; HIPP, hippocampus; INS, insula; MC, motor cortex; NAc, 

nucleus accumbens; OC, occipital cortex; OFC, orbitofrontal cortex; PAL, pallidum; preSMA, pre 

supplementary motor area; SN, substantia nigra; SSC, somatosensory cortex; VS, ventral striatum; 

VTA, ventral tegmental area.
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Both networks play a crucial role in the regulation of food and drug intake, as demonstrated 

by prospective neuroimaging studies linking neural cue-reactivity to different behavioral and 

clinical outcomes. In human overweight/obese individuals, activity in several brain regions, 

including the striatum, sensory cortices, insula, and PFC (Stice et al., 2010b, Murdaugh et 

al., 2012, Yokum et al., 2014), can predict weight-change at different follow-ups, suggesting 

that food cue-reactivity may be employed to predict weight trajectory and the outcome of 

weight-loss interventions. These findings can be extended to addiction, where similar brain 

activation patterns in response to drug cues were found to predict subsequent relapse 

(Grüsser et al., 2004), reinforcing the notion that neural responsivity to reward-related cues 

can be used as a predictive biomarker also in SUD (Janes et al., 2010, Li et al., 2015, 

Courtney et al., 2016). Overall, this is evidence that neural cue-reactivity inside the scanner 

can be a reliable proxy of the real-life brain dynamics that may contribute to the enduring of 

obesity and addiction. 

Nevertheless, real-life encounters with food or drug-related cues occur in a variety of forms, 

and reactions to such cues also depend on as many contingencies. Watching food-related 

commercials after dinner is different from watching the same advertisement when dinner is 

approaching; similarly, watching alcohol-related commercials may feel different for alcohol-

dependent individuals who are under treatment compared to those who are not. In what 

follows, I will provide a brief survey of the empirical studies investigating the factors that 

modulate the neural reactivity to food and to drug cues. 

These findings will be discussed in light of a unitary model, with particular reference to the 

most studied factors for obesity and addiction.

  

1.3. Factors modulating the neural reactivity to food and drug cues 

Recently, Jasinska and colleagues, based on a survey of neuroimaging studies, proposed a 

model of the factors that modulate the neural drug cue-reactivity in addiction research 

(Jasinska et al., 2014). In particular, the authors suggested that a variety of individual-

specific (e.g., addiction severity, treatment status, abstinence/withdrawal status, length and 

intensity of drug use, stressor exposure) and study-specific factors (e.g., drug availability, 

sensory modality and length of cue presentation, implicit/explicit regulation of craving) can 

either up or down-regulate the neural responses to drug cues. I adapted this model2 to provide 

 

 
2 I acknowledge that the present model is far from being complete, as it does not include many other 

factors that can modulate the neural reactivity to food and to drug cues (e.g., gender, developmental 
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a unitary framework that accommodates the factors that modulate the neural reactivity to 

food cues in obesity within a drug-related model (Figure 1.4).  

These factors are expected to act in isolation, by up or down-regulating the responses of the 

cue-reactivity and cue-regulation networks, or in interaction, giving rise to specific brain 

activation patterns. Below, I will review the most relevant internal (genetic and 

developmental, cognitive and physiological) and external (cue-specific, environmental) 

factors that are known to modulate the neural reactivity to food and to drug cues: whenever 

possible, studies on obesity and SUD will be discussed in parallel. 

 

 

 

Figure 1.4. Factors modulating the neural cue-reactivity to food and/or drug cues | This 

simplified model, adapted from Jasinska et al., 2014, displays the main internal (genetic and 

developmental, physiological and psychological) and external factors (cue-specific, environmental) 

that modulate the neural response to food and/or drug cues in obesity and SUD. These factors are 
expected to act in isolation, by up (+) or down-regulating (-) the responses of the cue-reactivity and/or 

cue-regulation network, or in interaction, giving rise to specific brain activation patterns. These, in 
turn, are expected to influence craving and, ultimately, food or drug intake. 

 

 
stage, length of cue-presentation, duration of the disease, just to name a few). Such an in-depth 

review would be beyond the scope of the present introduction: conversely, I hope that a unitary, yet 

incomplete, model will prove useful to ease the interpretation of the vast and heterogeneous literature 

on the neural cue-reactivity. 
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The purpose of the current review is twofold: first, to provide an overview of the major 

factors that modulate the activity of the cue-reactivity and cue-regulation networks, in light 

of a unitary neurocognitive framework that may guide future research on the neural cue-

reactivity in obesity and SUD; second, to highlight the need of empirical and meta-analytical 

studies aimed at assessing complex factorial designs, in order to explore the main and the 

interactive effects of the factors under examination.  

Specific attention will be directed to the most studied factors in the domain of obesity (e.g., 

obesity severity or weight status, sensory modality of stimulus presentation, satiety state) 

and SUD (e.g., addiction severity, treatment status or drug availability). 

 

1.3.1. Internal factors: genetic and developmental 

Genetic differences can account up to the 70% of the vulnerability to obesity (Baessler et 

al., 2005) and addiction (Uhl et al., 2002), and the genetic make-up can also account for the 

inter-subject variability in the neural responses to food and drug cues. For example, the 

TaqIA (rs1800497) polymorphism in chromosome 11 is associated with greater DA 

signaling capacity: subjects with A2/A2 genotype seem to have 30–40% more dopamine D2 

receptors (Pohjalainen et al., 1998, Ritchie and Noble, 2003). Interestingly, higher caudate 

activity in response to milkshake cues predicted future weight gain in a sample of 

adolescents, but only in those possessing the TaqIA A2/A2 allele, whereas the opposite was 

found in those adolescents possessing one or more TaqIA A1 allele (i.e., lower caudate 

activity in response to the same gustatory cue predicted weight gain) (Stice et al., 2008a, 

Stice et al., 2015a). Similar results were found in adults with respect to amygdala activation 

in response to milkshake gustatory cues (Sun et al., 2015). 

Genes associated with the regulation of DA neurotransmission are also found to influence 

the neural reactivity to drug cues. The dopamine receptor 4 variable number tandem repeat 

(DRD4 VNTR) polymorphism codes the dopamine 4 (D4) receptor: individuals possessing 

the 7-repeat (or longer, DRD4 L) allele display greater cue-induced craving for smoking 

(Hutchison et al., 2002) and heroin (Shao et al., 2006); further, compared to those without 

one or two longer DRD4 VNTR allele, those possessing the DRD4 L allele exhibit greater 

responses of the cue-reactivity and cue-regulation networks, such as the insula and the 

superior PFC, in response to visual cigarette-related cues (McClernon et al., 2007). 

Similarly, alcohol-dependent subjects having the DRD4 L allele showed greater activity of 

the anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and striatum in response to 

alcohol taste cues compared to litchi juice (Filbey et al., 2008). 
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With respect to developmental factors, it suffices to mention that pre-natal exposure to 

nicotine increase the risk of nicotine dependence (Buka et al., 2003), and obesity (Toschke 

et al., 2003), in the offspring. Few studies investigated the modulatory role of parental 

obesity/SUD status on the neural responses to food or drug cues in the offspring. One study 

showed that healthy-weight adolescents with two obese or overweight parents exhibit greater 

activity of the striatum and OFC in response to milkshake taste cues compared to healthy-

weight adolescents with two lean parents (Stice et al., 2011a). Likewise, another study 

showed that non-substance using adolescents with one or two parents with an history of 

substance use/dependence, compared to those without parents with drug use/dependence 

history, showed greater midbrain responsivity to milkshake taste receipt (Stice and Yokum, 

2014), suggesting that family history of obesity and addiction both modulate the neural 

reactivity to food cues. 

A schematic representation of the hypothetical modulation (up or down-regulation) of the 

genetic and developmental factors reviewed here on the cue-reactivity and cue-regulation 

networks is given in Figure 1.5. 

 

 

Figure 1.5. Genetic and developmental factors modulating the neural cue-reactivity | 

Hypothetical model describing the up (+) and down-regulation (-) of the cue-reactivity (red circle) 

and cue-regulation networks (blue circle) as a function of the genetic and developmental factors 

considered.
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1.3.2. Internal factors: physiological and psychological 

A number of physiological (e.g., satiety and abstinence status, disease severity) and 

psychological factors (e.g., motivation to lose weight/quit drug use, explicit or implicit 

regulation of craving) modulate the neural responses to food and drug cues. Of particular 

interest are the roles of satiety and abstinence in modulating the neural responses to food 

and drug cues, respectively. Compared to healthy weight individuals, obese patients exhibit 

greater activity of the ACC and medial PFC in response to visual food cues prior to a meal 

(Martin et al., 2010), supporting the notion that hunger potentiates the neural responses to 

food cues, and even more so in obesity. Critically, in the same study, activity in the medial 

PFC in response to food cues decreased after a meal only in healthy weight participants, 

suggesting that altered satiety signaling may contribute to the enduring of obesity. Indeed, 

obese compared to healthy weight individuals display greater activity of several brain 

regions, including the PFC, OFC, insula, amygdala, and striatum in response to visual drug 

cues, even when they are satiated (Dimitropoulos et al., 2012, Holsen et al., 2012, Cornier 

et al., 2013, Martens et al., 2013). These results are broadly confirmed by two neuroimaging 

meta-analyses that addressed the role of satiety in modulating the neural response to food 

cues in obesity (Kennedy and Dimitropoulos, 2014, Pursey et al., 2014). Similarly, short-

term abstinence was shown to up-regulate the neural reactivity to drug cues in nicotine 

(McClernon et al., 2005), alcohol (Fryer et al., 2013), and heroin addiction (Li et al., 2013a), 

and it has been associated with increased responses in the thalamus, hippocampus, striatum, 

insula, and the PFC, including the ACC. Greater PFC and cerebellar activity in smoking-

deprived individuals exposed to smoking cues was also reported by a meta-analysis of 

neuroimaging studies on nicotine SUD (Engelmann et al., 2012). Conversely, long-term 

compared to short-term abstinence is usually associated with a decreased neural cue-

reactivity, in line with the idea that long-term abstinence can decrease the motivational 

salience of drug-associated stimuli (Lou et al., 2012, Li et al., 2013a).  

The severity of obesity or addiction status is another factor capable of modulating the 

neural reactivity to food and drug cues. The BMI, an indirect index of adiposity and severity 

of obesity, is positively associated with the neural response to drug cues in regions involved 

in the sensory, hedonic, and motivational responses to food cues (e.g., striatum, 

somatosensory cortex, insula), as well as in brain regions involved in the regulation and 

evaluation of food-related cues (e.g., OFC, PFC) (Rothemund et al., 2007, Martens et al., 

2013). Accordingly, neuroimaging meta-analyses on food cue-reactivity show that obese 
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compared to healthy weight individuals exhibit convergent hyper-activity of limbic and 

frontal regions in response to food cues, as well as convergent hypo-activity of the left dlPFC 

and insular cortex (Dimitropoulos et al., 2012, Brooks et al., 2013, García-García et al., 2014, 

Pursey et al., 2014). Dovetailing with the evidence that obesity severity is associated with 

an up-regulation of the neural substrates of cue-reactivity, neuroimaging studies on SUD 

have shown that addiction severity, measured via self-reported questionnaires and clinical 

interviews, is positively associated with DA release in the striatum (Volkow et al., 2006), 

and with the neural response to drug cues in the cue-reactivity network, including the 

striatum, amygdala, insula, and in the cue-regulation network, including the ACC, the 

supplementary motor area, and the parietal cortex (Smolka et al., 2006, Claus et al., 2011). 

Results of neuroimaging meta-analyses on drug cue-reactivity in SUD are largely in line 

with the notion that exposure to drug-associated cues, in individuals with SUD compared to 

light users or healthy controls, is associated with an up-regulation of key regions of the cue-

reactivity (e.g., striatum, insula, amygdala, hippocampus) and cue-regulation networks (e.g., 

vmPFC, OFC, ACC) across different populations of SUD (heroin, cocaine, alcohol, nicotine) 

(Chase et al., 2011, Kühn and Gallinat, 2011, Engelmann et al., 2012, Tang et al., 2012a, 

Schacht et al., 2013, Hanlon et al., 2014). Overall, disease severity is associated with an up-

regulated response to food and drug cues, in key areas of the cue-reactivity and cue-

regulation networks. 

Finally, two other internal psychological factors can modulate the neural activity to food 

and/or drug cues: the regulation of craving and treatment status, or motivation to quit drug 

use. Explicit regulation of craving, associated with different cognitive reappraisal 

strategies (i.e., mindful attention, thinking about long-term costs of eating high-calories 

palatable food/drug use, thinking about long-term benefits of not eating/using it, and actively 

suppressing food/drug craving) have been associated with increased activity of cue-

regulation regions (e.g., ventrolateral PFC or vlPFC, dorsolateral PFC or dlPFC) and a 

concurrent decrease in activity of cue-reactivity and attention-related regions (e.g., VTA, 

ventral striatum, amygdala, precuneus, posterior cingulate cortex, parietal regions) during 

food-related (Kober et al., 2010, Scharmüller et al., 2012, Siep et al., 2012, Yokum and Stice, 

2013, Tuulari et al., 2015) and drug-related stimulation (Volkow et al., 2010, Hartwell et al., 

2011, Westbrook et al., 2013). The overall evidence supports the view that explicit cognitive 

regulation of craving down-regulates the cue-reactivity network in favor of an up-

regulation of the cue-regulation network. 
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A schematic representation of the hypothetical modulation (up or down-regulation) of the 

physiological and psychological factors reviewed here on the cue-reactivity and cue-

regulation networks is given in Figure 1.6. 

 

 

Figure 1.6. Physiological and psychological factors modulating the neural cue-reactivity | 

Hypothetical model describing the up (+) and down-regulation (-) of the cue-reactivity (red circle) 

and cue-regulation networks (blue circle) as a function of the physiological and psychological factors 

considered.

 

 

In SUD, there is also evidence that an explicit motivation to change substance use, as 

reported by a self-reported questionnaire, is associated with a decreased reactivity to 

cocaine-related versus neutral pictures in a wide network of brain regions comprising the 

frontal, temporal, and occipital cortices (Prisciandaro et al., 2014). To the best of my 

knowledge, no studies investigated the neural correlates of the explicit motivation to change 

food intake in obesity. Still, studies on treatment-seeking obese individuals (i.e., individuals 

who are motivated to alter their eating habits) examining the neural predictors of future 

weight-loss can provide some insights. In one study, lower responses to food cues in key 

regions of the cue-reactivity (e.g., striatum, insula, occipital cortex) and cue-regulation 

networks (e.g., PFC, parietal cortex) predicted greater weight-loss at a 12-weeks follow-up 

in a sample of treatment-seeking overweight and obese individuals (Murdaugh et al., 2012). 

Similarly, decreases in striatal (caudate, putamen, pallidum) activity in response to food cues 
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after 1-month of weight-loss intervention were associated with greater total weight-loss at 

6-months at the end of the intervention, in a sample of obese individuals (Hermann et al., 

2019). Overall, these findings suggest that explicit and implicit (as indexed by the treatment 

status) motivation to change is associated with a lower reactivity to food-cues, particularly 

in the cue-reactivity network. 

It is worthy to note that the effect of treatment status is mediated by at least two different 

aspects: the motivation to change, and the expectation to consume food or drug soon after 

cue exposure, or food/drug availability (Wilson et al., 2005, McBride et al., 2006, Blechert 

et al., 2010). As the availability of the reward is here considered as an external factor, its 

influence over the neural reactivity to food and drug cues will be discussed below.

 

1.3.3. External factors: environmental 

Treatment status, conceived as a proxy of drug availability and expectancy to consume 

the substance, is one of the most studies factors that modulate the neural cue-reactivity in 

SUD (Grant et al., 1996, Wilson et al., 2004, Wilson et al., 2005, McBride et al., 2006, 

Wilson et al., 2012, Hayashi et al., 2013, Prisciandaro et al., 2014). In particular, Wilson and 

colleagues, based on the review of nineteen neuroimaging studies on drug cue-reactivity, 

proposed that activity of the cue-regulation network (in particular, of the dorsolateral PFC, 

or dlPFC, and of the OFC) is modulated by the availability and expectancy to consume the 

substance after cue-exposure (Wilson et al., 2004). Given the role of the OFC in integrating 

stimulus values (Lim et al., 2013) and in representing the expected value of rewards (Kahnt 

et al., 2010), and given the involvement of the dlPFC in planning and executing actions 

aimed at achieving the reward (Goldstein and Volkow, 2002), the authors proposed that 

frontal activity in individuals not-seeking treatment reflects, at least in part, the expectation 

to obtain the drug after the experimental session. These findings have been mainly replicated 

in studies on cocaine SUD (Grant et al., 1996, Garavan et al., 2000), whereas results from 

studies on nicotine and alcohol SUD are more mixed, with studies reporting increased 

activity in dlPFC (Claus et al., 2011) and OFC (McBride et al., 2006) when participants are 

seeking for a treatment, or when they are explicitly told to not expect drug-consumption 

soon after the experiment. Interestingly, preliminary evidence suggests that the effect of drug 

availability is independent by the motivation to quit. In one study on patients with nicotine 

SUD, both quitting-motivated and quitting-unmotivated subjects exhibited PFC activity in 

response to smoking cues, but only when they were expected to smoke within seconds, 
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compared to hours, after cue-exposure (Wilson et al., 2012). To date, only one neuroimaging 

meta-analysis tested the influence of treatment status on the neural response to reward-

related cues, in a set of heterogenous studies including substance and non-substance 

addiction, as well as unisensory and multisensory cue presentation (Chase et al., 2011). In 

particular, the authors performed two separate meta-analyses on treatment-seeking and not-

seeking treatment individuals with addiction: they observed that treatment-seeking 

individuals show convergent activity in the cue-reactivity network, comprising the ventral 

striatum, amygdala, and occipital cortex, whereas not-seeking treatment individuals display 

convergent activity in both the cue-reactivity (e.g., ventral striatum, occipital cortex) and 

cue-regulation (e.g., OFC, dlPFC) networks, partially in line with Wilson’s et al. predictions3 

(Wilson et al., 2004). 

Initial evidence points to a similar modulation of food availability on the neural responses 

to food cues. In particular, one study examined the influence of actual food availability on 

neural responses to food cues in a sample of healthy weight individuals (Blechert et al., 

2016): consistent with Wilson’s hypothesis (Wilson et al., 2004), high and low-calories 

available foods, compared to those unavailable after the experiment, induced greater activity 

of the cue-reactivity (amygdala, striatum) and cue-regulation networks, including the ACC 

and the OFC. In the same study, a significant cue (high vs. low-calories) by availability 

(available vs. unavailable) interaction was also observed in the caudate nucleus: this was 

more active in the high compared to the low-calories condition, when the high-calories food 

was available. In sum, treatment status and drug availability modulate the neural reactivity 

to drug cues also outside the cue-regulation network, and initial evidence in healthy weight 

volunteers point to similar effects of food availability and further interactions with other 

factors (e.g., stimulus characteristics). 

With respect to the other external factor taken into account here, it suffices to mention that 

stress exposure, either recent, chronic, or occurred in early-age, is associated with an 

increased vulnerability to both obesity (Torres and Nowson, 2007) and addiction (Sinha, 

2008) (see (Sinha, 2008) for a review). Further, experimental manipulation of stress (e.g., 

anticipation of stress delivered by the experimenter) and stressful early-age events (e.g., 

 

 
3 It is worthy to note that, in the study by Chase et al. (2011), no direct statistical comparison was made between 

the two groups. As a consequence, the OFC activity they observed in the not-seeking treatment group may be 

a by-product of the higher number of foci that entered the meta-analysis on not-seeking treatment patients (222 

foci), compared to the one on treatment-seeking individuals (161 foci). 
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history of abuse) can both influence the neural reactivity to drug cues, mainly by up-

regulating the cue-reactivity network and down-regulating the cue-regulation network 

(Dagher et al., 2009, Feldstein Ewing et al., 2010, Elton et al., 2015).  

The relationship between stress and the neural responses to food cues is less clear. One study, 

in a sample of lean-to-obese individuals (mean BMI = 25.6 ± 0.9 kg/m2), showed that self-

reported chronic stress is associated with increased activity of the amygdala, striatum, and 

ACC in response to high vs. low-calories food pictures, and a concurrent decreased 

activation of the left dorsolateral (dlPFC), in line with the evidence in SUD. In another study, 

brain reactivity to visual food cues was compared between obese individuals with high 

versus low self-reported levels of stress: contrary to what expected (higher activity in obese 

individuals with high levels of stress), the authors did not find any significant difference in 

the activity of the pre-defined regions-of-interest (amygdala, hippocampus, ACC, insula, 

OFC). A schematic representation of the hypothetical modulation (up or down-regulation) 

of the environmental factors reviewed here on the cue-reactivity and cue-regulation 

networks is given in Figure 1.7. 

 

 
Figure 1.7. Environmental factors modulating the neural cue-reactivity | Hypothetical model 

describing the up (+) and down-regulation (-) of the cue-reactivity (red circle) and cue-regulation 

networks (blue circle) as a function of the environmental factors considered.
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1.3.4. External factors: cue-specific 

Among the cue-specific factors, the sensory modality of cue presentation and the stimulus 

characteristics are the most studied in obesity and SUD cue-reactivity research. With respect to 

the sensory modality of cue presentation, studies on obesity and overeating usually focused 

on the visual (Holsen et al., 2012; Martin et al., 2010; Rothemund et al., 2007; Stoeckel et al., 

2008) and gustatory (Stice et al., 2010a, Green et al., 2011, Szalay et al., 2012) modalities, with 

few exceptions concerning the olfactory modality (Bragulat et al., 2010, Eiler et al., 2012, 

Jacobson et al., 2019). For evident reasons, cue-reactivity studies on SUD have been dominated 

by the visual modality of stimulation (Garavan et al., 2000, Li et al., 2005, Li et al., 2012, Li et 

al., 2013a, Li et al., 2013b, Wang et al., 2014, Zhang et al., 2018, Wei et al., 2019), except for 

alcohol SUD studies, where alcohol taste stimulation was also employed (Filbey et al., 2008, 

Claus et al., 2011), and for studies on nicotine SUD, where the administration of haptic and 

multisensory stimuli (e.g., holding a cigarette vs. a pen while exposed to a cigarette picture) is 

receiving increased attention (Yalachkov et al., 2010, Yalachkov et al., 2013).  

The impact of the sensory modality of cue presentation on the neural responses to food cues in 

obesity is particularly relevant, since the major neurocognitive theories have their own 

anatomofunctional predictions with respect to anticipatory (e.g., visual food cues) versus 

consummatory processing (e.g., taste cues) (see (Stice and Yokum, 2016) and Chapter 3 of the 

present work for a review and meta-analysis on the topic). For example, the reward surfeit 

hypothesis (Davis et al., 2004) suggests that obesity is associated with heightened responses of 

the cue-reactivity network during consummatory processing, whereas the incentive 

sensitization theory (Robinson and Berridge, 1993, Berridge et al., 2010) predicts an up-

regulation of the cue-reactivity network during anticipatory processing. In other words, the 

sensory modality of cue presentation can be used as a proxy of the underlying anticipatory (e.g., 

visual, olfactory, haptic) and consummatory (e.g., gustatory) reward processing4.  

In line with this reasoning, neuroimaging studies on SUD have shown that brain activity in 

response to unisensory haptic and multisensory drug cues, compared to unisensory visual cues, 

is more frequently associated with clinical variables such as craving and addiction severity 

(Yalachkov et al., 2009, Yalachkov et al., 2010, Yalachkov et al., 2012, Yalachkov et al., 2013), 

 

 
4 Tackling the issue by another perspective, it is possible that the effect of the sensory modality of cue 

presentation is partially mediated by the perceived availability associated with the specific sensory 

channel. In our everyday life, touching or even smelling an object means that the object is close and 

available to us. Conversely, visual cues may be present in the environment even if the actual object is 

not physically around us (e.g., tv commercials).  
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particularly in brain regions involved in habit formation (caudate nucleus), interoception and 

awareness of craving (insula), somatosensory processing and motor control (somatosensory and 

motor cortices). With this respect, haptic and multisensory cues can be employed as a proxy to 

unravel anticipatory processes related to the sensory-motor aspects of addiction, including, for 

instance, drug-taking motor skills (Yalachkov et al., 2010). In sum, whereas brain activity in 

response to unisensory visual stimuli may reflect a rather general anticipatory processing 

associated with the incentive and motivational value of drug-cues, brain responses to haptic and 

multisensory stimuli are more tightly associated with the sensory-motor aspects of SUD, thus 

suggesting an alternative yet complementary pathway to the enduring of addiction (Yalachkov 

et al., 2010, Yalachkov et al., 2012). 

Preliminary evidence in heroin SUD suggests that unisensory visual cues can also elicit greater 

responses of a cue-reactivity network involved in sensory and motor, when specific 

characteristics of the stimulus are considered (Zeng et al., 2018). For example, visual cues 

depicting drug-taking actions, compared to pictures of drug and pictures of drug tool use, 

elicited greater activity of the posterior central gyrus, para-hippocampus, supra marginal gyrus, 

superior and inferior parietal cortices in a sample of heroin-dependent individuals (Zeng et al., 

2018), suggesting that specific characteristics of the stimuli can modulate the neural reactivity 

to drug cues. To the best of my knowledge, there is no study investigating whether visual food 

cues depicting eating actions, compared to pictures of food and pictures of kitchen tools, elicit 

greater sensory and motor processing in obese individuals. However, other relevant 

characteristics of food stimuli can modulate the neural responses to cues in obesity. For 

example, high-calories food pictures usually induce greater activity of the cue-reactivity (e.g., 

dorsal striatum, parahippocampal gyrus) and cue-regulation (e.g., ACC) networks in 

overweight and obese individuals (Stoeckel et al., 2008, Blechert et al., 2016), and initial 

evidence points to higher order interactions between stimulus characteristics (e.g., high vs. low-

calories food) and food availability (e.g., available vs. available) (Blechert et al., 2010). 

Interestingly, a recent line of evidence suggests that the level of transformation of foods (e.g., 

unprocessed vs. processed) may be another important factor that modulates the neural responses 

to food cues (Coricelli et al., 2019). In their electroencephalogram (EEG) study, Coricelli and 

colleagues recorded visually evoked potentials (VEPs) while healthy individuals watched 

pictures of processed versus unprocessed foods equated for energy content. The authors showed 

that, as early as 130 ms after stimulus onset, brain activity discriminates between processed 

versus unprocessed foods, irrespectively of calorie-content; further, estimation of the sources 

of neural activity suggested that processed vs. unprocessed foods lead to the recruitment of the 
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cue-reactivity network, including the occipital cortices bilaterally, whereas unprocessed vs. 

processed foods lead to the activation of a widespread network of brain regions, including the 

inferior frontal and temporal cortices, and the motor cortex (Coricelli et al., 2019). With this 

respect, it might be interesting to investigate whether weight status interacts with the level of 

food transformation (regardless of the caloric content), and whether this effect converges in 

discrete neuroanatomical structures of the cue-reactivity and cue-regulation networks.  

In sum, the sensory modality of stimulus presentation modulates the neural reactivity to cues 

in obesity and SUD, and their modulatory effect may also depend on the weight status of the 

participants, as far as studies on obesity are concerned, and on the severity of the dependence, 

when studies on SUD are considered. A schematic representation of the hypothetical 

modulation (up or down-regulation) of the cue-specific factors reviewed here on the cue-

reactivity and cue-regulation networks is given in Figure 1.8. 

 

 

  

Figure 1.8. Cue-specific factors modulating the neural cue-reactivity | Hypothetical model 

describing the up (+) and down-regulation (-) of the cue-reactivity (red circle) and cue-regulation 

networks (blue circle) as a function of the cue-specific factors considered.
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As the above review suggests, the neuroimaging literature on the cue-reactivity paradigm in 

obesity and SUD is vast, and heterogenous. The compelling evidence that numerous internal 

and external factors modulate the neural reactivity to such cues makes it even harder to translate 

empirical knowledge into clinical practice (e.g., translational medicine), identifying reliable 

biomarkers of disease severity that might be used to predict, or to assess, treatment outcomes. 

Moreover, it is reasonable to expect that different internal and external factors interact with 

each other, giving rise to specific brain activation patterns as a function of the factors under 

examination.  

The study of such higher-order interactions is not only critical for basic research, but also for 

translational and personalized medicine, as it can guide future cognitive and brain-centred 

treatments through the identification of the neural circuitry that should be up or down-regulated 

under specific circumstances, or for a particular population of patients. 

In what follows, I will describe the main clinical implications of the literature reviewed above, 

with respect to (i) cognitive-behavioral interventions, and (ii) brain-centred (neuromodulation 

and neurostimulation) treatments aimed at reducing food and drug craving. 

 

1.4. Translational implications for cognitive-behavioral interventions 

Unraveling the neural underpinnings of food and drug craving is the conditio sine qua non of 

designing effective treatment approaches. The overall evidence reviewed above indicates that 

obesity and SUD are both associated with heightened activity of brain regions involved in 

sensory, hedonic, and motivational processes, which can also be accompanied by diminished 

activity of key nodes of the cue-regulation network involved in (top-down) cognitive control 

(e.g., vlPFC, dlPFC). Cognitive-behvioral interventions aimed at empowering cognitive control 

strategies, while suppressing the hedonic and motivational processes prompted by food and 

drug cues, aim at fixing this unbalance by modulating the activity of the dys-functional brain 

regions through specific cognitive strategies.

As already pointed out in section 1.3.2, different cognitive reappraisal strategies (i.e., mindful 

attention, thinking about long-term costs of eating high-calories palatable food/drug use, 

thinking about long-term benefits of not eating/using it, and actively suppressing food/drug 

craving) operate via the activity of the cue-regulation network, by down-regulating the activity 

of the cue-reactivity network in response to food (Kober et al., 2010, Scharmüller et al., 2012, 

Siep et al., 2012, Yokum and Stice, 2013, Tuulari et al., 2015) and to drug cues (Volkow et al., 
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2010, Hartwell et al., 2011, Westbrook et al., 2013). This is an area where cognitive-behavioral 

interventions can be directly informed by basic research on cue-reactivity.  

Preliminary results suggest that cognitive-behavioral interventions aimed at empowering 

cognitive reappraisal strategies (Stice et al., 2015b), or attentional and inhibitory processes 

(Stice et al., 2017), induce significant weight-loss, and they are associated with diminished 

reactivity to food cues in brain areas involved in reward (e.g., putamen) and attention (e.g., 

cingulate cortex, inferior parietal lobe), and augmented activity of regions involved in 

inhibitory control (e.g., inferior frontal gyrus). Despite not being associated with long-lasting 

changes in eating habits (Stice et al., 2015b, Stice et al., 2017), these results provide a proof of 

concept that cognitive behavioral interventions, which can be often delivered costless and at 

patients’ house, can be used in isolation or in combination with other extant treatments to 

improve their efficacy. 

The study of the internal and external factors that modulate the neural activity to food and drug 

cues has also some translational potential, and it can help improving the efficacy of existing 

approaches. Cognitive-behavioral interventions aimed at empowering cognitive reappraisal and 

control strategies in obesity may be tailored to accommodate the effects of satiety, for example 

by focussing on the down-regulation of hedonic and motivational responses to visual cues that 

persist beyond satiety. Similarly, the evidence that treatment status and drug availability 

modulate the neural reactivity to drug cues is per se sufficient to justify tailor-made 

interventions that take into account not only the individuals’ motivation to quit drug use, but 

also the perceived availability of the substance. 

In sum, cognitive-behavioral interventions attempt to modulate the neural activity of the cue-

reactivity and cue-regulation network from the “inside”, by empowering those cognitive 

processes that rely on the brain circuits that show aberrant responses to food or drug cues. As 

the reader shall see below, neuromodulation and neurostimulation approaches allow to tackle 

this issue the other way around, from the “outside”: through the direct modulation and 

stimulation of the cortical areas implied in cognitive control processes. 

 

1.5. Translational implications for brain-centered treatments 

During the last two decades, there has been an increasing interest into the application of non-

invasive brain stimulation and modulation techniques for the management of obesity and 

addiction. In particular, the two most commonly used brain stimulation and modulation 

techniques are, respectively, TMS and tDCS.  
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The first is based on the application of rapidly changing magnetic fields (delivered with a coil 

encased in plastic that is placed over the scalp of the subject), that cause an induction of 

secondary currents in the adjacent cortex that can be strong enough to trigger neuronal action 

potentials (Barker, 1991). In repetitive TMS (rTMS), train of pulses are delivered to the cortical 

surface, leading to a sustained alteration of the neural excitability; this alteration can be induced 

by high-frequency “excitatory” stimulation (> 5 Hz), or by low-frequency “inhibitory” 

stimulation (< 1 Hz). In the case of the second technique, tDCS, mild currents (typically in the 

order of 1–2 mA) are applied directly over the head through a pair of saline-soaked electrode 

pads connected to a battery-like device. Approximately 50% of the current delivered by tDCS 

penetrates the scalp and can raise or decrease the resting membrane potential of neurons in 

underlying areas (anodal or cathodal tDCS stimulation, respectively), causing changes in 

spontaneous firing (Nitsche et al., 2008).  

To date, the brain region that is most frequently the target of tDCS and TMS is the dlPFC. This 

choice is motivated, on the one hand, by the evidence that the cue-regulation network 

(particularly, the dlPFC) plays a crucial role in the inhibition of behavioral responses, and in 

the explicit regulation of craving, in both obesity and SUD (Batterink et al., 2010, Hartwell et 

al., 2011, Yokum and Stice, 2013); on the other hand, by the fact that the dlPFC lies close to 

the scalp, and common TMS and tDCS techniques act only on the cortical surfaces. Converging 

evidence from two meta-analysis indicate that excitatory non-invasive brain stimulation of the 

dlPFC (by means of rTMS and anodal tDCS) is effective in reducing craving (Jansen et al., 

2013), and consumption (Song et al., 2019) across different populations of patients with eating 

disorder, including obesity, and with SUD (individuals addicted to legal and illegal substances). 

Preliminary evidence suggests that the insular cortex might be a promising neuroanatomical 

target of stimulation for the management of obesity (Ferrulli et al., 2019b) and SUD (Dinur-

Klein et al., 2014). Based on the evidence that damage to the insular cortex is associated with 

the disruption of cigarette smoking (Naqvi et al., 2007), Dinur-Klein and colleagues designed 

a rTMS treatment aimed at targeting the bilateral insular and prefrontal cortices (Dinur-Klein 

et al., 2014), by means of an H-coil specifically design to reach deeper cortical structures, also 

known as deep rTMS (Zangen et al., 2005). The authors showed that high-frequency (10 Hz), 

but not low-frequency (1 Hz), deep rTMS led to an abstinence rate of 44% at the end of the 

three-weeks treatment, and to an estimated 33% of abstinence rated at 6-months follow-up 

(Dinur-Klein et al., 2014). Recently, the efficacy of excitatory (18 Hz) over inhibitory (1 Hz) 

deep rTMS targeting the bilateral PFC and insular cortices has been also demonstrated in 

obesity (Ferrulli et al., 2019b). In particular, the authors showed that real excitatory deep rTMS 
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induced greater weight-loss at the end of the treatment, and for up to 1 year (Ferrulli et al., 

2019b), supporting the idea that the insular cortex may be another transdiagnostic target for the 

management of obesity and SUD. 

Perhaps surprisingly, the neurobiological mechanisms beyond the efficacy of these brain 

stimulation treatments remain almost completely unexplored, as few studies investigated the 

neurofunctional changes associated with a rTMS treatment in obesity and SUD (Herremans et 

al., 2015, Kim et al., 2019b), and no study, to the best of my knowledge, involved deep rTMS. 

Several underlying mechanisms have been proposed to explain the efficacy of non-invasive 

brain stimulation approaches: (i) excitatory stimulation of the dlPFC empowers patients’ ability 

to exert cognitive control over food or drug consumption; (ii) since deep TMS influence cross-

hemispheric cortical and subcortical activity, including the insula and anatomically-connected 

regions (Zangen et al., 2005, Roth et al., 2007, Fiocchi et al., 2018), another mediating 

mechanism may be related to a generalized disruption of the neural circuits associated with 

craving, which involve a wide network of cortical and subcortical brain regions described in 

the current Chapter; (iii) finally, in line with the evidence that stimulation of the PFC induce 

DA release in the mesocorticolimbic circuitry (Strafella et al., 2001, Kanno et al., 2004), 

stimulation-induced DA release may “mimic” the neurochemical effects of food or drugs in 

absence of actual consumption. 

 

It is important to note that, in the vast majority of cases, neurostimulation is delivered “offline”, 

after the exposure to food or drug-related cues. Alternatively, “online” PFC stimulation, 

delivered while the patient is actively trying to suppress cue-elicited craving, may also prove 

effective in reducing craving, by directly acting on those brain circuits that are recruited during 

the exposure to cues. With this regard, neurocognitive models of craving, and of the internal 

and external factors that modulate the neural cue-reactivity (Jasinska et al., 2014, Figure 1.4), 

are crucial for the identification of the brain areas that are recruited by a particular stimulus 

(visual, tactile, olfactory, gustatory), in a certain population of patients (obese patients, legal or 

illegal SUD), and/or under specific contingencies (satiety or abstinence/withdrawal state, 

treatment status and drug availability).

However, before basic research on cue reactivity can be translated into tailor-made “online” 

stimulation schemes, the effect of PFC neurostimulation on the functional brain activity, 

connectivity, and organization should be carefully addressed, and elucidated. If anything, a 

model such as the one proposed in Figure 1.4 may be a valuable framework to ease this 
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endeavor, guiding the neurocognitive interpretation of the neurofunctional changes induced by 

the treatment. 

 

1.6. Aims 

The present thesis was designed to address two general purposes: first, to assess the individual, 

and interacting, effects of different factors that modulate the neural reactivity to cues in obesity 

and SUD, by adopting a novel meta-analytical approach based on hierarchical clustering 

analysis (Clustering the Brain, CluB; (Cattinelli et al., 2013b, Berlingeri et al., 2019)); second, 

to evaluate the neurofunctional changes associated with a deep rTMS treatment aimed at 

inducing weight-loss in a sample of obese individuals (Ferrulli et al., 2019b), by adopting a 

novel data-driven approach to the analysis of resting-state fMRI data (rs-fMRI) (Martuzzi et 

al., 2011). 

In Chapter 2, I will use the CluB method to test the main and interactive effects of three of the 

main factors that modulate the neural reactivity to food cues in obesity: weight status (healthy 

weight vs. obese), sensory modality of stimulus presentation (visual vs. gustatory), and satiety 

state (hungry vs. satiated). In particular, evidence from such main and interactive effects will 

be taken as a benchmark to test the validity of the main neurocognitive theories of overeating 

and obesity. 

In Chapter 3, I will employ the same approach to test the main and interactive effects of 

addiction severity (individuals addicted to legal vs. illegal substances) and treatment status 

(treatment-seeking vs. not-seeking treatment individuals) on the neural reactivity to drug cues. 

Again, evidence from such main and interactive effects will be taken as a benchmark to test the 

validity of one of the most influential neurocognitive theories on the influence of treatment 

status on the neural drug cue-reactivity (Wilson et al., 2004). 

An in-depth analysis of the methodology employed in Chapters 2 and 3 is given in Appendix 

A, where I will demonstrate, by means of two validation studies, that CluB can (i) reliably 

extract a set of spatially coherent clusters of activations from a database of stereotactic 

coordinates, and (ii) test for factor-specific clusters of convergent activation within designs that 

cannot be usually implemented in a meta-analytical study. 

In Chapter 4, I will assess the neurofunctional changes associated with a deep rTMS treatment 

targeting the bilateral insular and prefrontal cortices aimed at inducing weight-loss and reducing 

food craving in a sample of 17 obese individuals. In particular, I will employ a novel data-

driven method to test that hypothesis that excitatory, compared to sham, deep rTMS over the 
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bilateral insular and prefrontal cortices is associated with changes in the brain functional 

organization in key areas of the cue-reactivity and/or cue-regulation networks.  

Finally, in Chapter 5, the results of the single studies will be presented within a unitary 

neurocognitive framework (Figure 1.4) through a general discussion.  

 

Since much of the present work is already published (Devoto et al., 2018, 2020, Berlingeri et 

al., 2019), or it is currently submitted to peer-reviewed journals (Devoto, Ferrulli et al., 

submitted5), some sections (e.g., methods, results) are taken from the papers, whereas others 

(e.g., introduction, discussion) will be adapted to reflect the narrative structure expected from 

a PhD thesis. Shared comments across the studies (e.g., comparison of food vs. drug cue-

reactivity) will be pointed out in the general discussion (Chapter 5).

 

 

 

  

 

 
5 Devoto F. & Ferrulli A., Zapparoli L., Massarini S., Banfi G., Paulesu E., and Luzi L. “Repetitive deep 

TMS for the reduction of body weight: bimodal effect on the functional brain connectivity in obese 

individuals”.  
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Chapter 2 – Hungry Brains: A Meta-analytical Review of Brain Activation Imaging 

Studies On Food Perception and Appetite in Obese Individuals 

 

2.1. Introduction 

In the previous Chapter, I reviewed the neuroimaging literature about the cue-reactivity 

paradigm, and I described a unitary model (adapted from (Jasinska et al., 2014)) of the factors 

that modulate the neural reactivity to food and to drug cues, in obesity and SUD (Chapter 1). 

In the present Chapter, I reassess the available task-based imaging activation evidence on the 

neural cue-reactivity to food in obese individuals, by means of a new meta-analytical approach 

that combines hierarchical clustering analysis, as implemented in the software CluB (Clustering 

the Brain, (Berlingeri et al., 2019); see Appendix A for an in-depth description and validation 

of the tool), with the Activation Likelihood Estimation (ALE) method implemented in the 

GingerALE software (Eickhoff et al., 2009, Eickhoff et al., 2012, Turkeltaub et al., 2012).  

This is not, of course, the first meta-analysis on the subject: yet, as the reader shall see, for the 

first time I explicitly assess the mutual relationship between three factors that modulate the 

neural reactivity to food cues: (i) weight status (healthy weight, or HW vs. obese, or OB), (ii) 

sensory modality of cue-presentation (visual vs. gustatory), and (iii) satiation state at the time 

of testing. Importantly, the effects exerted by the aforementioned factors on the neural reactivity 

to food cues in obese individuals have been taken as benchmarks for the discussion of the main 

neurocognitive theories of obesity and overeating (see (Stice and Yokum, 2016) for a detailed, 

paper by paper, review). 

In what follows I first introduce, briefly, the main theories on the neural vulnerability factors 

associated with obesity, with particular reference to visual and gustatory processing; then, I 

rather summarize evidence derived by previous studies about the effect of satiety, and I spell-

out the methodological and historical justifications for the present new meta-analysis. 

 

2.1.1. How and why, we may become overweight or even obese? Neurocognitive theories of 

long-term phenomena 

Obesity has become a major health concern. A recent study on different European countries 

estimated that 47.6% of adults are overweight (25 Kg/m2  BMI < 30 Kg/m2) or even obese 

(Gallus et al., 2015) (BMI  30 Kg/m2); furthermore, pediatric obesity is also increased at 

alarming rates, hence representing a significant medical and economic burden (Wang and 

Lobstein, 2006). Several approaches have been adopted to minimize the economic and health 
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consequences of this condition; yet, most treatments, from physical activity and lifestyle 

interventions to bariatric surgery (Colquitt et al., 2009), often result in only a transient weight 

loss (Jeffery et al., 2000), as much as it happens in chronic relapsing conditions like Substance 

Use Disorder (McLellan et al., 2000).  

Despite the causes of overweight and obesity may seem straightforward (i.e., an individual’s 

intake of food exceeds the homeostatic energy needs), the mechanisms underlying the 

overeating behavior remain largely unknown. As pointed out in Chapter 1, eating is a complex 

and multisensory experience that calls into play different interrelating factors, at either the 

peripheral (homeostatic) level, with the long-term and circadian fluctuations of signaling 

molecules (e.g., ghrelin, insulin, leptin; see (Burger and Berner, 2014) for a review), and central 

(neurocognitive) level. The hypothalamus and reticular formation, represent, of course, the 

interface between the humoral and the neurocognitive levels (Hussain and Bloom, 2013, Liu 

and Kanoski, 2018). With that said, it follows that any treatment or approach to the study of the 

normal and pathological eating behavior “cannot remain brainless”, to use the wording of 

Schmidt and Campbell (Schmidt and Campbell, 2013). 

According with this principle, there are several theories that try to give neurocognitive 

explanations of the development of obesity. These all, one way or the other, associate the 

dysregulation of food intake with alterations within either the reward system (mostly 

overlapping with the cue-reactivity network, Figure 1.3, in red) or the cognitive control system 

(mostly overlapping with the cue-regulation network, Figure 1.3, in blue). Initial evidence 

(Stice et al., 2008a, Stice and Dagher, 2010, Stice et al., 2010b, Stice et al., 2011b) permits to 

combine these theories with the genetic makeup that determines the expression of greater DA 

signaling capacity. This is associated with the TaqIA (rs1800497) polymorphism, as subjects 

with A2/A2 genotype seem to have 30–40% more DA D2 receptors (Volkow et al., 2008, Baik, 

2013). 

The theories focusing on the sensory, hedonic, and motivational responses to food (i.e., the cue-

reactivity network), such as the Reward Surfeit Theory of Obesity (Davis et al., 2008, Stice 

et al., 2008b), postulate that subjects become obese because of their permanently increased 

reward signaling for food-related stimuli. In other words, it suggests that subjects would keep 

overeating because this gives them a strong permanent reward during the intake of high-calorie, 

palatable food. 

A refinement of this theory can be found in the Incentive Sensitization Theory of Obesity 

(Robinson and Berridge, 1993, Berridge et al., 2010) which posits that, after repeated pairings 

between visual food-cues and the hedonic impact of food consumption, anticipatory food cues 
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would come to elicit strong responses of the cue-reactivity network. This theory echoes similar 

concepts from the domain of drug abuse and chronic addiction ((see for example Everitt et al., 

1999, Everitt and Robbins, 2013)): instrumental in the making of these modifications within 

the reward system would be variations in dopaminergic and endorphin neurotransmission 

(Ambrose et al., 2004, Berridge et al., 2010, Tuominen et al., 2015). 

Conversely, the Reward Deficit Theory of Obesity suggests that obese people keep overeating 

because “they would never get satisfied enough by their eating”, their reward circuitry being 

less sensitive to dopaminergic signals (Wang et al., 2002); grounded on the initial evidence that 

blocking D2 dopaminergic receptors leads to obesity (Wang et al., 2001), the theory has been 

questioned by the evidence that atypical neuroleptics (with less effect on D2 receptors) have a 

higher obesogenic effects compared to haloperidol (Krakowski et al., 2009). A U-shaped 

response of the ventral striatum to too high, or too low, levels of dopamine in obese may still 

keep the theories mentioned so far under the same conceptual umbrella.  

In a different vein, an Inhibitory Control Deficit Theory (Nederkoorn et al., 2006a) calls into 

play higher-level control functions (the cue-regulation network): these would be not as good in 

obese patients who would over-react to food-related cues, a behavior related to a more general 

trait of impulsivity. Consistent with this notion, obese individuals are more prone to temporal 

discounting phenomena, hence preferring short-term food rewards over the long-term ones 

(Bonato and Boland, 1983, Sobhany and Rogers, 1985, Epstein et al., 2008). Nonetheless, while 

the supposed inhibitory control deficit does correlate with a general impulsiveness (Aiello et 

al., 2018), to date only few neuroimaging studies have shown a relationship between lower 

activity in inhibitory regions during delay-discounting and future weight gain (Kishinevsky et 

al., 2012, Weygandt et al., 2013): this makes it difficult to draw firm conclusions about the role 

of inhibitory control regions in overeating. 

Two other theories try to achieve an integration of these different neurocognitive accounts of 

obesity: the Dynamic Vulnerability Model of Obesity ((DVM, Burger and Stice, 2011, Stice 

et al., 2011a)) and its refined form, the R-DVM (Stice and Yokum, 2016). The refined form of 

the theory brings together, in a sequential fashion, the most solid aspects of those discussed 

before conceding that the predisposition to obesity starts with a hyper-responsivity of the cue-

reactivity network to taste, which in turn leads to overeating also in combination with genetic 

factors related to dopamine signaling (Stice et al., 2008a, Stice and Dagher, 2010, Stice et al., 

2015a). This hyper-responsivity to taste is thought to contribute to greater cue-reward learning 

and faster habituation to food of the reward system (reinforcer satiation), both of which have 

been shown to predict overeating independently (Burger and Stice, 2014). Further, enhanced 
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cue-reward learning is believed to trigger incentive motivational processes in subjects exposed 

to anticipatory food cues, as suggested by the comparison of brain activity in HW and OB 

individuals exposed to food pictures (Rothemund et al., 2007, Stoeckel et al., 2008, Stice et al., 

2010b). Stice and Yokum (2016) also propose that a bias for immediate reward is a further 

factor behind overeating and weight gain, since immediate reward bias predicts weight gain in 

children (Seeyave et al., 2009, Evans et al., 2012) even over a 30-year follow-up (Schlam et al., 

2013). Finally, the R-DVM predicts that the repeated overeating, leading to weight gain, 

contributes to the blunted responses of the reward system to palatable high-calorie food intake. 

It is important to underline that the R-DVM is based on evidence coming from prospective 

studies on the neurofunctional predictors of weight gain. Yet, it is unclear whether the 

neurofunctional predictors of weight gain map into the brain functional abnormalities 

associated with chronic obesity. 

 

2.1.2. Hungry brains: how satiety interacts with food-related behavior in obese and healthy 

weight individuals 

One missing link between obesity and the brain mechanisms behind the aforementioned models 

is the one related to short-term circadian regulatory phenomena, such as those implied by the 

varying levels of satiety during the day (Burger and Berner, 2014), and how the sense of satiety 

interacts with the factors mentioned so far (Gautier et al., 1999, Gautier et al., 2000, Gautier et 

al., 2001, Martin et al., 2010, Holsen et al., 2012) in obesity or in lean weight subjects. 

Despite the growing evidence pointing to altered brain responses to hunger and satiety in OB 

individuals, the effect of the internal factor satiety on the neural responses to food cues has not 

been fully implemented in all the neurocognitive models of obesity: yet, it is reasonable to 

expect that an impaired sense of satiety may contribute to the maintenance (or to the worsening) 

of the obese weight status. The incentive sensitization theory is the only model that took into 

account the satiety state as a modulator of the reward system reactivity (Berridge et al., 2010). 

In its translation to computational models (Zhang et al., 2009), hunger is expected to multiply 

the incentive salience process, boosting “liking” and “wanting” reactions to food intake and 

associated cues. On the contrary, satiety is expected to blunt hedonic reactions to food 

consumption and anticipation, leading to diminished “liking” and “wanting” reactions and to 

down-regulated activity of the cue-reactivity network in response to food intake and to 

anticipatory food cues.   

Cross-sectional studies comparing HW and OB individuals during fasting (i.e., hunger state) 

and fed (i.e., satiety state) conditions suggest that OB show persistent brain activations to food 
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intake and to food cues even when satiated. For instance, PET studies using measures of 

regional cerebral blood flow reported increased neuronal activity in the PFC and decreased 

activity in limbic, paralimbic and striatal regions in OB compared to HW individuals during 

the feeding to satiety of a liquid meal (Gautier et al., 2000, Gautier et al., 2001).  

There is also evidence that OB, compared to HW individuals, exhibit greater activation of the 

hypothalamus and the dorsolateral PFC (dlPFC) (Holsen et al., 2012), in addition to greater 

responses of striatal, medial and superior frontal regions, in response to food images in a satiety 

condition (Martin et al., 2010). Taken together, previous studies suggest that obesity is 

associated with a persistent brain activation in response to food even in a condition of satiety, 

which highlights the on-going motivational and reward processes in the absence of homeostatic 

energy needs (Ho et al., 2012). Conversely, hunger has been associated with increased 

activation of key regions of the cue-reactivity network involved in reward, motivation (insula, 

hypothalamus, striatum), and memory (hippocampus, amygdala) in HW individuals exposed to 

simple tastes (Haase et al., 2009), whereas higher self-reported impaired satiety was associated 

with reduced responses of the cue-regulation network (dlPFC) in response to food images in 

OB individuals (Ho et al., 2012).  

So far, neuroimaging studies have provided evidence suggesting that the appetitive and 

motivational states exert a different influence on the neurofunctional responses to food in HW 

and OB individuals, thus suggesting an impaired central satiety signaling. Despite not being 

directly associated with future weight gain in previous studies, I argue that an impaired central 

satiety signaling might have a role in overeating and/or in the maintenance of the unhealthy 

weight.  

 

To summarize the two previous sections, as it should be clear by now, there are multiple 

theories on the neurocognitive underpinnings of obesity, in its making and in its maintenance 

over time. Besides the testing in animal models, a substantial part of the evidence taken in 

support to each and every theory rests, at least in part, on functional neuroimaging activation 

data on the cue-reactivity paradigm in the visual and gustatory sensory modalities. Given the 

complexity of the matter at stake, no single experiment has had the potential to address all the 

relevant issues with a single paradigm. However, to date there have been no less than twenty 

functional imaging brain activation studies, to make a conservative estimate, that have attacked 

these issues from different perspectives. This is a suitable situation to address, using the meta-

analytical technique described in Appendix A (CluB), the available functional imaging 
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evidence and to assess the relative explanatory power of the “three factors” cited at the 

beginning of this introduction. 

 

2.1.3. Aims of the study 

This study was motivated, on the one hand, by the evidence that there is sufficient empirical 

data from several different brain activation studies on obesity to define a replicable underlying 

(dys)functional anatomy of the internal (weight status, satiety) and external factors (sensory 

modality of cue-presentation) under examination; on the other hand, by the desire of testing the 

different neurocognitive theories of obesity in the light of the three factors discussed before: 

weight status, sensory modality of cue-presentation, and satiety.  

By design, I restricted the meta-analysis to the evidence coming from fMRI/PET activation 

studies on adults in two fixed states, obese or lean6. To the best of my knowledge, this is the 

first meta-analytical attempt to summarize the previous neuroimaging literature in light of the 

principal neurocognitive theories of overeating and obesity while classifying the available data 

according to a factorial design suitable for reflecting both anticipatory (e.g., visual) and 

consummatory (i.e., gustatory) processing of food stimuli. With this respect, Table 2.1 shows 

to what extent the three factors and their interactions were tested by the previous meta-analyses 

on the topic, most of which have been mentioned in the General Introduction (Chapter 1). 

To this aim, I re-assessed the previous activation literature by combining the CluB toolbox with 

the GingerALE approach: as illustrated in Appendix A, the HCA implemented in CluB provides 

reproducible meta-analytical results, whereas the CCA permits a post-hoc statistical assessment 

of the association of a given cluster with a factor, or indeed the interactions between factors.  

In fact, the theories summarized above have different predictions on the neurofunctional 

responses to food in function of the sensory modality of cue presentation and of the weight 

status, something that was not assessed in previous meta-analyses. I also speculated on how, 

and whether, an impaired central satiety signaling may interact with the factors above. 

 

 

 
6 I did not include in our meta-analysis data coming from PET molecular imaging studies mapping 

neurotransmitter receptor density of displacement. It is not clear to what extent this information is 

biologically consistent with the one carried by changes in BOLD signal, or regional cerebral blood flow. 

I felt methodologically not acceptable to bias the identification of brain clusters using information 

derived from multiple heterogeneous sources. Moreover, ligand-based PET studies are typically 

analyzed using regions of interest, an approach not suited for coordinate-based meta-analyses, as in the 

present case. 
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Table 2.1 | Summary of previous meta-analyses on food perception in obesity. Overview of meta-analytical studies on visual-anticipatory and gustatory-

consummatory perception of food in healthy weight and obese individuals varying in satiety state. OB, obese partcipants; HW, healthy-weight participants. 

Taken from: Devoto et al. 2019. 

 

 

 

 
Visual-Anticipatory Food Cues Gustatory-Consummatory Food Cues 

 Fasting Fed Fasting Fed 

HW 

• Pursey et al. 2014 

• Huerta et al. 2014 

• Kennedy & Dimitropoulos 2014 

• Tang et al. 2012 

• van der Laan et al. 2011 

• van Meer et al. 2015 

• Pursey et al. 2014 

• Kennedy & Dimitropoulos 2014 

• van der Laan et al. 2011 

• Huerta et al. 2014 

• Veldhuizen et al. 2011 

• Yeung et al. 2016 

(participants with 

mixed weight status) 

 

OB 
• Pursey et al. 2014 

• Kennedy & Dimitropoulos 2014 

• Pursey et al. 2014 

• Kennedy & Dimitropoulos 2014 
 

• Yeung et al. 2016 

(participants with 

mixed weight status) 
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2.1.4. Predictions 

Differently to what can be done in a fresh empirical experiment, in which the variables under 

examination are controlled by the experimenter, meta-analyses are more observational in 

nature. Still, the factorial approach implemented in CluB permitted, at the very least, to test to 

what extent various neurocognitive theories on overeating are justified by the available imaging 

literature (for the application of the same logic in a different domain see (Paulesu et al., 2014)). 

As it can be appreciated by the inspection of Table 2.2, where models are somewhat arranged 

in order of complexity7, simple theories compete with each other (e.g., reward surfeit and 

reward deficit theories); other theories can be integrated together more easily (e.g., the 

inhibitory control theory can be added to any other theory), while the R-DVM, with its 

integration of the most robust aspects of other theories, represents the most complex and 

dynamic scenario, providing predictions for both anticipatory (e.g., visual food cues) and 

consummatory (e.g., actual receipt of taste in the mouth) brain responses to food. 

 

 
7 For consistency with the narrative of the present thesis, the original table of the published manuscript 

was adapted to reflect the modulation (hyper or hypo-reactivity) of the cue-reactivity and cue-regulation 

network. Indeed, except for the OFC which underlies higher-order reward-related processes, all the other 

brain regions considered in the original publication fit well into the gross categorization provided in 

Chapter 1: brain regions involved in sensory, hedonic, and motivational aspects of reward (cue-

reactivity network), and brain regions involved in higher-order cognitive control processes (cue-

regulation network).  
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Table 2.2 | Anatomo-functional predictions of the main neurocognitive theories of obesity. For each neurocognitive theory, the neurofunctional predictions 

are expressed as up (upward arrow) or down-regulation (downward arrow) of the cue-reactivity and cue-regulation networks. The R-DVM is not explicitly tested 

in this meta-analysis based on cross-sectional studies in adult obese subjects. Adapted from: Devoto et al. 2018. 

 

 

 

 
Reward Surfeit 

Theory 

Reward Deficit 

Theory 

Incentive Sensitization 

Theory 

Inhibitory Control Deficit 

Theory 

Refined – Dynamic 

Vulnerability Model 

Anticipatory 

Food Cues 
  ↑ 

Cue-reactivity 

network 

(midbrain, 

striatum, insula, 

OFC) 

↓ 
Cue-regulation 

network 

(vmPFC, dlPFC) ↑ 
Cue-reactivity network 

(midbrain, striatum, 

insula, OFC) 

Consummatory 

Food Intake ↑ 
Cue-reactivity 

network 

(midbrain, 

striatum, 

insula, OFC) 

↓ 
Cue-reactivity 

network 

(midbrain, 

striatum, insula, 

OFC) 

  ↓ 
Cue-reactivity network 

(midbrain, striatum, 

insula, OFC) 
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Indeed, throughout the Chapter, I will refer to the “visual” and “gustatory” levels of the 

“sensory modality” factor as reflecting anticipatory and consummatory brain responses to food, 

respectively, in agreement with previous neurocognitive theories. 

Despite not committing to any of the aforementioned models from the outset – I consider these 

not to be necessarily mutually exclusive -, and despite the limitations of meta-analyses as far 

as the possibility of making strong predictions, I had a series of educated guesses in mind at 

least about what theory would be supported by a given finding8 (see Table 2.2). 

Starting from a very easy one, the Reward Surfeit Theory (Davis et al., 2004) suggests that a 

predisposing factor to excessive food intake in some individuals is the fact that food ingestion 

has a particular rewarding value. Thus, the main prediction of the Reward Surfeit Theory is that 

OB individuals display an up-regulation of the cue-reactivity network in response to food intake 

(i.e., gustatory modality of cue presentation).     

On the other hand, the Incentive Sensitization Theory (Robinson and Berridge, 1993, 

Berridge et al., 2010) would be supported if obese individuals, who have experienced repetitive 

pairings of visual cues with the hedonic sequelae of food ingestion, show an up-regulation of 

the cue-reactivity network in response to anticipatory food cues (Rothemund et al., 2007, 

Stoeckel et al., 2008, Martin et al., 2010, Stice et al., 2010b, Dimitropoulos et al., 2012, Holsen 

et al., 2012). 

Further, a down-regulation of dopamine-mediated reward regions in OB, consistent with 

studies on overfeeding in animal models of obesity (Fulton et al., 2006, Roseberry et al., 2007, 

Davis et al., 2008, Koyama et al., 2013, Cook et al., 2017) and some neuroimaging studies in 

humans (Wang et al., 2001, Wang et al., 2002, Volkow et al., 2008, Volkow et al., 2013), would 

be in line with the idea that, rather than being an initial vulnerability factor to overeating, the 

down-regulation of the cue-reactivity network in response to gustatory cues is the main 

consequence of weight gain (Stice et al., 2010a), in accordance with the Reward Deficit 

Theory (Wang et al., 2001, Wang et al., 2002).

Finally, the Inhibitory Control Deficit Theory (Nederkoorn et al., 2006a, Nederkoorn et al., 

2006b) highlights the role of the neural circuits underlying the inhibition of inappropriate 

behavior and pathological temporal discounting (Kishinevsky et al., 2012), mainly involving 

 

 
8 It should be noted that the nominal report, from several sources, of the involvement of a given 

anatomical structure in a given process does not guarantee by itself that the findings, once the 

stereotactic coordinates are used, will converge anatomically in a meta-analysis. This is particularly true 

the less specific it is the anatomical definition originally used (e.g., prefrontal cortex; insular cortex).   
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the PFC and particularly its dorsolateral subdivisions. On the basis of this theory, I would expect 

that OB individuals had exhibited a down-regulation of the cue-regulation network compared 

to HW during the perception of food images, to suggest a limited inhibitory processing in the 

OB population. 

It is worthy to note that all the above-mentioned models, but the incentive sensitization theory 

have not taken into great account the role of circadian fluctuations of satiation and hunger on 

overeating. Yet, the demonstration of a strong effect of the level of hunger and its interaction 

with the various systems would not only call for a further refinement of some of the models 

discussed, but it would also contribute to enrich available models of the factors that modulate 

the neural reactivity to food cues in obese individuals, as the one described in Chapter 1 (Figure 

1.4). 

Having spelled out the main benchmarks for the different theories considered and the ensuing 

educated guesses, what it important here is that I did put myself in a sufficiently good position 

to test them and to provide quantitative answers to the issues described. 

 

 

2.2. Materials and methods 

The meta-analytical approach employed here involves a series of analytical steps starting from 

the identification of the raw data (data collection and preparation), followed by hierarchical 

clustering analysis (HCA) (see Appendix A, section 2.1, for the validation study for the HCA), 

and statistical inferences on the clusters which comprise a cluster composition analysis (CCA) 

(see Appendix A, section 2.2, for the validation study for the CCA) and a validation of the 

spatial relevance of each cluster by means of the GingerALE method. These procedures are 

described in detail below.   

 

2.2.1. Data collection and preparation 

I identified neuroimaging studies exploring the neural correlates of food cue-reactivity 

(presented in either the visual-anticipatory9 or gustatory-consummatory modality) in HW and 

OB individuals across different motivational states using the following procedures.  

 

 
9 As I was interested in comparing the anticipatory versus consummatory responses to food, cue-

reactivity studies using mental imagery were included as reflecting anticipatory processes. This choice 

was motivated by the fact that (i) food craving can be also elicited by the spontaneous thoughts about 

food, and by the belief that (ii) mental imagery tasks model well this anticipatory experience.  
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First, I entered the following queries in PubMed (https://www.ncbi.nlm.nih.gov/pubmed/): 

“obesity and fMRI”, “obesity and PET” “obesity and functional magnetic resonance imaging”, 

“obesity and positron-emission tomography” and “obesity and neuroimaging”. The initial set 

of studies included 7391 papers, updated to February 2017 (see Figure S1.1 in Supplementary 

File 1).  

Second, after removal of duplicates, I ran a preliminary selection based on the titles and 

abstracts of the papers, through which I excluded the studies that did not match the following 

criteria: 

• Data reported using stereotactic coordinates (either MNI or Talairach atlases); 

• Activation protocol on food-related stimuli limited to passive visual/imagery (i.e., 

reflecting the anticipation and not the actual food intake) or gustatory (i.e., reflecting 

the actual taste/food in the mouth) stimulation (only simple effects related to stimuli or 

between-group comparisons for the factor obesity were considered). For example, 

studies employing delay-discounting tasks (Kishinevsky et al., 2012, Weygandt et al., 

2013) or requiring explicit inhibitory processes (Hendrick et al., 2012, Hsu et al., 2017), 

not reflecting simple anticipatory processing, have been excluded. 

• When studies contrasted or collapsed together different sensory modalities or satiety 

states, I considered only foci coming from contrasts derived from stimulation in a single 

sensory modality (visual or gustatory) and satiety state (foci coming from contrasts in 

which fasting and fed conditions were merged (Führer et al., 2008, De Silva et al., 2011) 

have been excluded); 

• Adult subjects; 

• Populations involved: either obese subjects, or healthy weight, or both; 

• For studies with obese subjects, I considered only populations with BMI above or equal 

to 30 (World Health Organization, 2000);  

• For comparative studies of obese versus control subjects, I considered only studies that 

employed a standard BMI cut-off to dichotomize groups (i.e., correlation studies were 

not considered); 

• Whole brain analyses (no region-of-interest analyses); 

• When studies assessed the effects of hormonal or drug treatments, I considered only 

studies that reported foci belonging to the pre-treatment condition. 
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This selection, initially primarily based on titles and then on abstracts, yielded to the 

identification of 37 papers candidates for the meta-analysis (Figure S1.1 in Supplementary File 

1). 

Third, I made a further selection by inspecting the entire manuscripts and applying the 

aforementioned inclusion criteria in detail.  

The final dataset included 22 papers (Gautier et al., 1999, Killgore et al., 2003, Rothemund et 

al., 2007, Cornier et al., 2009, Martin et al., 2010, Haase et al., 2011, Cornier et al., 2012, 

Dimitropoulos et al., 2012, Murdaugh et al., 2012, Nummenmaa et al., 2012, Szalay et al., 2012, 

Cornier et al., 2013, Geliebter et al., 2013, Jastreboff et al., 2013, Karra et al., 2013, Lundgren 

et al., 2013, Luo et al., 2013, Murray et al., 2014, St-Onge et al., 2014, van Bloemendaal et al., 

2014, Blechert et al., 2016, Puzziferri et al., 2016), 70 contrasts and 660 activation foci (see 

Table S1.1 in the Supplementary File 1 for a detailed description of the paradigms).  

To arrange the dataset for the subsequent Cluster Composition Analysis (CCA), each focus was 

classified according to the three factors of interest: group (HW vs. OB), sensory modality 

(visual vs. gustatory) and satiety (fasting vs. fed). Further, all the Talairach coordinates were 

converted to MNI space through the Talairach to MNI (SPM) transformation implemented in 

GingerALE (Eickhoff et al., 2009, Turkeltaub et al., 2012), version 2.3.6. Ten out of 660 foci 

were excluded from the dataset because they fell outside even from the less conservative brain 

boundary mask of the GingerALE software.  

In the end, the dataset was based on 556 participants, 329 HW, and 227 OB (mean BMI = 22.4 

vs. 35.6; mean age = 32.6 vs. 36.9 years), with an average of 8.6 hours of fasting for the fasting 

condition. Subjects in the fed condition were by default those who just have had a meal. 

 

2.2.2. Hierarchical Clustering Analysis (HCA) and Cluster Composition Analysis (CCA) 

To identify anatomically coherent regional effects, I first performed a HCA using the unique-

solution clustering algorithm developed by Cattinelli et al. (2013b), implemented in CluB 

(Clustering the Brain) (Berlingeri et al., 2019). In brief, CluB takes into account the squared 

Euclidian distance between each couple of foci included in the dataset; the clusters with 

minimal dissimilarity are then recursively merged using Ward’s criterion (Ward, 1963), to 

minimize the intra-cluster variability and maximizing the between-cluster sum of squares 

(Cattinelli et al., 2013b). To impose a suitable a priori spatial resolution to the analyses, I set 
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to be 5 mm the maximum mean spatial variance within each cluster in the three directions10. 

The centroid coordinates of each resulting cluster were then labeled according to the Automatic 

Anatomic Labelling (AAL) (Rorden and Brett, 2000), and then controlled by visual inspection 

on the MRIcron (Rorden and Brett, 2000) visualization software.  

The output of the HCA was then entered as an input for the subsequent CCA. This procedure 

allows a post-hoc statistical exploration of each cluster by computing, within each cluster, the 

proportion of foci belonging to different levels of a variable of interest. Such proportion is then 

compared with a target proportion, which, in this case, is extracted from the overall distribution 

of foci classified according to our factors of interest in the whole dataset (Prior Likelihood, PL).  

First, I ran a CCA to explore the main effects of group, sensory modality, and satiety. This 

composition analysis was done by running a binomial test on the proportion of foci associated 

with each level of the three factors within each cluster. For example, if a cluster X had a 

cardinality of N = 20 and included 15 foci associated with the level “HW” of the “group” factor, 

CluB computes the proportion 15/20 (i.e., 0.75) and compares it with the theoretical proportion 

computed over the entire dataset (e.g., PLHW = 377/650 = .58). Hence, (a) the Prior Likelihood 

represents the probability of success under the null hypothesis and (b) a significant binomial 

test (p < .05) indicates that the proportion of activation peaks included in that specific part of 

the brain is higher than the proportion computed all over the brain.  

Then, to test for interaction effects (sensory modality-by-satiety, group-by-sensory modality, 

and group-by-satiety), I performed a series of Fisher’s exact tests (Fisher, 1970) on the 

empirical peak-distribution within each cluster. Finally, with the aim to interpret the 

directionality of the second-level interactions, I employed the following method: for each cell 

of the 2 x 2 crosstab, I calculated the ratio between the proportion of observed foci and the total 

number of foci within the cluster (OP, observed probability). Then, I divided this value for the 

proportion of foci belonging to the same factors considering the entire dataset (PL). This 

computation (i.e., OP/PL) results in an index that indicates the degree to which the distribution 

of activation peaks belonging to a specific combination of factors within a cluster exceeds the 

expected probability. Values greater than one indicate a higher probability for the cluster to be 

specific for that particular combination of factors.  

 

 
10 This choice was motivated by the interest into small and discrete subcortical structures, such as the 

ventral (nucleus accumbens) and dorsal striatum. 
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Despite not being associated with a formal statistical test, the same procedure was applied to 

explore, descriptively, eventual three-way interaction effects (i.e., group-by-sensory modality-

by-satiety interactions). 

To limit the impact of any given study, I considered for further discussion only clusters with at 

least 3 contributing studies; moreover, clusters with cardinality (i.e., number of peaks) inferior 

to the 25th percentile (< 3) of the total cardinality of clusters were discarded. 

 

2.2.3. Validation of the spatial relevance of each cluster using the ALE procedure 

As pointed out in Appendix A, the HCA does not provide a statistical test of the spatial 

significance of the resulting clusters: this can be compensated for by searching for spatial 

convergence between the clustering solution and the results of an Activation Likelihood 

Estimate (ALE)-based meta-analysis on the same overall dataset (see, for example (Paulesu et 

al., 2014)). For the spatial cross-validation ALE, I employed the Turkeltaub Non-Additive 

method (Turkeltaub et al., 2012), with the general statistical threshold set to p < 0.05 FDR 

corrected. For the small subcortical structures, I accepted as significant also clusters converging 

on an ALE map thresholded at the slightly more liberal p < 0.001 uncorrected threshold. The 

resulting maps were overlapped with the HCA map with the “intersection” function in the 

software MRIcron (https://www.nitrc.org/projects/mricron). Only the clusters that fell in this 

intersection map were then taken into account for further analyses (the CCA) and discussion. 

 

 

2.3. Results 

2.3.1. Hierarchical Clustering Analysis (HCA) 

The HCA returned 119 clusters, each composed by 3 to 16 peaks; mean standard deviation 

along the three axes was 4.98 mm (x-axis), 4.89 mm (y-axis) and 4.86 mm (z-axis). Of these, 

38 were retained following the intersection analysis procedure with the ALE map. On average 

these clusters contained 8 foci (range: 3-16). The full list of clusters overlapping with the ALE 

map is available in the Supplementary File 1 (Table S1.2). These clusters were then submitted 

to a cluster composition analysis (CCA) to test for association with group, stimulation modality 

and satiety.  

The following group, modality or satiety associations imply a more frequent detection of an 

activation effect in the specified level for each factor (e.g., obese, visual-anticipatory modality, 

etc.). 
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2.3.2. Cluster Composition Analysis (CCA) 

2.3.2.1. Group-specific clusters 

The binomial CCA performed to test whether each cluster was significantly associated with 

either group revealed that three clusters were significantly associated with HW individuals (i.e., 

clusters containing a significantly smaller number of peaks from obese individuals), and three 

with OB subjects (i.e., clusters containing more peaks from obese subjects) (Table 2.3, Figure 

2.1).  

The HW-specific clusters were located in the left midbrain (CL45), right thalamus (CL103) and 

right Rolandic operculum (CL113). As only two studies contributed to this cluster (Haase et 

al., 2011, Cornier et al., 2013), CL113 will not be discussed further. The centroid coordinates 

of the OB-specific clusters were located in the left ventral striatum (VS, CL43), right superior 

frontal gyrus (CL23) and the left anterior insula/frontal operculum (CL116). 

 

 

 
 
Figure 2.1 | Distribution of clusters showing a significant main effect of group. Clusters associated 

with obese individuals are depicted in cyan, whereas clusters specific for healthy weight subjects are 

depicted in red. Yellow dots re-present the cloud of peaks that generated the cluster. Taken from: Devoto 

et al. 2018. 

 

 

2.3.2.2. Sensory modality-specific clusters 

There was one cluster, located in the left anterior insula/frontal operculum (CL116), that was 

also significantly associated with the visual modality, while six clusters were specific for the 

gustatory modality (Table 2.3, Figure 2.2): these were located in the right pallidum (CL29), 

right anterior insula (CL41), left ventral striatum (CL43), left postcentral gyrus/Rolandic 

operculum (CL101) and right thalamus (CL103). 
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Table 2.3 | Results of the Cluster Composition Analysis. For each cluster the following information is reported: the anatomical label according to the AAL; 

the cluster ID; the centroid coordinates in the MNI stereotaxic space (standard deviation of the distance from the centroid along the three axes); the number of 

foci falling within the cluster (N); the p-values associated with the binomial and Fisher’s tests. Significant main and interaction effects are shown in bold. FA, 

fasting state; FE, fed state; G, gustatory modality; GR, group; GRxS, group-by-satiety interaction; GRxSM, group-by-sensory modality interaction; HW, healthy 

weight; OB, obese; S, satiety; SM, sensory modality; V, visual modality. Adapted from: Devoto et al. 2018. 

 

  Left Hemisphere Right Hemisphere  GR-specific SM-specific S-specific GRxSM  GRxS  SMxS 

Anatomical Label ID 
X  

(SD) 

Y  

(SD) 

Z  

(SD) 

X  

(SD) 

Y  

(SD) 

Z  

(SD) 
N HW OB V G FA FE    

Superior Frontal Gyrus 23    22 

(3.5) 

25 

(3.8) 

51 

(6.1) 
4 1 0.031 0.199 1 0.997 0.044 1 1 1 

Globus Pallidus 29    14 

(4.5) 

6 

(6.2) 

-1  

(5) 
15 0.737 0.453 0.992 0.03 0.098 0.983 0.093 1 1 

Orbitofrontal Cortex 31    34 

(6.2) 

30 

(2.6) 

-15 

(4.4) 
12 0.804 0.389 0.396 0.817 0.989 0.043 0.516 0.608 1 

Insula 41    38 

(3.9) 

18 

(4.9) 

-3  

(4) 
14 0.636 0.575 1 0.001 0.779 0.432 0.225 0.244 0.221 

Ventral Striatum 43 
-19 

(4) 

5  

(5.8) 

-9 

(3.5) 
   11 0.999 0.009 1 0.001 0.051 1 0.002 1 1 

Midbrain (ventral 

tegmental 

area/substantia nigra) 

45 
-5 

(3.8) 

-15 

(2.1) 

-4 

(6.2) 
   9 0.007 1 0.653 0.62 0.088 1 1 1 1 

Superior Medial 

Frontal Cortex 
72    2   

(2.1) 

59 

(3.8) 

21 

(8.3) 
6 0.792 0.497 0.353 0.911 0.996 0.031 1 0.097 1 

Caudate Head/Nucleus 

Accumbens 
99 

-7 

(5.5) 

14 

(8.6) 

-9 

(6.4) 
   8 0.937 0.206 0.981 0.087 0.903 0.289 0.505 1 0.031 

Postcentral 

Gyrus/Rolandic 

Operculum 

101 
-50 

(7) 

-16 

(4.4) 

18 

(4.3) 
   7 0.883 0.329 0.993 0.045 0.478 0.849 1 1 1 

Thalamus 103    14 

(4.1) 

-14 

(3.4) 

0   

(5.5) 
9 0.007 1 0.999 0.008 0.637 0.667 1 1 0.107 

Posterior Insula 104 
-39 

(4) 

-4 

(5.6) 

6  

(5.4) 
   16 0.92 0.183 0.168 0.94 0.013 1 1 1 1 

Anterior Insula/Frontal 

Operculum 
116 

-38 

(5.7) 

13 

(6.4) 

-19 

(7.2) 
   10 0.997 0.017 0.018 1 0.565 0.725 1 0.509 1 



 

 44 

 

 
 
Figure 2.2 | Distribution of clusters showing a significant main effect of sensory modality. The 

cluster associated with the visual modality is depicted in purple, whereas clusters specific for the 

gustatory modality are depicted in blue. Yellow dots represent the cloud of peaks that generated the 

cluster. Taken from: Devoto et al. 2018. 

 

 

 

2.3.2.3. Satiety-specific clusters 

Only one cluster in the left posterior insula (CL104) was significantly associated with the 

fasting condition. Three clusters, located in the right superior frontal gyrus (CL23), right 

caudolateral orbitofrontal cortex (CL31) and in the right superior medial prefrontal cortex 

(CL72) were associated with the fed condition (Table 2.2, Figure 2.3). 

 

 

 

 

 

Figure 2.3 | Distribution of clusters showing a significant main effect of satiety. Clusters associated 

with the fed condition are depicted in dark purple, whereas the cluster specific for the fasting state is 

depicted in green. Yellow dots represent the cloud of peaks that generated the cluster.Taken from: 

Devoto et al. 2018. 
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2.3.2.4. Group-by-sensory modality interaction 

I identified one significant group-by-sensory modality interaction effect (Table 2.3, Figure 2.4), 

and it was located in the left ventral striatum (CL43). The inspection of the graph in Figure 2.4 

(top right) shows that the VS was more likely to be recruited by OB individuals during gustatory 

stimulation. 

 

2.3.2.5. Group-by-satiety interaction 

No cluster displayed a significant group-by-satiety interaction effect. 

 

2.3.2.6. Sensory modality-by-satiety interaction 

Only one cluster, located in the left caudate head/nucleus accumbens (CauH/NAc, CL99) 

displayed a significant interaction effect (Table 2.3, Figure 2.4). The inspection of the graph in 

the Figure 2.4 (top left) shows that the left CauH/NAc was more likely to be associated with 

gustatory stimulation in a fasting state and with the visual stimulation in a fed state. 
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Figure 2.4 | Distribution of clusters showing a significant interaction effect. Yellow dots represent the cloud of peaks that generated the cluster. Top: bar 

plot for the significant group-by-sensory modality interaction in the left ventral striatum (top right) and for the significant sensory modality-by-satiety interaction 

in the left caudate head/nucleus accumbens (top left). Bottom: bar plot for further visual inspection of group-by-sensory modality-by-satiety interactions in the 

left ventral striatum (bottom right) and in the left caudate head/nucleus accumbens (bottom left). Values greater than one indicate a higher probability for the 

cluster to be specific for that particular combination of factors. Taken from: Devoto et al. 2018.
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2.3.2.7. Group-by-sensory modality-by-satiety effects 

Given the numerosity of the peaks in the clusters commented below, a formal estimate of the 

significance of this level of interaction by means of the Mantel-Haenszel test (MANTEL and 

HAENSZEL, 1959) was not possible. Yet, I thought it was interesting to illustrate the origin of 

the effects in CL43 and CL99, considering the factors "Satiety" and "Group", respectively. To 

this end, I plotted the OP/PL ratio for each combination of the three factors (Figure 2.4, bottom 

row). The inspection of the graph in Figure 2.4 (bottom left) shows that the left CauH/NAc 

(CL99) were coming essentially from OB individuals during the visual stimulation in a fed state 

and during the gustatory stimulation in the fasted state. Similarly, the bottom graph in Figure 

2.4 (bottom right) shows that the left ventral striatum (CL43) was determined by activations in 

OB individuals during gustatory stimulation in the fasting state. 

 

 

2.4. Discussion 

Before entering into a detailed discussion of the results, I wish to point out my position with 

respect to the “food addiction” hypothesis (Davis, 2014). Admittedly, this work was inspired 

by theories developed to explain substance abuse, and one may be led to conclude that with the 

present findings I will root for a plain explanation of obesity as a case of food addiction: I am 

not doing so in any deterministic manner. I am aware that the concept of obesity as a food 

addiction has been recently criticized on theoretical, empirical, and even ethical considerations 

(Ziauddeen et al., 2012, Finlayson, 2017). However, I believe that this does not weaken the 

potential value of showing that one or more theories, originally developed for explaining 

substance abuse, may fit, as a whole or in part, the available activation imaging literature on 

obesity. Since the literature considered here has not covered all possible aspects of the brain 

physiology in obesity (e.g., fMRI has little if anything to tell about neurotransmission), it 

follows that the present evidence should not be treated as a strict case for the concept of obesity 

as caused by food addiction11.  

 

 
11 Another word of caution is needed here: brain activation data by no means can offer a complete picture of the 

complex phenomena under examination. Molecular brain imaging using PET and specific ligands are offering 

important complementary ways to address the neural bases of obesity. However, the available corpus of data from 

this literature in humans is more limited and dominated by “resting state” measures of receptor binding potentials 

and their relation with BMI: this set of data would not permit the testing of the neurocognitive hypotheses of 

obesity along a factorial design as it was possible for the activation data. For a comprehensive review of this 

literature, I refer the reader to the article by Van Galen et al. (2017). 
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Having made clear my position with respect to the concept of food addiction, I now attempt to 

answer three questions about the dysfunctional anatomy associated with obesity, as described 

by functional imaging activation studies: (1) do the patterns of functional and dysfunctional 

anatomy converge anatomically in a replicable manner, surviving to a formal meta-analysis and 

can be specific for a particular modality of stimulus presentation (visual-anticipatory vs. 

gustatory-consummatory), satiety level (fasting vs. fed), and group (healthy weight vs. obese)? 

(2) Do the aforementioned patterns reflect the interactive effect of the three factors that we 

examined (BMI, sensory modality of cue presentation and satiety), particularly for obese 

individuals? (3) Do these findings allow us to support in part or full a particular neurocognitive 

theory on the making and maintenance of obesity discussed in the introduction? 

The first hypothesis is not as trivial as it might seem. Anatomical replications in functional 

neuroimaging are such if they go beyond the mere observation of recurrent anatomical names: 

indeed, a nominal reference to a given brain structure and the ensuing discussions are deprived 

of much value unless the precise stereotactic locations of a statistical effect are used and their 

convergence is submitted to a quantitative meta-analytical assessment12.  

Of course, the testing of the second and third hypotheses was the central motivation of the 

present meta-analysis, and the answers will be discussed in detail below. For clarity, and for 

consistency with the framework introduced at the beginning of this thesis, the discussion will 

be broken down into paragraphs concerning the simple, or interaction effects, on the cue-

reactivity and cue-regulation networks. Following an incremental logic, the main effects of 

sensory modality and satiety will be presented first, followed by the discussion of the main 

effect of group. Then, I will discuss the interaction among the factors taken into consideration, 

with particular reference to the effects related to obese individuals. Finally, I will try to integrate 

the abovementioned findings and spell-out the implications for the neurocognitive theories of 

obesity described in the introduction. 

 

2.4.1. Hypothesis one: anatomical convergence of functional effects across studies 

The HCA and CCA identified two main classes of spatially significant clusters: the first is less 

interesting, as these spatially significant clusters were not associated with group, nor with 

sensory modality or level of satiety. There were 38 such clusters (Table S1.2 in Supplementary 

File 1). Not surprisingly, this broad network of brain regions is compatible with both the 

 

 
12 As argued before, the lack of PET ligand data reported with stereotactic coordinates makes it impossible a formal 

meta-analysis of ligand work with the PET/fMRI activation data. 
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exteroceptive (visual) and the interoceptive (gustatory, somatosensory) processing of food-

related information, in keeping with the activation paradigms that generated such observations. 

These effects were also captured by previous meta-analyses (van der Laan et al., 2011, 

Veldhuizen et al., 2011, Dimitropoulos et al., 2012, Brooks et al., 2013, Huerta et al., 2014, 

Kennedy and Dimitropoulos, 2014, Pursey et al., 2014, van Meer et al., 2015).  

Of major interest was the second class of clusters, for which the post-hoc CCA revealed 

significant main effects and interactions between the factors under examination.  

 

2.4.1.1. Sensory modality of cue-presentation 

Across groups and satiety conditions, both the visual-anticipatory and the gustatory-

consummatory sensory modalities of cue presentation were mainly associated with more 

frequent activity within the cue-reactivity network. 

Visual modality. Among the clusters significantly associated with a specific sensory modality 

of cue presentation, only one cluster was specific for the visual modality: the left anterior insula. 

As a right insular cluster was specific for gustatory stimuli (see below), these findings suggest 

asymmetrical processing of food-related stimuli for the insular cortex (Figure 2.2, in purple). 

Neurofunctional patterns of activation during food perception in different sensory modalities 

have been shown to overlap in the left insula, whereas olfactory and gustatory stimuli were 

found to elicit more bilaterally distributed responses (Huerta et al., 2014). Notably, in the latter 

study, exposure to food images selectively evoked responses in the left, rather than the right, 

insular cortex (Huerta et al., 2014). My result hence dovetails with findings of previous 

independent13 fMRI studies (Small et al., 1997a, Small et al., 1997b, Frey and Petrides, 1999, 

Small et al., 1999, Barry et al., 2001, Cerf-Ducastel et al., 2001), supporting an asymmetrical 

information processing in the insular cortex as a function of the sensory modality of cue 

presentation.  

Gustatory modality. The majority of the clusters was specifically associated with the gustatory 

modality (Figure 2.2, in blue), revealing a network of brain regions typically involved in reward 

(ventral striatum) (Berridge et al., 2010, Berridge and Kringelbach, 2015) and sensory 

processing (right thalamus, right insula, postcentral gyrus/Rolandic operculum) of gustatory 

stimuli, much as it was found in a previous meta-analysis on the topic (Veldhuizen et al., 2011). 

 

 

 
13 The fMRI studies cited are independent in that the data of those studies did not enter in our meta-analysis. 
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2.4.1.2. Satiety state 

Across groups and sensory modalities of cue presentation, hunger was associated with more 

frequent activity within the cue-reactivity network, whereas satiety was associated with more 

frequent activity within the cue-regulation network.  

Satiety. I found that three clusters were significantly associated with the fed condition, in the 

prefrontal cortex: the right SFG, the right caudo-lateral OFC, the superior medial PFC (Figure 

2.3, in dark purple). The prefrontal cortex plays an important role in several higher-order 

processes such as attention control (Knight et al., 1995), working memory and decision-making 

(Bechara et al., 1998), and its over-activation in OB seems a consistent result across meta-

analyses and imaging studies on satiety (Gautier et al., 2000, Gautier et al., 2001, Kennedy and 

Dimitropoulos, 2014, Pursey et al., 2014). More specifically, this result may be in keeping with 

the role of the prefrontal cortex in meal termination (Tataranni et al., 1999, Del Parigi et al., 

2002).  

Hunger. On the contrary, only the left middle insular cortex was specific for the fasting (i.e., 

hunger) condition, in a region posterior to the one involved in visual perception of food (Figure 

2.3, in green). This portion of the insular cortex has been linked to the subjective experience of 

several types of cravings, such as craving for food (Gordon et al., 2000, Pelchat et al., 2004), 

for substances of abuse such as cocaine (Breiter et al., 1997, Bonson et al., 2002) and even for 

air (Liotti et al., 2001); more importantly, lesions to the insula disrupt addiction to cigarettes 

smoking (Naqvi et al., 2007, Naqvi and Bechara, 2009), thus suggesting that the region plays a 

pivotal role in craving and in addiction-like behaviors.  

As discussed below, the sensory modality of cue presentation and the satiety state interact in a 

meaningful way, revealing distinct dysfunctional brain responses in obese individuals. 

 

2.4.1.3. Group 

As much as this can be reflected by measures of the BOLD response, obesity is associated, 

across sensory modalities of cue presentation and satiety conditions, with both up and down-

regulation of key regions of the cue-reactivity and cue-regulation networks.  

Obese. Overall, I confirm one of the most frequently reported findings in imaging studies and 

meta-analyses on cue-reactivity in OB individuals: the higher recruitment of regions involved 

in reward and motivation (dorsal and ventral striatum), salience (insula and superior frontal 

gyrus) and gustatory processing (anterior insula) in response to food-related stimulation 

(Brooks et al., 2013, Kennedy and Dimitropoulos, 2014, Pursey et al., 2014). Indeed, most of 

the clusters associated with HW or OB individuals were also specific for a given sensory 
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modality or satiety condition, to suggest that OB individuals show hyper-activation of areas 

that usually respond to the visual or the gustatory sensory modality (anterior insula/frontal 

operculum and ventral striatum, respectively), or when satiated (right superior frontal gyrus). 

In particular, persistent PFC activations in response to food in OB individuals have been linked 

to the deployment of attentional resources by a taste input (Kringelbach et al., 2004) or 

increased inhibitory efforts to contrast striatal and limbic hyper-activations (Gautier et al., 2000, 

Gautier et al., 2001). This latter hypothesis is particularly intriguing, because it would frame 

the striatal (cue-reactivity network) and PFC (cue-regulation network) association with obesity 

under the same conceptual umbrella. 

Lean. In obese individuals, I also identified less frequent activation of the thalamus and the 

midbrain, in a region compatible with the dopaminergic nuclei: the ventral tegmental area 

(VTA) and the substantia nigra (SN). Hypoactivation of the midbrain in humans has gone 

largely unnoticed by previous functional imaging studies and meta-analyses on the topic, 

despite the quite compelling evidence pointing to dysregulation of VTA activity in animal 

models of obesity (Fulton et al., 2006, Roseberry et al., 2007, Davis et al., 2008, Koyama et al., 

2013). Given the nature of the data submitted to meta-analysis (focal changes of the BOLD 

response), any discussion on the possible mechanisms behind the brainstem signals remains a 

matter of educated guesses at best. However, it has been recently found that obesity induced by 

a cafeteria diet14 leads to increased D2 receptors auto-inhibition of the VTA dopaminergic 

neurons in mice (Cook et al., 2017), while obesity was found to decrease the excitability of 

GABAergic neurons in the VTA (Koyama et al., 2013). Accordingly, it may be tempting to 

hypothesize that a down-regulation of the VTA, particularly if this involves GABAergic 

neurons, may lead to a disinhibition of ventral striatal activity in response to food. Furthermore, 

the increased response to food in the ventral striatum and a reduced VTA response might 

represent the two sides of the same coin of a dysregulated reward system. 

 

 

 

14 Consisting of bacon, potato chips, cheesecake, cookies, breakfast cereals, marshmallows, and chocolate candies. 
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2.4.2. Hypothesis two: are there anatomo-(dys)functional interactions between BMI, sensory 

modality and satiety?  

I expected that the interaction between the sensory modality of food presentation (visual-

anticipatory vs. gustatory-consummatory) and the satiety state (hungry vs. sated) would unveil 

specific patterns of dysfunctional responses to food in obese individuals, thus favoring a 

quantitative assessment of the current neurocognitive theories of obesity. To test my second 

hypothesis, I first explored the directionality of the significant two-way interactions in the VS 

and the CauH/NAc; second, I looked for a further modulation of the satiety state and the BMI 

status in the VS and CauH/NAc, by exploring the origin of what may represent a higher-level 

interaction.  

 

Group-by-sensory modality interaction. Beyond the main effects of group and sensory 

modality, the left VS showed a significant group-by-sensory modality interaction; the post-hoc 

analysis of the interaction showed that, in obese individuals, there are more convergent 

activations in the gustatory versus the visual sensory modality, whereas in healthy weight 

subjects there is no difference between sensory modalities (Figure 2.4, top right). A further 

inspection of the cluster composition revealed that the more frequent response to taste was 

mainly driven by studies in the fasting condition, thus suggesting more potent reward-related 

responses to taste in fasting obese individuals (Figure 2.4, bottom right). With this respect, as 

the duration of fasting time for healthy weight and obese individuals was identical, one may 

hypothesize that fasting could be perceived more threatening to an obese organism, that is used 

to higher availability of short-term and long-term energy resources, compared with a normal 

weight organism. Accordingly, more frequent activation of regions involved in the 

motivational/hedonic aspects of food perception such as the ventral striatum, might represent 

the way of the obese organism to defend the new status of positive energy balance (Berthoud 

et al., 2017), reinforcing the action of eating (noteworthy, the interaction involves the gustatory 

– consummatory – rather than the visual – anticipatory – sensory modality). Also, a stronger 

response to hunger-related peripheral signals (e.g., ghrelin) may also be hypothesized. 

Sensory modality-by-satiety interaction. The sensory modality-by-satiety effect observed in 

the CauH/NAc points to another dysfunctional interaction that might account for overeating: a 

persistent over-reaction to visual food cues in regions typically involved in reward and 

motivation(Martin et al., 2010). As shown by the inspection of the plot in Figure 2.4 (top left), 

satiety seems to modulate in opposite directions the neurofunctional response to food in the 

CauH/NAc, as a function of the sensory modality of cue presentation. As the specificity for the 
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gustatory stimulation during fasting strongly resembled the effect that we observed in the left 

VS, I further explored the composition of the cluster with respect to the weight status (healthy 

weight vs. obese), to assess whether the effect was mainly driven by obesity. The inspection of 

the plot in Figure 2.4 (bottom left) suggests that obese individuals show more frequent 

activation of the left CauH/NAc in the gustatory stimulation condition during fasting, and for 

visual food stimuli when fed.  

 

Taken as a whole, my results suggest that: (i) the up-regulation of the cue-reactivity network, 

in obese individuals, interacts with the sensory modality and the level of satiety; (ii) the way 

they interact is compatible with enhanced reward processing to taste (particularly when fasting), 

and with continued reward processing in response to anticipatory visual food cues even when 

well fed; (iii) current neurocognitive theories are not mutually exclusive, but might tap onto 

different aspects or timing (onset vs. maintenance) of obesity. This is what I discuss next. 

 

2.4.3. Hypothesis three: do the available data permit to identify a best fitting neurocognitive 

theory of obesity? 

In Table 2.2 I tried to summarize the benchmarks that one could take in favor of any given 

neurocognitive theory of obesity. Among the theories there are some that clearly did not receive 

any support: for example, the Inhibitory Control Deficit Theory of obesity (Nederkoorn et al., 

2006a, Nederkoorn et al., 2006b), as I did not observe any reduced frontal lobe activity in obese 

subjects. Nonetheless, I acknowledge the possibility that the lack of support to an Inhibitory 

Control Deficit Theory might be a by-product of the fact that the hypothesis has been tested 

only occasionally or indirectly15. In fact, evidence suggests that obese compared to healthy 

weight individuals show altered activity of inhibitory control regions during Go/No-Go tasks 

(Hendrick et al., 2012), and during delay-discounting tasks (Kishinevsky et al., 2012, Weygandt 

et al., 2013) involving food stimuli; further, this alteration is related to weight-loss maintenance 

(Weygandt et al., 2013) and to future weight gain (Kishinevsky et al., 2012). However, since 

the neural activation during those tasks could not be attributed to simple anticipatory 

processing, I had to exclude them by the meta-analysis (please refer to inclusion criteria in the 

methods section). More importantly, the predictions for the Inhibitory Control Deficit Theory 

 

 
15 One possible benchmark would have been a reduced prefrontal activation when viewing food-related 

cues in a fed state. However, a group by feeding state interaction was not observed in the prefrontal 

cortex. 
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mainly stemmed by previous meta-analytical (Brooks et al., 2013, Kennedy and Dimitropoulos, 

2014, Pursey et al., 2014) and preliminary fMRI evidence suggesting that obesity is associated 

with lower recruitment of brain regions associated with inhibitory control in response to the 

simple exposure to food-related stimuli (Gearhardt et al., 2014, Silvers et al., 2014). Since the 

simple exposure to anticipatory food cues might not be sufficient to detect a deficient activity 

in inhibitory control regions, specific paradigms are needed to further explore the Inhibitory 

Control Deficit account, particularly if this has to be framed within the context of an altered 

predisposition to temporally discounted rewards (Evans et al., 2012, Kishinevsky et al., 2012).  

If deciding on the less fitting explanations was perhaps an easy task, deciding on a best fitting 

theory may be more complicated. This is why in what follows we take an Occam’s razor-like 

approach16 and exclude the need of more theories if one can explain most of the results. 

Let’s consider the Reward Surfeit Theory and Reward Deficit Theory. The first is supported by 

the fact that obese individuals showed more frequent activation in regions involved in reward 

and motivation (ventral and dorsal striatum) in response to taste, in particular when fasting; the 

second would find support by the less frequent activation of the brainstem in a region 

compatible with the dopaminergic nuclei of the midbrain, and in agreement with animal models 

(Roseberry et al., 2007, Koyama et al., 2013, Cook et al., 2017) pointing to a blunted reward 

system activity in chronic obesity. However, as discussed, if the brainstem down-regulation in 

obesity was involving specific populations of VTA GABAergic neurons, this may lead to a 

dysregulated and increased response of the ventral striatum. As this, in turn, would make the 

data still compatible with the Reward Surfeit Theory, I abandon the Reward Deficit Theory and 

retain the Reward Surfeit Theory for further discussion.  

The next theory to be compared with the Reward Surfeit Theory is the Incentive Sensitization 

Theory. The latter is clearly more articulated and dynamic compared to the former: by assuming 

repeated pairings between visual anticipatory cues and the hedonic impact of food consumption, 

the theory is supported by the evidence of an enhanced response for visual food cues in regions 

usually involved in salience and reward processing. Accordingly, I retain the Incentive 

Sensitization Theory as the provisional best fit of the data of the present meta-analysis. In fact, 

my data show that obese individuals, after their prolonged period of overeating, exhibit hyper-

responsivity of regions involved in gustatory and salience processing (insula), reward and 

motivation (nucleus accumbens, caudate head) in response to food cues, which witnesses the 

 

 
16 Strictly speaking, the Occam’s razor approach posits that one should prefer simpler over more 

articulated explanations. Here I favour best fitting explanations. 
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process of incentive sensitization to anticipatory visual cues. Nonetheless, the composition of 

the cluster in the CauH/NAc suggests that OB individuals exhibit persistent reward and 

motivational processing in response to food images, as if the incentive salience of food cues 

could override the peripheral signals of satiety, motivating the eating behavior in absence of 

homeostatic energy needs. It is worthy to note that the theory accommodates the impact of 

physiological body signals like hunger. According to Berridge and colleagues (Berridge et al., 

2010), “normal hunger acts as a physiological “drive” signal to magnify the incentive “wanting” 

and hedonic “liking” triggered by tasty foods and their associated cues whereas satiety dampens 

the multiplicative impact of cues and foods” (Figure 1, page 32). Therefore, the interaction of 

hunger with a sensitized reward system would lead to powerful activity of the 

mesocorticolimbic circuitry in response to visual food cues and to food consumption, which 

could be also interpreted in favor of a Reward Surfeit Theory of obesity. 

It is important to underline that while satiety should normally dampen the impact of food cues, 

it seems to do so to a lesser extent in obese patients. In the data meta-analyzed here, the level 

of satiety seems to have a different impact on the functional brain patterns of obese subjects in 

response to food cues or to tastes. The differential response observed within the cue-reactivity 

network (more frequent activations for visual cues even in a satiated state in obese) sets the 

rationale for new empirical studies in which these factors are explicitly manipulated and 

modeled. In addition, obesity is associated with more frequent activations within the cue-

reactivity network in response to taste cues while starving, suggesting that hunger is a 

particularly powerful signal for obese individuals, their hyperactivation in such condition 

representing, perhaps, the result of a greater reward value of food.  

To summarize, I believe that my data confirm that any complete theory of eating behavior in 

obesity should incorporate the differential weight that the level of satiety has for obese subjects. 

The combination of different levels of satiation with cognitive control task in lean and obese 

subjects may also revitalize the Inhibitory Control Deficit Theory in a more context-dependent 

manner. 

 

2.4.4. Obesity in its making and the vulnerability factors for obesity 

There is one other aspect in which Incentive Sensitization Theory seems not sufficiently 

explicit: the making of obesity and the connection if its making with vulnerability factors 

leading certain individuals to have a greater likelihood of becoming obese.  These are aspects 

that our meta-analysis was unable to capture as the studies on obese individuals submitted to 

meta-analysis were cross-sectional. There is one candidate theory in the literature that that tries 
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to integrate diachronically an initial reward surfeit followed by enhanced value to food related 

cues and the blunting of the hedonic system, particularly when subjects are exposed to high-

calories foods. This is the Refined Dynamic Vulnerability Model (Stice and Yokum, 2016). 

Much of the model is based on considerations derived from longitudinal studies (an aspect not 

considered here because there are no such studies in the selected imaging literature) and from 

observations to the response to high-calories food intake. This last aspect was also impossible 

to assess with the present meta-analysis as a mere 7% of the total gustatory foci came from 

studies employing high-calorie liquid meals (Gautier et al., 1999, Szalay et al., 2012), whereas 

the remaining foci came from studies employing pure tastes as gustatory stimuli (Gautier et al., 

1999, Haase et al., 2011, Szalay et al., 2012, Cornier et al., 2015).  

 

2.4.5. Implications for brain-centered treatments of obesity 

Having shown that the Incentive Sensitization Theory is a likely candidate to provide a 

neurocognitive explanation of obesity, at least in its steady adult state, it is natural to wonder to 

what extent this has been or could be conceptually useful to plan therapeutic interventions. 

Unfortunately, the available evidence of a translation of these principles into clinical practice 

is limited. The long-lasting temporal characteristics of sensitization suggest that the suppression 

of the relevance of food cues and their interaction with the level of satiation might be a 

particularly difficult route to pursue. Clearly this is one area where cognitive behavioral therapy 

may have an impact. 

As far as a more directly brain-based approach, neurostimulation and neuromodulation 

techniques, such as repetitive transcranial magnetic stimulation (rTMS) and transcranial direct-

current magnetic stimulation (tDCS), have been tested in obesity and eating disorders (for a 

review see (Val-Laillet et al., 2015)). So far, all the studies employing these techniques have 

targeted the prefrontal cortex (Uher et al., 2005, Fregni et al., 2008, Barth et al., 2011, Goldman 

et al., 2011, Montenegro et al., 2012, Jauch-Chara et al., 2014, Kekic et al., 2014, Lapenta et 

al., 2014) providing mixed results. As shown by our quantitative meta-analysis and by a recent 

review of Stice and colleagues (Stice and Yokum, 2016), the evidence in support of an 

inhibitory control deficit explanation behind overeating and obesity is scarce. One other 

approach could be to target brain regions involved in salience (insula), reward and motivation 

(nucleus accumbens and caudate nucleus) as these appear more frequently active in obese 

individuals exposed to food pictures. Given the role of the insular cortex in the subjective 

feeling of craving (Pelchat et al., 2004) and in nicotine addiction (Dinur-Klein et al., 2014) and 

the recent advances in neurostimulation techniques in reaching deep cortical structures (Zangen 
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et al., 2005), the insular cortex stands out as a promising target for future neurostimulation 

treatments of overeating and obesity (see (Ferrulli et al., 2019b) and Chapter 4). 

Finally, there has been a recent revival of neuro-pharmacological interventions in obesity 

beyond amphetamine-like drugs: for example, a combination of naltrexone, an opioid 

antagonist, and bupropion, an antidepressant, which inhibit dopamine and norepinephrine 

reuptake seems effective in appetite suppression and weight loss promotion by acting on both 

the hypothalamus and the ventral tegmental area (review in (Subramaniapillai and McIntyre, 

2017)).  

Whether these interventions, in isolation or combined, could reverse the incentive sensitization 

of the reward system to food and its cues, promoting weight loss and long-term healthier eating, 

remains to be seen and demonstrated explicitly. If so, this would provide a further support to 

the Incentive Sensitization Theory. 

 

2.4.6. Strengths, limitations and future directions 

By adopting a factorial approach, I tried to test the major neurocognitive theories in the field 

while also taking into account the modulatory role of the motivational state of the participants, 

to consider satiety-specific effects or interactions. I combined the ALE method (Eickhoff et al., 

2009), which reveals the brain regions with most convergent activation across the whole 

dataset, with hierarchical clustering (Cattinelli et al., 2013b) and post-hoc statistical 

characterization of the clusters concerning the factors of interest, both implemented in the CluB 

toolbox (Berlingeri et al., 2019). An undoubted advantage of this approach was the possibility 

to include a heterogeneous set of studies without renouncing to a functional characterization of 

the meta-analytic clusters (see Appendix A for further information about the toolbox).  

Yet the present study has some limitations. I already commented upon the issue of considering 

obesity as the end point of an addiction to food. I am not rooting for this hypothesis in any 

deterministic and simplistic manner: I am only showing that many aspects of one theory are 

supported by the existing activation imaging literature. Future studies will help to decide on 

whether the concept of food addiction should be abandoned or retained. For the time being, I 

remark that there are intriguing similarities between the two domains of substance abuse and 

excessive food intake in already obese subjects.  
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2.4.6.1. Further limitations 

I cannot exclude that the disproportion between male and female participants of the reviewed 

studies may have left some effects overlooked. In fact, there is evidence of gender-specific 

differences in the brain responses towards food (Haase et al., 2011, Geliebter et al., 2013). 

Similarly, it was impossible to take into account data associated with altered levels of appetitive 

hormones in OB individuals. This is an important issue, as altered hormone levels are known 

to influence the neural responses to food stimuli (see (Burger and Berner, 2014) for a review). 

Not least, the evaluation of the highest order interactions remained at a descriptive level by 

observation of which of eight possible levels was pulling in the direction of the higher-level 

interaction (the group-by-sensory modality-by-satiety interactions). While more data are 

needed to attach a significance to such higher order effects, at the very least, the present 

evidence provides the rationale for future experiments in which body weight, sensory modality 

of cue presentation, and satiety are manipulated in a controlled manner. Nonetheless, this study 

provides the first evidence that different internal and external factors can modulate the neural 

reactivity to food cues not only in isolation, but also in interaction. 

Another issue that remains unaddressed here is the importance of subjective “liking” and 

“wanting” ratings of food stimuli in (i) shaping the neurofunctional responses to food and (ii) 

providing support to a neurocognitive theory over the other, as assessed by our meta-analysis. 

The Reward Surfeit Hypothesis implies that the highly hedonic experience of food ingestion 

may prompt for future overeating, suggesting that people who overeat will show enhanced 

“liking” reactions to food intake. On the contrary, the Incentive Sensitization Theory focuses 

on the “wanting” reactions elicited by food cues, suggesting that overeating is triggered by 

excessive “wanting” that can be accompanied by normal “liking” of food stimuli. As shown in 

Supplementary Table S2.1, only half of the studies included in our meta-analysis collected and 

reported subjective ratings for the stimuli employed. More importantly, the ratings required to 

the participants are quite heterogeneous across studies, each focusing on a slightly different 

quality of the stimuli (e.g., pleasantness of the image, palatability or liking of a food). Despite 

not being a limitation of the meta-analysis per se, the lack of such data has made it impossible 

to assess how good is the fitting of the theories considered in the light of “liking” and “wanting” 

components of reward processing: this remains an issue for future studies.  

Finally, as I reviewed data comparing adult OB and HW, I cannot draw any conclusion about 

the temporal and causal dynamics of the phenomena described. Inevitably, given the cross-

sectional nature of the studies included in this meta-analysis, my results cannot but provide a 

relatively “static” picture of the neurofunctional correlates of food perception in obese versus 
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healthy weight individuals, making it impossible to disentangle causes from consequences in 

chronic overeating over the brain patterns described.  

Furthermore, it would be tempting to try and connect the relative less frequent activation of the 

midbrain in obese individuals and their striatal hyper-responsivity for taste and food cues. 

However, this is impossible at this stage with the present data and it remains to be empirically 

tested whether i) the midbrain down-regulation is causally linked to disinhibited striatal activity 

and ii) whether it is associated with overeating before the individuals become obese. With this 

respect, it is important to emphasize that the genetic make-up linked to higher or lower 

dopamine signaling capacity seems crucial in determining increased versus decreased striatal 

activity in response to food cues (Stice et al., 2008a, Stice and Dagher, 2010, Stice et al., 2010b, 

Stice et al., 2011b, Stice et al., 2012, Stice et al., 2015a). As a consequence, the genetic make-

up of the individuals is also expected to interact with other factors, such as weight status and 

sensory modality of cue-presentation, giving rise to specific brain activation patterns.  

The field is much in need of prospective studies examining the differences (and similarities) 

between the neurofunctional predictors of overeating in HW and OB individuals, and whether 

a differential response to satiety or hunger may represent a vulnerability factor with respect to 

future weight gain. To the best of my knowledge, I am not aware of any prospective study that 

explored whether, and how, “hungry” or “insatiable” brains can predict future overeating and 

weight gain, something left for future studies.

 

 

Summary of Chapter 2 

In this Chapter, I combined the CluB method with the GingerALE algorithm to perform a meta-

analysis of 22 neuroimaging studies on food cue-reactivity in obesity. In particular, I explored 

the simple and interactive effect of three factors that modulate the neural reactivity to food cues: 

weight status, sensory modality of cue-presentation. These effects were taken as benchmarks 

to assess the validity of the major neurocognitive theories of obesity and overeating. 

The results showed that obesity is associated with altered activity of key regions of the cue-

reactivity and cue-regulation networks, being both up (left anterior insula, right SFG) and 

down-regulated (midbrain, right thalamus) in response to food cues, across modalities of cue-

presentation and satiety conditions. The two sensory modalities of cue-presentation were 

associated with the activity of discrete clusters localized within the cue-reactivity network: 

whereas the visual-anticipatory modality was associated with left anterior insula activity, the 

gustatory-consummatory modality was associated with the activity of a wider network of 
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subcortical (right thalamus, globus pallidus, left VS) and cortical (right insula, postcentral 

gyrus/Rolandic operculum). Interestingly, hunger was associated with activity within the cue-

reactivity network (left mid-posterior insula), while satiety was associated with an up-

regulation of the cue-regulation network (right SFG, superior medial PFC, caudolateral OFC). 

Consistent with a Reward Surfeit Hypothesis, obese individuals exhibit a ventral striatum 

hyper-responsivity in response to pure tastes, particularly when fasting (group-by-sensory 

modality-by-satiety interaction). Furthermore, I found that obese subjects display more frequent 

ventral striatal activation for visual food cues when satiated: this continued processing within 

the reward system, together with the aforementioned evidence, is compatible with the Incentive 

Sensitization Theory. On the other hand, I did not find univocal evidence in favor of a Reward 

Deficit Hypothesis, nor for a systematic deficit of Inhibitory Control Deficit Theory. I 

concluded that: (i) internal (weight status, satiety) and external factors (sensory modality of cue 

presentation) operate in isolation and in interaction, modulating the neural responses to food 

cues in key regions of the cue-reactivity and cue-regulation networks; (ii) the available brain 

activation data on the dysregulated food intake and food-related behavior in chronic obesity 

can be best framed within an Incentive Sensitization Theory. 

The extent to which internal and external factors, in isolation and/or in interaction, modulate 

the neural response to drug cues in SUD is what will be addressed in the next Chapter. 
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Chapter 3 – How the Harm of Drugs and Their Availability Affect Brain Reactions to 

Drug Cues: a Meta-analysis of 64 Neuroimaging Activation Studies 

 

3.1. Introduction 

In the previous Chapter, I have performed a meta-analysis of 22 neuroimaging studies on food 

perception in healthy weight and obese individuals, by combining the CluB approach with the 

GingerALE method. I have shown that different internal and external factors, such as weight 

status, sensory modality of cue presentation, and satiety, modulate the neural response to food 

cues in key areas of the cue-reactivity and cue-regulation networks. I have also observed that 

these factors act not only in isolation, but also in interaction, prompting specific neural cue-

reactivity patterns. Crucially, the results revealed that the available neuroimaging literature on 

food perception in obese individuals mostly aligns with the prediction of the Incentive 

Sensitization Theory (Robinson and Berridge, 1993, Berridge et al., 2010), a neurocognitive 

model that was originally proposed for the study Substance Use Disorders. 

In the present Chapter, I will use the same combined approach to perform a meta-analysis of 

64 neuroimaging studies on drug cue-reactivity in SUD. In particular, for the first time I 

explicitly assess the mutual relationship between two different internal and external factors that 

modulate the neural reactivity to drug cues: addiction severity, indexed by the addiction by 

legal versus illegal substances (Nutt et al., 2007), and drug availability, indexed by the treatment 

status (Wilson et al., 2004). 

Though a general summary of the topic is given in Chapter 1, in what follows I first provide a 

more detailed review of the neuroimaging literature on drug cue-reactivity, contextualizing the 

key findings in terms of activity within the cue-reactivity and cue-regulation networks, 

whenever possible. Then, I will provide an overview of the evidence on the modulatory effects 

of addiction severity and treatment status, and I will introduce the reader to the aims and 

methods of the present study. 

 

3.1.1. The neurobiology of drug craving 

Substance use disorder (SUD) is a chronically relapsing condition. Animal and human research 

provided converging evidence that SUD, for either legal (alcohol, nicotine) and illegal (cocaine, 

heroin) substances, is linked to long-lasting neuroadaptations at the molecular, cellular, and 

circuitry level, which mediate the transition from goal-directed to habitual and compulsive drug 

intake (Everitt and Robbins, 2005, Koob and Volkow, 2016). As already pointed out in Chapter 

1, another crucial aspect of SUD is drug craving, defined as an intense desire for the substance; 
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this can be triggered by the presence of the drug itself or by the presence of drug-related stimuli, 

and it is often accompanied by changes in physiological responses such as heart rate, sweating, 

and skin temperature (Carter and Tiffany, 1999). As the enhanced response to drug-related cues 

may be a key factor contributing to the persistence of addiction (Courtney et al., 2016), the 

controlled exposure to the drug and drug-related stimuli (cue-reactivity) has been widely used 

for the study of the physiological (Rajan et al., 1998) and neurofunctional (Tapert et al., 2004, 

Karoly et al., 2019) correlates of drug craving. 

As it should be clear by now, the exposure to drug-associated cues triggers motivational and 

emotional responses that influence decision-making and the ensuing motor plans (Childress et 

al., 1993). These are tightly linked to the nature of the substance, of its rewarding and 

reinforcing effects, as well as its availability. Neuroimaging studies (McClernon et al., 2008, 

Li et al., 2012, Tomasi et al., 2015) and previous meta-analyses (Chase et al., 2011, Kühn and 

Gallinat, 2011, Engelmann et al., 2012) have shown that individuals with SUD exhibit altered 

neural responses in brain areas involved in different relevant aspects for craving.  

People with SUD show altered activity in early visual cortices when exposed to drug-related 

cues versus neutral objects (Hanlon et al., 2014), presumably mediating the attentional bias 

towards the substance. They also exhibit increased activity in regions involved in incentive 

motivational processes (Robinson et al., 2014, Warlow et al., 2017) of the mesocorticolimbic 

system (Li et al., 2013a, Tomasi et al., 2015, Kaag et al., 2018), in the ventral tegmental area 

(VTA) and its dopaminergic afferents to the ventral striatum, limbic structures (amygdala, 

hippocampus), and the prefrontal cortex (PFC). SUD is also associated with heightened 

responses in brain regions involved in the expression of habits (Everitt and Robbins, 2005) and 

in processing knowledge about tool use (Calvo-Merino et al., 2006, Lewis, 2006), such as the 

dorsal-striatal circuits and the inferior temporal, parietal, and motor cortices. This aberrant 

activity may favor drug-taking through the automatic activation of the semantic and motor 

representations associated with drug use (Yalachkov et al., 2010).  

Taken together, previous empirical and meta-analytical evidence suggests that exposure to 

drug-related cues is mainly associated with an up-regulation of key regions of the cue-reactivity 

network, such as the striatum, and the sensory and motor cortices, in line with the notion that 

SUD is characterized by heightened motivational processing. 

Recently, increasing efforts have been dedicated to the study of factors that can modulate the 

neural response to drug cues such as, among others, addiction severity and drug availability or 

treatment status (Wilson et al., 2004, Jasinska et al., 2014). However, as the reader shall see, 

previous empirical and meta-analytical studies have focused on one factor at a time, often by 
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collapsing together different populations of individuals with SUD: hence, a systematic 

investigation of these effects in different populations with SUD is lacking. 

 

3.1.2. Factors modulating the neural drug cue-reactivity: addiction severity and treatment 

status 

Not many years ago Jasinska and colleagues (2014), based on a systematic review of the 

neuroimaging literature, proposed a model on the factors that modulate the neural reactivity to 

drug cues in substance-dependent individuals addicted to either cocaine, alcohol or nicotine 

(Jasinska et al., 2014), the one I adapted in Chapter 1 to accommodate the role of the factors 

that modulate the neural reactivity to food cues. Among others (see Figure 1.4 in Chapter 1), 

addiction severity (i.e., intensity, frequency of drug use, and drug-related problems) and 

treatment status (i.e., whether participants are seeking for a treatment or not) emerged as 

powerful factors that can modulate the neural circuits involved drug craving across the three 

substances (Jasinska et al., 2014). 

Addiction severity, which is mainly assessed through self-reported questionnaires, correlates 

with the activity of several brain regions belonging to the cue-reactivity (e.g., VTA, ventral and 

dorsal striatum, pallidum, amygdala, hippocampus, insula, sensory and motor cortices) and cue-

regulation network (ACC, ventromedial PFC or vmPFC, OFC, and parietal cortices) in 

response to drug cues in cocaine (Volkow et al., 2006), alcohol (Smolka et al., 2006, McClernon 

et al., 2008), and nicotine SUD (Claus et al., 2011). It is worthy to note that the direction of 

these effects (up or down-regulation) varies consistently within, and across, studies involving 

different populations with SUD, which led the authors to hypothesize that the influence of other 

uncontrolled factors may contribute to the variability of the findings (see (Jasinska et al., 2014) 

for an in-depth review). These inconsistencies may be also partially explained by the well-

known, intrinsic limitations of self-report measures, such as the social desirability effect (e.g., 

when response patterns reflect the desire of the respondent to project a positive image to others 

(Fisher, 1993a)). 

Another approach to assess to what extent addiction severity modulated the neural reactivity to 

drug cues may be comparing brain activity across different populations of SUD. Indeed, it is 

reasonable to hypothesize that the reinforcing properties of the substance per se may be a crucial 

aspect that determines addiction severity. Substances are not equally addictive and harmful, 

and they can be classified based on the harm and dependence induced (Nutt et al., 2007), and 

based on their reinforcing properties (Volkow and Wise, 2005): due to these differences, a great 

deal of variability in the neuroimaging literature may be explained by the particular population 
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of substance-dependent individuals under examination which, in turn, is associated with a 

certain degree of addiction severity. 

Recently, for the first time, Hanlon and colleagues examined the neural correlates of PFC 

activity in a large sample of cocaine-only, alcohol-only or nicotine-only substance-dependent 

individuals, using a standardized visual cue-reactivity fMRI task (Hanlon et al., 2018). Their 

analyses, restricted to the cue-regulation network – the PFC and the anterior cingulate cortex 

(ACC) -, showed that a cluster in the medial orbitofrontal cortex (mOFC) was consistently 

activated by all the three groups of substance-dependent individuals, thus suggesting the mOFC 

as a common neural correlate of craving across legal and illegal substances. Interestingly, 

cocaine-dependent individuals exhibited also activity in the pars opercularis of the inferior 

frontal gyrus and the precentral gyrus, bilaterally, suggesting that cue-induced craving in 

substances that induce a severe addiction, such as cocaine or heroin (Nutt et al., 2007), is 

characterized by the recruitment of additional cortical areas compared to substances that induce 

a moderate addiction, such as, for example, alcohol and nicotine (Nutt et al., 2007). 

Treatment status (TR), indexing the perceived possibility of consuming a substance in the 

near future, has also been proposed to modulate the activity of key regions within the cue-

regulation network (dlPFC, OFC) during drug cue-reactivity (Wilson et al., 2004). In a first 

attempt to explain inconsistencies across neuroimaging studies on cue-reactivity, Wilson and 

colleagues reviewed 19 neuroimaging studies in individuals addicted to cocaine, heroin, 

alcohol, and nicotine: they observed that activity in the PFC – in particular, in the dorsolateral 

(dlPFC) and the orbitofrontal (OFC) subdivisions – was consistently reported in studies with 

not-seeking treatment (NST) individuals, whereas it was not in studies involving treatment-

seeking (TS) participants. Given the role of the OFC in integrating stimulus values (Lim et al., 

2013) and in representing the expected value of rewards (Kahnt et al., 2010), and the 

involvement of the dlPFC in planning and executing actions aimed at achieving the reward 

(Goldstein and Volkow, 2002), the authors proposed that PFC activity in NTS individuals 

represents the expectation to obtain the drug after the experimental session (Wilson et al., 2004).  

Their model was recently supported by the evidence that NTS cocaine-dependent subjects, 

compared with TS participants, exhibit greater activity of the lateral OFC and the dlPFC in 

response to drug cues (Prisciandaro et al., 2014). Nonetheless, OFC and dlPFC activation in 

NTS was accompanied by additional cortical activity in the posterior cingulate cortex and the 

occipital cortex. Another study on cigarette smokers reported similar results: only substance-

dependent individuals expecting to smoke after the experimental session showed activity in the 

mOFC, but not in the dlPFC, in response to cigarette cues compared to neural objects (Wilson 
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et al., 2005). It is important to note that preliminary evidence suggests that the effect of drug 

availability is independent by the motivation to quit. In one study on patients with nicotine 

SUD, both quitting-motivated and quitting-unmotivated subjects exhibited PFC activity in 

response to smoking cues, but only when they were expected to smoke within seconds, 

compared to hours, after cue-exposure (Wilson et al., 2012). The involvement of the mOFC in 

NTS individuals has also been recently supported by the only formal meta-analysis addressing 

this issue, in which additional brain regions – such as the inferior frontal gyrus, the ventral 

striatum, and the occipital cortex – were identified in studies with NTS participants (Chase et 

al., 2011). Crucially, the authors pooled together studies from substance (e.g., cocaine, heroin, 

alcohol, nicotine, marijuana) and non-substance addiction (e.g., gambling, gaming addiction), 

and no direct contrast study between the two groups of NST and TS participants was performed: 

as a consequence, it is impossible to determine to what extent other factors, such as addiction 

severity, contributed to their findings. As recently argued in Jasinska et al. (2014) model 

(Jasinska et al., 2014), and as demonstrated in the previous Chapter in the domain of food cue-

reactivity, factors that modulate the neural reactivity to drug cues are likely to interact with each 

other, giving rise to specific brain-activation patterns.  

These factors have never been considered together in a single study. Given the complex nature 

implied by such design [a 2 x 2 x 2 factorial design with four different groups of patients, two 

groups for each of two types of substances, and two kinds of visual stimuli (drug cues and 

control stimuli)] it would be beyond the strength of most to produce a study with this structure 

and sufficiently large samples on this matter. Moreover, to date only few studies have explicitly 

investigated the modulatory role of treatment status and/or drug availability on the neural 

reaction to drug cues (Wilson et al., 2005, Claus et al., 2011, Wilson et al., 2012, Prisciandaro 

et al., 2014).  

In what follows, I present my attempt to assess the influence of treatment status on the neural 

responses to drug cues in individuals addicted to substances that induce a moderate (legal 

substances: alcohol, nicotine) versus severe (illegal substances: cocaine, heroin) addiction, 

through a formal meta-analysis of previous imaging data considering sixty-four papers on the 

subject. The details of the rationale of the present study and the methodologies employed are 

presented below.
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3.1.3. Aims and predictions 

The goal of the current study is two-fold: first, to identify common and distinct neural correlates 

of craving triggered by visual anticipatory cues17 across different populations of legal (alcohol, 

nicotine) and illegal (cocaine, heroin) substance abusers; second, to study the modulatory effect 

of treatment status on the neural drug cue-reactivity, per se and in interaction with the type of 

substance. 

I hypothesized that differences in the neural drug cue-reactivity patterns between the two 

classes of substances might reflect the different severity of addiction that they can induce (Nutt 

et al., 2007); in particular, I expected that the use of illegal substances would have been 

associated with stronger activation of brain regions involved in incentive salience and 

motivation, mainly within the cue-reactivity network, much in line with the evidence that 

activity of these regions correlate with the severity of addiction and can predict relapse (see, 

for example, (Grüsser et al., 2004, Kosten et al., 2006, Janes et al., 2010, Li et al., 2015)). I 

further anticipated that treatment status could exert a modulatory effect over the brain responses 

within the cue-regulation network (Wilson et al., 2005, Wilson et al., 2012, Prisciandaro et al., 

2014), according to the role of the OFC and dlPFC in encoding reward expectations and action 

planning in NST subjects (Wilson et al., 2004).  

However, it remained a matter of empirical investigation whether such effects would be the 

same for legal and illegal substances: if not, this would suggest a complex interaction between 

biological and environmental factors not explicitly investigated so far in the imaging literature. 

 

 

3.2. Materials and methods 

Similarly to Chapter 3, the meta-analytical approach employed here involves a series of 

analytical steps starting from the identification of the raw data (data collection and preparation), 

followed by hierarchical clustering analysis (HCA), and statistical inferences on the clusters 

which comprise a cluster composition analysis (CCA) and a validation of the spatial relevance 

of each cluster by means of the GingerALE method.  

These procedures are described in detail below.  

 

 
17 I concentrated on anticipatory drug visual cues because experiments based on other sensory modalities 

(e.g., taste) are not sufficiently represented in the literature, nor they would permit to test the effects of 

interest over the entire spectrum of drugs, as the oral route is not the prevalent administration route for 

the illegal drugs considered, heroin or cocaine. 
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3.2.1. Data collection and preparation 

Records were retrieved through the following query in PubMed: “[cocaine OR heroin OR 

alcohol OR nicotine] AND [functional magnetic resonance imaging OR fMRI OR positron 

emission tomography OR PET OR neuroimaging] AND [addiction OR craving]”. The initial 

set of studies included 4240 papers, updated to March 2019. 

Papers were included when fulfilling the following inclusion criteria: 

• Populations involved: adult (mean group age  18 years) substance-dependent 

individuals according with the DSM-IV and DSM-5 criteria or similar, heavy drinkers 

(Vollstädt-Klein et al., 2010) or regular and abstinent drug users (Kober et al., 2016); 

no minimum sample size was required; given the heterogeneity of abstinence time 

across studies, no consideration for the abstinence status was made; 

• Anatomical conventions: we considered only data reported using MNI (Mazziotta et al., 

1995) or Talairach (Talairach and Tournoux, 1988) coordinates exclusively from 

whole-brain analyses; 

• Activation protocols: we considered only drug cue-reactivity paradigms based on both 

passive unimodal visual perception (with supraliminal stimuli) or mental imagery; this 

choice was motivated by our interest into anticipatory processing and by the need of 

curtailing the effect of potential confounds (e.g., sensory modality of stimulus 

presentation (Jasinska et al., 2014)); 

• Statistical comparisons (linear contrasts) included: drug cue > control stimulus or 

baseline; data describing “deactivations” (drug cue < control stimulus) were not 

considered; only data from univariate analyses were considered (minimum threshold: p 

< 0.05 uncorrected); only contrasts related to simple effects of the group of substance-

dependent individuals or interaction effects were included. For the interaction effects 

we considered only those testing a comparison like [drug cue > control]SUD > [drug cue 

> control]normal controls; 

• The regional effects were considered providing that they were measured from 

homogeneous populations (e.g., all treatment seekers); 

• For studies assessing the effect of drug or drug treatments, we considered only studies 

that reported foci belonging to the pre-treatment and/or placebo condition (Myrick et 

al., 2008) or analyses corrected for treatment effects (Courtney et al., 2014). 
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This selection, initially primarily based on titles and then on abstracts, yielded to the 

identification of 192 papers candidates for the meta-analysis (Figure S3.1 in Supplementary 

File 2). 

Third, I made a further selection by inspecting the entire manuscripts and applying the 

aforementioned inclusion criteria in detail. The final dataset included 64 studies (Garavan et 

al., 2000, George et al., 2001, Kilts et al., 2001, Grüsser et al., 2004, Myrick et al., 2004, Li et 

al., 2005, Hermann et al., 2006, Kosten et al., 2006, McBride et al., 2006, Xiao et al., 2006, 

David et al., 2007, Park et al., 2007, Wrase et al., 2007, Myrick et al., 2008, Janse Van Rensburg 

et al., 2009, Yalachkov et al., 2009, Zijlstra et al., 2009, Goudriaan et al., 2010, Volkow et al., 

2010, Vollstädt-Klein et al., 2010, Vollstädt-Klein et al., 2011, Li et al., 2012, Lou et al., 2012, 

Potenza et al., 2012, Tang et al., 2012b, Goudriaan et al., 2013, Lee et al., 2013, Li et al., 2013a, 

Li et al., 2013b, Prisciandaro et al., 2013a, Prisciandaro et al., 2013b, Courtney et al., 2014, 

Holla et al., 2014, Kim et al., 2014, Krienke et al., 2014, Mann et al., 2014, Prisciandaro et al., 

2014, Tabatabaei-Jafari et al., 2014, Wang et al., 2014, Cortese et al., 2015, Elton et al., 2015, 

Hassani-Abharian et al., 2015, Janes et al., 2015, Li et al., 2015, Ray et al., 2015, Tomasi et al., 

2015, Wang et al., 2015a, Zanchi et al., 2015, Falcone et al., 2016, Kober et al., 2016, Hong et 

al., 2017, De Pirro et al., 2018, He et al., 2018, Huang et al., 2018b, Kaag et al., 2018, Liberman 

et al., 2018, Moran et al., 2018, Zeng et al., 2018, Zhang et al., 2018, Bach et al., 2019, 

Koopmann et al., 2019, Li et al., 2019, Wei et al., 2019), 90 statistical comparisons and 1006 

activation foci (see Table S3.1 in Supplementary File 2 for further details on the studies 

included). 

Then, to arrange the dataset for the subsequent Cluster Composition Analysis (CCA), each 

focus of activation was classified according to two factors of interest: (i) class of substances 

(legal vs. illegal) and (ii) treatment status of the participants (treatment-seeking (TS) vs not-

seeking treatment (NST)). In particular, foci coming from studies with individuals addicted to 

alcohol or nicotine were classified as legal, whereas foci from studies with individuals addicted 

to cocaine or heroin were labeled as illegal. Accordingly, this labeling encoded a between-

group factor that we call class of substances. Activation foci were also classified according to 

the treatment status of the participants: only the activation foci belonging to studies with 

treatment-seeking participants as specified in the manuscript (Kosten et al., 2006, Zhang et al., 

2018), with participants involved in clinical trials(Prisciandaro et al., 2013a, Prisciandaro et al., 

2013b, Mann et al., 2014) or admitted/to-be-admitted to inpatient (Lou et al., 2012, Bach et al., 

2019) or outpatient treatment (Lee et al., 2013, Wang et al., 2014) or recruited from drug 

services or rehabilitation centers (De Pirro et al., 2018, Wei et al., 2019) were classified as 
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treatment-seeking (TS – participants whose drug use is limited by the willingness to quit and/or 

by the restricted access to the substance); by contrast, activation foci generated by participants 

that are not involved in any treatment nor clinical (Kaag et al., 2018) or that are active users 

recruited from the community (Garavan et al., 2000, Park et al., 2007)  were classified as not-

seeking treatment (NST – participants that are not motivated to quit and whose access to the 

substance is not restricted).  

All the Talairach coordinates were converted to MNI space using the TAL2ICBM_SPM 

function (Lancaster et al., 2007, Berlingeri et al., 2019). Thirteen activation foci fell outside the 

less conservative mask of the GingerALE software (version 3.0.2 (Eickhoff et al., 2009, 

Turkeltaub et al., 2012)) and were excluded. The final dataset comprised 993 foci, based on 

1620 substance-dependent individuals (mean age: 36.9 years) with an average history of abuse 

of 11.56 years (information about the history of abuse was not available for 20 studies).  

Further details on the populations of the 64 studies are reported in the Supplementary File 2 

(paragraph 1.1). 

 

3.2.2. Hierarchical Clustering Analysis (HCA) and Cluster Composition Analysis (CCA) 

To identify anatomically coherent regional effects, I first performed a HCA using the unique 

solution clustering algorithm (Cattinelli et al., 2013b) implemented in the software CluB 

(Berlingeri et al., 2019), as described in the previous Chapter. In brief, CluB takes into account 

the squared Euclidian distance between each couple of foci included in the dataset; the clusters 

with minimal dissimilarity are then recursively merged using Ward’s criterion (Ward, 1963), 

to minimize the intra-cluster variability and maximizing the between-cluster sum of squares 

(Cattinelli et al., 2013b). To impose a suitable a priori spatial resolution to the analyses, I set 

to be 5 mm the maximum mean spatial variance within each cluster in the three directions18. 

The centroid coordinates of each resulting cluster were then labeled according to the Automatic 

Anatomic Labelling (AAL) (Rorden and Brett, 2000), and then controlled by visual inspection 

on the MRIcron (Rorden and Brett, 2000) visualization software. 

The output of the HCA was then entered as an input for the subsequent CCA. This procedure 

allows a post-hoc statistical exploration of each cluster by computing, within each cluster, the 

proportion of foci belonging to different levels of a variable of interest. Such proportion is then 

 

 
18 This choice was motivated by two main reasons: first, by the interest into small and discrete 

subcortical structures, such as the ventral (nucleus accumbens) and dorsal striatum; second, for 

consistency with regard to the meta-analytical studies on food perception illustrated in Chapter 2. 
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compared with a target proportion, which, in this case, is extracted from the overall distribution 

of foci classified according to our factors of interest in the whole dataset (Prior Likelihood, PL).  

First, I ran a CCA to explore the main effects of class of substances and treatment status. This 

composition analysis was done by running a binomial test on the proportion of foci associated 

with each level of the three factors within each cluster. For example, if a cluster X had a 

cardinality of N = 20 and included 15 foci associated with the level “legal” of the “class of 

substances” factor, CluB computes the proportion 15/20 (i.e., 0.75) and compares it with the 

theoretical proportion computed over the entire dataset (e.g., PLlegal = 377/650 = .58). Hence, 

(a) the Prior Likelihood represents the probability of success under the null hypothesis and (b) 

a significant binomial test (p < .05) indicates that the proportion of activation peaks included in 

that specific part of the brain is higher than the proportion computed all over the brain.  

Then, to test for interaction effects (class of substances-by-treatment status), I performed a 

series of Fisher’s exact tests (Fisher, 1970) on the empirical peak-distribution within each 

cluster. Finally, with the aim to interpret the directionality of the second-level interactions, I 

employed the following method: for each cell of the 2 x 2 crosstab, I calculated the ratio 

between the proportion of observed foci and the total number of foci within the cluster (OP, 

observed probability). Then, I divided this value for the proportion of foci belonging to the 

same factors considering the entire dataset (PL). This computation (i.e., OP/PL) results in an 

index that indicates the degree to which the distribution of activation peaks belonging to a 

specific combination of factors within a cluster exceeds the expected probability. Values greater 

than one indicate a higher probability for the cluster to be specific for that particular 

combination of factors. 

To limit the impact of any given study, I considered for further discussion only clusters with at 

least 4 contributing studies (equal or greater than the 25th percentile of the total contributing 

studies); moreover, I discarded those clusters with cardinality (the number of peaks) inferior to 

the 25th percentile (< 5) of the total cardinality. 

Clusters whose one-tailed p-value was greater than or equal to 0.5 for both levels of the factor 

Class of substances were considered as of high chance of being genuinely undifferentiated 

(Paulesu et al., 2014).

 

3.2.3. Validation of the spatial relevance of each cluster using the ALE procedure 

To validate the results of the HCA, we assessed the spatial significance of the HCA solutions 

by comparison with a standard Activation Likelihood Estimate meta-analysis of the same raw 

data. Here I used the Turkeltaub Non-Additive method (Turkeltaub et al., 2012), with the 
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cluster-forming statistical threshold of p < 0.05 FWE-corrected and corrections for contrasts 

coming from the same study (Turkeltaub et al., 2012, Müller et al., 2018). Only clusters 

surviving the spatial intersection between the HCA and ALE maps were then taken into account 

for additional analyses and discussion. 

 

3.2.4. Further methods of interpretation of the results 

Besides typical forward inferences based on the experimental design and interaction of factors, 

I also relied on quantitative reverse inference when needed. Each CCA map representing the 

effect of the factor of interest was loaded into the Neurosynth database and analyzed by means 

of the “decoder” function (http://neurosynth.org/decode/). As illustrated in Chapter 2, the 

decoder function of Neurosynth allows one to retrieve the Pearson correlation of the key-words 

that are most associated with the input image, containing the clusters identified by the meta-

analysis, based on the NeuroVault repository. The r-value associated with each key-word 

reflects the correlation across all voxels between the input map and the map associated with a 

particular key-word in NeuroVault. I considered the first 15 words associated with each CCA 

map, after excluding anatomy-related terms and duplicate terms.  

 

3.3. Results 

3.3.1. Hierarchical Clustering Analysis (HCA) 

The HCA identified 117 clusters, each composed by 2–24 peaks; the mean standard deviation 

along the three axes was 4.96 mm (x-axis), 4.93 mm (y-axis) and 4.92 mm (z-axis). Thirty-five 

clusters were retained following the intersection procedure with the ALE map (the results of 

the ALE analysis are reported in the Supplementary File 2, Figure S3.2). One cluster was 

excluded because its cardinality fell below the 25th percentile of the total cardinality of the 

clusters (cardinality < 5 foci). 

On average, these clusters contained 13 foci (range: 5–24), with 3 to 17 studies (mean: 8) 

contributing to each cluster. The full list of clusters overlapping with the ALE maps is available 

in the Supplementary File 2 (Table S3.2). The results of the CCA are reported in Table 3.1, 

whereas the full list of terms identified by Neurosynth for each CCA map is reported in Table 

S3.3 in the Supplementary File 3.  
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3.3.2. Cluster Composition Analysis (CCA) 

3.3.2.1. Undifferentiated clusters 

There were 4 undifferentiated clusters, that is spatially significant clusters, consistently 

activated in the basic drug-cue paradigm, yet with no association with a specific drug class: 

these were located in the left lingual gyrus, anterior cingulate cortex (ACC), left inferior 

occipital gyrus and right middle occipital gyrus (Figure 3.1). The 15 terms with the higher r-

values, according to Neurosynth, are reported in Figure 3.1 caption; the top five were traits 

(personality), mentalizing, beliefs, craving, visual stimuli. 

 

 

Figure 3.1 | Clusters undifferentiated with respect to the factor class of substances. The 

clusters that resulted as reliably undifferentiated across legal and illegal substances are depicted 

in violet. The decoder function of Neurosynth returned the following 15 terms with the highest 

association with the CCA map (decreasing order): traits (personality), mentalizing, beliefs, 

craving, visual stimuli, contexts, autobiographical, moral (decision-making), emotion 

regulation, oscillations, object recognition, placebo, attended, abuse. Slice coordinates are 

reported in MNI stereotaxic space. ACC, anterior cingulate cortex; IOG, inferior occipital 

gyrus; MOG, middle occipital gyrus. Taken from: Devoto et al. Transl. Psych. 

 

 

3.3.2.2. Class of substances-specific clusters 

The binomial CCA performed to test whether each cluster was significantly associated with 

either class of substances revealed 5 clusters significantly associated with illegal substances, 

and one cluster associated with legal substances. 

Illegal substance abusers showed more frequent activity the left posterior inferior temporal 

gyrus (pITG), anterior hippocampus/amygdala, in calcarine cortex and precuneus, the right 

caudate/nucleus accumbens and the midbrain (VTA) (Figure 3.1, in red). Legal substance 

abusers showed more frequent activity of the left dorsal anterior cingulate cortex (dACC) 

(Figure 3.1, in yellow). The 15 Neurosynth terms with the higher r-values are reported in Figure 

1 caption; the top five were: tools, motivational, anticipation, addiction, reward anticipation. 
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Figure 3.2 | Distribution of clusters showing a significant main effect of class of substances. Clusters 

more frequently activated by individuals addicted to legal substances are depicted in yellow, whereas 

clusters more frequently activated by individuals addicted to illegal substances are depicted in red. Slice 

coordinates are reported in MNI stereotaxic space. The decoder function of Neurosynth returned the 

following 15 terms with the highest association with the CCA map (decreasing order): tools, 

motivational, anticipation, addiction, reward anticipation, outcome, subjective, behavior, monetary 

reward, complex, probabilistic, objects, incentive delay, form, sighted. dACC, dorsal anterior cingulate 

cortex; pITG, posterior inferior temporal gyrus; VTA, ventral tegmental area. Taken from: Devoto et al. 

Transl. Psych. 
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Table 3.1 | Results of the Cluster Composition Analysis. For each cluster the following information is reported: the cluster ID; the anatomical label according 

to the AAL (Brodmann Area); the centroid coordinates in the MNI stereotaxic space (standard deviation of the distance from the centroid along the three axes); 

the number of foci falling within the cluster (N); the number of contributing studies; the p-values associated with the binomial and Fisher’s tests. Significant 

main and interaction effects are shown in bold. Undifferentiated clusters are marked by *. CoS, class of substances; CoSxTR, class of substances-by-treatment 

status interaction; NST, not-seeking treatment participants; TR, treatment status; TS, treatment-seeking participants; IL, illegal substances; L, legal substances. 

Adapted from: Devoto et al. Transl. Psych. 

 

  Left hemisphere Right hemisphere   CoS TR CoSxTR 

Cluster 

ID 
Centroid label (BA) 

X 

(SD) 

Y 

(SD) 

Z 

(SD) 

X 

(SD) 

Y 

(SD) 

Z 

(SD) 
N 

# of  

contributing 

studies 

L IL TS NST  

21 Inferior occipital gyrus (19) 
-46 

(4.5) 

-70 

(3.8) 

-8 

(3.9) 
   17 4 .616* .583* .552 .645 .102 

22 
Inferior temporal gyrus 

(37) 

-51 

(3.4) 

-63 

(4.2) 

-5 

(5.8) 
   17 8 .995 .027 .076 .977 1 

28 Caudate nucleus 
-13 

(6.7) 

17 

(3.8) 

2  

(4) 
   9 7 .687 .582 .794 .441 .032 

30 Nucleus accumbens    8 

(3.4) 

8 

(5.6) 

-6 

(6.1) 
19 10 .986 .049 .597 .59 1 

47 Middle occipital gyrus (19)    49 

(3.7) 

-77 

(4.9) 

4  

(4.3) 
6 5 .7 * .626 * .607 .716 1 

62 
Calcarine 

scissure/precuneus (17/30) 

0 

(6.3) 

-59 

(5.1) 

15  

(4) 
   12 6 .995 .036  .032 .996 1 

68 Lingual gyrus (27) 
-15 

(5.3) 

-35 

(4.8) 

-6 

(5.3) 
   10 9 .515 * .728 * .461 .779 1 

69 
Midbrain (ventral 

tegmental area) 

-5 

(2.8) 

-23 

(6.7) 

-9 

(4.7) 
   12 9 .995 .036 .032 .996 .438 

92 
Medial orbitofrontal gyrus 

(10) 

-5 

(5.6) 

52 

(4.7) 

-4 

(4.9) 
   15 11 .47 .726 .701 .5 .006 

96 
Supragenual anterior 

cingulate cortex (32) 

-5 

(5.9) 

45 

(4.5) 

18 

(5.8) 
   20 9 .622 * .562 * .087 .97 .54 
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97 
Hippocampus/amygdala 

(35/28) 

-21 

(4.2) 

-5 

(3.7) 

-21 

(3.3) 
   17 9 1 .005 .076 .977 1 

103 
Perigenual anterior 

cingulate cortex (32) 
   2 

(4.5) 

40 

(3.5) 

5  

(7) 
16 12 .344 .817 .908 .204 .045 

114 
Dorsal anterior cingulate 

cortex (24) 

0 

(2.3) 

29 

(4.2) 

22 

(6.1) 
   13 7 .003 1 .999 .004 1 

116 Thalamus       
1 

(3.6) 

-11 

(3.7) 

4 

(4.7) 
24 10 .913 .181 .158 .927 .04 
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3.3.2.3. Treatment status-specific clusters 

The binomial CCA performed to test whether each cluster was significantly associated with 

either treatment status revealed 2 clusters significantly associated with TS individuals, and one 

cluster associated with NST individuals. 

TS patients activated more frequently the calcarine cortex and the precuneus and the midbrain, 

in a region compatible with the ventral tegmental area (VTA) (Figure 4.3, in green), whereas 

NST patients activated more frequently the dACC (Figure 2, in blue). The 15 terms with the 

higher r-values are reported in Figure 4.3 caption; the top five were: aversive, reversal 

(learning), anticipatory, heart (rate), intense (emotion). 

 

 

 

Figure 4.3 | Distribution of clusters showing a significant main effect of treatment status. Clusters 

specific for treatment-seeking individuals are depicted in green, whereas the cluster specific for 

not-seeking treatment subjects is depicted in blue. The decoder function of Neurosynth returned 

the following 15 terms with the highest association with the CCA map (decreasing order): 

aversive, reversal (learning), anticipatory, heart (rate), intense (emotion), episodic memory, 

autobiographical, cognitive emotional, force, fear, reward, mild cognitive, pain, personal, 

sensation. Slice coordinates are reported in MNI stereotaxic space. dACC, dorsal anterior 

cingulate cortex. Taken from: Devoto et al. Transl. Psych.
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3.3.2.4. Class of substances-by-treatment status interactions 

The Fisher’s Exact test revealed 4 clusters with a significant interaction between class of 

substances and treatment status of the participants. These clusters were located in the left medial 

orbitofrontal gyrus (mOFC), in the right perigenual ACC (pgACC), in the right thalamus and 

the left caudate nucleus (Figure 3.4). 

The interaction plots show that the mOFC and the ACC were more frequently activated by TS 

subjects addicted to legal substances, and by NST individuals addicted to illegal substances. 

On the other hand, the caudate nucleus was more frequently activated by TS compared with 

NST individuals, specifically for legal substances. Conversely, the right thalamus was 

associated with TS compared with NST subjects, particularly for individuals addicted to illegal 

substances. The 15 terms with the higher r-values are reported in Figure 3.4 caption; the top 

five were: engagement, referential (self), value, reward, traits (personality).
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Figure 4.4 | Distribution of clusters showing a significant class of substances-by-treatment status interaction. Clusters with a significant class of 

substances-by-treatment status interaction are shown in orange, along with their respective plot. On the y-axis of the bar-plots is represented the 

ratio between the observed probability and the prior likelihood: the more this value exceeds 1, the more the cluster is associated with that 

combination of factors. The decoder function of Neurosynth returned the following 15 terms with the highest association with the CCA map 

(decreasing order): engagement, referential (self), value, reward, traits (personality), choose, arousal, task positive, autobiographical, monetary, 

moral (decision-making), contexts, monetary incentive, expectations, valence. Slice coordinates are reported in MNI stereotaxic space. pgACC, 

perigenual anterior cingulate cortex; mOFG, medial orbitofrontal gyrus. Taken from: Devoto et al. Transl. Psych.
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3.4. Discussion 

Legal and illegal drugs differ in several respects. Alcohol and tobacco/nicotine are freely 

available in the environment: they can be found 24/7 in shops at a low-to-moderate monetary 

cost. Conversely, illegal drugs like cocaine and heroin are less widely available, they are 

associated with a severe degree of harm and dependence(Nutt et al., 2007), they are usually 

sold at very high prices per unit weight in the illegal market(Caulkins and Reuter, 1998), and 

their trading implies the risks associated with a criminal action. The present meta-analysis of 

neuroimaging studies on drug cue-reactivity, for the first time assessed whether, and how, 

nature of these drug and treatment status can interact at the neurobiological level, giving rise to 

specific brain activation patterns in response to drug cues.  

In what follows, I will first discuss the effect of addiction severity, by identifying the common 

and distinct neural substrates of drug craving across legal and illegal substances. Then, I will 

discuss the influence of treatment status and, finally, the interaction effects. 

 

3.4.1. Common neural correlates of craving across legal and illegal substances 

I found that a frontal-occipital network, comprising three clusters located in the occipital cortex 

(IOG, MOG, lingual gyrus) and one in the PFC, in the ACC, was activated in response to drug 

cues regardless of the type of substance, suggesting the existence of a core brain circuit 

underlying cue-induced drug craving. 

Occipital cortex activity in response to drug-cues has been consistently reported in previous 

meta-analyses of neuroimaging studies (Chase et al., 2011, Kühn and Gallinat, 2011, 

Engelmann et al., 2012), and it has been associated with craving (McClernon et al., 2009) and 

meta-cognitive processes, such as awareness of problematic drug use (Prisciandaro et al., 2014), 

in previous experimental studies. In a recent ALE meta-analysis, Hanlon and colleagues 

demonstrated the replicability of the occipital cortex finding (Brodmann areas 19 and 17) across 

legal and illegal substance abusers, suggesting that occipital activity may reflect the attentional 

bias towards drug-related stimuli or the rewarding properties of the substance per se (Hanlon et 

al., 2014). If one accepts that the legal and illegal substances included here vary with respect to 

reinforcing properties (Volkow and Wise, 2005) and to the degree of dependence induced (Nutt 

et al., 2007), our finding does not support the idea that occipital cortex activity reflects the 

reinforcing properties of the substance itself: indeed, they are more compatible with the 

hypothesis that occipital cortex activity reflects bottom-up attentional phenomena towards 

drug-associated stimuli, a process that might be shared across abusers of different substances; 
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similar findings have been observed for visual stimuli evoking other rewarding contingencies, 

like erotic and sexual images (Montorsi et al., 2003, Voon et al., 2014). 

Another cluster, located in the ACC, was undifferentiated with respect to the class of 

substances. Activity of the ACC in response to drug cues has been previously associated with 

reinforcement-guided decision-making (i.e., integration of information including previous 

experiences with the reward) (Kennerley et al., 2006), cognitive control (Kühn and Gallinat, 

2011, Engelmann et al., 2012), and reward value representation (Schacht et al., 2013). Further, 

based on the evidence that intact glutamatergic projections from the PFC – which includes the 

ACC – to the NAc and the ventral pallidum are necessary to trigger drug-seeking in animal 

models (McFarland and Kalivas, 2001, McLaughlin and See, 2003), this network has been 

considered as a “final common pathway” mediating the initiation of drug-seeking (Kalivas and 

Volkow, 2005). Relevant to this interpretation, a qualitative analysis of the terms identified by 

Neurosynth is consistent with the idea that this pattern of activation reflects the deployment of 

attention to rewarding visual stimuli and, ultimately, to craving. 

In other words, across different populations with SUD, exposure to visual-anticipatory drug 

cues versus neutral objects is associated with an up-regulated activity of discrete portions within 

the cue-reactivity network (occipital cortices), linked to a share attentional bias toward the 

substance, and within the cue-regulation (ACC) network, linked to higher-order attentional and 

top-down processes. 

 

3.4.2. Distinct neural correlates of craving across legal and illegal substances 

Consistent with the fact that cocaine or heroin can be severely addictive inducing extreme 

craving, we found a more frequent activation of the subcortical reward pathway (the VTA, 

NAc, the amygdala) in illegal drugs abusers. This evidence is also in agreement with a large 

body of animal and human studies suggesting that aberrant activity of the mesocorticolimbic 

pathway may be responsible for this phenomenon: the VTA, the NAc and the amygdala are 

crucial structures for the expression of cue-elicited reward-seeking behaviors(Everitt et al., 

1999, Warlow et al., 2017). In humans, the activity of the ventral striatum (which includes the 

NAc) during cue-reactivity predicts relapse in heroin (Li et al., 2015) and alcohol-dependent 

individuals (Reinhard et al., 2015), and NAc resting-state functional connectivity with the 

dlPFC predicts relapse in cocaine-dependent individuals (Berlingeri et al., 2017). These 

findings also align with the evidence that measures of addiction severity correlate with cue-

induced activity in these regions (Smolka et al., 2006, Volkow et al., 2006, Claus et al., 2011).  
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Unexpectedly, two other brain regions outside the mesocorticolimbic system were more 

frequently activated in addicted to illegal substances, the inferior temporal cortex and the 

precuneus. The precuneus is part of the default mode network: all the well-known associated 

behavioral dimensions may apply (Cavanna and Trimble, 2006), including enhanced attentional 

anticipation for external stimuli (Schacht et al., 2013, DeWitt et al., 2015). The inferior 

temporal cortex is part of a network that stores and processes knowledge about object 

manipulation and tool use (Lewis, 2006, Yalachkov et al., 2010): its involvement may reflect 

automatic bottom-up phenomena representing, in a broad sense, the “affordances” for the 

particular substance of abuse. Such bottom-up phenomena would be stronger the more severe 

the condition of abuse (Jasinska et al., 2014). 

Interestingly, the only brain region that was more frequently activated in legal substance 

abusers was the dACC. In nicotine addiction, the dACC activity was tentatively associated with 

the effort of directing the attention away from the stimulus to suppress craving, as immediate 

consumption was impossible (Kühn and Gallinat, 2011, Engelmann et al., 2012): indeed, 

cognitive control over craving may be especially required when the possibility of consuming 

the substance is a more concrete one, as in the case of legal substances, alcohol and nicotine. 

All these interpretations were broadly confirmed by the quantitative semantic associations 

made by Neurosynth. 

In sum, whereas individuals addicted to illegal substances are mainly characterized by an up-

regulated activity of key nodes within the cue-reactivity network (VTA, NAc, 

amygdala/hippocampus), presumably due to the deeper neural sensitization and to the enhanced 

incentive salience attribution, SUD patients addicted to legal substances are characterized by 

more frequent activity of the cue-regulation network (dACC), possibly linked to emotion 

(craving) regulation. 

 

3.4.3. The effect of treatment status in legal and illegal substances 

Contrary to what one could have predicted according with previous investigations and 

theoretical models (Wilson et al., 2004, Wilson et al., 2005), the brain activation patterns of TS 

and NST differed only for a small number of regions, all outside prefrontal cortex: these 

included the VTA and the precuneus (associated with TS and illegal substances) and the dACC 

(associated with NST and legal substances). Exploration of the Neurosynth database showed 

that the clusters associated with treatment status, as a main effect, are linked to cognitive 

emotional processes and reward anticipation. Of great interest is the association of these regions 

also with reverse learning paradigms: one can imagine that seeing a drug-cue in a treatment-
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seeking status may trigger processes needed to change the associated value with the cue and 

the actions typically involved. 

On the other hand, I observed two cortical regions where the nature of the substance of abuse 

and the treatment status of a participant did interact: the perigenual ACC (pgACC) and the 

medial OFC (mOFC). More specifically, these two regions were more frequently activated in 

NST consumers of illegal substances and in TS consumers of legal substances. Interestingly, 

these include the same cortical region, the OFC, that according to Wilson et al (2004) (Wilson 

et al., 2004) should display an association with NST. Our data show that this is not the case and 

that its association with treatment status is modulated by the nature of the drug.  

The medial and ventral portion of the OFC (also called ventromedial PFC), together with the 

ACC, is part of a network that mediates intertemporal decision-making, as suggested by 

neuroimaging meta-analyses on temporal discounting phenomena (these are tested in 

experimental situations in which an individual is forced to choose between a later - but larger - 

or an earlier - but smaller – reward (Carter et al., 2010, Wesley and Bickel, 2014)), and by 

clinical evidence on patients with OFC lesions, whose decisions are characterized by the 

insensitivity to future consequences and by the preference for immediate reward (Bechara et 

al., 2000). Further, OFC (in particular, Brodmann area 10) activity correlates with the ease and 

difficulty of the choice (Rolls et al., 2010), and it is functionally connected with the pgACC 

(Yu et al., 2011), a region that is thought to represent action-reward associations (Rolls, 2019). 

The interpretations of the role of these regions in temporal discounting (key-words: 

expectations, value) and decision making (key-word: choose, moral (decision-making)) is also 

consistent with a Neurosynth analysis. 

In keeping with the above interpretation of our data, I acknowledge that the direction of the 

interactions observed here may be driven by a number of internal and environmental factors 

that reflect the intrinsic differences between classes of substances and treatment types. First, it 

is worth recalling that illegal substances, here heroin and cocaine, are associated with more 

profound brain reactions to drug cues in general and they are, by definition, less widely 

available or even not available or affordable at times, if compared with legal substances, here 

alcohol and tobacco. Second, the availability of substances of abuse differs depending on the 

status of treatment seeking and the nature of the substance: for example, a treatment seeker, 

abuser of illegal substances, is frequently an inpatient submitted to a forced regimen of 

withdrawal from the drug (of the studies reviewed here, at least 10 out of 23 studies involved 

inpatients for the illegal drugs groups). Third, getting illegal substances exposes to the risk of 
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dealing with crime, often leading to enforced treatment, while legal substances can be obtained 

without such risk.  

Following these considerations, one may argue that the interaction effects seen in regions 

concerned with the representation of reward value and decision making (here, the pgACC and 

the mOFC) may reflect conflictual situations in which internal predispositions and drug 

availability clash when subjects are exposed to drug cues: as illustrated in Figure 4.4, this is 

exactly what may happen when one is determined to quit and/or under treatment and yet he is 

exposed to an easily available drug (legal drugs here) or when one is not determined to quit and 

at the mercy of limited availability (in quantity and/or price) typical of the illegal drug market. 

The way time is represented in these brain regions, with respect to reward and the variable delay 

whereby this is gained, may be an important factor here. For example, for a cigarette smoker 

seeking for treatment (low internal predisposition to consumption and high environmental 

availability) or for a crack-cocaine abuser not seeking for treatment (high internal 

predisposition to consumption and low environmental availability), a drug cue represents (i) a 

substance that should be not consumed soon - the patient is under treatment - but that is highly 

available in the environment or (ii) a substance that one may want to consume soon - the patient 

is not under treatment - but that is costly and poorly available in the environment, thus making 

the outcome less predictable (Figure 3.4).  

As a consequence, the interaction effects seen for class of substances and treatment status in 

the pgACC and mOFC may reflect the recruitment of additional reward evaluation and 

decision-making processes, which are required to form, and stressed by, the expectations about 

the potential delay of drug consumption after exposure to drug cues. 
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Figure 3.4 | Internal and environmental determinants in drug cue-reactivity. A simplified 

model of the interaction between class of substances and treatment status in the PFC. More 

frequent activity in regions involved in inter-temporal decision-making and reward evaluation 

may reflect the incongruency between determinants that signal shorter delay/immediate reward 

(downward green arrows) versus longer delay/absence of reward (upward red arrows): when 

these contingencies signal conflicting information about the potential time-frame of the reward 

(represented by the arrows pointing in different directions), additional decision-making and 

reward evaluation processes may be required to form an expectation about the delay of drug 

consumption. The interaction effect observed here may be in part mediated by the different 

drug availability implied by the type of treatment usually considered for legal (outpatient - 

getting the substance soon is still possible) versus illegal (inpatient – getting the substance soon 

is less likely) substance abusers. Taken from: Devoto et al. Transl. Psych. 

 

 

Unexpectedly, two subcortical structures - whose activity is usually not observed in studies 

where treatment status/drug availability is explicitly manipulated (Wilson et al., 2005, Wilson 

et al., 2012, Prisciandaro et al., 2014) - showed a significant interaction between class of 

substances and treatment status: the caudate nucleus and the thalamus. In particular, both 

regions were more frequently activated by TS participants, but the caudate nucleus was more 

frequently activated by legal substance abusers, the thalamus by illegal substance abusers. 

The caudate nucleus is functionally and structurally connected to multiple brain areas involved 

in emotion, cognition, and action (Robinson et al., 2012), and it supports efficient goal-directed 

actions through the selection of appropriate behavioral schemata (Grahn et al., 2008). Goal-

oriented versus habitual behavior is indeed crucial for those individuals that are seeking for a 

treatment, not for those NST. Conversely, activity of the thalamus has been associated with 

drug craving and with addiction severity in previous animal and human neuroimaging studies 
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(Claus et al., 2011, Huang et al., 2018a), even if its precise contribution to the experience of 

drug craving is still unclear. If anything, our results show that subcortical structures such as the 

caudate nucleus and the thalamus are modulated by some aspects of treatment status and/or 

drug availability that are specific for a particular class of substances. 

To summarize, the interaction between addiction severity and treatment status gives rise to 

specific brain activation patterns in subcortical structures within the cue-reactivity network 

(caudate, thalamus), and in cortical areas within the cue-regulation network (pgACC, mOFC). 

Whereas the contribution of subcortical structures such as the caudate nucleus and thalamus 

might be more difficult to unravel, the interaction effect observed within the PFC suggests that 

brain activity within the cue-regulation network reflects, at least in part, the integration between 

different internal and contextual contingencies aimed at forming an expectation about future 

drug consumption. 

 

3.4.4. Likely causes of the differences with the observations of Wilson et al. (2004)  

Contrary to what described by Wilson et al. (2004), a systematic association with prefrontal 

cortex activation and the not-seeking treatment status, we did not find such main effect, nor in 

dorsolateral prefrontal cortex, nor in orbitofrontal cortex. We rather found that this association 

was dependent on the nature of the substance of abuse in orbitofrontal cortex. While it was 

impossible to replicate with a coordinate based meta-analysis Wilson's et al. (2004) results 

because 8 of the studies that they considered were based on ROIs analyses, there are further 

analytical differences to prevent a formal comparison. First, Wilson et al. (2004) used a nominal 

analysis of the activation patterns as broad as the aforementioned terms (dlPFC; OFC); we used 

a coordinate-based meta-analysis with 5 mm spatial resolution and an ALE correction for 

spatial extent; we made a statistical assessment of the relevance of the clusters identified. In 

addition, Wilson et al. (2004) did not make a statistical evaluation of their findings. In 

retrospect, a chi-squared analysis based on their Table 1 would be significant for the dlPFC but 

not for the OFC. Further, Wilson's et al (2004) is based on nineteen studies while we considered 

sixty-four studies. All these differences may have contributed to the inability to replicate 

Wilson's et. al (2004) claim.  

 

3.4.5. Strengths and limitations 

Along with its limitations, this study has also several strengths. First, I explored for the first 

time the interaction effects between the class of substances and treatment status (Wilson et al., 

2004, Jasinska et al., 2014), which represents a step forward in the understanding of the 
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neurobiology of drug craving. Second, I selected a highly homogeneous set of imaging studies 

on the cue-reactivity paradigm (in either visual or imagery modality) while preserving a 

moderate sample size (64 studies included), which constitutes another strength of the study. 

Third, I combined the ALE method (Eickhoff et al., 2009), which reveals the brain regions with 

most convergent activation across the whole dataset, with hierarchical clustering and post-hoc 

statistical characterization of the clusters concerning the factors of interest (Berlingeri et al., 

2019): this approach has been validated in other domains of cognitive neuroscience, such as in 

the domain of food perception and obesity (Devoto et al., 2018), human volition (Zapparoli et 

al., 2017), reading dyslexia (Paulesu et al., 2014), single-word reading (Cattinelli et al., 2013a), 

and noun and verb processing (Crepaldi et al., 2013). 

However, I acknowledge that the present meta-analysis has some limitations too. A first 

obvious limitation concerns the differences in demographic characteristics (e.g., sex 

distribution, co-occurring disorders, socio-economic status) of the samples across class of 

substances and treatment status; yet, I acknowledge that this becomes an issue if there is a 

systematic association of these nuisance variable with one level of our factorial design. If not, 

one has to assume that the emerging random noise would cancel out. Another limitation 

concerns the cross-sectional nature of the studies included, which means that we cannot exclude 

that some of our results reflect brain activation patterns pre-existent to the SUD. Also, I cannot 

exclude that some of the effects observed in my meta-analysis are due to abstinence-related 

effects, since abstinence has can potentiate the reward responses to drug cues (McClernon et 

al., 2008, Li et al., 2012, Lou et al., 2012, Wei et al., 2019); due to the intrinsic difference in 

average abstinence across substances, it was not possible to include this factor in our analysis. 

Similarly, the length of drug use has been shown to exert a modulatory effect on the neural 

response to drug cues (Jasinska et al., 2014), but I could not take this factor into account due to 

the high number of studies that did not report this information. Nonetheless, as studies with TS 

individuals have on average a shorter history of abuse compared to studies with NST 

individuals, I cannot assess the degree to which the observed effects of treatment status are 

mediated by the history of drug use. Another source of confound may concern the 

pharmacological effects of methadone-assisted heroin-addicted individuals, as in some of the 

included studies on heroin addiction, subjects were undergoing methadone-assisted 

detoxification or were under methadone treatment (Tabatabaei-Jafari et al., 2014, Wang et al., 

2014, Li et al., 2015, De Pirro et al., 2018, Wei et al., 2019). In a similar fashion, it is hard or 

even impossible to isolate treatment type (inpatient vs outpatient, voluntary vs forced) from the 

effect of class of substances (legal vs illegal), as illegal drugs abusers, due to the illegal nature 
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of the substance, are more likely to be enrolled in forced and in-patient treatments compared to 

legal drug abusers (e.g., no forced in-patient treatments are expected for nicotine-dependent 

individuals). This, in turn, is expected to influence the perceived drug availability and the 

associated expectation of drug consumption. However, I acknowledge that these limitations 

reflect the clinical complexity of the matter at stake when considering studies on human 

subjects, and that the influence of these nuisance variables becomes an issue only when there 

is a strong and systematic association with one level of our factorial design. If not, one has to 

assume that the emerging random noise would cancel out.  

Consistent with the real-world clinical complexity of the human SUD, in our pool of selected 

studies, some participants were poly-substance abusers, and most of them had coexisting 

nicotine addiction, thus raising the possibility that poly-substance use may have affected our 

results. Also, based on the fact that the potency of a reinforcer can be estimated from its main 

route of administration (Volkow and Wise, 2005), I cannot exclude that inter-study differences 

in the route of administration within and between-substance may have affected my results: 

again, this was impossible to account for, given the multiple ways in which a single substance 

can be administered, and because many studies did not report this information.  

The latter issue is indeed crucial, as the effect of the route of administration on the neural 

responses to drug cues (in individuals addicted to the same substance) would point to a new 

relevant factor worth of investigation. 

 

3.4.6. Conclusions and implications for clinical sciences 

Taken together, these findings may suggest some initial practical considerations: drug-cue brain 

reactivity, an index of craving intensity and, possibly, of the risk of relapse into addiction, is 

not only influenced by the potential harm of a given substance, rather it also depends on internal 

and contextual determinants. As treatment-seeking patients are characterized by the 

engagement of specific brain reactions to drug cues depending on the substance of abuse, 

rehabilitation, particularly when cue-extinction strategies are employed (Conklin and Tiffany, 

2002), may thus benefit from tailor-made interventions that consider the influence of internal 

and environmental contingencies when subjects are likely to be exposed to drug cues. 

 

Summary of Chapter 3 

In this Chapter, I combined the CluB method with the GingerALE algorithm to perform a meta-

analysis of 64 neuroimaging studies on visual-anticipatory drug cue-reactivity in SUD. In 

particular, I explored the simple and interactive effect of two factors that modulate the neural 



 

 88 

reactivity to drug cues: addiction severity and treatment status. These effects were taken as 

benchmarks to discuss the validity of Wilson’s “expectation hypothesis” (Wilson et al., 2004) 

on the influence of treatment status on the neural responses to drug cues. 

The results show that exposure to visual-anticipatory drug cues, across substances that induce 

a moderate (legal substances: alcohol, nicotine) to severe (illegal substances: cocaine, heroin) 

degree of dependence, is associated with an up-regulated activity of discrete portions within the 

cue-reactivity network (occipital cortices), linked to a share attentional bias toward the 

substance, and within the cue-regulation (ACC) network, linked to higher-order attentional and 

top-down processes. Conversely, individuals addicted to illegal substances showed more 

frequent activity within the cue-reactivity network (VTA, NAc, amygdala/hippocampus), 

presumably due to the deeper neural sensitization and to the enhanced incentive salience 

attribution, SUD patients addicted to legal substances are characterized by more frequent 

activity of the cue-regulation network (dACC), possibly linked to emotion (craving) regulation. 

Only in partial fulfillment with Wilson’s et al. hypothesis (Wilson et al., 2004), I observed an 

interaction effect within the cue-regulation network (pgACC, mOFC), more frequently engaged 

by TS patients addicted to legal substances and by NST patients addicted to illegal substances, 

possibly reflecting the integration between different internal and contextual contingencies 

aimed at forming an expectation about future drug consumption. 

 

To summarize, in the previous two Chapters I identified the brain networks underlying the 

reactivity to food and to drug cues, showing that: (i) obesity and SUD are characterized by 

common (e.g., ventral striatum/NAc) and distinct (e.g., insular cortex) neural correlates of 

craving; (ii) several internal (e.g., disease severity, satiety state) and external factors (e.g., 

sensory modality of cue-presentation, treatment status/drug availability) modulate such neural 

reactivity, in discrete portions of the cue-reactivity and cue-regulation networks. 

The question of whether, and how, neurostimulation techniques applied to reduce craving act 

on the same neural circuits is addressed in the next empirical Chapter. 
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Chapter 4 – Repetitive Deep TMS for the Reduction of Body Weight: Preliminary 

Evidence for a Bimodal Effect on the Functional Brain Connectivity in Obese Individuals 

 

4.1. Introduction 

Obesity and drug addiction can be both considered as chronic relapsing disorders. Some 

estimates suggest that only 40-60% of all treatment-seeking SUD patients remain abstinent at 

1 year follow-up (McLellan et al., 2000), with relapse rates for tobacco dependence being 

estimated at about 78% and 85%, respectively for counselling therapy in combination with 

medication and counselling therapy alone (Fiore, 2000). Similarly, obese patients struggle to 

maintain the weight they have lost, with 33-66% of the patients regaining it back, or gaining 

even more weight (Mann et al., 2007). Indeed, several treatments have been proposed for this 

condition, from life-style and diet interventions to bariatric surgery (Colquitt et al., 2009, 

Colquitt et al., 2014), but they are often associated with a transient weight-loss (Jeffery et al., 

2000, Meany et al., 2014). 

As already mentioned in Chapter 1, neuromodulation and neurostimulation techniques, such as 

transcranial Direct Current Stimulation (tDCS) and Transcranial Magnetic Stimulation (TMS), 

have been recently considered a promising tool for the treatment of obesity and eating disorders 

(Val-Laillet et al., 2015). This growing interest into brain-centered treatments for obesity is 

motivated by two main reasons: first, by the costs and the peri-operative risks associated with 

bariatric surgery (Colquitt et al., 2009); second, by the large corpus of functional activation 

neuroimaging studies, and meta-analyses, demonstrating that obese individuals are 

characterized by (i) perturbed neural activity in response to food cues in key structures involved 

in sensory, hedonic, and motivational processes, and (ii) in areas supporting higher-order 

processes such as attention, decision-making, and cognitive control ((Killgore et al., 2003, 

Rothemund et al., 2007, Dimitropoulos et al., 2012, Brooks et al., 2013, Jastreboff et al., 2013, 

Kennedy and Dimitropoulos, 2014, Murray et al., 2014, Pursey et al., 2014) and Chapter 2). 

Crucially, the aberrant activity within, and between, these neural circuits is expressed also in 

absence of (endogenous or exogenous) stimulation, as revealed by resting-state functional 

connectivity (rsFC) studies examining the brain’s intrinsic activity (Kullmann et al., 2012, 

Kullmann et al., 2013, Contreras-Rodríguez et al., 2017). 

Of course, non-invasive brain stimulation treatments are meant to affect the functioning of those 

same brain circuits - presumably by up-regulating the cue-regulation network and/or by down-

regulating the cue-reactivity network -, hence leading to empowered self-control over eating; 
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yet, the precise neurobiological mechanisms beyond non-invasive brain stimulation techniques 

applied to obesity are largely unknown. This is what will be addressed in the current Chapter. 

 

4.1.1. Disruption of large-scale resting-state brain networks and network topology in obesity 

Resting-state fMRI aims at identifying the brain’s intrinsic functional systems that emerge by 

the coherent pattern of spontaneous low-frequency BOLD fluctuations, and that are typically 

involved in cognitive functioning (Biswal et al., 1995, Greicius et al., 2003, Fox and Raichle, 

2007). In particular, graph-theoretical approaches (Rubinov and Sporns, 2010) - which consider 

the brain as a network made of discrete nodes (i.e., a set of brain regions according with a 

particular parcellation scheme) connected by links (i.e., functional or structural connections 

between the nodes) - have been employed to describe the topological organization of the brain 

network in a variety of psychiatric and neuropsychiatric disorders, such as substance addiction 

(Jiang et al., 2013, Wang et al., 2015b), obsessive compulsive disorder (Armstrong et al., 2016, 

Tian et al., 2016), Alzheimer’s disease (Sanz-Arigita et al., 2010, Zhao et al., 2012), and 

depression (Zhang et al., 2011, Ye et al., 2015). Yet, this approach was employed in only few 

studies investigating the brain functional organization in obese participants (Raschpichler et al., 

2013, García-García et al., 2015, Baek et al., 2017, Zhang et al., 2019). 

A recent study documented a disruption of brain network properties in a sample of obese 

individuals, half of which with binge-eating disorder (Baek et al., 2017). The authors observed 

a reduction in global (e.g., global efficiency, local efficiency, modularity) and local network 

metrics (e.g., nodal degree centrality, nodal efficiency, nodal betweenness centrality). With 

respect to regional metrics, obese individuals showed decreased nodal degree centrality 

(indexing the number of connections between a given brain region, the node, and all the other 

regions/nodes of the brain) in the pallidum, putamen, and thalamus, together with increased 

nodal degree centrality in the occipital cortex, indicating a disruption of the functional 

integration properties of key nodes within the cue-reactivity network (Baek et al., 2017). 

Another study on obese female patients confirmed and extended previous results, showing that 

obesity is linked not only to increased nodal centrality within the cue-reactivity network (ventral 

striatum, caudate), but also to decreased nodal centrality in the orbitofrontal cortex (Zhang et 

al., 2019), demonstrating that disrupted functional integration properties extend to regions 

involved in higher-order cognitive processes within the cue-regulation network. 

 

Converging evidence for disrupted functional organization properties in obesity comes from 

studies using independent component analysis of resting-state fMRI data. Dovetailing with 
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heightened incentive salience processing of food stimuli in obesity and overeating (Berridge et 

al., 2010), obese compared to lean participants exhibit increased FC within the salience network 

(putamen) (García-García et al., 2013). In another study, obese participants displayed enhanced 

FC strength in the bilateral precuneus, and diminished FC strength in the anterior cingulate 

cortex and in the insula (Kullmann et al., 2012). These regions, together with the medial 

prefrontal and the lateral parietal cortices, constitute the default mode network (DMN) 

(Greicius et al., 2003, Raichle, 2015), a set of functionally connected brain areas that is engaged 

during rest and disengaged when the subject is performing a task (Fox et al., 2005), and whose 

activity is associated with the recollection of previous experiences, emotional processing, and 

with self-referential mental activity (Raichle, 2015). 

The overall evidence suggests that obesity is associated with disrupted network properties and 

altered rsFC patterns within and between key nodes of the cue-reactivity and cue-regulation 

network implicated in food craving. Crucially, activity in the same brain networks can be 

successfully modulated by weight-loss interventions, bariatric surgery, and non-invasive brain 

stimulation. 

 

4.1.2. Changes in rsFC induced by weight-loss 

Even if no known study investigated the changes in brain network properties induced by 

weight-loss, some clues can be obtained by rsFC studies. A six-month exercise intervention in 

overweight and obese participants was effective in decreasing the activity of the precuneus in 

the DMN (McFadden et al., 2013), and this change was correlated with weight-loss. Sleeve 

gastrectomy, a surgical intervention that consists in the reduction of the size of the stomach, is 

also effective in recovering altered FC patterns in obese individuals. In particular, weight-loss 

after sleeve gastrectomy was associated with a recovery in the rsFC between several nodes of 

the cue-reactivity and cue-regulation networks (Li et al., 2018, Cerit et al., 2019), in areas that 

show aberrant activity at rest and during food cue-reactivity in obese individuals (Kullmann et 

al., 2012, Kullmann et al., 2013). 

As already pointed out in Chapter 1 (section 1.6), non-invasive brain stimulation is also 

effective in decreasing self-reported food craving and in reducing food consumption in 

experimental settings (see (Song et al., 2019) for a recent meta-analysis). Yet, fewer studies 

documented the effect of neurostimulation interventions on weight-loss (Kim et al., 2018, 

Ferrulli et al., 2019a).  

One study showed that a 2-week high-frequency repetitive TMS (rTMS) intervention targeting 

the left dlPFC was effective in reducing body weight in obese participants (Kim et al., 2018). 
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Further, compared to the sham stimulation group, the experimental group showed greater 

decreases in BMI, hunger, and desire for food at 4-week follow-up (Kim et al., 2018). In another 

rTMS study on individuals with obesity (Ferrulli et al., 2019a), the authors employed an H-coil 

(Zangen et al., 2005) specifically designed to reach deeper cortical structures like the insular 

cortex. As sown in Chapter 2, obese patients exhibit more frequent activity of the anterior 

insular cortex and overlying frontal operculum, particularly during the visual-anticipatory 

stimulation, suggesting that the insular cortex could be a promising target for neurostimulation 

applied to obesity (Val-Laillet et al., 2015). The 5-week intervention showed that the high-

frequency (18 Hz) stimulation over the bilateral prefrontal and insular cortices was more 

effective than low-frequency (1 Hz) and sham stimulation in inducing weight-loss up to 1-year 

follow-up (Ferrulli et al., 2019a).  

Yet, to the best of my knowledge, no study to date examined the anatomofunctional mechanism 

beyond the efficacy of non-invasive brain stimulation applied to obesity. The present 

preliminary study represents the first attempt to fill this gap in the literature. 

 

4.1.3. Aims of the study 

This is the first fMRI study investigating the neurofunctional changes associated with a deep 

rTMS treatment over the insular and frontal cortices that proved successful in reducing food-

craving and improving weight-loss (Ferrulli et al., 2019). In particular, I employed resting-state 

fMRI and a graph-theoretical approach to identify local changes in the brain functional 

organization induced by the 5-week high-frequency versus sham deep rTMS treatment.  

The current preliminary study was designed to address three main questions: (i) is the bilateral 

stimulation of the insular and prefrontal cortices capable of inducing neurofunctional changes 

at the system-level? (ii) Which are the brain circuits most affected by the neurostimulation 

treatment? (iii) To which cognitive domain(s) are they associated?  

In line with previous reports on neural food cue-reactivity in obesity, and consistent with studies 

on the anatomofunctional changes induced by weight loss, I expected that the deep rTMS 

treatment would affect the functional integration properties of localized brain regions implied 

in food craving, particularly in the cue-regulation network (PFC), target of the 

neurostimulation. 
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4.2. Materials and methods 

4.2.1. Study design 

The present study is part of a larger randomized, double-blinded, placebo-controlled clinical 

trial designed to study the effects of a dTMS treatment aimed at reducing body weight and food 

craving (Ferrulli et al., 2019a, Ferrulli et al., 2019b). In brief, patients fulfilling all inclusion 

criteria (see below) were randomized to one of two groups: 18 Hz dTMS (real stimulation 

group, real) or placebo treatment (sham stimulation group, sham). Participants were 

randomized in a 1:1 allocation ratio, and the randomization was performed according to a 

randomization sequence generated by a computer program. The randomization and masking 

procedure is reported in the Supplementary File 3 (section 1.1).  

Participants also underwent two resting-state fMRI scans: before the first dTMS session (T0) 

and after the 5-weeks intervention (T1, up to maximum two days from the last dTMS session). 

Participants were scanned at the same time at both T0 and T1, and they were required to fast 

for at least 3/4 hours before the fMRI session. 

The study was conducted in accordance with the 1964 Helsinki declaration, and it received 

approval from the local institutional review boards (Ethics Committee of San Raffaele Hospital, 

Milan, Italy) in the amended version (Version Nr.3) dated 06/10/2016 (protocol number: 27778, 

file # 137498928 #). All participants provided written informed consent before participating in 

any of the study procedures. 

 

4.2.2. Study participants 

Twenty-four adult, obese, treatment-seeking participants (18 females; mean age = 51 ± 9 years; 

mean educational level = 14 years; mean BMI = 35.8 ± 3.6 Kg/m2) were involved in the study. 

Participants had no history of neurological or psychiatric illness. None of the participants was 

characterized by cognitive impairment as assessed using the Mini Mental State Examination 

(corrected score > 23.8). Participants referred to the Endocrinology and Metabolic Diseases 

outpatient clinic, at Policlinico San Donato, for overweight/obesity treatment from January 

2017 to November 2019, and were screened by a short interview to determine eligibility. The 

only recruitment strategy involved direct interviews (no paper or web advertisements were 

used). Inclusion and exclusion criteria are reported in Table 4.1. Four of the 24 participants 

enrolled in the study were also part of the sample in Ferrulli et al. (2019). 
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4.2.3. Intervention overview 

Participants enrolled in the study received 15 treatments in total, three times per week over 5 

weeks. Patients were not taking any medication during the study period (2 months). Participants 

could discontinue the treatment for a maximum of three non-consecutive times. The follow-up 

visit was planned at 1 month (FU1) after the end of the treatment.  

 

 
Table 4.1. Inclusion and exclusion criteria of participants | List of the inclusion and exclusion criteria 

for the present study. BMI, body-mass index; fMRI, functional magnetic resonance imaging. 

 

Inclusion criteria Exclusion criteria 

Age 22-65 years Personal or a family history of seizures 

BMI 30-45 Kg/m2 Psychotic and/or organic brain disorders 

Willingness to 

reduce body weight 
Implanted metal devices 

 Fasting blood glucose level > 8.33 mmol/L 

 Abuse of substances other than nicotine 

 Weight variation (>3%) < 3 months prior the screening 

visit 

 
Current or recent (<6 months prior the screening visit) 

treatment with anti-obesity medications or other 

medications for weight reduction 

 Medications associated with lowered seizure threshold 

 Type 1 diabetes or insulin-treated type 2 diabetes 

 

Contraindication to perform fMRI (cardiac implantable 

electronic device, metallic intraocular foreign bodies, 

implantable neurostimulation systems, cochlear 

implants/ear implant, drug infusion pump, catheters with 

metallic components, metallic fragments, cerebral artery 

aneurysm clips, magnetic dental implants, tissue 

expander, artificial limb, hearing aid, piercing, 

claustrophobia) 

 

 

4.2.4. Repetitive dTMS 

Repetitive dTMS was performed by a trained physician using a Magstim Rapid2TMS stimulator 

(Magstim Co. Ltd, Whitland, UK) equipped with an H-shaped coil (H-ADD), specifically 

designed to bilaterally stimulate the PFC and the insula (Zangen et al., 2005). The H-coil allows 



 

 95 

direct stimulation of deeper brain regions such as the insula (3 cm vs. 1.5 cm from the skull). 

Details of the stimulation procedure are given below. 

Before each dTMS session, the Resting Motor Threshold (RMT) was determined over the left 

primary motor cortex. The optimal spot on the scalp was localized to stimulate the right 

abductor pollicis brevis muscle, and the RMT was defined by delivering single stimulations, 

applying one pulse every 5 seconds to the motor cortex, and gradually decreasing intensity. The 

RMT was defined as the stimulation with the lowest required intensity to cause the right thumb 

to move. Once the RMT was defined, the coil was positioned 6 cm anteriorly to the motor spot 

and aligned symmetrically over the prefrontal cortex. 

High-frequency sessions consisted of 80 trains of 18 Hz, each lasting 2 seconds, with an 

intertrain interval of 20 seconds. The HF treatment duration was 29.3 minutes with 2880 pulses 

in total. The Sham treatment was performed by a sham coil located in the same case of the real 

coil, producing similar acoustic artefacts and scalp sensations, inducing only negligible electric 

fields in the brain. In the group receiving the real treatment, the stimulation was performed with 

an intensity of 120% of the RMT. 

 

4.2.5. Diet and lifestyle recommendations 

During the entire study, all subjects were prescribed a hypocaloric diet. The details of the 

hypocaloric diet prescribed to the subjects are provided in the Supplementary File 3 (section 

1.2).  

 

4.2.6. Clinical and behavioral assessment 

Anthropometric measurements were obtained at three time points: at baseline (T0), after 5 

weeks of treatment (T1), and after 1 month (FU1). These included body weight and height, in 

order to calculate BMI (kg/m2). Body weight was measured without shoes, wearing light 

underwear or naked, on a standing scale calibrated to the nearest 0.1 kg. Body height was 

measured without shoes using a stadiometer calibrated to the nearest 0.1 cm. 

Food craving was assessed by means of the Food Craving Questionnaire-Trait (FCQ-T) 

(Innamorati et al., 2014), a self-report inventory comprising 39 items that investigate multiple 

dimensions of food craving. Assessment of food craving was conducted the day of the fMRI 

scan at both time points (T0 and T1) and at the follow-up visit (FU1). 
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4.2.7. Analytical strategy of clinical and behavioral data 

To assess the effect of intervention on body weight, BMI, and food craving, data were analyzed 

by means of Linear Mixed Models (LMM) or Generalized Linear Mixed Models (GLMM) on 

the basis of the data distribution, with group (real vs sham stimulation), time (T0 vs T1 vs FU1), 

and their interaction as independent variables. Mixed modelling is a useful tool for repeated 

measures designs, and one of its main advantages is the ability to retain missing data points.  

The Shapiro-Wilk test was accompanied by the visual inspection of data distribution to check 

if the samples were normally distributed. When data did not meet normality assumption, they 

fitted a gamma distribution and Generalized Linear Mixed Models (GLMM) were employed 

accordingly. Bonferroni-corrected post-hoc comparisons were conducted to qualify eventual 

significant interaction effects. A two-sided p-value ≤ 0.05 was deemed to be statistically 

significant. 

Analyses were performed with the software R (version 1.2.5033; https://www.r-project.org/) 

by means of the lmer and glmer functions (lme4 package; http://cran.r-

project.org/web/packages/lme4/index.html).  

 

4.2.8. fMRI data acquisition 

MRI scans were performed using a 1.5 Siemens Avanto scanner, endowed with echo-planar 

hardware for imaging. Whole-brain functional images were obtained with a T2*-weighted 

gradient-echo, EPI pulse sequence, using BOLD contrast (flip angle = 90°, TE = 60 ms, TR = 

2000 ms, FOV = 250 mm and matrix = 64 x 64, slice thickness was 4 mm). We acquired one 

functional run comprising 350 scans (duration: ≃ 12 minutes). Fifteen initial “dummy” scans 

were acquired but discarded before fMRI analysis. All of the subjects were also scanned with 

an MPRAGE high-resolution T1-weighted volumetric scan for further visualization of the 

results (flip angle = 35°, TE = 5 ms, TR = 21 ms, FOV = 250 mm, matrix = 256 x 256, TI = 

768, for a total of 160 slices with 1 x 1 x 1 mm voxels). 

 

4.2.9. Analytical strategy of fMRI data 

My analytical strategy involved three sequential stages: first, I identified clusters that showed 

a significant change (increase or decrease) of Intrinsic Connectivity Contrast (ICC) (Martuzzi 

et al., 2011) after treatment in the real vs. sham stimulation group. Second, I employed those 

clusters as regions-of-interest (ROIs) for a seed-based resting-state functional connectivity 

(rsFC) analysis, in order to map the functional networks of those regions showing an effect of 
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stimulation. Finally, I performed a cognitive decoding of the obtained rsFC maps by means of 

the “Decoder” function available on Neurosynth (http://neurosynth.org/decode/). This allowed 

to obtain a set of key-words associated with the input image based on the NeuroVault repository 

(https://neurovault.org).  

The details of the analyses performed at each stage are described below.  

 

4.2.9.1. Preprocessing 

Preprocessing and subsequent analysis of fMRI data were performed with the SPM-based 

software Conn functional connectivity toolbox (version 18b) (Whitfield-Gabrieli and Nieto-

Castanon, 2012) and run on MATLAB (version 2016b; The MathWorks, Inc., Natick, 

Massachusetts, United States). In particular, I run the “standard” preprocessing pipeline 

available in Conn, which includes slice-time correction, realignment of the functional images 

to the first image of the series, T1-weighted image segmentation, co-registration of the mean 

functional image to the structural image, spatial normalization to the Montreal Neurological 

Institute (MNI) template and spatial smoothing. The slice-time corrected, realigned, co-

registered and normalized images were smoothed with a 10 x 10 x 10 mm full-width half-

maximum (FWHM) isotropic Gaussian kernel. This level of smoothing is recommended for the 

use of Gaussian random fields theory to perform cluster level correction for multiple 

comparisons (Flandin and Friston, 2019). Scan outliers based on inter-scan global signal 

changes and movement were detected with the Artifact Detection Tools (ART, 

http://www.nitrc.org/projects/artifact_detect). Scans were considered as outlier when the scan-

to-scan global signal difference exceeded 2 standard deviations of the mean, and when the 

compounded measure of movement parameters exceeded 2 mm scan-to-scan movement (mean 

scan outliers: RealT0 = 5.7%, ShamT0 = 4.5%, RealT1 = 4.2%, ShamT1 = 0%). 

Then, functional images were band-pass filtered to 0.008 Hz ~ 0.09 Hz (the frequency range of 

spontaneous BOLD signal fluctuations) and motion regressed (six motion parameters included 

as a first-level covariate) to reduce the influence of noise. To regress-out the BOLD signal 

associated with the individual white matter (WM) and cerebrospinal fluid (CSF), the WM and 

CSF masks were entered as confound, following the CompCor strategy implemented in Conn 

(Behzadi et al., 2007). 
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4.2.9.2. Intrinsic Connectivity Contrast 

At the first level, I computed the Intrinsic Connectivity Contrast (ICC), a voxel-wise measure 

of degree centrality (Martuzzi et al., 2011). This data-driven approach ensures two main 

advantages: it does not require the definition of one or more a priori ROI(s), and it can be 

calculated without applying a correlation threshold, thus not requiring any a priori knowledge 

or assumption. For each subject, the ICC index produces voxel-based maps representing the 

magnitude of the correlation of each voxel with the rest of the brain, regardless of the direction 

of the correlation. Raw ICC values were then normalized to fit a Gaussian distribution (zICC), 

such that zICC values reflect the average connectivity across all other voxels, for each 

participant. The zICC maps were then entered into a second-level ANOVA, conforming to 

random-effect analysis, with the following factors: group (real vs sham) and time (T0 vs T1). 

To examine the directionality of the effects, post-hoc analyses were performed by using linear 

contrasts and t-statistics. 

 

4.2.9.3. Seed-based resting-state functional connectivity 

Significant clusters of increased or decreased ICC in the real vs. sham group after treatment 

were used as ROIs for a seed-based resting-state functional connectivity (rsFC) analysis in the 

whole sample at baseline, before treatment (T0). At the first level, Conn computes, for each 

ROI, a bivariate correlation between the average BOLD signal within the ROI (from 

unsmoothed volumes) and every other voxel in the brain. The result is a rsFC map for each ROI 

and for each subject: these were entered into a second-level random-effect analysis 

(independent sample t-test). I extract the average rsFC patterns regardless of the direction of 

the correlation (F-contrast) in any of the two groups (real and sham). All the reported results 

(ICC, rsFC) survive a correction for multiple comparisons: I used the nested-taxonomy strategy 

recommended by Friston and colleagues (Friston et al., 1996), including regional effects 

meeting either a clusterwise or voxelwise FWER correction. The voxelwise threshold applied 

to the statistical maps before the clusterwise correction was p < 0.001 uncorrected, as 

recommended by Flandin and Friston (Flandin and Friston, 2019). For clusters significant at 

the p < 0.05 FWER-corrected level, I also report the other peaks at p < 0.001. 

 

4.2.9.4. Cognitive decoding 

In order to perform a cognitive decoding of the rsFC results, the rsFC maps obtained from the 

former analysis were exported in NIfTi (.nii) format and subsequently loaded in the “Decoder” 
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function available on Neurosynth (http://neurosynth.org/decode/). The Decoder function of 

Neurosynth allows to retrieve the Pearson correlation of the key-words that are most associated 

with the input image (in .nii format) based on the NeuroVault repository 

(https://neurovault.org). In other words, the r-value associated with each key-word reflects the 

correlation across all voxels between the input map and the map associated with a particular 

key-word in NeuroVault.  

I considered the first 50 entries returned for each rsFC map, and we excluded all the terms 

associated with an anatomical reference (e.g., orbitofrontal, ventromedial, medial, lateral). The 

first 25 of the remaining terms and their associated r-values were then plotted by means of the 

wordcloud function implemented in the wordcloud package (Ian Fellows (2018). wordcloud: 

Word Clouds. R package version 2.6) and run in R (R Core Team (2017). R: A language and 

environment for statistical computing. R Foundation for Statistical Computing, Vienna, 

Austria). 

 

 

4.3. Results 

4.3.1. Study participants 

Out of the 24 participants initially enrolled in the study, 7 dropped out from the study, resulting 

in 17 participants who completed the study as per protocol. Of these, 9 were allocated to the 

realTMS group and 8 to the shamTMS group. Out of the 9 participants allocated to the realTMS 

group, 7 underwent FU1; all of the participants allocated to the shamTMS group, underwent 

FU1 (Figure 4.1). Data from 5 participants at FU1 (3 from the real stimulation group and 2 from 

the sham stimulation group) were not available for the FCQ-T scores. Details about drop-out 

patients have been reported in the Supplementary File 3 (section 2.1). 

Baseline characteristics of the two groups are reported in Table 4.2. The two groups did not 

differ significantly in any baseline characteristic. 
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Figure 4.1. CONSORT diagram | CONSORT diagram displaying the number of participants that were 

enrolled in the study, allocated to the real or sham intervention group, completed the follow-up, and 

finally included in the analyses. 

 

 

Table 4.2. Sample characteristics | Baseline characteristics of participants according to the study 

group. BMI, body-mass index; FCQ-T, Food Craving Questionnaire-Trait. 

 

 realTMS group shamTMS group  

Female/Male, n 7/2 6/2 χ2 = 0.02, p = 0.89 

Age, years 50.3 ± 9.2 51.6 ± 10.5 U = 26, p = 0.36 

Body weight, kg 93 ± 14 99.4 ± 12.1 t(15) = -1, p = 0.33 

BMI, kg/m2 35 ± 3.2 37.5 ± 3.9 t(15) = -1.47, p = 0.16 

FCQ-T score 123.4 ± 41.4 119.6 ± 25.8 t(15) = 0.22, p = 0.83 
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4.3.2. Clinical and behavioral results 

4.3.2.1. Body weight and BMI 

The GLMM on body weight showed a significant main effect of time (χ2 = 32.3, p < .001) that 

was further qualified by a significant group-by-time interaction (χ2 = 6.2, p = .04) (Figure 4.2A). 

The main effect of group was not significant (χ2 = 1.6, p = .21). Bonferroni corrected post-hoc 

comparisons showed that participants in the Real stimulation group exhibited a significant 

decrease of body weight from T0 (adjusted mean = 87.7 kg, se = 4.7 kg) to T1 (adjusted mean 

= 85.5 kg, se = 4.1 kg, χ2 = 15.7, p < .001, Cohen’s d = .70), and from T0 to FU1 (adjusted 

mean = 84.5 kg, se = 4.4 kg, χ2 = 29.9, p < .001, Cohen’s d = .72). After Bonferroni adjustment, 

decrease in body weight of participants in the Sham stimulation group from T0 (adjusted mean: 

95.2 kg, se = 4.3 kg) to T1 (adjusted mean = 93.5 kg, se = 4.4 kg, χ2 = 5.6, p = .11, Cohen’s d 

= .69) and from T0 to FU1 (adjusted mean = 93.7 kg, se = 5 kg, χ2 = 4.2, p = .25, Cohen’s d = 

.36). Neither the Real nor the Sham stimulation group showed a significant decrease of body 

weight from T1 to FU1 (Real: χ2 = 2.5, p = .67, Cohen’s d = .55; Sham: χ2 = 0.1, p = 1, Cohen’s 

d = .08). 

The GLMM on BMI showed a significant main effect of time (χ2 = 34.5, p < .001) and a 

significant group-by-time interaction (χ2 = 5.9, p = .05) (Figure 4.2B). The main effect of group 

was not significant (χ2 = 1.6, p = .21). Bonferroni corrected post-hoc comparisons showed that 

participants in the Real stimulation group exhibited a significant decrease of BMI from T0 

(adjusted mean = 34.3 kg/m2, se = 1.1 kg/m2) to T1 (adjusted mean = 33.4 kg/m2, se = 0.8 

kg/m2, χ2 = 15.2, p < .001, Cohen’s d = .79) and from T0 to FU1 (adjusted mean = 32.9 kg/m2, 

se = 0.9 kg/m2, χ2 = 29.5, p < .001, Cohen’s d = 1.05). After Bonferroni adjustment, participants 

in the Sham stimulation group exhibited a significant decrease of BMI from T0 (adjusted mean: 

36.5 kg/m2, se = 1.4 kg/m2) to T1 (adjusted mean = 35.8 kg/m2, se = 1.4 kg/m2, χ2 = 6.9, p = 

.05, Cohen’s d = .71), whereas BMI decrease from T0 to FU1 was not significant (adjusted 

mean = 35.8 kg/m2, se = 1.6 kg/m2, χ2 = 5.7, p = .10, Cohen’s d = .45). Neither the Real nor the 

Sham stimulation group showed a significant decrease of BMI from T1 to FU1 (Real: χ2 = 3.3, 

p = .43, Cohen’s d = 1.04; sham: χ2 = 0.6, p = 1, Cohen’s d = 0). 

 

4.3.2.2. Food craving 

The LMM on FCQ-T scores showed a significant main effect of time (χ2 = 27, p < .001), both 

groups exhibiting a significant decrease of FCQ-T scores over time (Figure 4.2C). The main 

effect of group (χ2 = 1.1, p = .29) and the group-by-time interaction were not significant (χ2 = 
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1.8, p = .4). Bonferroni corrected post-hoc comparisons showed that both groups exhibited a 

significant decrease of FCQ-T scores from T0 (adjusted mean = 112.8, se = 6.5) to T1 (adjusted 

mean = 86.7, se = 6.5, χ2 = 16.2, p < .001, Cohen’s d = 1.01) and from T0 to FU1 (adjusted 

mean = 78.2, se = 7.3, χ2 = 22.2, p < .001, Cohen’s d = 1.09). Changes in FCQ-T scores from 

T1 to FU1 were not significant (χ2 = 1.3, p = .75, Cohen’s d = .51). 

 

 

 

Figure 4.2. Effect of treatment on clinical and behavioral data | Results of the GLMM and LMM 

analyses on (A) body weight, (B) BMI, and (C) FCQ-T scores. FCQ-T, Food Craving Questionnaire-

Trait; GLMM, generalized linear mixed models; LMM, linear mixed models; T0, baseline; T1, post 5-

weeks intervention; FU1, 1-month follow-up. *, p < .05; ***, p < .001. 

 

 

4.3.3. Neuroimaging results 

4.3.3.1. Intrinsic Connectivity Contrast 

I observed a significant main effect of time in the bilateral superior (STG) and middle temporal 

gyri (MTG), showing increased ICC after treatment across groups (Table 4.3A). No cluster 

showed a significant main effect of group. We also observed a group-by-time interaction in the 

left gyrus rectus (medial orbitofrontal cortex, mOFC) and in the occipital pole, comprising the 

left superior and inferior occipital gyrus, the right lingual gyrus and the left calcarine fissure 

(Table 4.3B and Figure 4.3). Post-hoc analyses revealed that the mOFC showed a significant 

increase of ICC in the real-TMS compared to the sham-TMS stimulation group after treatment, 
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whereas the occipital pole showed a significant decrease of ICC in the real-TMS compared to 

the sham-TMS stimulation group after treatment. 

 

 

Table 4.3. Results of the ICC analysis | Brain regions displaying a significant (A) main effect of time 

and (B) group-by-time interaction. BA, Brodmann Area. 

 

Brain regions (BA) 

MNI coordinates 

Left hemisphere Left hemisphere 

X Y Z Z-score X Y Z Z-score 

A) Main effect of Time 

Sup. temporal gyrus (22) -60 -46 14 3.29     

Sup. temporal gyrus (21)     52 -24 -2 3.97 

Sup. temporal gyrus     52 -14 -2 4.16 
Mid. temporal gyrus 

(37) 
    42 -58 12 4.21 

Mid. temporal gyrus 

(22) 
-56 -42 8 3.85     

 -52 -36 4 4.62     

     52 -28 0 3.90 

Mid. temporal gyrus 

(21) 
    46 -48 10 3.65 

     50 -32 2 3.68 
     54 -34 2 3.65 
     48 -38 2 3.64 

B) Group-by-Time interaction 

Gyrus rectus (11) -8 32 -14 4.93     

 -14 26 -14 3.50     

 -8 30 -22 4.31     

Sup. occipital gyrus (17) -12 -92 4 3.61     

Calcarine fissure (17)     0 -86 10 3.45 
 -2 -86 4 3.71     

 -8 -90 4 3.67     

 -12 -88 2 3.48     

 -4 -90 -2 3.50     

 -2 -80 -6 3.60     

 -2 -92 -12 4.36     

Calcarine fissure (18) -6 -90 -8 3.54     

 -4 -94 -8 4.09     

Lingual gyrus (18)     14 -88 -2 3.49 

Lingual gyrus (17)     16 -100 -8 3.37 
     18 -104 -8 3.51 
 -4 -90 -16 4.14     

Inf. occipital gyrus (17) -12 -100 -6 3.99     
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Figure 4.3. Results of the ICC analysis | Results of the significant group-by-time interaction effects in 
the ICC analysis overlaid on the left medial surface of the brain. Decreases in ICC values in the realTMS 

vs. shamTMS after treatment are represented in violet, whereas increases in ICC values are represented 

in yellow. 

 

 

4.3.3.2. Resting-state functional connectivity results 

The mOFC was significantly functionally connected with a cortical fronto-temporal-parietal 

network comprising the pars orbitalis of the inferior, medial, middle, and superior frontal gyrus, 

the anterior cingulate cortex and corona radiata, the superior, middle, and inferior temporal 

gyrus, the middle and superior temporal pole, the precuneus, the insular cortex, the thalamus, 

the ventral and dorsal (putamen, caudate) striatum (Table 4.4A and Figure 4.4A). 

The occipital pole was significantly functionally connected with the inferior parietal lobule, the 

supramarginal gyrus, the cuneus, the lingual gyrus, the calcarine fissure, and the cerebellum, 

extending to the midbrain (Table 4.4B and Figure 4.4B). 

 

 

Table 4.4. Results of the seed-based rsFC analysis. Brain regions displaying a significant functional 

connectivity with the (A) medial orbitofrontal cortex and (B) occipital pole. BA, Brodmann Area; *, 

peak survives FWE-correction; #, peak survives FDR-correction. 

 

Brain regions (BA) 

MNI coordinates 

Left hemisphere Left hemisphere 

X Y Z Z-score X Y Z Z-score 

A) Medial orbitofrontal cortex (mOFC) 

Sup. frontal gyrus, pars orbitalis (11)     18 24 -24 4.14 

Sup. medial frontal gyrus (10) -2 62 20 3.93     

     0 58 20 3.71 
 -2 56 24 3.78     
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 -6 54 22 3.76     

Sup. medial frontal gyrus (9)     6 50 36 4.26 

Med. frontal gyrus, pars orbitalis (11)     16 46 -2 3.50 

Med. frontal gyrus, pars orbitalis     0 20 -12 4.97 

Mid. frontal gyrus -28 40 14 4.30     

 -28 36 16 4.46     

Inf. frontal gyrus, pars triangularis (47) -26 38 10 4.22     

Inf. frontal gyrus, pars orbitalis (47)     36 34 -16 4.31 

Inf. frontal gyrus, pars orbitalis (11)     28 36 -18 3.68 
 -20 16 -24 4.23     

Inf. frontal gyrus, pars orbitalis (38) -32 22 -24 3.84     

Insula (47) -32 28 0 3.68     

 -28 26 6 3.38     

 -30 24 2 3.61     

Insula -28 30 20 4.61     

 -32 18 6 3.58     

 -30 16 10 3.61     

 -34 14 8 3.67     

 -36 10 6 3.46     

 -40 4 8 3.56     

 -36 4 6 3.56     

 -42 -2 6 3.66     

Ant. cingulum (32)     8 46 30 4.02 

Ant. cingulum (11)     8 38 -6 5.04 

Ant. cingulum (24) -6 32 -20 7.14*#     

Ant. corona radiata (white matter) -20 34 18 3.86     

 -16 30 20 3.51     

Sup. temporal pole (38) -34 18 -30 4.14     

     42 16 -26 4.67 

Mid. temporal pole (38)     44 16 -34 4.08 

Mid. temporal pole (36) -30 8 -34 3.85     

Mid. temporal gyrus (21)     52 4 -28 3.86 
     54 -2 -20 4.31 
     50 -4 -24 3.95 

Inf. temporal gyrus (20)     54 6 -34 4.04 
     56 -2 -38 3.68 

Inf. temporal gyrus (21)     54 2 -32 4.41 
     56 -4 -28 3.64 

Precuneus (23)     10 -52 24 3.18 
     8 -56 28 3.24 

Precuneus     2 -66 26 3.54 
     2 -68 30 3.52 

Ventral striatum     6 8 -16 5.36* 

Ventral striatum (25) -6 16 -14 4.87     
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 -10 14 -16 5.04     

 -4 12 -16 4.95     

Parahippocampal gyrus (36) -28 0 -34 3.89     

Putamen -28 14 6 3.95     

 -26 8 4 3.41     

     24 6 18 3.72 
     24 -6 14 4.36 

Pallidum -12 0 4 4.32     

Caudate     24 14 22 4.28 
 -10 2 12 4.08     

         

         

Thalamus     6 -2 8 3.78 
 -14 -4 12 3.98     

 -12 -8 16 3.71     

 -16 -8 14 3.91     

 -20 -16 14 3.97     

 -22 -26 16 4.24     

     16 -16 0 3.99 
     20 -16 4 3.87 
     20 -20 2 3.91 
     20 -24 4 3.83 
     26 -28 10 3.73 

B) Occipital pole 

Supramarginal gyrus     60 -22 36 3.90 
     54 -24 28 3.25 
     50 -24 26 3.38 
     58 -42 36 3.18 

Supramarginal gyrus (40)     54 -36 44 4.22 
     60 -42 44 3.34 

Inf. parietal lobule (40)     42 -42 36 3.82 

Cuneus (18) -8 -92 26 4.74     

Cuneus -4 -92 36 4.95#     

     4 -96 18 5.21*# 

Lingual gyrus (18)     12 -74 2 5.77*# 
     14 -78 0 5.73*# 
 -14 -80 0 6.12*#     

Lingual gyrus (17) -12 -84 0 6.19*#     

     8 -88 -2 6.06*# 

Calcarine fissure (17)     4 -80 2 5.97*# 
     0 -84 2 5.91*# 
     0 -90 -10 6.89*# 
 -8 -96 -6 6.37*#     

     10 -96 6 5.31*# 
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Calcarine fissure (18) -2 -94 12 6.64*#     

     18 -94 -4 5.88*# 

Cerebellum VI -2 -78 -12 6.02*#     

 

 

 

 

 

Figure 4.4. Results of the seed-based rsFC analysis | Results of the seed-based rsFC analysis for the 

seed in the (A) medial orbitofrontal cortex and (B) occipital pole. Coordinates are reported in MNI 

stereotaxic space. 

 

 

4.3.3.3. Correlation between mOFC connectivity at baseline and BMI change after 1 month 

I performed an exploratory correlational analysis between the rsFC patterns identified in the 

previous analysis and BMI change after 1 month from the end of the treatment (BMIFU1-BMIT0). 

In particular, I observed a significant negative correlation between mOFC-insula rsFC strength 

and BMI change at follow-up (Spearman’s ϱ = - .54, p = .04, n = 15): the stronger the negative 

mOFC-insula rsFC, the lesser the decrease in BMI at 1-month follow-up (Figure 4.5). 
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Figure 4.5. Results of the exploratory correlational analysis | Association between mOFC-insula rsFC 

and BMI change at 1-month follow-up showing that stronger mOFC-insula rsFC is associated with lower BMI 

change at 1-month follow-up. 

 

 

4.3.3.4. Cognitive decoding through the Neurosynth.org database 

After removal of anatomical terms, the first 25 terms associated with the mOFC rsFC map were 

mainly related to reward processing (e.g., value, reward, reinforcement, food) (Table 4.5A and 

Figure 4.6A). Conversely, after removal of anatomical terms the first 25 terms associated with 

the occipital pole rsFC map were mainly related to visual perception (e.g., early visual, sighted, 

visual stimuli, mental imagery) (Table 4.5B and Figure 4.6B). The full list of 50 terms returned 

by Neurosynth for the two rsFC maps is reported in the Supplementary File 3 (Table S4.1). 
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Table 4.5. Results of the Neurosynth analysis | The first 25 non-anatomical terms returned by 

Neurosynth for the (A) medial orbitofrontal cortex and (B) occipital pole rsFC maps are reported, along 

with their associated Pearson’s correlation coefficient. 

 

A) mOFC B) Occipital pole 

Term Correlation Term Correlation 

value 0.199 early visual 0.311 

reward 0.180 visual 0.230 

reinforcement 0.133 sighted 0.147 

social 0.115 mental imagery 0.124 

spectrum disorder 0.114 metabolism 0.100 

food 0.113 visual stimulus 0.096 

valence 0.097 eye movement 0.091 

rewards 0.093 vision 0.069 

olfactory 0.089 sensory information 0.047 

positive negative 0.089 erp 0.044 

arousal 0.083 visual field 0.038 

autonomic 0.083 negativity 0.037 

suffering 0.080 invasive 0.034 

mentalizing 0.078 naturalistic 0.034 

decision 0.077 category 0.033 

affective 0.077 agent 0.031 

implicit 0.076 navigation 0.029 

pleasant 0.073 low level 0.028 

computation 0.071 integrative 0.027 

choices 0.070 eye movements 0.026 

conductance 0.068 pair 0.026 

skin conductance 0.068 categorization 0.025 

taste 0.065 imagery 0.025 

emotional 0.065 add 0.024 

subjective 0.064 competition 0.024 
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Figure 4.6. Results of the Neurosynth analysis | The first 25 non-anatomical terms returned by Neurosynth 

for the (A) mOFC rsFC map and for the (B) occipital pole rsFC map were plotted such that the bigger the font 

size, the greater the association with a given term. mOFC, medial orbitofrontal cortex; rsFC, resting-state 

functional connectivity. 
 

 

4.4. Discussion 

In this placebo-controlled longitudinal study, for the first time, the intrinsic connectivity 

contrast (ICC) - a data-driven, voxel-wise measure of degree centrality obtained from resting-

state fMRI data - was used to capture local changes in functional integration properties induced 

by 5-weeks of deep rTMS treatment in individuals with obesity. Further, a seed-based rsFC 

analysis was performed, considering as regions of interest the “hubs” significantly affected by 

the rTMS to reveal their FC patterns. Finally, the functional meaning of the resulting FC maps 

was corroborated by a quantitative association analysis through the Neurosynth.org repository. 

Concerning the effects of deep rTMS on anthropometric measures (body weight and BMI), I 

found a significant group-by-time interaction, with a significant decrease in body weight and 

BMI in the realTMS group, up to 1-month follow-up. Conversely, food craving as assessed by 

the Food Craving Questionnaire-Trait (Innamorati et al., 2014) exhibited a significant reduction 

over time, without significant differences between the groups. These findings confirmed the 

results of Ferrulli and colleagues, showing that high frequency (18 Hz) deep rTMS over the 

bilateral prefrontal and insular cortices was more effective than sham stimulations in inducing 

weight-loss in individuals with obesity (Ferrulli et al., 2019b), a result that has been recently 

replicated by another randomized controlled trial (Kim et al., 2019a).  

Also, in the study by Ferrulli and colleagues (2019b), a decreasing trend (p = .073) in food 

craving in the high-frequency vs. low-frequency and sham stimulation group was observed 

(Ferrulli et al., 2019b), the interaction driven mainly by between-group differences in food 

craving occurring after T1. There are, at least, two alternative explanations for the dissociation 

between the effect of realTMS on body weight and BMI, and the lack of such effect in self-
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reported food craving. First, as all explicit meta-cognitive evaluations, self-reported craving 

may be prone to a number of limitations: it can be influenced by self-presentation strategies or 

social desirability bias (Fisher, 1993b), that is the tendency to give desirable responses instead 

of responses that reflect true feelings, or by a limited introspective capability of the subject 

(Greenwald et al., 2002). In other words, subjects might tend to give responses that reflect their 

adherence to the treatment scheme, especially during their active involvement in the trial (i.e., 

at the baseline and at the end of the 5-weeks treatment). Second, a reduction in food craving 

per se might not be the only mechanism beyond the efficacy of deep rTMS. As only the 

realTMS group showed a significant decrease in body weight and BMI up to 1-month follow-

up, it is plausible that the high-frequency deep rTMS does not result in a greater reduction in 

the quantity and quality of food cravings, but in the capability of resisting them for a longer 

period of time.  

As discussed below, this might be due to the fact that deep rTMS induced plastic changes in 

regions of the brain involved not only in cue-reactivity, but also in brain regions involved in 

higher-order regulatory processes. 

 

4.4.1. Deep rTMS over the bilateral insular and prefrontal cortices induces changes in the 

functional brain organization 

In this study, I used a novel data-driven connectivity measure (the ICC) (Martuzzi et al., 2011), 

that quantifies the degree of brain functional integration at the voxel-level. In particular, I 

observed that only the real TMS induced a significant increase of ICC in the mOFC, and a 

significant decrease of ICC in the occipital pole, after treatment.  

The OFC is a prefrontal cortex (PFC) region involved in sensory integration, in representing 

the affective value of the reinforcers, in decision-making, and expectation (Kringelbach, 2005). 

Specifically, the OFC integrates sensory modalities such as taste, smell, and vision, and, 

through its dense reciprocal projections into thalamic, midbrain, and striatal regions, it is a 

critical hub for decision-making on highly motivating stimuli (Rolls, 2015). There is much 

evidence that point to disrupted anatomofunctional and structural alterations of the OFC in 

obesity. For example, it has been reported that obese individuals display lower gray and 

associated with matter volumes in the OFC, as well as of the insula and striatum (Shott et al., 

2015). A recent meta-analysis of 25 voxel-based morphometry studies showed that greater BMI 

is associated with lower grey matter volume in the medial OFC, encompassing Brodmann areas 

10 and 11 (Chen et al., 2020). There is also evidence that obesity is associated with altered 

mOFC functional connectivity. Adolescents with obesity, compared to healthy weight controls, 
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show stronger rsFC between the mOFC and key structures involved in sensory and reward 

processing, such as the olfactory tubercle and the pallidum, and reduced rsFC between the 

mOFC and the ventrolateral PFC, a core region of the cue-regulation network involved in 

cognitive control (Borowitz et al., 2020). Further, a recent study documented decreased degree 

centrality of the OFC, together with increased degree centrality of the ventral striatum, in obese 

compared to healthy weight subjects (Zhang et al., 2019).  

Consistent with the role of the OFC in integrating different aspects of reward-related 

processing, the seed-based rsFC analysis shows that the mOFC is functionally connected with 

regions associated with sensory and motivational processing (thalamus, parahippocampus, 

dorsal and ventral striatum, anterior insula, precuneus), as well as with brain regions involved 

in the regulation of behavior (vlPFC, superior medial PFC, subgenual anterior cingulate cortex). 

The results of the decoding analysis performed through Neurosynth (e.g., value, reward, food, 

decision, choices) are also consistent with the hypothesis that one of the mechanisms underlying 

the augmented control over eating is the enhancement of the OFC capacity of integrating 

information from the rest of the brain, thus favoring food-related decision-making.  

Perhaps surprisingly, a decreased ICC in the occipital pole has been reported in the realTMS 

group only, after the 5-weeks treatment. The occipital lobe it is mainly involved in visuospatial 

processing, and it is part of the part of the visual network, a set of brain regions that show a 

coherent pattern of functional connection at rest, in absence of external visual stimulation 

(Damoiseaux et al., 2006). In our sample, the occipital pole was mainly functionally connected 

within the occipital cortex (calcarine scissure, lingual gyrus (BA17 and BA18), cuneus), 

extending to the precuneus and the right parietal cortex (supramarginal gyrus, inferior parietal 

lobule), consistent with an occipito-parietal network involved in visual processing and visuo-

spatial attention (Lauritzen et al., 2009). Further, the occipital cortex is highly connected with 

several cortical and subcortical structures, sch as the middle temporal lobe, the thalamus, and 

the PFC through long-range projections (Haxby et al., 1994). An early study employing graph-

theoretical analysis on rsFC data documented increased nodal degree in the occipital cortex, 

indexing increased functional connections of the occipital lobe with the rest of the brain (Baek 

et al., 2017). The current results may suggest that high-frequency deep rTMS over bilateral 

insula and PFC modulates the global connectivity profile of brain areas functionally connected 

with the occipital lobe, thus leading to reduced functional connections with the occipital pole. 

The results of the decoding performed through Neurosynth  (e.g., early visual, mental imagery, 

visual stimulus, sighted, sensory information) are also consistent with the idea that a diminished 

ICC in the occipital pole might lead to a reduced reactivity to bottom-up visual-sensory 
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processes, as previously observed in alcohol-dependent patients (Herremans et al., 2015). 

Specifically, in the last study, 15 sessions of high frequency rTMS applied to the right DLPFC 

in recently detoxified alcohol-dependent patients had more influence on the attentional network 

rather than on the craving neurocircuit, during an alcohol-related cue-exposure (Herremans et 

al., 2015). 

 

The present results are somehow different from the ones obtained recently in a similar study 

conducted by Kim and colleagues (Kim et al., 2019b). In that study, the authors explored the 

changes in brain connectivity after an rTMS treatment over the DLPFC in adults with obesity: 

they found that real rTMS induced an increase in functional integration properties within the 

right frontoparietal network, including the right dorsolateral and ventrolateral PFC, and the 

right parietal cortex (Kim et al., 2019b).  

With this regard, I argue that several factors may explain the differences with the present 

results: 1. A different stimulatory protocol (8-shaped coil vs H-coil; 10 Hz vs 18 Hz; total 

number of sessions); 2. Different stimulated brain areas (only left DLPFC); 3. Different graph-

theoretical measures (betweenness centrality vs ICC); 4. Different dietary regimen; 5. Different 

satiety states of the participants at the time of scanning. In particular, the use of the H-coil 

allowed us to stimulate deeper cortical structures, such as the insula (Zangen et al., 2005). 

 

4.4.2. Neurofunctional markers of weight loss 

In this study, I also investigated the association between rsFC and weight-loss at 1-month 

follow-up (FU1). Exploratory correlational analysis highlighted a significant inverse 

correlation between the mOFC-insula connectivity strength and BMI change at a 1-month 

follow-up, whereby stronger negative mOFC-insula rsFC is associated with lower weight-loss. 

As mentioned above, the OFC is involved in the integration process of food-related inputs 

(taste, olfaction, touch, hearing, and vision), leading to decision making, goal-directed 

behavior, and prediction of the anticipated reward value of specific actions (Rolls, 2015). The 

insula, which represents another target of neurostimulation together with PFC, plays a role in 

the recognition of taste and, particularly the anterior part, is involved in salience processing 

(Cauda et al., 2011). Several rsFC studies showed that individuals with obesity exhibit altered 

FC between regions involved in metabolic sensing and interoception (i.e., hypothalamus, 

posterior insula) and regions involved in reward and salience processing (i.e., striatum, OFC, 

anterior insula) (Kullmann et al., 2014, Wijngaarden et al., 2015, Contreras-Rodríguez et al., 

2017).  
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In this study I highlighted that individuals with obesity who present a stronger mOFC-insula 

rsFC are less likely to lose weight, probably due to enhanced saliency value of food and its 

cues, along with an enhanced awareness of a desire to consume them. Conversely, a weakening 

of rsFC between OFC and insula could represent a predictive factor for a greater weight loss, 

as well as a possible specific target for the treatment with rTMS in obesity. Of note, a reduced 

rsFC between the insula and medial PFC has been already observed in healthy subjects after 

rTMS compared to sham, regardless of the low (1 Hz) or high-frequency (10 Hz) stimulation 

(Lee et al., 2020). 

 

To summarize, in this study I applied graph-theoretical analysis to resting-state functional 

connectivity data to investigate the neurofunctional changes associated with a deep rTMS 

treatment over the insular and prefrontal cortices that reduces food-craving while achieving a 

weight-loss superior to a simple diet. In the realTMS group, compared with the shamTMS 

group, I found a significant increase of functional integration properties in the mOFC and a 

significant decrease in the occipital pole: this suggests a diminished reactivity to bottom-up 

visual-sensory processes in favor of an increased reliance on top-down decision-making 

processes. These findings lay the groundwork for a better understanding and knowledge of the 

mechanisms by which rTMS may represent a promising complementary treatment for obesity. 

 

4.4.3. Strengths and limitations 

A major strength of this placebo-controlled longitudinal study consists in the fact that it 

represents the first attempt to investigate the neurofunctional changes associated with a deep 

rTMS treatment applied to obesity. The graph-theoretical approach employed in the current 

study, the Intrinsic Connectivity Contrast (ICC) measure (Martuzzi et al., 2011), is another 

strength of this work. In particular, the ICC is a voxel-wise data-driven approach that does not 

require a priori knowledge about: (i) the regions of interests to include in the analyses, and (ii) 

the statistical threshold to apply to determine the functional connections between the voxels 

(Martuzzi et al., 2011). The first point is particularly relevant when the brain region under 

investigation is highly heterogeneous, such as the insula and the PFC. For example, the 

anatomical brain templates commonly employed in graph-theoretical analyses of resting-state 

fMRI data, the AAL and Harvard-Oxford cortical probability maps implemented in the 

MRIcron software (Rorden and Brett, 2000), rely on gross anatomical subdivisions and 

consider the insular cortex as a single discrete brain region. However, there is compelling 

evidence that insular cortex activity and connectivity reflects a rostro-caudal gradient (Cauda 



 

 115 

et al., 2011, Cauda et al., 2012), with anterior insula activity and connectivity being more tightly 

related with attentional processing, and posterior insula activity and connectivity to 

sensorimotor processing. As a consequence, by considering a single region of interest for the 

insular cortex, such a gradient cannot be appreciated. Conversely, the approach employed here 

allows to take into account the connectivity of every single voxel in the brain, without 

constraining the analysis to a particular region of interest but focusing on the changes in the 

global pattern of functional connectivity that occur in localized brain regions. 

However, the present study has also some obvious limitations. First of all, the limited sample 

size makes it difficult to generalize current findings to the general population. Similarly, the 

mean age of the sample size (50 years) does not allow to extend the present findings to younger 

individuals, which may benefit of the rTMS treatment to a different extent. Finally, the limited 

sample size, together to the uneven distribution of the cue conditions in the sample, did not 

allow a proper statistical investigation of the effect of cue-exposure prior to rTMS. However, 

since the previous study did not report any significant difference between the cue and no-cue 

condition with respect to weight loss and food craving, it is unlikely that the current results are 

influenced by this factor.  

 

Summary of Chapter 4 

In this randomized, double-blind, placebo-controlled study I investigated the effects of deep 

rTMS on (i) body weight and BMI, (ii) food craving, and (iii) the functional brain organization. 

To this aim, seventeen obese participants were randomized and completed the 5-week 

neurostimulation intervention: nine were treated with the high-frequency stimulation (realTMS 

group), and eight were sham-treated (shamTMS group). Seven participants from the real group 

and eight from the sham group completed the follow-up visit at 1 month (FU1). Resting-state 

fMRI scans were acquired at baseline (T0) and after the 5-weeks intervention (T1). Body weight 

and food craving were measured at three time points (T0, T1, FU1). 

A mixed-model analysis showed a significant group-by-time interaction for body weight 

(p=.04) and for BMI (p=.05), with a significant decrease of body weight (p<.001) and BMI 

(p<.001) in the realTMS stimulation group only up to FU1. Food craving showed a significant 

decrease over time (p<.001) in both groups. The resting-state functional connectivity (rsFC) 

fMRI data revealed a significant increase of degree centrality (index of whole-brain functional 

integration) for the realTMS group in the medial orbitofrontal cortex (mOFC), and a significant 

decrease in the occipital pole. Baseline rsFC between mOFC and the left insula was 
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significantly and negatively correlated with BMI changes at FU1 (Spearman’s ϱ = - .54, p = 

.04, n = 15). 

I propose that the decrease of whole-brain functional connections with the occipital pole, in the 

cue-reactivity network, together with an increase of whole-brain functional connections with 

the mOFC, in the cue-regulation network, may reflect a brain mechanism behind weight-loss 

through a diminished reactivity to bottom-up visual-sensory processes in favor of an increased 

reliance on top-down decision-making processes. 
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Chapter 5 – General Discussion 

The drive for pleasure is “hard-wired” in our (neuro)biology. From the pleasure derived from 

food, water, sex and social interaction, that granted the survival of our species, to the enjoyment 

of beauty and discovery, which led to the realization of remarkable endeavors in arts and 

sciences, the relentless search for gratification motivated our evolution. Yet, there are situations 

in which these adaptive motivational processes have gone awry.  

Obesity and Substance Use Disorder (SUD) can be considered as an example of this scenario, 

whereby highly reinforcing stimuli disrupt motivational processes, leading to maladaptive 

compulsive-like patterns of behavior. Paradoxically, greatly pleasurable stimuli such as high-

calories palatable food, and drugs of abuse, can “hijack” the same neurocognitive machinery 

that evolved to grant our survival. 

As I pointed out in Chapter 1, there are two main neural circuits that are involved in the 

processing food and drug-related cues: one underlies the sensory, hedonic, and motivational 

reactions to cues (cue-reactivity), while the other supports the regulation and valuation of such 

cues (cue-regulation) through higher-order attentional, decision-making, and inhibitory control 

processes (Figure 1.3). Dovetailing with Jasinska et al. (2014), I argued that activity within 

these networks can be modulated by several internal and external factors, and that these can 

interact meaningfully, giving rise to specific brain activation patterns. I also assumed that non-

invasive brain stimulation techniques applied to obesity, with particular reference to high-

frequency deep rTMS over the bilateral insular and prefrontal cortices, would be associated 

with plastic changes in key areas of the cue-reactivity and cue-regulation circuits. 

In what follows, I will first incorporate my meta-analytical findings on food and drug cue-

reactivity into the unitary model represented in Figure 1.4 (Chapter 1). Stemming from the 

simple and interactive effects observed in the meta-analytical clusters (Chapters 2 and 3), I will 

attempt to assign a “neurocognitive meaning” to different portions of the cue-reactivity and 

cue-regulation networks. Then, I will discuss the findings on the effect of deep rTMS (Chapter 

4) in light of the main and interactive effects identified within the main circuits involved in food 

and drug cue-reactivity.  

Finally, the implications of current findings for basic research and clinical practice, as well as 

a brief discussion of the outstanding issues on the matter, will be given. 

 

5.1. A provisional unitary neurocognitive model of craving 

As a first step for the discussion of a unitary framework for the factors that modulate the neural 

reactivity to cues, I summarized the findings of the meta-analyses on cue-reactivity in obesity 
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(Chapter 2) and in SUD (Chapter 3) in a single picture (Figure 5.1, please refer to the caption 

to interpret the figure).  

 

 

Figure 5.1. Summary of the meta-analytical results in light of a unitary model | Graphical 

representation of the effects of internal (satiety state, weight status, addiction severity) and external 

factors (drug availability, sensory modality of cue presentation) on the neural responses to drug cues in 

the cue-reactivity and cue-regulation network. The contrast observed in the meta-analysis (main effect) 

is reported within square brackets: “+” and “-” refer to the direction of the effect (e.g., “+” = FA > FE; 

“-”, FE > FA) on the cue-reactivity (red circles) and cue-regulation (blue circles) network. Interacting 

factors are represented by colored lines linked by black circles. FA, fasting; FE, fed; G, gustatory; HW, 

healthy weight; IL, illegal; L, legal; NST, not-seeking treatment; OB, obese; TS, treatment-seeking; V, 

visual. 

 

 

At the network level, I found that all the factors under examination, except for the sensory 

modality of cue presentation, can modulate the neural responses to cues in the cue-reactivity 

and cue-regulation network; more importantly, I observed significant interactions between 

internal and external factors in key nodes of the cue-reactivity (ventral and dorsal striatum, 

thalamus) and cue-regulation circuits (mOFC, ACC). 

Taken together, the present findings suggest two main general conclusions. First, in agreement 

with previous reviews (Dagher, 2012, Garrison and Potenza, 2014, Giuliani et al., 2018) and 

meta-analyses (Chase et al., 2011, Kühn and Gallinat, 2011, van der Laan et al., 2011, 

Engelmann et al., 2012, Brooks et al., 2013, Schacht et al., 2013, Huerta et al., 2014, Kennedy 

and Dimitropoulos, 2014, Pursey et al., 2014, van Meer et al., 2015), the present findings 

confirm the existence of a distributed network of brain regions involved in the sensory, hedonic, 

and motivational reactions to cues, as well as in higher-order attentional, decision-making, and 

inhibitory control processes, involved in cue-reactivity. Second, they confirm and expand 
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Jasinska’s claim that “[…] these factors are likely to have both main and interactive effects” 

(Jasinska et al., 2014, p. 18), suggesting that is also the case for food cue-reactivity in obesity. 

The evidence that internal and external factors can interact and modulate the neural response to 

reward-related cues is not only relevant from a purely theoretical perspective, but it can also 

tell us something about the functional role of specific brain areas in the experience of craving. 

The key points for the cue-reactivity and cue-regulation networks are summarized below. 

 

5.1.1. Modulations within the cue-reactivity network 

5.1.1.1. VTA, ventral striatum, amygdala 

The VTA, the NAc and the amygdala are crucial structures for the expression of cue-elicited 

reward-seeking behaviors and of incentive motivational processes (Everitt et al., 1999, Warlow 

et al., 2017). In humans, activity of these regions in response to food and drug cues is associated 

with the BMI (Rothemund et al., 2007, Martens et al., 2013), with measures of addiction 

severity (McClernon et al., 2008, Claus et al., 2011), and with clinical outcomes (Grüsser et al., 

2004, Murdaugh et al., 2012, Yokum et al., 2014), suggesting that neural cue-reactivity within 

these regions may be reliable a biomarker of the severity of the condition. 

I provided evidence that obesity and SUD are both characterized by enhanced neural responses 

to cues in key areas of the cue-reactivity network, including the VTA, ventral striatum, and 

amygdala, involved in incentive motivational processes, with some key differences. 

First, compared to obesity, SUD patients addicted to illegal substances show a wider 

recruitment of the mesocorticolimbic pathway, including the midbrain (VTA/SN), the 

amygdala and the hippocampus, in addition to the ventral striatum, in response to cues. The 

greater involvement of brain areas involved in key aspects of reward and motivation in illegal 

substance abusers may prove in favor of the notion that severe conditions are associated with a 

deeper sensitization of the mesocorticolimbic circuitry, in line with the incentive sensitization 

theory of addiction (Robinson and Berridge, 1993, Berridge et al., 2010). If one accepts this, 

the arguments in favor of obesity as a very case of “addiction to food” (Davis et al., 2004, 

Ziauddeen et al., 2012, Ziauddeen and Fletcher, 2013, Fletcher and Kenny, 2018) provided by 

the available neuroimaging evidence are very weak. 

Second, whereas obesity seems to be associated with a down-regulation of the activity of the 

dopaminergic nuclei of the midbrain (VTA/SN), consistent with a reward deficit hypothesis 

(Wang et al., 2001, Wang et al., 2002), severe addiction to substances of abuse is linked to up-

regulated activity of the VTA/SN, which results in heightened cue-induced activity. This 
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evidence echoes the results of previous animal studies showing that exposure to cafeteria diet 

food induces a down-regulation of ventral tegmental activity, particularly in specific DA and 

GABAergic populations of neurons (Koyama et al., 2013, Cook et al., 2017), and that different 

drugs of abuse induce neuroadaptations at the level of excitatory inputs to the VTA, reflected 

by an up-regulation of glutamate receptors (Self, 2004), suggesting that the different 

neurochemical adaptations at the level of the VTA may occur in obesity and SUD.  

Third, in obesity the sensory modality of cue presentation and the satiety state interact with the 

weight status, suggesting two potential neurocognitive mechanisms behind overeating: 

increased reward system activity in response to gustatory taste cues (ventral striatum), and 

persistent reward system activity in response to anticipatory visual food cues (NAc), confirming 

and expanding the results of previous meta-analyses on the topic (Brooks et al., 2013, Pursey 

et al., 2014). 

 

5.1.1.2. Insula 

In contrast with prior evidence for the involvement of the insula in drug craving (Naqvi et al., 

2007, Naqvi and Bechara, 2009), no convergent activity in this region was found in the meta-

analysis on drug cue-reactivity. Admittedly, the lack of convergent brain activity in response to 

drug cues may be a by-product of the fact that I considered different legal (nicotine, alcohol) 

and illegal (cocaine, heroin) substances together, making it difficult to detect insular responses 

that are specific for a given population of SUD patients. Accordingly, convergent activity of 

the insular cortex in response to drug cues was reported only in meta-analysis that considered 

a single population of SUD patients (Kühn and Gallinat, 2011, Engelmann et al., 2012, Schacht 

et al., 2013), whereas no such finding was observed when different populations of SUD patients 

are considered together (Chase et al., 2011, Kühn and Gallinat, 2011). As argued by Chase and 

colleagues, the size and heterogeneity of the insular cortex, together with a specialization of 

function in different portions of the insula, might reduce the possibility of reporting a localized 

statistical convergence (Chase et al., 2011) 

Partially in line with this observation, I found that discrete portions of the insular cortex are 

associated with different processes in obesity. In particular, I found that the ventral anterior 

portion of the insula is specific for the visual-anticipatory stimulation (and with obese 

participants), probably linked to enhanced salience processing, whereas the mid-posterior 

portion of the insula is associated with the physiological state of hunger, regardless of weight-

status and sensory modality of cue presentation. This pattern of results is consistent with recent 

neurocognitive models of the functions of the insular cortex suggesting a rostral-caudal 
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functional gradient: the most anterior part would be involved in salience detection and 

attentional control, and the most posterior part would be associated with the integration of 

cognitive, homeostatic, and interoceptive processing (Cauda et al., 2011, Cauda et al., 2012). 

 

In sum, the overall findings on the key nodes of the cue-reactivity circuit suggest that: (i) the 

VTA, ventral striatum, and amygdala are the core structures underlying aberrant incentive 

motivational processing in obesity and SUD; (ii) the anterior insula is involved in visual 

salience processing of food cues only; (iii) the posterior insula is involved in sensory-

interoceptive processing. 

 

5.1.2. Modulations within the cue-regulation network 

5.1.2.1. Dorsomedial and lateral PFC 

I found a widespread involvement of the dorsomedial (medial SFG) and lateral subdivisions 

(lateral SFG, lateral OFC) of the PFC during the state of satiety in the meta-analysis on food 

cue-reactivity, consistent with the role of the PFC in meal termination and, ultimately, cognitive 

control (Tataranni et al., 1999, Del Parigi et al., 2002). As already pointed out in the discussion 

of Chapter 2, I could not find evidence of reduced PFC activity in response to food cues in 

obese individuals: conversely, I found that a satiety-specific cluster localized in the right SFG 

that was also associated with obese individuals, consistent with the hypothesis that obese 

individuals, in the attempt to suppress striatal and limbic hyperactivations, recruit greater 

cognitive control processes (Gautier et al., 2000, Gautier et al., 2001). Admittedly, the lack of 

support for an Inhibitory Control Deficit Theory of obesity may be due to the fact that mere 

exposure to anticipatory food cues might not be sufficient to detect a deficient activity in 

inhibitory control regions: these are more likely to be engaged during active cognitive control 

paradigm, or during the active suppression of craving (e.g., during explicit cognitive 

regulation). 

In the drug cue-reactivity meta-analysis, I found that a dorsomedial portion of the ACC (dACC) 

is more frequently activated by individuals addicted to legal substances and by not-seeking 

treatment individuals. The ACC and medial PFC, particularly their dorsal subdivisions, have 

been implicated in attentional control (Liu et al., 2004), cognitive reappraisal and cognitive 

modulation of emotions (Ochsner et al., 2004, Kalisch et al., 2006). Interestingly, the 

coordinates of the dACC cluster (MNI coordinates: X = 0 ± 2.3, Y = 29 ± 4.2, Z = 22 ± 6.1) 

observed in Chapter 3 match very closely those of a dACC cluster reported in a meta-analysis 
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of neuroimaging studies on craving-related nicotine cue-reactivity (MNI coordinates: X = -2, 

Y = 28, Z = 23) (Kühn and Gallinat, 2011). The authors proposed that dACC activity in 

response to cigarette cues may underlie the process of directing the attention away from the 

stimulus, in an effort to revert the automatic pattern of attention towards drug-related cues; 

further, they suggested dACC activity is associated with self-reported nicotine craving because 

it reflects an attempt to suppress the urge to consume a drug that it is clearly impossible to 

consume in the scanner environment (Kühn and Gallinat, 2011). My results are partially in line 

with this interpretation, as the dACC was specific for not-seeking treatment individuals, who 

expect to smoke soon and, as such, their urge to smoke during cue-reactivity should be higher 

compared to those who do not expect to smoke soon (Carter and Tiffany, 2001). Conversely, 

patients addicted to illegal substances, that induce a more severe dependence and neural 

sensitization, may lack this capability: as a consequence, their dACC may fail to down-regulate 

mesolimbic reactivity to drug cues. 

 

5.1.2.2. Ventromedial PFC 

Whereas the abovementioned results support the view that more superior and lateral 

subdivisions of the cue-regulation network are involved in “top-down” attentional and 

cognitive control processes, the interaction effects observed in the drug cue-reactivity meta-

analysis suggest that the ventromedial portion of the PFC, comprising the perigenual ACC 

(pgACC) and the medial OFC (or ventromedial PFC, vmPFC) is implicated in decision-making 

and reward-evaluation processes. In line with the role of the vmPFC in delay-discounting and 

decision-making (Bechara et al., 2000, Carter et al., 2010, Rolls et al., 2010, Wesley and Bickel, 

2014), I suggested that this region plays a crucial role in forming an expectation about the delay 

of reward consumption, particularly when internal (motivation to quit) and external factors 

(drug availability) conflict.  

In SUD, this is the case of treatment-seeking individuals addicted to legal substances (they are 

motivated to quit, yet the substance is widely available) and not-seeking treatment individuals 

addicted to illegal substances (they are not motivated to quit, but the substance is costly and 

less widely available). A similar situation of conflict can be modeled in a food cue-reactivity 

paradigm, by adopting a 2 (food vs. control cue)-by-2 (treatment-seeking vs not-seeking 

treatment)-by-2 (food available vs. not available after the experiment) factorial design: in such 

a scenario (i) obese patients who try to stick on a diet and that will have access to palatable food 

after the experiment, and (ii) those who are unwilling to lose weight but will have no access to 

the food after cue-exposure, should display greater vmPFC – and pgACC – activity compared 
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to the other two conditions. Interestingly, preliminary results in healthy weight participants 

suggest that the mOFC – together with a wider network of striatal, prefrontal, and occipito-

temporal regions – is more active when the foods observed during cue-reactivity are available, 

indicating that the mOFC mediates at least some aspects of availability and expectancy for 

primary rewards such as food (Blechert et al., 2016). 

 

To summarize, the overall results on the cue-regulation network suggest that: (i) the 

dorsomedial and lateral subdivisions of the PFC, including the medial SFG, the lateral SFG and 

OFC, are implicated in satiety-related cognitive control processes; (ii) the dACC is associated 

with attentional control, particularly in not-seeking treatment individuals addicted to legal 

substances; (iii) the vmPFC, comprising the pgACC, is implicated in higher-order decision-

making and reward-evaluation processes, particularly when internal and external contingencies 

make it difficult to form an expectation about the potential delay of reward consumption.  

 

5.2. Neurofunctional overlap between brain regions involved in food and drug cue-reactivity 

and neural circuits influenced by rTMS  

To complement the discussion of the main circuits involved in food and drug cue-reactivity, I 

searched for the neurofunctional maps between the rsFC maps identified in Chapter 4 and the 

clusters discussed above, identified in Chapters 2 and 3 (Figure 5.2.) 

 

 

Figure 5.2. Neuroanatomical overlap between rsFC maps and the results of the meta-analyses | 

The ID of the clusters is preceded by an F (food cue-reactivity) or D (drug cue-reactivity). Brain slices 

reported in MNI stereotaxic space.  
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Whereas the resting-state FC map of the occipital pole overlapped only with the VTA cluster 

identified in the meta-analysis on substance use disorder, the rsFC map of the mOFC 

overlapped with a number of clusters involved in incentive motivation (NAc), interoception 

and hunger (posterior insula), inhibitory control and satiety (SFG, lOFC), decision-making and 

reward evaluation (mOFC, pgACC). This pattern of overlap dovetails with the notion that the 

medial orbitofrontal cortex integrates different types of information, from interoceptive and 

motivational signals to higher-order cognitive control processes, to produce coherent goal-

directed behaviors (Rolls, 2008, Rolls, 2015). 

In particular, the rsFC map of the mOFC overlaps with discrete portions of the insula and of 

the PFC involved in hunger and satiety, respectively19; further, it is functional connected with 

the ventral striatum, including the NAc, which also showed an influence of satiety in the meta-

analysis of food cue-reactivity (Chapter 2). As a consequence, it is reasonable to hypothesize 

that the mOFC circuit participates in appetitive behavior by integrating satiety-related and 

reward-value information to produce the behavior accordingly. There is evidence that the 

functional connectivity of the OFC is modulated by peripheral signals of satiety, such as insulin 

(Kullmann et al., 2012), that can pass through the blood brain barrier and whose receptors are 

expressed throughout the brain (Unger et al., 1991). It is therefore possible that another way 

through which the mOFC circuit participates in appetitive behavior is the integration of 

hormonal signals that provide and updated information about the homeostatic state of the 

organism. 

If anything, this supplemental analysis corroborates and expands the results of the semantic 

association performed with Neurosynth for the rsFC map, revealing a brain circuit involved in 

different sensory, affective, and cognitive processes that are relevant to food reward-processing. 

 

5.3. Implications for basic research and translational medicine 

An overarching goal of the present thesis was to provide a unitary neurocognitive framework 

for the study of craving, and of the pathological motivation in general. I have shown that the 

model proposed by Jasinska and colleagues (2014) for the study of drug cue-reactivity in SUD 

can be translated to the domain of food cue-reactivity in obesity. Further, I have demonstrated 

 

 
19 It is worthy to note that CluB, compared to other meta-analytic techniques like GingerALE, returns 

discrete ellipsoidal clusters based on a predefined user’s criterion (5 mm-radius clusters in Chapters 2 

and 3). With this approach, I obtained relatively small clusters that can better accommodate the 

functional specialization that occurs within a single brain region (see clusters F31, F72, F104 in Figure 

5.2). 
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that different internal and external factors modulate the neural reactivity to food and drug cues, 

both in isolation and in interaction, in specific portions within two main circuits involved in 

cue-reactivity: the cue-reactivity and the cue-regulation network. By means of a new method 

for coordinate-based meta-analyses, CluB (Berlingeri et al., 2019, Appendix A), I was able to 

identify discrete portions of the brain that are sensitive to specific internal or/and external 

contingencies, providing new insights into the neurocognitive processes underlying food and 

drug-cue reactivity. Finally, I have provided preliminary evidence that high-frequency deep 

rTMS over the bilateral insula and PFC, when accompanied by a hypocaloric diet, may be a 

promising treatment option for obesity, probably due to the changes in the functional integration 

properties induced to brain regions that participate in cue-reactivity. 

 

I believe that the present findings have several implications for basic research and translational 

medicine. The main points, and the associated outstanding issues, are described below: 

− Given the evidence that several internal and external factors have on the neural responses 

to cues, future cue-reactivity studies should acknowledge these effects either by controlling for 

unwanted variables, or by modelling the experiment according to a factorial design that can 

account for such main and interactive effects; 

− The CluB toolbox is a freely available software can be used to test this kind of factorial 

designs at the meta-analytical scale; 

− Future studies will also contribute to identify other internal and external factors that 

contribute to the modulation of the neural cue-reactivity, and that can be easily incorporated in 

the model; for example, it may be interesting to study how the level of food transformation 

modulates the neural responses to food cues in lean versus obese individuals;  

− The neurocognitive framework introduced in the present thesis can be also employed to 

generate new hypotheses about the main and interactive effects of a given factor, in different 

populations; for example, it may be interesting to investigate to what extent food availability 

modulates the neural response to food cues in obesity, and whether shared or different neural 

substrates underlie reward expectancy for primary versus secondary rewards; 

− This model can be expanded by including different disorders of the motivation, such as 

gambling disorder, internet gaming disorder, and internet pornography addiction; for instance, 

it would be interesting to investigate how abstinence modulates the neural response to cues in 

gambling disorders versus addiction, to identify common and distinct neurocognitive processes; 
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− Similarly, brain reactions to food cues occurring in other clinical populations, such as 

anorexia nervosa, bulimia nervosa, and Prader-Willi’s syndrome can also be interpreted in light 

of this unitary model; for example, brain reactions to food cues in obesity and anorexia nervosa 

may be characterized by population-specific effects that emerge only when one or more internal 

and external factors (e.g., satiety state, sensory-modality of cue-presentation) are taken into 

account; 

− Some of the effects observed here, particularly those pertaining the interactions, point to 

complex neurocognitive mechanisms underlying obesity (e.g., persistent motivational 

responses to food cues while satiated) and substance use disorder (e.g., interaction between 

treatment status and type of substance) that are worth of further investigation; in particular, 

future studies should qualify these effects with respect to their association with clinical 

variables and treatment outcomes; 

− The evidence that severe cases of addiction are characterized by increased activity of the 

mesolimbic system in response to drug cues corroborates the notion that mesolimbic responses 

to drug cues may be a reliable neurofunctional marker of addiction severity;  

− My results provide also a pool of brain regions that may be used during real-time 

neurofeedback, to train the patient to regulate the brain activity of a given region of interest; for 

example, it may be possible to train obese patients to down-regulate ventral striatal activity in 

response to food cues when satiated; 

− The design of cognitive-behavioral interventions may also benefit from the present 

findings, particularly if the intervention includes the empowerment of cognitive and emotional 

regulation in response to cues; for instance, a cognitive-behavioral treatment aimed at reducing 

food cravings through cognitive reappraisal strategies may be performed under specific 

circumstances (e.g., in a fasting state) and with a particular cue (e.g., a gustatory cue, a sip of a 

sweetened drink); 

− High-frequency deep rTMS over the bilateral insula and PFC is a promising intervention 

tool for obesity, and it is associated with changes in the brain functional organization of the 

mOFC and of the occipital pole; though preliminary, these findings may be sufficient to 

motivate the replication of the study with larger samples, and with different population of 

patients (e.g., in gambling disorder). 

 

The present findings have also some societal implications.  
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Trivially, the evidence that obesity and SUD share some neural vulnerabilities, like the 

heightened mesolimbic activity in response to reward-associated cues, is a cogent argument in 

favor the recognition of some phenotypes of obesity as mental disorders (Volkow and O'Brien, 

2007); this, in turn, is likely to prompt a change not only in the societal representations of 

obesity, but also in the way the healthcare system takes charge of obese patients. Again, I am 

not arguing for viewing obesity as a case of addiction to high-calories, palatable food; yet, I am 

suggesting that the two conditions share some intriguing similarities that are worth of further 

investigation. 

Lastly, the fact that the perceived availability of a given reward can affect our neural reactions 

to reward-related stimuli, influencing our behavior, should motivate a discussion on how the 

exposure to such stimuli might be regulated. This issue is particularly relevant for the 

“substances” - including highly palatable caloric-dense food and alcohol - that are widely 

available in our modern environment and that, at least in Western countries, are heavily 

advertised through the media. As far as I was able to document, “non-core” food products (high 

in undesirable nutrients or energy, often with a high level of food transformation) account for 

the 53% to 87% of the total food TV advertisements in Western countries, particularly during 

children’s peak viewing times (Kelly et al., 2010).  

Something that clashes with the overall evidence discussed in the present work. 
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Appendix A – Clustering the Brain With “CluB”: A New Toolbox for Quantitative Meta-

Analysis of Neuroimaging Data 

 

A1. Introduction 

As the number of neuroimaging studies published spreads, the development of reliable methods 

that allow to identify the most convergent results across a given literature becomes increasingly 

vital.  

A simple approach to summarize the results of a group of independent neuroimaging studies 

implies reporting the significant peaks of activation in a single table (e.g., (Wilson et al., 2004)), 

or in a summary picture (e.g., (Demonet et al., 1996)). Typically, neuroimaging papers report 

the significant peaks of activation, expressed as triplets of x, y, and z coordinates, in a 

stereotaxic space (Montreal Neurological Institute or MNI, or Talairach); these peaks, or foci, 

are the result of one or more statistical contrasts between different conditions (e.g., exposure to 

food pictures vs. cars pictures), and/or between different groups of subjects (e.g., healthy weight 

vs. obese individuals). Merging these activation foci in a single table would allow one to 

evaluate the between-study concordance, by exploring the spatial proximity between the 

reported coordinates and/or anatomical brain labels with respect to a given task or population 

of patients; however, this procedure is completely subjective, as it is the scientist that decides 

whether a group of activation foci are close enough to each other to be deemed as convergent, 

or not. Since studies employing this approach do not use any data-driven statistical method, 

they are usually considered as “narrative” or “illustrative reviews”. 

By contrast, proper meta-analyses are characterized by the use of objective statistical methods 

to combine the results of different independent studies, and thus permit to generate data-driven 

inferences about the convergence of a set of studies. Quantitative meta-analytical approaches 

can be categorized into two broad categories: image-based meta-analyses (IBMA), or 

coordinate-based meta-analyses (CBMA). IBMA rely on the original neuroimaging datasets to 

combine the whole-brain statistical volumes across several studies; however, since sharing 

databases of raw neuroimaging data is far from being the norm, the authors rarely have the 

original data available to them. Conversely, CBMA rely on a summary of the whole-brain 

statistical volumes typically originated by a neuroimaging experiment: a list of triplets of 

coordinates indicating the local maxima of activation (see (Salimi-Khorshidi et al., 2009) for a 

formal comparison between the two approaches). As already pointed out in Chapter 1, several 

methods for CBMA exist, including hierarchical clustering (Jobard et al., 2003), kernel density 

analysis (Wager & Smith, 2003), and signed differential mapping (Radua & Mataix-Cols, 
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2009); however, the Activation Likelihood Estimation (ALE) method is probably the most 

widely popular approach (Eickhoff et al., 2012; Eickhoff et al., 2009; Turkeltaub et al., 2012), 

even if it can only handle simple designs (e.g., two-level factors, experimental group vs. control 

group). Another computerized method that has been adopted to pool together the fMRI data 

available in the literature is hierarchical clustering (Goutte et al., 2001): even though it is less 

widely used compared to other methods (see below) it has been the basis of some with well-

cited papers (e.g., (Jobard et al., 2003, Salvador et al., 2005, Shehzad et al., 2009, Liakakis et 

al., 2011) 

Recently, our group proposed a revival of the hierarchical clustering approach to neuroimaging 

data, developing a software for CBMA (Clustering the Brain, CluB; (Berlingeri et al., 2019)), 

based on a novel hierarchical clustering algorithm (Cattinelli et al., 2013b), which can also 

handle complex factorial designs (e.g., three-level factors, two-by-two, and two-by-two 

factorial designs). An in-depth description of the software, and of the computational details, 

can be found in the original publications (Cattinelli et al., 2013b, Berlingeri et al., 2019). 

Indeed, the scope of this Appendix is to give an overview of the method that I have employed 

for the studies described in Chapters 2 and 3, and that represents an established method for our 

group (Cattinelli et al., 2013a, Crepaldi et al., 2013, Paulesu et al., 2014, Zapparoli et al., 2017, 

Devoto et al., 2018, Seghezzi et al., 2019a, Seghezzi et al., 2019b; Devoto et al., under second 

review4; Devoto et al., under review20). In what follows, I will provide a brief description of the 

key “modules” of CluB: the Hierarchical Clustering Analysis (HCA) and Cluster Composition 

Analysis (CCA) module21; then, I will provide the rationale for two validation studies aimed at 

assessing the realibility of the HC and CCA procedures, by comparing their performance with 

the GingerALE approach. 

 

A1.1. Hierarchical Clustering Analysis  

The basic notion underlying the application of hierarchical clustering to neuroimaging datasets 

is that several elements (e.g., local maxima of activation from different studies) can be grouped 

 

 
20 Devoto F., Carioti D., Danelli L., and Berlingeri M. “A meta-analysis of functional neuroimaging 

studies on developmental dyslexia across European orthographies: the ADC model”. 
21 CluB is also equipped with two additional modules: the Spatial Transformation module, which allows 

to transform coordinated from one stereotaxic system of coordinated to the other (MNI-Talairach and 

Talairach-MNI transformations), and the Peaks Segregation tool, which allows to perform meta-

analyses according with a region-of-interest approach, by selecting a user-defined group of brain regions 

of the Automatic Anatomical Labelling template labels (Rorden C and Brett M (2000) Stereotaxic 

display of brain lesions. Behav Neurol, 12, 191-200.). 
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into clusters, according to a given dissimilarity measure (e.g., Euclidean distance). At the 

begininning of the procedure, each single element represents one cluster; then, according to a 

dissimilarity measure, two clusters are merged, and the procedure is iterated until a single 

cluster that contains all the initial elements is obtained. The hierarchy of nested solutions that 

is obtained through this procedure can be represented by a dendrogram. The final pool of 

clusters, the clustering solution, is obtained by “cutting” the dendrogram at a certain level 

according to what has been called “the user’s spatial criterion”: in other words, the user decides 

the amount of global variability that is acceptable for the specific scientific issue of interest. 

Crucially, this procedure is often associated with a serious bias: the final clustering solution 

may depend on the order of the input data (van der Kloot et al., 2005), particularly when the 

data to be clustered are represented by integer values, as in the case of stereotactic coordinates 

used in neuroimaging (the problem of “non-uniqueness” of the clustering solution). 

The Hierarchical Clustering Analysis (HCA) module implements a novel unique-solution 

clustering algorithm (Cattinelli et al., 2013b): in brief, after the Euclidean distance between 

each pair of the input foci is computed, activation peaks with the minimal distance are 

recursively merged into clusters by using Ward’s criterion (Ward, 1963), which minimises the 

total intra-cluster variance after each merging step. This procedure leads to a tree-like structure 

called dendrogram: in a “bottom-up” clustering algorithm as the one by Cattinelli et al. (2013), 

the leaves of the dendrogram represent clusters composed of a single activation peak, while the 

top represents one large cluster made up of all the activation foci submitted to the procedure 

(Figure A1.1): the dendrogram is then “cut” according to the user’s spatial criterion, that is the 

average standard deviation of the distance in the x, y and z directions from the centroid of each 

cluster, expressed as millimeters (red dotted line in Figure A1.1).  
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Figure A1.1 | Example of a hierarchical clustering dendrogram. The initial dataset of peaks is 

represented on the x-axis. On the y-axis are represented the spatial thresholds that can be selected by the 

users to let the clustering solution emerge. For example, the red dotted line shows the clustering solution 

for a user’s spatial criterion = 6 mm. Adapted from: Berlingeri et al., 2019. 

 

 

The HCA module produces two maps of clusters and two speadsheet files. In particular, the 

“cardinality map” includes all the clusters returned by the HC procedure and contains, for each 

cluster, the information about its numerosity (i.e., number of ariginal peks of activation that it 

contains) (Figure A1.2A); conversely, the “density map” represents the spatial density of each 

cluster returned by the HCA (Figure A1.2B). The images in the ANALYZE formats are 

accompanied by two spreadsheet files: the “cluster-mapping” file, which includes the x, y, z of 

the centroid, the standard deviation along the three axes, the cardinality, and the anatomical 

label of each cluster (Figure A1.2C); the “peaks-clustering” file, including all the activation 

peaks reported in the input file, the cluster ID of each peak, and the factors that characterize 

each activation peak (please refer to the methods section for further details about foci 

classification) (Figure A1.2D).  

The information produced by the HCA procedure above is then fed into the CCA module, which 

allows to give a “functional meaning” to each cluster by performing statistical tests on their 

peak composition. 
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Figure A1.2 | Output files of the HCA module. A. “Cardinality” map representing the number of 

peaks included in each cluster. B. “Density” map representing the ratio of the cardinality and the spatial 

extent of the cluster. C. “Cluster-mapping” spreadsheet file in which the anatomical and spatial 

information about the clusters is stored. D. “Peaks-clustering” spreadsheet file in which each peak is 

associated with its cluster. Adapted from: Berlingeri et al., 2019. 

 

 

A1.2. Cluster Composition Analysis (CCA) 

The Cluster Composition Analysis (CCA) module is the most innovative feature of CluB: it 

allows to perform both asymptotic and exact tests on the composition of the clusters, in order 

to give them a “functional meaning”. With CluB it is possible to perform categorical data 

analysis on the composition of each cluster, allowing the implementation of different designs 

involving one or more factors. In particular, CluB allows to perform a series of statistical tests 

that accommodate a diverse range of factorial designs. An important aspect left to the user’s 

choice is the setting of the Prior-Likelihood (PL) to perform categorical analyses in a bayesian 

context. A brief description of the statistical tests implemented in the CluB toolbox is given 

below. 

The binomial test would be the test of choice when one wants to evaluate the association of a 

cluster with one level of a two-levels factor: for example, the comparison of lean and obese 

individuals. The software computes a binomial test within each cluster, returning a matrix with 

as many rows as the number of clusters. For each cluster the cluster ID, the factor of interest, 

the category of the successful events (i.e., the level of the factor of interest), the number of 
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observed successes, the cardinality, and the p-value of the binomial test are displayed. The 

chosen null and alternative hypotheses are also printed (Figure A1.3A). To make a practical 

example, let’s consider a dataset of 650 activation foci, 377 of which belong to lean individuals, 

and the remaining 273 to obese individuals (one factor = group). The HCA returns a cluster X 

with a cardinality of N = 20, which includes 15 foci associated with the level “lean” of the 

factor “group”. CluB computes the within-cluster proportion 15/20 (i.e., 0.75), and compares it 

with one of two different proportions (p) according to the user’s choice: (i) p = .50, or (ii) p = 

PL, that is the proportion of the theoretical distribution computed over the entire dataset (e.g., 

PLlean = 377/650 = .58). The PL represents the probability of success under the null hypothesis 

that the distribution of lean-related peaks within a given cluster reflects the overall distribution 

of lean-related peaks across the entire dataset; hence, a significant (p < .05) binomial test 

indicates that the proportion of activation peak included in that specific part of the brain is 

higher than the proportion computed all over the brain. A similar principle is applied to the 

statistical tests described below.  

Conversely, the multinomial test would be the test of choice when one wants to test the 

association of a cluster with one level of a multi-level factor, for example, the comparison of 

three tasks within the same group, or the comparison of three groups. CluB returns a matrix 

with as many rows as the number of clusters. For each cluster, the software gives back the 

cluster ID, the factor of interest, the distribution of the observed frequencies (i.e., the number 

of peaks within level 1, level 2, and so on), the cardinality, the p-value. In the last n columns 

(depending on the number of levels of the factor), the PL of each level is reported, as well as 

the observed probability for each cluster (i.e., the proportion of foci for each level with respect 

to the cardinality of the cluster) (Figure A1.3B). This information is needed to infer which of 

the n levels significantly exceeds the PL. On the top row, the selected H0 (e.g., p = total input 

foci / number or levels or p = PL) and the selected type of multinomial test are reported. 
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Figure A1.3 | Output files of the CCA module. A. Output file for a “binomial test” on the Level B of 

Factor F1. B. Output .xls file for a “multinomial test” on Factor F4. C. Output . file for a “Fisher’s test” 

for 2 x 2 interactions between two factors: Factor F2 and F3. D. Bar plot generated by the “Fisher’s 

test”. E. Output file for a “Mantel-Haenszel test” for 2 x 2 x 2 interactions across three factors: Factor 

F1, F2 and F3. F. Bar plot generated by the “Mantel-Haenszel test”. 

 

 

CluB also allows to test more complex factorial designs, such as 2-by-2 and, recently, 2-by-2-

by-2 designs, thus permitting a stastical evaluation of two and three-way interaction effects. In 

particular, the Fisher’s exact test (Fisher, 1970) would be the test of choice, for example, when 

one wants to test the hypothesis that two groups of subjects (lean vs. obese) differ in a given 

cluster specifically for one of two tasks (visual food cues vs. taste food cues), according to a 2-

by-2 factorial design. Again, different types of null hypothesis are considered: (1) the 

hypothesis of independence is H0: OR = 1; (2) the PL hypothesis is H0: OR = ORdataset (i.e., the 

OR computed in the whole dataset before clustering the data). The alternative hypothesis is H1 

: OR ≠ OR0. CluB returns a matrix with as many rows as the number of clusters. For each 

cluster, the software returns the cluster ID, the observed odds ratio and the p-value. The selected 

null hypothesis is also printed (Figure A1.3C). A bar-plot representing the observed distribution 

of each cluster is also printed (Figure A1.3D). 

Finally, the Mantel-Haenszel test (MANTEL and HAENSZEL, 1959) can be applied to explore 

2 × 2 × 2 interactions by identifying the factor that, according to the specific users’ hypotheses, 

can be considered the moderator. This test would allow one, for example, to the hypothesis that 

anatomofunctional convergence between two groups (e.g., lean vs. obese subjects) differ across 
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two different sensory modalities of cue-presentation (e.g., visual vs. taste), providing that cues 

are delivered during one of two physiological states (e.g., hungry vs. satiated). Similarly to the 

previous tests, the program computes a Mantel-Haenszel test for each cluster, returning the ID 

of the cluster, the OR for each of the two levels of the moderator, the statistic, and the p-value 

(Figure A1.3E). A bar-plot representing the observed distribution of each cluster is also printed: 

the joint bar-plot is split according with the factor chosen to stratify the analysis (Figure A1.3F). 

 

To summarize, the HCA and CCA are the core modules of CluB. The HCA performs a 

hierarchical clustering on the input data, by means of a novel clustering algorithm that 

overcomes the problem of non-uniqueness of the clustering solution (Cattinelli et al., 2013b), 

returning a set of clusters according to a specific user’s criterion (i.e., average standard 

deviation of the distance in the x, y and z directions from the centroid of the clusters, expressed 

as millimeters). The CCA involved a series of statistical tests, which can be performed within 

a bayesian context, that allow to assign a “functional meaning” to the clusters obtained in the 

HCA, hence tolerating the implementation of a diverse range of factorial designs. 

In what follows, I will describe two validation studies that assess the reliability of the HCA and 

CCA methods. In particular, I will compare the performance of CluB with one of the most 

widely used approaches for CBMA: the ALE method (Eickhoff et al., 2009, Eickhoff et al., 

2012, Turkeltaub et al., 2012). 

 

A1.3. Aims of the study 

The aim of the current study is to perform a validation of the two core modules of CluB: the 

HCA and the CCA. In particular, with respect to the HCA, we adhered to the following logic: 

if a CBMA algorithm performs well, than it should be capable of reproducing the effects 

obtained by pooling together the data in standard random effect group analysis, an approach 

similar to the one adopted by Salimi-Khorshidi et al. (2009) and that has been further tested and 

validated in a more recent methodological paper (Maumet and Nichols, 2016). To this aim, we 

selected the fMRI data from normal controls involved in words and pseudo-words reading 

(Danelli et al., 2017). We run standard random effects second level analysis to obtain the pattern 

of activations associated with words and pseudo-words reading: these group-level results were 

considered our “Gold Standard” reference. In a second step, the subject-specific reading effects 

were extracted, and the activation peaks were used to create a database of coordinates; 

accordingly, each single participant was treated as an independent fMRI study on reading. The 

same database of coordinates was used to run a meta-analysis using the CluB software and the 
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GingerALE algorithm (Eickhoff et al., 2009). The two meta-analytic results were compared 

against the Gold Standard to compute performance measures, i.e., sensitivity, specificity and 

accuracy. The CluB toolbox is compared with the GingerALE approach for two main reasons: 

(i) GingerALE is the most commonly used software for CBMA; (ii) GingerALE and CluB are 

based on completely different assumptions. In fact, whereas GingerALE relies on the 

assumption each peak of activation is better represented by a probability distribution and is 

modeled accordingly, in CluB each activation peak is considered as a single data-point and it 

is not weighted or modeled any further. This, in turn, provides a measure of concurrent validity 

for the CluB toolbox. 

For the validation study of the CCA, I will use CluB and GingerALE to assess task-specific 

convergence across a set of studies conforming to a factorial design, and involving one three-

level factor (i.e., TASK = face processing vs. reading vs. object processing). In particular, the 

task-specific brain maps returned by the two methods will be analyzed by means of the 

“decoder” function of Neurosynth (http://neurosynth.org/decode/), which allows to retrieve the 

Pearson correlation of the key-words that are most associated with the input image, based on 

the NeuroVault repository. The r-value associated with each key-word reflects the correlation 

across all voxels between the input map and the map associated with a particular key-word in 

NeuroVault. This design was chosen over more complex designs (e.g., multi-factorial deigns) 

because (i) a large body of neuroimaging evidence about the neural correlates of face, reading, 

and object processing exists, and because (ii) GingerALE can still produce task-specific maps 

in such a design, by performing a contrast study between one set of studies (e.g., face 

processing) and the other two merged together (e.g., face processing vs. reading and object 

processing). The overall purpose of this validation study is to provide a proof-of-concept that 

CluB, compared to GingerALE, is better suited for handling more complex designs. 

 

 

A2. Materials and methods 

Since the two validation studies employ different methodological approaches, and the methods 

of the first validation study have been already published in a peer-reviewed journal (Berlingeri 

et al., 2019), the details of each study will be reported separately. In particular, the validation 

study for the CCA will be originally described in the present thesis22. 

 

 
22 The validation study of the CCA was initially performed as a part of a formal response to an 

anonymous reviewer. She/he particularly appreciated this approach, as it helped her/him to fully 
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A2.1. Validation study for the HCA 

This validation implied the following steps:  

1. The analysis of the fMRI data of 24 subjects during a reading experiment (block-design) 

and the identification of a reference reading map with a standard second–level random 

effect analysis;  

2. The extraction of individual activation peaks for the reading task from individual fixed-

effects analysis; 

3. The meta-analysis of the individual data collected at step 2 with both CluB and 

GingerALE; 

4. The comparison of the meta-analyses with the reference reading map and estimates of 

sensitivity, specificity and accuracy for both the CluB and GingerALE analyses. 

It is worthy to note that, by following this approach, each single subject was treated as a single 

experiment in which within-study variability can be assumed to be roughly constant (as a result 

of the experimental task constraints), while taking mostly into account between-studies 

variability. The details about methods of fMRI scanning are fully described in another paper 

(Danelli et al., 2017). The fMRI task involved 120 fMRI entire brain volumes collected in 

alternating blocks of 10 scans of the baseline condition and 10 scans of the experimental task 

(TR = 3”), thus resultinng in six blocks of baseline and six blocks of experimental stimuli. The 

participants were asked to silently read words and pseudowords. A total of 45 words and 45 

pseudowords were presented in the six experimental blocks (15 for each block). 

For all participants, the sampled anatomical space included the entire cerebral hemispheres and 

the cerebellum. For each participant, a standard pre-processing and a Hemodynamic Response 

Function (HRF) convolution were applied using SPM12; once obtained the smoothed-

normalized-realigned-coregistered images, the two experimental conditions (baseline and 

reading conditions) were modeled in a first level-analysis conforming to a standard block-

design. This allowed us to estimate, according to the general linear model implemented in 

SPM12, the subject-specific effect of interest: the contrast image (con-image) “reading > 

baseline” extracted at p < 0.001 uncorrected. The significant activation peaks were saved in an 

excel file to create a database for the meta-analytic procedures. As a consequence, each single 

subject was considered as an independent study. In particular, a total of 579 activation peaks 

 

 
understand in which situations CluB is more suitable compared to the GingerALE approach. I hope that 

this additional section would also help the reader to fully understand the approach that I have adopted 

to perform the studies described in Chapter 2 and 3. 
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were extracted from the 24 subject-specific reading > baseline comparison. Thus, for the 24 

participants we extracted a mean of 24.2 activation peaks (min =3; MAX =77). The raw dataset 

was then passed to the GingerALE 2.3.6 software in order to exclude, from the pool of 579 

activation peaks, coordinates laying outside the less conservative brain mask available within 

the software (this was done in order to maintain only the stereotactic coordinates located in gray 

matter). The removal of out-of-mask activation peaks led to a pool of 520 activation peaks (the 

10.19% of the original dataset was eliminated). The 520 activation peaks constituted the pool 

of data that we used to run the two meta-analyses: one with the GingerALE method and the 

other with the CluB method. 

The analysis with Ginger-ALE was run by setting the following parameters: (1) brain mask: 

less conservative; (2) uncorrected threshold p < 0.001; (3) no minimum cluster volume. 

For the meta-analysis run with CluB the following parameters were set: (1) Users’ spatial 

criterion: mean standard deviation along the three axes <6 mm. This was done in order to 

conform the spatial resolution of the CluB method to the spatial resolution applied in 

GingerALE 2.3.6 (the standard deviation of the Gaussian Probability Distribution used to 

compute the ALE maps is set to 6 mm). 

Finally, the 24 con-images representing the single-subject voxel-by-voxel difference between 

reading and baseline were entered in a random effect second level analysis to obtain our gold-

standard reference activation map. The General Linear Model (GLM) was designed to model a 

one-sample t-test and to extract the mean neural network associated with single word silent 

reading (once the effect of the early visual processes was eliminated). The results were extracted 

at p < 0.001, no spatial extent threshold has been adopted here. 

As described at point 4, we compared the results of the two meta-analytic procedures with the 

results of the standard random effect analysis according to the following steps: 

1. Extraction the t-map corresponding to the reference reading map (our gold-standard) 

from the SPM12 analyses; 

2. Conversion of the results of our meta-analyses from .nii to .voi; 

3. Overlap of the .nii and the .voi files on to the “ch2bet” template available in MRIcron 

(Rorden and Brett, 2000) to identify, for each single meta-analytic map, the brain 

regions shared with the reference-reading map, 

4. Saving the shared regions in dedicated .voi files called GingerALE-intersection and 

CluB-intersection, respectively. 

The intersections were overlaid to the “ch2bet” template and explored using the “descriptive” 

function available in MRIcron. 



 

 139 

As a result we obtained the anatomical distribution of the overlays and the associated voxel-

count and volumetry. This result represents, for each single meta-analytic procedure, the so 

called true positives (TP), i.e., the voxels that are actually activated by our subjects, and that 

resulted to be active according to the specific pooling method of each meta-analytic algorithm 

(Figure A1.4).  

 

 

Figure A1.4 | Graphical representation of the procedure implied in the calculation of the 

performance measures. Graphical representation of the comparison between the results of the “Gold 

Standard” (green) and the meta-analytic map (CluB, in blue). Inactive voxels (i.e., voxels not displaying 

a significant effect in the second-level SPM fMRI results – the “Gold Standard”) are represented in 

cyan. The output of the comparison (i.e., intersection or subtraction) between the maps is represented in 

purple. The same procedure was applied to compare the meta-analytic map generated by the GingerALE 

software with the “Gold Standard”. Taken from: Berlingeri et al. 2019. 

 

 

To identify the true negatives (TN), i.e., the brain regions that were not active in our sample 

and that did not result activated in the meta-analytic procedures, we selected the mask file of 

the SPM 12 one sample t-test (i.e., the neurofunctional space mapped by our experiment) and 

we subtracted the reference reading map to obtain the so-called “inactive map”. Secondly, we 

overlapped the inactive map with each single meta-analytic map and we applied the masking 

procedure (i.e., a subtraction) to obtain the distribution of the TN voxels (Figure A1.4). The 

false positives (FP, i.e., the voxels that resulted to be activated in the meta-analytic map, but 

that were not active in our gold-standard result) were identified by overlapping the inactive map 

with the results of each single meta-analysis (Figure A1.4). Finally, the false negatives (FN, 

i.e., the voxels that were significantly activated in the gold-standard map, but not detected by 

the meta-analysis) were obtained by subtracting the results of the meta-analysis from the 
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reference reading map (Figure A1.4). These measures were used to compute performance 

measures for the two meta-analytic procedures: sensitivity, specificity and overall accuracy. 

In particular, sensitivity expresses the proportion of actual positives findings that are correctly 

identified. Thus, it represents the true positive rate [TP/(TP + FN)]. Specificity corresponds to 

the proportion of negatives that are correctly identified. Thus, specificity expresses the 

proportion of “real” negative findings [TN/(TN + FP)]. Finally, accuracy is calculated as the 

proportion of correct assessments (both positive and negative) over the entire sample [(TN + 

TP)/(TN + TP + FN + FP)]. 

The performance measures described above, and the corresponding confidence intervals (95%) 

were computed using the “epi.tests” function available in the “epiR” library of R (version 0.9-

48, (Stevenson et al., 2013)). 

Finally, to conclude this empirical evaluation, the concordance between the two meta-analytic 

methods was assessed. The two meta-analytic methods were treated as “two independent 

classifiers”. Thus, in order to obtain a global measure of concordance between the two meta-

analytic methods, a 2 × 2 contingency table was created and, as a consequence, four classes of 

events were considered: 

1. Active voxels both in the GingerALE and in the CluB maps, that were calculated as an 

intersection between the two neurofunctional maps; 

2. Active voxels in the CluB map only, i.e., the result of the subtraction between the CluB 

map and the GingerALE map; 

3. Active voxels in the GingerALE map only, i.e., the result of the subtraction between the 

GingerALE map and the CluB map; 

4. Inactive voxels both in the GingerALE and in the CluB maps, that were calculated as a 

difference between the total number of voxels investigated and the number of voxels 

classified according to the previous classes of events. 

This classification was performed by computing nine clustering maps varying the user’s spatial 

criterion from 6 to 14 mm23 (with steps of 1 mm). In order to overcome some of the 

methodological limitations encountered with the classical Cohen’s Kappa measure (it has been 

demonstrated that the Cohen’s kappa is sensitive to trait prevalence and marginal probabilities), 

the AC1 measure proposed by Gwet (2002) was adopted here. With respect to table, the AC1 is 

calculated as follows: 

 

 
23 Detailed information about the clustering solutions computed for the different user’s criteria is 

reported in Tables SA1.1–SA1.8 in the Supplementary File 4. 
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𝐴𝐶1 =  
𝑃𝛼− 𝑃𝑒(𝛾)

1− 𝑃𝑒(𝛾)
              [1] 

 

𝑃𝛼 =
𝑎+𝑑

𝑛
              [2] 

 

𝑃𝑒(𝛾) =  2 𝑃+ (1 − 𝑃+)             [3] 

 

𝑃+ = (
𝐴++𝐵+

2
) /𝑛             [4] 

 

Where Pα represents the observed concordance [see Equation (2)], Pe(γ), represents the 

modified chance correction [see Equation (3)]; while A+ and B+ represent the marginal 

frequency. 

 

A2.2. Validation study for the CCA 

The validation study for the CCA implied the following steps: 

1. Study selection; 

2. Foci classification and filtering; 

3. GingerALE meta-analysis: single and contrast datasets; 

4. CluB meta-annalysis: HCA and CCA; 

5. Neurosynth comparison between CluB and GingerALE. 

For the study selection step, we used the software Sleuth (http://www.brainmap.org/sleuth/, 

version 3.0.3) to obtain a reasonable pool of neuroimaging articles; in particular, we were 

interested in creating a factor “TASK” with three levels, one for each paradigm class: face 

monitor/discrimination, reading (overt and covert) and visual object identification. To this aim, 

we employed Sleuth to perform three separate searches in the functional brainmap database, 

with the following parameters: 

 

1. Experiments – Paradigm Class – IS - Face Monitor/Discrimination 

a. Experiments – Activation – IS – Activations only OR Deactivations only 

b. Subjects – Handedness – IS – Right OR Not Right 

2. Experiments – Paradigm Class – IS - Reading (overt) OR Reading (covert) 

a. Experiments – Activation – IS – Activations only OR Deactivations only 

b. Subjects – Handedness – IS – Right OR Not Right 

3. Experiments – Paradigm Class – IS - Visual Object Identification 

a. Experiments – Activation – IS – Activations only OR Deactivations only 

b. Subjects – Handedness – IS – Right OR Not Right 
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In total, these queries to the brainmap functional database returned 2431 experiments (20031 

activation foci): 1477 (10154 activation foci) belonging to Face Monitor/Discrimination (or 

face hereafter), 802 (8524 activation foci) belonging to Reading (overt and covert) (or reading 

hereafter), and 152 (1353 activation foci) belonging to Visual Object Identification (or object 

hereafter). Activation peaks were exported in MNI stereotaxic space. 

In the foci classification and filtering step, each activation focus was labeled according with the 

Automatic Anatomical Label (AAL) template, by means of the label4mri function in R (freely 

available on github: https://github.com/yunshiuan/label4MRI). The function returns 4 

variables: (i) aal.distance, the minimum distance (in mm) necessary to reach the first aal region 

if the peak falls within the white matter or outside of the bounding box; (ii) aal.label, the brain 

region according with the AAL template; (iii) ba.distance, the minimum distance (in mm) 

necessary to reach the first Broadmann Area if the peak falls within the white matter or outside 

of the bounding box; (iv) ba.label, the brain region according with the Broadmann Area. Only 

the activation foci falling within the following brain regions, according with the AAL template 

(aal.distance = 0), were selected: the fusiform, inferior temporal and lingual gyri bilaterally. 

The final dataset included 262 experiments (1607 activation foci): 147 (926 activation foci) 

belonging to Face Monitor/Discrimination, 62 (557 activation foci) belonging to Reading (overt 

and covert) and 53 (124 activation foci) belonging to Visual Object Identification. Each 

activation focus was then classified as a function of the experimental task that generated it, by 

assigning to it a dummy code (e.g., face = 1; reading = 2; object = 3). The selected pool of 

coordinates was employed to run three ALE meta-analyses with the GingerALE software 

(version 2.3.6), one for each group of task-specific coordinates, with the following parameters: 

(1) brain mask: less conservative; (2) uncorrected threshold p < 0.001; (3) no minimum cluster 

volume.with an uncorrected threshold of p < .001, no minimum volume threshold. Then, to 

extract task-specific ALE maps (i.e., the brain areas where convergence across studies is higher 

in for a task compared to the others), three different contrast meta-analyses were run 

(parameters: (1) brain mask: less conservative; (2) uncorrected threshold p < 0.001; (3) no 

minimum cluster volume; permutations: 10000): 

1. Face > [Reading + Object]; 

2. Reading > [Face + Object]; 

3. Object > [Face + Reading]. 

Then, the three datasets employed for the ALE annalyses were merged into a single dataset to 

perform a CBMA with CluB. For the HCA performed with CluB, the user’s criterion was set 
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at 6 mm. Then, a CCA was run by performing a series of multinomial tests (weighted by the 

Prior Likelihood) on the clusters returned by the HCA, in order to identify those clusters where 

the proportion of activation peaks associated with a given task is significantly (p < .05) different 

to that expected considering the overall dataset (H0: p = PL). Task-specific clustering maps 

were then obtained by inspecting the composition of each significant cluster. 

Finally, as a last proof-of-concept in favor of the validity and reliability of the CluB approach, 

the results of the the task specific maps obtained from CluB and GingerALE were analyzed by 

means of the “decoder” function available on Neurosynth (http://neurosynth.org/decode/). This 

function allows to retrieve the Pearson correlation with the key-words that are most associated 

with the input image (in .nii format) based on the NeuroVault repository 

(https://neurovault.org). As the function is influenced by the threshold of the image, and the 

maps generated by CluB and GingerALE are different (e.g., the ALE maps are thresholded, 

whereas the CluB maps are not), all the images were binarized with the ImCalc extension 

available in SPM12. The first 25 key-terms returned by Neurosynth for the CluB and 

GinngerALE task-specific maps were then plotted as a function of their Pearson’s coefficient 

value. 

 

A3. Results 

A3.1. Validation study for the HCA 

A3.1.1. GingerALE meta-analysis 

The GingerALE method identified 10 clusters, with an average extended volume 8154 mm3. 

The centroids of these clusters were mainly located in the left hemisphere, and included frontal 

(inferior frontal gyrus, pars triangularis, opercularis, and orbitalis, precentral gyrus), temporal 

(middle temporal gyrus, fusiform gyrus), parietal (supramarginal gyrus, inferior parietal 

lobule), occipital (inferior and middle occipital gyri), and cerebellar regions. The detailed 

description of the brain regions underlying reading, according to GingerALE, is reported in 

Table A1.1 and in Figure A1.5A. 
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Table A1.1 | Results of the ALE analysis with a cluster forming threshold of p < .001, uncorrected. 

For each cluster, the volume, the coordinates in MNI stereotaxic space of the local maxima and the 

maximum ALEscore observed are reported. Taken from: Berlingeri et al. 2019. 

 

 

 

 

Cluster ID Anatomical Label Volume 

(mm3) 

Left Hemisphere Right 

Hemisphere 

Max. 

ALE 

score   
    x y z x y z 

 

1 Inferior Frontal Gyrus. 

pars Triangularis (47) 

35280 -42 34 0 
   

0.0056 

 
Inferior Frontal Gyrus. 

pars Opercularis  

 
-48 14 10 

   
0.0069 

 
Middle Temporal 

Gyrus (22) 

 
-60 -4 -12 

   
0.0050 

   
-60 -38 2 

   
0.0066    

-62 -24 -4 
   

0.0052 

2 Inferior Occipital 

Gyrus (18) 

17520 -24 -100 -10 
   

0.0110 

3 Inferior Occipital 

Gyrus (17) 

15752 
   

24 -102 0 0.0092 

 
Cerebellum 

    
34 -80 -26 0.0045 

4 Middle Temporal 

Gyrus (21) 

6272 
   

58 -28 -8 0.0049 

      
62 -32 -4 0.0050       
64 -40 -2 0.0050       
64 -40 -6 0.0050 

5 Precentral Gyrus (6) 3912 -48 0 54 
   

0.0055 

6 Inferior Frontal Gyrus. 

pars Orbitalis (47) 

1968 
   

46 36 -12 0.0047 

7 Fusiform Gyrus (37) 528 -42 -60 -20 
   

0.0039 
   

-44 -48 -22 
   

0.0040 

8 Supramarginal Gyrus  224 -54 -42 26 
   

0.0039 

9 Inferior Parietal Lobule 

(40) 

48 -50 -46 54 
   

0.0038 

10 Middle Occipital Gyrus 

(19) 

40 -28 -70 36       0.0037 
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Figure A1.5 | Comparison of GingerALE and CluB solutions with reference to a data set of 24 

subjects involved in a reading task. Axial view (top) and 3D rendering (bottom) of the results 

generated by (A) the GingerALE software; (B) the optimized hierarchical clustering algorithm 

implemented in CluB; (C) the second-level SPM random-effects analysis (i.e., the “Gold Standard”). 

Taken from: Berlingeri et al. 2019. 

 

 

A3.1.2. CluB meta-analysis 

The HCA identified a total of 75 clusters scattered all over the brain, with 3–15 individual 

activation peaks each (median value = 6). The mean standard deviation along the three axes 

was 5.60 mm (x axis), 5.94 mm (y axis), and 5.78 mm (z axis). A complete list of these clusters 

is provided in Table A1.2, and the spatial distribution of the clusters (according to the 

cardinality map)24 is represented in Figure A1.5B. 

 

A3.1.3. Random-effect second-level analysis (“gold standard”) 

The results of the second-level SPM analysis, extracted at p < .001, uncorrected (with no spatial 

threshold) are much in line with the literature on word reading (Turkeltaub et al., 2002). A 

complete list of these clusters is provided in Table A1.3, whereas the spatial distribution of the 

clusters is represented in Figure A1.5C.

 

 
24 In order to maximize the chance of overlap between the HC solution and the uncorrected GingerALE 

map (p < .001 uncorrected), no threshold of minimum # of peaks per cluster was imposed in our 

validation analyses. However, in daily practice one should avoid considering clusters with limited 

cardinality (e.g., clusters whose cardinality falls below the 25th percentile of the cardinality distribution 

of all the clusters). 
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Table A1.2 | Results of CluB with user’s spatial criterion set to 6 mm. For each cluster, the mean centroid coordinates in MNI stereotaxic space 

(standard deviation along the three axes), and the cardinality (N) are reported. Taken from: Berlingeri et al. 2019. 

 

  Left Hemisphere Right Hemisphere 

 

Anatomical Label μx (SD) μy (SD) μz (SD) N μx (SD) μy (SD) μz (SD) N  

Middle Frontal Gyrus     39 (3) 39 (3) 40 (7) 3  

Middle Frontal Gyrus, pars Orbitalis -36 (5) 51 (4) -7 (9) 5 37 (9) 45 (8) -15 (4) 10  

Superior Frontal Gyrus -16 (6) 19 (5) 63 (7) 3      

 -14 (6) 57 (6) 38 (8) 5      

Superior Medial Frontal Gyrus     10 (10) 58 (5) 36 (7) 8  

     7 (8) 38 (2) 58 (4) 4  

Inferior Frontal Gyrus, pars Orbitalis     52 (5) 34 (5) -2 (5) 10  

Inferior Frontal Gyrus, pars Triangularis -46 (7) 37 (5) 3 (7) 14 57 (3) 34 (7) 16 (5) 7  

 -42 (4) 32 (4) 29 (11) 6      

Inferior Frontal Gyrus, pars Opercularis -49 (3) 14 (4) 10 (2) 8 54 (13) 9 (5) 19 (7) 4  

 -45 (5) 11 (6) 24 (6) 11      

Gyrus Rectus -3 (4) 50 (7) -19 (4) 3      

Precentral Gyrus -45 (6) 4 (7) 55 (4) 10 49 (5) 10 (9) 43 (3) 5  

 -39 (5) 5 (8) 38 (3) 11 36 (3) -10 (8) 58 (11) 5  

 -27 (8) -25 (8) 73 (1) 3      

Supplementary Motor Area -4 (7) 2 (8) 68 (6) 9      

Middle Cingulum -6 (4) 22 (8) 39 (6) 4      

Postcentral Gyrus -61 (3) -3 (9) 21 (3) 3      

 -59 (1) -16 (8) 43 (2) 4      

Paracentral Lobule  5 (8) -27 (4) 60 (6) 4      

Insula   -37 (6) 16 (7) -4 (5) 5      

Superior Parietal Lobule -31 (3) -63 (4) 60 (6) 5      
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Inferior Parietal Lobule -50 (4) -42 (6) 57 (7) 9 48 (8) -42 (10) 56 (5) 6  

Supramarginal Gyrus 65 (5) -39 (6) 26 (8) 4      

Superior Temporal Pole -41 (4) 28 (4) -19 (4) 7 62 (2) 9 (10) -1 (5) 8  

 -28 (5) 8 (8) -29 (5) 9 48 (7) 15 (5) -19 (8) 12  

Superior Temporal Gyrus -58 (3) 4 (6) -10 (8) 10      

 -53 (7) -44 (8) 24 (6) 10      

Middle Temporal Gyrus -62 (5) -20 (7) -7 (9) 15 63 (4) -44 (8) 1 (6) 12  

 -58 (4) -36 (3) 2 (3) 7 55 (7) -26 (4) -12 (7) 14  

 -57 (6) -52 (6) 5 (5) 8      

Inferior Temporal Gyrus -62 (5) -41 (3) -15 (8) 6 61 (3) -47 (6) -19 (4) 4  

Parahippocampal Gyrus -26 (5) -12 (5) -24 (5) 8 18 (6) -7 (8) -22 (5) 7  

 -14 (9) -27 (6) -10 (7) 5      

Hippocampus -27 (3) -49 (7) 14 (5) 4 25 (7) -20 (5) -7 (9) 9  

Fusiform Gyrus -43 (4) -63 (4) -18 (6) 6      

 -42 (2) -47 (5) -24 (7) 8      

Precuneus -10 (11) -53 (7) 71 (8) 5 6 (9) -51 (5) 9 (9) 5  

Cuneus 7 (5) -92 (5) 24 (8) 4      

Lingual Gyrus     25 (7) -98 (4) -13 (6) 15  

     10 (7) -76 (10) -10 (6) 6  

Superior Occipital Gyrus     27 (1) -63 (3) 37 (4) 3  

     20 (4) -103 (3) 5 (5) 6  

Middle Occipital Gyrus -32 (6) -73 (7) 34 (10) 10 38 (7) -90 (7) 3 (6) 6  

 -25 (6) -100 (4) 2 (4) 12      

Inferior Occipital Gyrus -43 (8) -79 (5) -7 (4) 4      

 -30 (6) -93 (5) -11 (5) 14      

 -18 (5) -102 (3) -11 (4) 12      

Cerebellum -32 (8) -80 (6) -44 (7) 5 38 (7) -60 (10) -26 (6) 10  

 -13 (6) -82 (5) -41 (3) 4 30 (10) -76 (5) -45 (4) 8  
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     29 (5) -83 (4) -25 (4) 7  

     8 (5) -68 (1) -45 (6) 4  

     2 (6) -54 (3) -31 (8) 4  

Thalamus -3 (2) -13 (4) 8 (6) 4      

Putamen       30 (11) 5 (1) -6 (5) 3  

Pallidum -12 (2) 3 (8) -7 (4) 3      

No Region -25 (4) -39 (12) 38 (5) 3      

  -11 (9) 23 (13) 16 (2) 6          

 

 

 
Table A1.3 | Results of the random-effects second-level SPM analysis with a significance threshold set to p < .001, uncorrected. For each local maxima 

the coordinates in MNI stereotaxic space, the cluster extent (k, number of voxels) and the Z-score are reported. Taken from: Berlingeri et al. 2019. 

 
 Left Hemisphere Right Hemisphere 

Anatomical Label (BA) x y z k Z-score x y z k Z-score 

Inferior Frontal Gyrus, pars 

Triangularis (47) 
-44 34 0 1198 4.19      

 -50 34 -8  3.89      

 -42 34 -10  3.89      

Precentral Gyrus (6) -44 2 34 37 3.41      

Middle Temporal Gyrus 

(21) 
-62 -50 6 279 3.83      

 -62 -30 0  3.79      

 -56 -44 8  3.63      

Fusiform Gyrus (37) -44 -56 -20 585 4.87      

 -44 -46 -26  4.16      

Inferior Occipital Gyrus (18) -26 -98 -10 533 5.75 24 -100 -4 159 4.75 
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A3.1.4. Performance measures (sensitivity, specificity, accuracy) 

The procedure illustrated in Figure A1.4 led to the identification of two 2-by-2 contingency 

tables, from which the performance measures were calculated: one for the comparison between 

GingerALE and the “gold standard” (Table A1.4), and one for the comparison between CluB 

and the “gold standard” (Table A1.5). The GingerALE method obtained the following 

performance scores: (1) Sensitivity = 0.728 [0.722–0.734]; (2) Specificity = 0.971 [0.97–0.971]; 

(3) Accuracy = 0.967 [0.966–0.967].  The CluB method obtained (1) Sensitivity = 0.139 [0.134–

0.143], (2) Specificity = 0.969 [0.969–0.97], (3) Accuracy = 0.956 [0.955–0.956].  

 

Table A1.4 | Contingency table of the second-level SPM results (i.e., the Gold-Standard) and 

the GingerALE map. Taken from: Berlingeri et al. 2019. 

 

  Gold Standard 

Total GingerALE Active Inactive 

Active 16136 39550 55686 

1.16% 2.84% 4.01% 

Inactive 6087 1328491 1334578 

0.44% 95.56% 95.99% 

Total 22223 1368041 1390264 

1.60% 98.40% 100% 

 

 

Table A1.5 | Contingency table of the second-level SPM results (i.e., the Gold-Standard) and 

the CluB map. Taken from: Berlingeri et al. 2019. 

 

  Gold Standard 

Total CluB Active Inactive 

Active 3083 41872 44955 

0.22% 3.01% 3.23% 

Inactive 19140 1326169 1345309 

1.38% 95.39% 96.77% 

Total 22223 1368041 1390264 

1.60% 98.40% 100% 
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A3.1.5. Between-methods concordance (AC1) 

To calculate the between-methods concordance by means of equation (1), a 2-by-2 contingency 

table was created (Table A1.6). The between-methods concordance when the user’s spatial 

criterion was set to 6mm is AC1 = 0.933. The neuroanatomical distribution of the overlap 

between the GingerALE and the CluB maps is reported in Figure A1.6; among the 75 clusters 

identified by the CluB method, 47 (i.e., the 62.67%) fell outside the GingerALE map. The 

details about the concordance measures computed for the remaining clustering solutions are 

reported in Table A1.7. 

 

Table A1.6 | Contingency table of the GingerALE and the CluB maps. Taken from: Berlingeri 

et al. 2019. 

 

  Ginger ALE 

Total CluB Active Inactive 

Active 7255 37700 44955 

0.52% 2.71% 3.23% 

Inactive 48431 1296878 1345309 

3.48% 93.28% 96.77% 

Total 55686 1334578 1390264 

4.01% 95.99% 100% 

 

 

 

 
 
Figure A1.6 | Comparison between CluB and GingerALE. Axial view of the neuroanatomical 

distribution of the overlap between the CluB map (in blue) and the GingerALE map (in red). These 

overlaps were used to compute the concordance measures between the two meta-analytic methods, as 

described in the main text. Taken from: Berlingeri et al. 2019. 
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Table A1.7 | Between-methods concordance. Concordance measures (AC1) between the GingerALE 

map and the results of CluB with the User’s Spatial Criterion set from 7 to 14 mm. Taken from: 

Berlingeri et al. 2019. 

 

User's spatial 

criterion 
6 mm 7 mm 8 mm 9 mm 10 mm 11 mm 12 mm 13 mm 14 mm 

AC1 0.933 0.928 0.958 0.942 0.905 0.904 0.892 0.897 0.893 

 

 

A3.2. Validation study for the CCA 

A3.2.1. GingerALE meta-analyses: single and contrast datasets 

For the single-dataset meta-analyses, the GingerALE method identified 5 clusters for the face 

monitor/discrimination dataset, 12 clusters for the reading (overt and covert) dataset, and 7 

clusters for the visual object identification dataset (Table A1.8A-C, Figure A1.7A-C). For the 

contrast-dataset meta-analysis, the GingerALE method identified 3 clusters for the face > 

reading + object contrast, and 7 clusters for the  reading > face + object contrast (Table A1.9A-

B, Figure A1.8A-B); no cluster survived the uncorrected p < .001 threshold in the object > face 

+ reading contrast.  

 

 

Figure A1.7 | Results of the single-dataset meta-analyses. Axial view of the neuroanatomical 

distribution of the ALE maps for the (A) face dataset, (B) reading dataset, and (C) object dataset. 
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Table A1.8 | Results for the ALE meta-analyses on the single-dataset. The cluster ID, the anatomical label (and the Brodmann Area, BA), the volume, 

the coordinates in MNI stereotaxic space of the local maxima and the maximum ALEscore observed are reported for the (A) face dataset, (B) reading 

dataset, (C) objects dataset.  

 

Dataset 
Cluster 

ID 

Anatomical Label 

(BA) 

Volume 

(mm3) 

Left Hemisphere Right Hemisphere Max. 

ALE 

score 
x y z x y z 

A. Face 

monitor/discrimination 
1 Fusiform Gyrus (37) 112560    42 -52 -20 0.177 

  Fusiform Gyrus (37)  -42 -54 -18    0.1453 
  Lingual Gyrus (18)     20 -86 -10 0.0855 
  Lingual Gyrus (18)     10 -76 -4 0.0737 
  Fusiform Gyrus (19)     24 -72 -4 0.0633 
  Fusiform Gyrus (37)  -28 -52 -12    0.0628 
  Fusiform Gyrus (37)  -32 -32 -22    0.0606 
  Lingual Gyrus (18)  -20 -82 -12    0.0587 
  Lingual Gyrus (18)  -14 -88 -12    0.0585 
  Lingual Gyrus (18)  -30 -86 -16    0.0543 
  Lingual Gyrus (18)  -12 -78 -6    0.0518 
  Lingual Gyrus (18)  -10 -68 2    0.0469 
  Lingual Gyrus (18)     10 -58 2 0.044 
  Fusiform Gyrus (36)  -34 -16 -30    0.0416 
  Fusiform Gyrus (36)  -34 -18 -24    0.0386 
  Fusiform Gyrus (20)  -36 -2 -38    0.0386 
  Fusiform Gyrus (20)     46 -20 -28 0.0292 
  Fusiform Gyrus (20)     42 -22 -22 0.0291 
  Lingual Gyrus (36)  -14 -36 -4    0.0259 
  Lingual Gyrus (36)     10 -38 -4 0.0222 
 2 Fusiform Gyrus (36) 2096    32 -2 -36 0.0342 
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 3 
Inferior Temporal 

Gyrus (20) 
816    48 4 -40 0.0225 

 4 
Inferior Temporal 

Gyrus (21) 
240    52 -6 -28 0.0222 

 5 
Inferior Temporal 

Gyrus (21) 
16 -60 -12 -26    0.0171 

B. Reading (overt and 

covert) 
1 Fusiform Gyrus (37) 83648 -40 -60 -12    0.0763 

  Fusiform Gyrus (37)  -42 -48 -20    0.0701 
  Fusiform Gyrus (37)  -44 -52 -16    0.0654 
  Fusiform Gyrus (18)  -22 -78 -10    0.0528 
  Fusiform Gyrus (19)  -32 -72 -14    0.0517 
  Fusiform Gyrus (37)     36 -60 -16 0.0515 
  Lingual Gyrus (18)  -22 -86 -12    0.0512 
  Lingual Gyrus (18)     18 -70 -12 0.0509 

  Inferior Temporal 

Gyrus (37) 
 -50 -66 -6    0.0406 

  Lingual Gyrus (18)  -18 -50 0    0.0395 
  Lingual Gyrus (18)     18 -92 -8 0.039 
  Fusiform Gyrus (37)     28 -70 -12 0.0387 
  Lingual Gyrus (18)  -6 -78 -4    0.0382 

  Inferior Temporal 

Gyrus (21) 
    58 -28 -16 0.0373 

  Inferior Temporal 

Gyrus (37) 
    46 -68 -10 0.0353 

  Lingual Gyrus (18)     10 -78 -12 0.0332 
  Fusiform Gyrus (36)     40 -30 -16 0.0314 
  Lingual Gyrus (18)  -14 -68 2    0.0304 
  Lingual Gyrus (19)  -20 -64 -8    0.0304 
  Fusiform Gyrus (37)     38 -40 -14 0.0288 
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  Inferior Temporal 

Gyrus (37) 
    50 -54 -10 0.0284 

  Fusiform Gyrus (37)     38 -46 -20 0.0254 
  Fusiform Gyrus (37)  -18 -36 -14    0.024 

  Inferior Temporal 

Gyrus (21) 
    56 -18 -20 0.023 

  Lingual Gyrus (19)     22 -54 -4 0.0201 
  Lingual Gyrus (18)     10 -60 0 0.0194 

  Inferior Temporal 

Gyrus (37) 
    60 -44 -22 0.0168 

  Lingual Gyrus (18)     18 -52 4 0.0147 

 2 
Inferior Temporal 

Gyrus (20) 
1288 -40 -12 -32    0.0242 

 3 
Inferior Temporal 

Gyrus (21) 
856 -54 -8 -26    0.0175 

  Inferior Temporal 

Gyrus (20) 
 -56 -16 -24    0.0163 

 4 
Inferior Temporal 

Gyrus (20) 
400    58 -10 -34 0.0169 

  Inferior Temporal 

Gyrus (20) 
    56 -8 -30 0.0152 

 5 
Inferior Temporal 

Gyrus (38) 
280    56 8 -34 0.0178 

 6 
Inferior Temporal 

Gyrus (38) 
240 -48 10 -36    0.015 

 7 
Inferior Temporal 

Gyrus (20) 
96    42 -6 -32 0.0132 

 8 
Inferior Temporal 

Gyrus (21) 
40 -62 -16 -22    0.0128 

 9 Lingual Gyrus (36) 16    14 -34 -10 0.0123 
 10 Lingual Gyrus (18) 16    10 -46 4 0.0125 



 

 155 

 11 Lingual Gyrus (36) 8    14 -28 -8 0.0122 
 12 Lingual Gyrus (18) 8    8 -44 4 0.0122 

C. Visual object 

identification 
1 Fusiform Gyrus (19) 35496 -26 -72 -8    0.0456 

  Lingual Gyrus (18)     20 -78 -10 0.0383 
  Lingual Gyrus (19)  -24 -60 -10    0.0347 
  Lingual Gyrus (18)     8 -58 2 0.0336 
  Lingual Gyrus (18)  -8 -70 4    0.0289 
  Fusiform Gyrus (37)  -38 -58 -16    0.0264 
  Fusiform Gyrus (37)     42 -56 -16 0.0261 
  Fusiform Gyrus (19)     30 -70 -2 0.0252 
  Fusiform Gyrus (37)     38 -50 -18 0.0248 
  Fusiform Gyrus (37)     30 -46 -16 0.0244 
  Lingual Gyrus (17)     6 -86 -2 0.0244 
  Lingual Gyrus (19)  -14 -50 -8    0.0231 
  Fusiform Gyrus (37)  -38 -50 -20    0.0211 
  Lingual Gyrus (18)  -12 -80 -8    0.0204 
  Lingual Gyrus (19)     18 -64 0 0.018 
  Lingual Gyrus (19)     22 -66 -8 0.0175 
  Lingual Gyrus (18)     6 -70 -4 0.0175 
  Fusiform Gyrus (19)     24 -48 -10 0.0161 

  Inferior Temporal 

Gyrus (37) 
    52 -66 -10 0.0131 

  Inferior Temporal 

Gyrus (37) 
    54 -58 -16 0.012 

 2 
Calcarine Scissure 

(18) 
400    20 -98 -6 0.0156 

 3 
Inferior Temporal 

Gyrus (37) 
344 -62 -52 -12    0.0134 
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 4 
Inferior Temporal 

Gyrus (21) 
152    54 -16 -20 0.0106 

 5 
Inferior Temporal 

Gyrus (20) 
88 -40 0 -36    0.0095 

 6 Lingual Gyrus (36) 8    12 -36 -8 0.009 
 7 Lingual Gyrus (36) 8    10 -38 -2 0.009 

 

 

 

Figure A1.8 | Results of the contrast-dataset meta-analyses. Axial view of the neuroanatomical distribution of the ALE maps for the contrast (A) face > 

reading + object, and (B) reading > face + object. 
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Table A1.9 | Results for the ALE meta-analyses on the contrast-dataset. The cluster ID, the anatomical label (and the Brodmann Area, BA), the volume, the 

coordinates in MNI stereotaxic space of the local maxima and the maximum ALEscore observed are reported for the (A) face > reading + object contrast, and  

the (B) reading > face + object contrast.  

 

Dataset 
Cluster 

ID 

Anatomical Label 

(BA) 

Volume 

(mm3) 

Left Hemisphere Right Hemisphere 

Max. 

ALE 

score 

x y z x y z  

A. Face > Reading + Object 1 Fusiform Gyrus (37) 4512    44 -50 -23 3.8906 

  Fusiform Gyrus (37)     29 -52 -11 3.7190 
 2 Lingual Gyrus (17) 368    19 -76 1 3.8906 
  Lingual Gyrus (18)     12 -80 -2 3.4316 

 3 
Parahippocamal 

Gyrus (36) 
128 -32 -22 -25    3.4316 

B. Reading > Face + Object 1 
Inferior Temporal 

Gyrus (21) 
2336    60 -25 -18 3.8906 

 2 
Inferior Temporal 

Gyrus (37) 
1872 -48 -49 -9    3.8906 

 3 Cerebellum 904    14 -72 -16 3.8906 

 4 
Inferior Occipital 

Gyrus (18) 
464 -23 -90 -9    3.8906 

 5 Cerebellum 440 -31 -73 -18    3.8906 
 6 Hippocampus (54) 376    41 -33 -11 3.8906 
 7 Precuneus (30) 344 -16 -47 3    3.8906 

 8 
Middle Occipital 

Gyrus (19) 
328 -47 -67 0    3.7190 

  Inferior Occipital 

Gyrus (19) 
 -50 -72 -4    3.5401 

 9 Fusiform Gyrus (37) 64 -37 -42 -25    3.1947 
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 10 Cerebellum 64 -30 -42 -26    3.2389 

 11 
Inferior Occipital 

Gyrus (19) 
48    46 -72 -14 3.2905 

 12 
Inferior Occipital 

Gyrus (18) 
16 -32 -82 -8    3.4316 

 13 
Inferior Occipital 

Gyrus (18) 
8 -30 -84 -6    3.5401 
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A3.2.2. CluB meta-analysis: HCA and CCA 

In the HCA, the CluB method identified 22 clusters with 23–192 individual activation peaks 

each (median value = 65.5). The mean standard deviation along the three axes was 5.83 mm (x 

axis), 5.71 mm (y axis), and 4.30 mm (z axis). A complete list of these clusters is provided in 

Table A1.10, and the spatial distribution of the clusters (according to the cardinality map) is 

represented in Figure A1.9. 

In the CCA, 12 clusters displayed a significant (p < .05) multinomial test: inspection of the 

composition of the cluster revealed that 6 were specific for the face studies, 4 for the reading 

studies, and 2 for the object studies (Table A1.11A-C). The CCA maps for each task-specificity 

are reported in Figure A1.10A-C. 

 

 

 

Figure A1.9 | Results of the HCA. Axial view of the neuroanatomical distribution of the cardinality 

map returned by the HCA. 

 

 

 

 

Figure A1.10 | Results of the CCA. Axial view of the neuroanatomical distribution of the CA map 

dislpaying the clusters that resulted significant at the multinomial test, and that were specific for the face 

dataset (red), reading dataset (yellow), and object dataset (green). 
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Table A1.10 | Results of the HCA. For each cluster, the cluster ID, the anatomical label (Brodmann Area), the mean centroid coordinates in MNI stereotaxic 

space (standard deviation along the three axes), and the cardinality (N) are reported. 

 

  Left Hemisphere Right Hemisphere  

Cluster ID Anatomical label (BA) μx (SD) μy (SD) μz (SD) μx (SD) μy (SD) μz (SD) N 

1 Fusiform Gyrus (37)    40 (5) -44 (3) -19 (3) 61 

2 Fusiform Gyrus (37)    28 (4) -44 (6) -13 (4) 56 

3 Lingual Gyrus (27)    11 (3) -38 (6) -3 (5) 23 

4 Lingual Gyrus (18)    17 (7) -56 (4) -1 (5) 56 

5 Fusiform Gyrus (20) -35 (5) -15 (4) -29 (5)    32 

6 Inferior Temporal Gyrus (20) -40 (7) 2 (5) -36 (4)    33 

7 Inferior Temporal Gyrus (37)    51 (5) -63 (6) -6 (3) 50 

8 Fusiform Gyrus (37)    44 (5) -55 (4) -16 (5) 131 

9 Inferior Temporal Gyrus (20)    59 (5) -42 (5) -16 (4) 29 

10 Inferior Temporal Gyrus (20)    50 (9) -24 (6) -21 (4) 56 

11 Lingual Gyrus (18) -18 (5) -84 (6) -10 (5)    102 

12 Fusiform Gyrus (19) -31 (5) -75 (7) -12 (3)    76 

13 Fusiform Gyrus (37) -42 (5) -61 (4) -12 (4)    114 

14 Inferior Temporal Gyrus (20) -44 (7) -49 (5) -17 (4)    192 

15 Lingual Gyrus (18)    23 (5) -87 (6) -10 (4) 80 

16 Lingual Gyrus (18)    11 (4) -75 (7) -6 (4) 83 

17 Inferior Temporal Gyrus (20) -56 (5) -23 (12) -23 (4)    26 

18 Lingual Gyrus (18) -6 (6) -71 (5) 0 (4)    84 

19 Lingual Gyrus (19) -20 (6) -55 (6) -5 (5)    70 

20 Fusiform Gyrus (37)    31 (6) -66 (5) -11 (6) 108 

21 Fusiform Gyrus (37) -29 (8) -36 (6) -17 (5)    91 

22 Inferior Temporal Gyrus (20)    44 (10) -3 (7) -35 (4) 54 
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Table A1.11 | Results of the CCA. For each cluster, the cluster ID, the anatomical label (Brodmann Area), the mean centroid coordinates in MNI stereotaxic 

space (standard deviation along the three axes, the cardinality (N), and the p-value associated with the multinomial test are reported. F = face-specific, R = 

reading-specific, O = object-specific. 

 

  Left Hemisphere Right Hemisphere   

Cluster ID Anatomical label (BA) μx (SD) μy (SD) μz (SD) μx (SD) μy (SD) μz (SD) N p-value 

1 Fusiform Gyrus (37)    40 (5) -44 (3) -19 (3) 61 < .001 F 

2 Fusiform Gyrus (37)    28 (4) -44 (6) -13 (4) 56 < .001 F 

4 Lingual Gyrus (18)    17 (7) -56 (4) -1 (5) 56 < .05 O 

5 Fusiform Gyrus (20) -35 (5) -15 (4) -29 (5)    32 < .05 F 

8 Fusiform Gyrus (37)    44 (5) -55 (4) -16 (5) 131 < .001 F 

10 Inferior Temporal Gyrus (20)    50 (9) -24 (6) -21 (4) 56 < .001 R 

13 Fusiform Gyrus (37) -42 (5) -61 (4) -12 (4)    114 < .05 R 

17 Inferior Temporal Gyrus (20) -56 (5) -23 (12) -23 (4)    26 < .05 R 

18 Lingual Gyrus (18) -6 (6) -71 (5) 0 (4)    84 < .01 R 

19 Lingual Gyrus (19) -20 (6) -55 (6) -5 (5)    70 < .01 O 

20 Fusiform Gyrus (37)    31 (6) -66 (5) -11 (6) 108 < .05 F 

22 Inferior Temporal Gyrus (20)    44 (10) -3 (7) -35 (4) 54 < .01 F 
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A3.3.3. Neurosynth decoding 

For each GingerALE task-specific map, the first 25 words returned by the decoder function of 

Neurosynth are reported (Table A1.12A-B). A graphical representation is given in Figure 

A1.11A-B. 

For each CluB task-specific map, the first 25 words returned by the decoder function of 

Neurosynth are reported (Table A1.13A-C). A graphical representation is given in Figure 

A1.12A-C. 

 

Table A1.12 | Results of the Neurosynth decoding for the GingerALE maps. The first 25 words 

returned by Neurosynth, and their associated r-value, are reported for the (A) Face > Reading + Object 

contrast map, and (B) Reading > Face + Object contrast map. 

 

A. Face > Reading + 

Object  

B. Reading > Face + 

Object 

Word r-value  Word r-value 

ffa 0.337  lateral occipital 0.11 

fusiform face 0.326  fusiform gyrus 0.1 

face ffa 0.323  ventral visual 0.099 

images 0.304  fusiform 0.098 

face 0.292  occipitotemporal 0.09 

face recognition 0.274  object 0.089 

faces 0.269  

object 

recognition 
0.089 

fusiform 0.246  extrastriate 0.088 

fusiform gyrus 0.237  visual 0.081 

category 0.224  occipital 0.08 

selective 0.221  objects 0.079 

recognition 0.211  visual stream 0.079 

categories 0.201  occipito 0.075 

recognize 0.198  inferior temporal 0.075 

viewing 0.196  occipito temporal 0.075 

expression 0.159  inferior occipital 0.074 

object 

recognition 0.141  
learning task 0.074 

objects 0.139  visual perception 0.072 

extrastriate 0.134  orthographic 0.067 

facial 0.133  perception 0.061 

matching task 0.129  written 0.061 

ventral visual 0.125  face 0.059 

fusiform gyri 0.12  fusiform face 0.059 

inferior occipital 0.119  recognize 0.057 

occipito temporal 0.117  occipital cortex 0.054 
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Figure A1.11 | Results of the the Neurosynth decoding for the GingerALE maps. The first 25 words 

returned by Neurosynth for the (A) Face > Reading + Object contrast map, and (B) Reading > Face + 

Object contrast map are plotted as a function of their r-value: the greater the r-value, the bigger the font 

size. 

 

 

Table A1.13 | Results of the Neurosynth decoding for the CluB CCA maps. The first 25 words 

returned by Neurosynth, and their associated r-value, are reported for the (A) Face-specific, (B) 

Reading-specific, and (C) Object-specific CCA maps. 

 

A. Face-specific clusters  B. Reading-specific clusters  C. Object-specific clusters 

Word r-value  Word r-value  Word r-value 

images 0.169  character 0.141  lingual 0.22 

fusiform 0.127  chinese 0.137  lingual gyrus 0.111 

fusiform gyri 0.125  form 0.131  occipital temporal 0.066 

faces 0.113  bilinguals 0.13  nouns 0.057 

fusiform gyrus 0.113  characters 0.122  spectrum disorders 0.043 

ventral visual 0.112  written 0.121  

parahippocampal 

cortex 0.039 

face 0.106  letters 0.111  animals 0.034 

fusiform face 0.097  letter 0.111  stream 0.03 

recognize 0.096  lexical decision 0.11  eyes 0.027 

face ffa 0.094  

occipitotemporal 

cortex 0.109  cuneus 0.024 

ffa 0.09  cortex pcc 0.109  parahippocampal 0.023 

letters 0.077  visual word 0.109  cross modal 0.02 

face recognition 0.073  word form 0.103  salience network 0.02 

object 0.071  orthographic 0.099  autism spectrum 0.017 

objects 0.07  abuse 0.098  negative feedback 0.016 

extrastriate 0.069  decision task 0.097  events 0.012 

recognition 0.068  occipitotemporal 0.097  primary visual 0.012 

occipital 0.067  occipito temporal 0.096  asd 0.012 

viewing 0.066  inferior temporal 0.094  simulation 0.011 

visual 0.062  readers 0.091  retrosplenial 0.01 
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visual stream 0.062  speakers 0.091  fusiform 0.01 

category 0.061  perceptual 0.09  task difficulty 0.01 

object 

recognition 0.061  occipito 0.088  recall 0.009 

occipito temporal 0.059  word recognition 0.087  occipital 0.007 

occipito 0.058  temporal cortex 0.079  frontoparietal 0.005 

 

 

 

 
 
Figure A1.12 | Results of the the Neurosynth decoding for the CluB CCA maps. The first 25 words 

returned by Neurosynth for the (A) Face-specific, (B) Reading-specific, and (C) Object-specific CCA 

maps are plotted as a function of their r-value: the greater the r-value, the bigger the font size. 

 

 

A4. Discussion 

Meta-analyses, by pooling together the results of different independent studies, can overcome, 

or at least minimize, some typical methodological limitation of neuroimaging studies: (1) the 

specific influence of the selected experimental paradigm that makes the results of a single study 

not necessarily bound to gain a general validity (with the well-known problem associated with 

the subtraction logic; (Logothetis, 2008)); (2) the problem of multiple comparisons and of the 

balance between false positive and false negative rates (Lieberman and Cunningham, 2009); 

(3) the typical small sample sizes of neuroimaging studies (Murphy and Garavan, 2004). 

In this Chapter, I have described two validation experiments by comparing the performance of 

a novel toolbox for CBMA based on hierarchical clustering, CluB, with one of the most popular 

software for CBMA: GingerALE. 

 

A4.1. CluB vs. GingerALE: two sides of the same coin 

The first validation study aimed at assessing the accuracy (i.e., the proportion of correct 

assessments, both positive and negative, over the entire sample), specificity (i.e., the proportion 

of actual negatives that are correctly identified), and sensitivity (i.e., the proportion of actual 
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positives findings that are correctly identified), of the two methods by comparing the individual 

meta-analytical maps with the “gold standard” (i.e., second-level SPM map of reading-related 

activation). In particular, the GingerALE method obtained a high level of accuracy (0.967), 

associated with a high sensitivity (0.728), and specificity (0.971); similarly, the CluB method 

obtained a high level of accuracy (0.956) and specificity (0.969), notwithstanding the low-level 

of sensitivity (0.14). The concordance between the two methods assessed by the AC1 was 

93.3%, showing that the two methods have a high level of agreement. 

Whereas both CluB and GingerALE perform well in identifying true negatives, the CluB 

method is not as sensitive as the GingerALE method in identifying the true positives, as it 

correctly identified only 3,083 voxels (i.e., the 13.8%). With this regard, it is worthy to note 

that the GingerALE method is based on the application of a three-dimensional Gaussian filter 

to each single activation peak collected in the input dataset. This process results in a 

continuously distributed anatomo-functional map; conversely, the CluB method creates a 

discrete and spatially sparse map of clusters, as one of the intrinsic aims of the hierarchical 

clustering procedure is to obtain a map of distinct entities whose spatial extension is limited by 

the choice of the “user’s spatial criterion” (see Figure 2.5 to better appreciate the differences 

between the different output maps). In other words, whereas GingerALE models the input data 

to simulate a standard activation map, CluB works on raw data (the stereotactic coordinates 

reported in the peer-reviewed selected literature), and it returns small and spatially discrete 

clusters.  

From the neuroanatomical point of view, this feature represents one of the strengths of the CluB 

approach. Indeed, the relative finer-grained and unsmoothed spatial resolution of the clustering 

maps, together with the maintenance of the original distribution of the data, permits to explore 

neurofunctional segregation with a robust statistical approach (the one described in the CCA) 

based on non-parametric, exact tests. This is something that can be hardly done with 

GingerALE, which, at the most, can identify the commonalities and the differences between 

two sets of data (see, for example, (Fornara et al., 2017), but no higher order effects like 2 × 2 

interactions in a data-driven manner, starting from meta-analyses containing more than two 

classes of data (Paulesu et al., 2014).  

The above-mentioned considerations are corroborated by the results of the validation study for 

the CCA. When dealing with one factor (i.e., TASK) with more than two levels (i.e., 1 = Face 

monitor/discrimination, 2 = Reading (overt and covert), 3 = Visual Object Identification), 

GingerALE allows to test task-specific convergent activations only by performing three 

separate contrast studies; conversely, such a multi-level design can be implemented in a single 
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meta-analysis in CluB, by performing a multinomial test on the distribution of the clusters 

returned by the HCA. 

Two main findings worth mentioning here: (i) GingerALE could not detect any object-specific 

convergent activity at the uncorrected threshold of p < .001 (see Figure A1.8), whereas the 

multinomial test performed with CluB identified two clusters localized in the bilateral lingual 

gyrus (BA 18,19); (ii) the reading-specific GingerALE map was not directly associated with 

language and reading-related terms (top 5 words unrelated to brain anatomy: object, object 

recognition, visual, objects, learning task; Figure A1.11B), whereas the reading-specific 

clusters identified by CluB were associated with a set of words easily attributable to linguistic 

and reading-related processes (top 5 words unrelated to brain anatomy: character, Chinese, 

form, bilinguals, characters; Figure  A1.12B). This proof-of-concept study suggests that, 

despite the lower sensitivity of CluB, due to the relative finer-grained spatial resolution of the 

clustering maps, the clusters identified by the HCA and CCA procedure, compared to the ones 

identified by the GingerALE approach, are better associated with the “cognitive dimension” 

that generated them. 

As a final consideration about the differences between the two approaches, it is worthy to note 

that the smoothing applied by GingerALE to the input data tends to inflate the spatial 

distribution of the native data beyond the expected anatomical boundaries (see Figure A1.13 

for an illustration). This is even more evident in the case of the dataset generated ad-hoc for the 

validation study for the CCA (see the methods section): in that case, we filtered a priori the 

activation foci that entered the CluB meta-analysis, by selecting only the activation foci 

localized within the bilateral fusiform, inferior temporal, and lingual gyri. Nonetheless, whereas 

the centroids of the clusters returned by the HCA are all localized within those anatomical 

boundaries (see Table A1.10 and Figure A1.9), the clusters returned by the GingerALE 

approach extend well beyond them, including local maxima localized in the parahippocampus 

and hippocampus, inferior and middle occipital gyri, precuneus, and cerebellum (see Table 

A1.9 and Figure A1.8). 
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Figure A1.13 | Region of interest oriented comparison of CLuB and GingerALE. The region of 

interest (in green, the “Gold Standard”) was taken from the SPM data analysis on 24 readers. The peaks 

composing the left inferior occipital cluster (X = −30, Y = −93, Z = −11) in the HC map (user’s spatial 

criterion = 6 mm) are shown as 2 × 2 × 2 mm white cubic voxels. The cluster obtained in the HC map 

(user’s spatial criterion = 6 mm) is depicted in blue. The ALE map obtained by GingerALE is depicted 

in red. It can be seen that while the clustering solution (in blue) is contained within the SPM “Gold 

Standard” map, GingerALE somewhat overestimated the activation effect as a consequence of the 

Gaussianization of the raw data implied. From slice in top left: Z = −20 to Z = +3 in the right bottom 

corner. Taken from: Berlingeri et al. 2019. 

 

 

To conclude, it is important to underline that these seemingly contrasting meta-analytic 

approaches compared here are indeed complementary: one, GingerALE, is based on the idea 

that each focus of activation is better represented by a probability distribution rather than in 

terms of a single data-point; CluB tackles the same issue with a different approach, by 

considering each activation peak as a single data-point that is not weighted nor modeled any 

further. In other words, these two methods could be thought as “two sides of the same coin”, 

with the GingerALE approach being optimal for neurofunctional mapping of pooled data, and 

the CluB method being the most suitable choice if one wants to test more specific 

neurocognitive hypotheses. As a final remark, it is important to note that the congruence 

between the HC solutions and those of an ALE map, corrected for multiple comparison, may 

permit to decide on which set of clusters to proceed with further assessments of the data using 

a CCA (see, for example, Paulesu et al., 2014), with the trust that the cluster considered is 

“spatially significant”. 

This combined approach is the one that I adopted to perform the meta-analytical studies 

reported in Chapter 2 and 3. 
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A4.2. Future directions 

Along with its strengths, the CluB approach comes with its own limitations. 

As a first limitation, which is shared with the GingerALE method, concern the fact that effect 

sizes, usually expressed as t-value or Z-score and associated with each activation peak, do are 

not taken into account. Thus, it may be desirable to develop new algorithms capable of taking 

into account also one of these measures (arguably the Z-scores, as they do not depend on the 

degrees of freedom of the test) to obtain a better fitting of the data to the expected results. 

Moreover, by introducing the t-value or the Z-score associated with each activation peak, the 

lack of between-studies uniformity in reporting the coordinates may be reduced, as usually the 

papers that report the higher number of activation peaks are also those that adopted a less 

conservative statistic threshold (David et al., 2013). This issue was recently addressed   in the 

GingerALE algorithm by introducing also the study as one of the level in the analysis and hence 

taking into account also within- study variability. By doing this, the probability that one study 

with many foci drives a meta-analytic result has been mitigated (Turkeltaub et al., 2012).  

At the moment, this issue remains unaddressed by the CluB method. As a form of best practice, 

one should reduce the amount of data per study, when these are exceedingly redundant, by 

taking only the local maximum for each region, or by calculating a preliminary high-resolution 

CluB clustering solution on the redundant study. Admittedly, this approach requires some a-

priori decision on what a “redundant style” of data description would be. 

Another important issue is related with the problem of inactive areas. Since imaging papers 

only report positive findings in the form of stereotactic coordinates, the inactive voxels are just 

represented, both in GingerALE and CluB, by zeros. As a consequence, measurements of non-

active areas are lost and this, in turn, makes impossible to evaluate whether the outcome in that 

particular brain region would have become significant by pooling data from different studies. 

This means that CBMAs, in general, cannot aggregate power across studies, unless the effect 

of every single voxel is taken into account (Costafreda, 2009). 

The last methodological consideration is about the adoption of hierarchical clustering and of 

the Ward’s method (Ward, 1963). This clustering procedure maximizes the between-cluster 

difference and minimizes the within cluster variability; this, in turn, creates localized blobs, 

such as those represented in Figure 2.5B. The result is the emergence of localized sets of 

activations that, however, do not seem to fully represent the complexity of brain functioning 

and connection. It may be the case that the adoption of a different clustering procedure, that 

returns distributed clusters rather than localized blobs, may provide a more adequate model of 

the neurofunctional effects of interest. A possible candidate may be the adoption of minimum 
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spanning tree (Jain et al., 1999), a clustering method that is typically used, and had been fully 

developed, to design networks, such as computer or electrical networks (Graham and Hell, 

1985). Recently, this approach has been used to identify the neural network underlying specific 

cognitive functions in the context of functional connectivity studies (Baumgartner et al., 2001, 

Firat et al., 2013). The authors relied on the simple assumption that brain regions that show the 

same type of activation may constitute spatially sparse brain networks (Carpenter and Just, 

1999). Therefore, in this case, the similarity measure would not be based on spatial proximity 

(i.e., Euclidean distance), but rather on temporal co-occurrence of brain activity.  

Further studies are needed to better address this issue, in order to develop a software 

implementation. 

 

Summary of Appendix A 

In this Appendix, I have described a novel toolbox for coordinate-based meta-analysis 

(CBMA): Clustering the Brain, or CluB. Two validation studies, each one designed to test a 

core module of the toolbox, were performed. 

In the first validation study, aimed at assessing the reliability of the HCA module, I compared 

the performance of CluB with that of GingerALE, one of the most popular toolboxes for 

CBMA. In particular, I assessed their accuracy (i.e., the proportion of correct assessments, both 

positive and negative, over the entire sample), specificity (i.e., the proportion of actual negatives 

that are correctly identified), and sensitivity (i.e., the proportion of actual positives findings that 

are correctly identified), in reproducing a “gold standard” map that was derived empirically 

from the second-level random-effect analysis of 24 participants involved in a reading task. The 

results show that both methods have a high accuracy (GingerALE = 0.967, CluB = 0.956) and 

specificity (GingerALE = 0.728, CluB = 0.969), notwithstanding a lower level of sensitivity of 

CluB (0.14), due to the lack of prior Gaussian transformation of the data. Nonetheless, the two 

methods obtained a good-level of between-method concordance, as assessed by the AC1 

measure (0.93). 

In the second validation study, aimed at assessing the reliability of the CCA module, I employed 

the software Sleuth to create a dataset of stereotaxic coordinates extracted from three different 

experimental paradigms available in the Brainmap.org database: face monitor/discrimination 

(face), reading (overt and covert) (reading), and visual object identification (object). As 

GingerALE only allows the comparison of two classes of studies at a time, three contrast studies 

were performed to obtain the task-specific ALE maps, once the single-study ALE maps were 

obtained for the three classes of task. Conversely, the HCA module of CluB was used on the 
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single dataset comprising the three classes of task to obtain the clustering solution, and the CCA 

module was used to perform the multinomial test on the clusters returned by the HCA, in order 

to obtain task-specific maps of clusters. The meta-analytic maps generated by the two methods 

were analyzed with the decoder function of Neurosynth, which allows to assign a set of words 

to a brain map based on the studies available in the Brainmap.org database. The results show 

that CluB was able to identify a set of face, reading, and object-specific clusters, whereas 

GingerALE was not able to identify any object-specific convergent activation. Furthermore, 

whereas the decoder function of Neurosynth returned a congruent set of words linked to face 

processing for the face-specific maps obtained by the two methods, the reading-specific map 

obtained from CluB was more directly associated with reading-related terms compared to the 

map generated by GingerALE. 

In sum, the results show that GingerALE and CluB may be considered the “two sides of the 

same coin”: the first is optimal for neurofunctional mapping of pooled data, whereas the second 

is the method of choice if one wants to test more specific neurocognitive hypotheses. 
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1. Supplementary Figures 

1.1. Figure S1.1 

 

 

Figure S1.1 | Flowchart of the selection process that led to the identification of the studies 

included in the meta-analysis. Taken from: Devoto et al. 2019.
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2. Supplementary Tables 

2.1. Table S1.1 

 

Table S1.1 | Neuroimaging studies included in the current meta-analysis. For each study, the following information is reported: the 

neuroimaging technique employed; the sample size; the classification of the activation foci included for the factor "sensory modality of cue 

presentation"; the experimental paradigm that entered the meta-analysis; additional information on the subjective ratings of the stimuli (when 

available); the average time of fasting (in hours); whether the study included a fed condition or not. HW, healthy weight; OB, obese. Adapted from: 

Devoto et al. 2019. 

 

Authors Year Technique 

Sample 

size 

(HW/OB) 

Sensory 

modality 

of cue 

presentation  

Experimental paradigm Subjective ratings 
Hours of 

fasting 

Fed 

condition? 

Blechert et al. 2016 fMRI 32/0 
Visual – 

Anticipatory  

Task: Passive perception of 

pictures. 

 

Experimental stimuli: Color 

pictures taken from a 

standardized database and 

belonging to: i) high-calories 

food and ii) 20 low-calories 

food. Half of the foods of 

both categories were available 

for consumption during as 

well as after scanning. 

 

Control stimuli: Fixation 

cross. 

Quality of the stimuli being 

assessed: i) palatability; ii) 

desire to eat. 

 

Measurement scale: 7-point 

Likert scale. 

 

Results: Analyses on 

subjective ratings are reported 

only for palatability. 

Significantly higher ratings for 

high-calories compared to low-

calories foods and for available 

compared to non-available 

foods. 

7 No 
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Cornier et al. 2013 fMRI 25/0 
Visual – 

Anticipatory  

Task: Passive perception of 

pictures. 

 

Experimental stimuli: Color 

pictures belonging to: i) foods 

of high hedonic value; ii) 

foods of neutral hedonic 

value. 

 

Control stimuli: Non-food 

pictures. 

Subjective ratings were not 

collected by the authors. 
10 Yes 

Cornier et al. 2009 fMRI 22/0 
Visual – 

Anticipatory  

Task: Passive perception of 

pictures. 

 

Experimental stimuli: Color 

pictures belonging to: i) foods 

of high hedonic value; ii) 

foods of neutral hedonic or 

utilitarian value. 

 

Control stimuli: Non-food 

pictures. 

Subjective ratings were not 

collected by the authors. 
8 No 

Cornier et al. 2012 fMRI 0/12 
Visual – 

Anticipatory  

Task: Passive perception of 

pictures. 

 

Experimental stimuli: Color 

pictures belonging to: i) foods 

of high hedonic value; ii) 

foods of neutral hedonic or 

utilitarian value. 

 

Control stimuli: Non-food 

pictures. 

Quality of the stimuli being 

assessed: i) appeal; ii) desire to 

eat; iii) pleasantness. 

 

Measurement scale: Visual 

Analogue Scale (VAS). 

 

Results: Analyses on the 

collected subjective ratings are 

not reported by the authors. 

10 No 
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Dimitropoulos et 

al. 
2012 fMRI 16/22 

Visual – 

Anticipatory  

Task: Perceptual 

discrimination task. Subjects 

are asked to press a button 

when two simultaneously 

presented images where the 

"same" or "different". 

 

Experimental stimuli: Color 

pictures belonging to: i) high-

calories foods; ii) low-calories 

foods. 

 

Control stimuli: Non-food 

pictures. 

Quality of the stimuli being 

assessed: i) liking. 

 

Measurement scale: 5-point 

Likert scale. 

 

Results: Subjective ratings did 

not differ between and within 

groups. 

6.2 Yes 

Gautier et al. 1999 PET 11/0 
Gustatory – 

Consummatory 

Task: Passive perception of 

tastes. 

 

Experimental stimuli: 

Flavoured liquid-formula 

meal (2 mL, 1.5 kCal/mL) of 

different flavours, chosen by 

the participant: i) chocolate; 

ii) vanilla; iii) strawberry. 

 

Control stimuli: Water (2 

mL). 

Quality of the stimuli being 

assessed: i) pleasantness and 

palatability. 

 

Measurement scale: Visual 

Analogue Scale (VAS) ranging 

from 0 to 100 mm. 

 

Results: The average ratings 

reported by the authors suggest 

that all participants rated as 

pleasant (64 ± 18 mm) and 

palatable (65 ± 16 mm). 

36 No 
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Geliebter et al. 2013 fMRI 0/31 
Visual – 

Anticipatory  

Task: Passive perception of 

pictures. 

 

Experimental stimuli: Color 

pictures belonging to: i) high-

calories foods; ii) low-calories 

foods. 

 

Control stimuli: Non-food 

pictures. 

Subjective ratings were 

collected but not reported. 
12 Yes 

Haase et al. 2011 fMRI 21/0 
Gustatory – 

Consummatory 

Task: Passive perception of 

tastes. 

 

Experimental stimuli: 

Tastants dissolved in distilled 

water and reflecting 4 basic 

tastes: i) caffeine (0.04 M); ii) 

citric acid (0.01 M); iii) 

sucrose (0.64 M); iv) sodium 

chloride (NaCl, 0.16 M). 

 

Control stimuli: Water. 

- Quality of the stimuli being 

assessed: i) pleasantness. 

 

Measurement scale: modified 

version of the labeled 

Magnitude Scale (gLMS). 

 

Results: Sucrose was 

significantly rated more 

pleasant compared to the other 

stimuli; both citric acid and 

NaCl were rated as 

significantly more pleasant 

than caffeine. 

12 Yes 

Jastreboff et al. 2013 fMRI 25/25 
Visual – 

Anticipatory  

Task: Visual imagery of food 

guided by aurally-presented 

personalized scripts. 

 

Experimental stimuli: 

Personalized imagery scripts 

about the favorite high-

calories foods of participants. 

 

Control stimuli: Neutral-

relaxing Visual imagery. 

Subjective ratings were not 

collected by the authors, as 
guided imagery scripts were 

prepared ad hoc to reflect the 

participant’s favorite 

preferences about food. 

2 No 
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Karra et al. 2017 fMRI 24/0 
Visual – 

Anticipatory  

Task: Passive perception of 

pictures. 

 

Experimental stimuli: Color 

pictures belonging to: i) high-

calories foods; ii) low-calories 

foods. 

 

Control stimuli: Non-food 

pictures. 

Subjective ratings (appeal) 

were collected but not reported 

by the authors. 

12 No 

Killgore et al. 2003 fMRI 13/0 
Visual – 

Anticipatory  

Task: Perception of pictures. 

Subjects are instructed to try 

to remember them for a 

recognition test after imaging. 

 

Experimental stimuli: Color 

pictures belonging to: i) high-

calories foods; ii) low-calories 

foods; iii) nonedible food-

related utensils. 

 

Control stimuli: Non-food 

pictures. 

Quality of the stimuli being 

assessed: i) motivational 

salience ("how much the 

picture affects your 

appetite?"). 

 

Measurement scale: 11-point 

Likert scale. 

 

Results: High-calories 

compared to low-calories 

foods were rated as more 

appealing. 

4 No 

Lundgren et al. 2013 fMRI 0/14 
Visual – 

Anticipatory  

Task: Passive perception of 

pictures. 

 

Experimental stimuli: Color 

pictures of different foods. 

 

Control stimuli: Non-food 

pictures. 

Subjective ratings were not 

collected by the authors. 
4 Yes 



 

 178 

Luo et al. 2013 fMRI 0/13 
Visual – 

Anticipatory  

Task: Passive perception of 

pictures. 

 

Experimental stimuli: Color 

pictures belonging to: i) high-

calories foods; ii) low-calories 

foods. 

 

Control stimuli: Non-food 

pictures. 

Quality of the stimuli being 

assessed: i) desire to eat sweet 

and savory foods. 

 

Measurement scale: Visual 

Analogue Scale (VAS), 

ranging from 1 to 10. 

 

Results: The desire for savory 

and sweet food was 

significantly greater than for 

neutral stimuli. 

10-12 No 

Martin et al. 2010 fMRI 10/10 
Visual – 

Anticipatory  

Task: Passive perception of 

pictures. 

 

Experimental stimuli: Color 

pictures of different foods. 

 

Control stimuli: Non-food 

pictures. 

Subjective ratings were not 

collected by the authors. 
4 Yes 

Murdaugh et al.  2012 fMRI 25/13 
Visual – 

Anticipatory  

Task: Passive perception of 

pictures. 

 

Experimental stimuli: Color 

pictures of different foods. 

 

Control stimuli: Non-food 

pictures. 

Subjective ratings (appetite 

motivation and emotional 

valence) were collected but not 

reported by the authors. 

8 No 
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Murray et al. 2014 fMRI 20/0 
Visual – 

Anticipatory  

Task: Passive perception of 

pictures. 

 

Experimental stimuli: Color 

pictures of chocolate. 

 

Control stimuli: Grey 

pictures. 

Quality of the stimuli being 

assessed: i) liking and craving 

chocolate. 

 

Measurement scale: 

Chocolate eating questionnaire 

(Rolls and McCabe, 2007). 

 

Results: High levels of 

chocolate liking and craving. 

0 Yes 

Nummenmaa et 

al. 
2012 fMRI 15/19 

Visual – 

Anticipatory  

Task: Perception of pictures. 

Subjects are instructed to 

press a button to indicate 

whether a picture was slightly 

displaced leftward or 

rightward in the screen. 

 

Experimental stimuli: Color 

pictures belonging to: i) high-

calories foods; ii) low-calories 

foods. 

 

Control stimuli: Non-food 

pictures. 

Quality of the stimuli being 

assessed: i) valence 

(pleasantness vs. 

unpleasantness), after fMRI 

scanning. 

 

Measurement scale: Self-

Assessment Manikin (SAM) 

scale, ranging from 1 to 9. 

 

Results: Appetizing foods 

were rated as more pleasant 

than the bland foods and 

neutral stimuli, but results 

were similar for both obese 

and healthy weight 

participants. 

3 No 
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Puzziferri et al. 2016 fMRI 15/15 
Visual – 

Anticipatory  

Task: Perception of pictures. 

Subjects are asked to rate the 

appeal of the pictures. 

 

Experimental stimuli: Color 

pictures belonging to different 

categories: i) high-calories 

savory foods; ii) high-calories 

sweet foods; iii) low-calories 

foods. 

 

Control stimuli: Null 

directional arrow. 

Quality of the stimuli being 

assessed: i) appeal. 

 

Measurement scale: appeal-

rating scale, ranging from 1 to 

3. 

 

Results: The appeal ratings 

were different between the two 

groups and between fasting 

and fed conditions. When 

satiated, obese individuals 

rated all the stimuli as more 

appealing than lean 

participants (the satiety state-

by-group interaction showed a 

trend towards significance with 

p = 0.07). 

9 Yes 

Rothemund et 

al. 
2007 fMRI 13/13 

Visual – 

Anticipatory  

Task: Passive perception of 

pictures. 

 

Experimental stimuli: Color 

pictures belonging to different 

categories: i) high-calories 

foods; ii) low-calories foods; 

iii) eating-related utensils. 

 

Control stimuli: Non-food 

pictures. 

Subjective ratings were not 

collected by the authors. 
1.5 No 
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St-Onge et al. 2014 fMRI 26/0 
Visual – 

Anticipatory  

Task: Passive perception of 

pictures. 

 

Experimental stimuli: Color 

pictures belonging to: i) 

healthy foods; ii) unhealthy 

foods. 

 

Control stimuli: Non-food 

pictures. 

Subjective ratings were not 

collected by the authors. 
8 No 

Szalay et al. 2012 fMRI 12/12 
Gustatory – 

Consummatory 

Task: Passive perception of 

tastes. 

 

Experimental stimuli: 

Simple tastes and 

nourishment solution (100 

mL): i) sucrose (0.1 M); ii) 

quinine hydrochloryde (0.03 

mM); iii) vanilla flavoured 

nourishment solution (150 

kCal/mL). 

 

Control stimuli: Distilled 

water. 

Quality of the stimuli being 

assessed: i) pleasantness. 

 

Measurement scale: Visual 

Analogue Scale (VAS) . 

 

Results: Pleasantness scores 

were significantly higher (for 

sucrose and vanilla) and lower 

(for quinine) in obese 

compared to healthy weight 

participants. 

3.5 No 
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Van 

Bloemendaal et 

al. 

2014 fMRI 16/16 
Visual – 

Anticipatory  

Task: Perception of pictures. 

Subjects are instructed to try 

to remember them for a 

recognition test after imaging. 

 

Experimental stimuli: Color 

pictures belonging to: i) high-

calories foods; ii) low-calories 

foods. 

 

Control stimuli: Non-food 

pictures. 

Subjective ratings (hunger, 

fullness, appetite, prospective 

food consumption and desire 

to eat) were collected (before 

and after fMRI scanning) but 

not reported by the authors. 

8 No 
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2.2. Table S1.2 

 

Table S1.2 | Results of the HCA and CCA for all the clusters overlapping with the Ginger ALE maps. For each cluster the following information 

is reported: the anatomical label according to the AAL; the cluster ID; the centroid coordinates in the MNI stereotaxic space (standard deviation of 

the distance from the centroid along the three axes); the number of foci falling within the cluster (N); the p-values associated with the binomial and 

Fisher’s tests. Significant main and interaction effects are shown in bold. FA, fasting state; FE, fed state; G, gustatory modality; GR, group; GRxS, 

group-by-satiety interaction; GRxSM, group-by-sensory modality interaction; HW, healthy weight; OB, obese; S, satiety; SM, sensory-modality; 

V, visual modality. Adapted from: Devoto et al. 2018. 

 

 Left Hemisphere Right Hemisphere  GR-specific SM-specific S-specific GRxSM GRxS SMxS 

Anatomical Label 
Cluster 

ID 

X 

(SD) 

Y 

(SD) 

Z 

(SD) 

X 

(SD) 

Y 

(SD) 

Z 

(SD) 
N HW OB V G FA FE    

Temporal_Sup_R_41 2    53 

(3) 

-33 

(4) 

17 

(5.1) 
5 0.647 0.697 0.792 0.537 0.660 0.741 0.382 1 1 

Amygdala_R_34 8    21 

(2.8) 

1 

(4.6) 

-18 

(5.1) 
7 0.975 0.117 0.828 0.427 0.151 1 0.074 1 1 

Cingulum_Ant_L_24 10 
-1 

(3.4) 

29 

(7) 

16 

(2.9) 
   6 0.792 0.497 0.353 0.911 0.565 0.803 1 1 1 

Frontal_Sup_L_0 18 
-19 

(6.3) 

20 

(2.9) 

43 

(3.6) 
   5 0.303 0.934 0.133 1 0.259 1 1 1 1 

Frontal_Sup_R_8 23    22 

(3.5) 

25 

(3.8) 

51 

(6.1) 
4 1 0.031 0.199 1 0.997 0.044 1 1 1 

ParaHippocampal_L_
36 

26 
-24 
(4) 

-13 
(5.8) 

-24 
(4) 

   8 0.275 0.913 0.743 0.529 0.903 0.289 1 1 0.429 

Caudate_R_25 28    9 

(4.6) 

13 

(2.2) 

11 

(2.6) 
4 0.797 0.559 0.199 1 0.956 0.24 1 1 1 

Pallidum_R_0 29    14 

(4.5) 

6 

(6.2) 

-1 

(5) 
15 0.737 0.453 0.992 0.03 0.098 0.983 0.093 1 1 

Frontal_Inf_Orb_R_4

7 
31    34 

(6.2) 

30 

(2.6) 

-15 

(4.4) 
12 0.804 0.389 0.396 0.817 0.989 0.043 0.516 0.608 1 

Frontal_Inf_Orb_L_4

7 
36 

-30 

(3) 

25 

(4.5) 

-13 

(7.1) 
   5 0.647 0.697 0.463 0.867 0.259 1 0.164 1 1 
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Frontal_Sup_Orb_L_1

1 
37 

-24 

(4.7) 

39 

(5.9) 

-12 

(6.1) 
   7 0.671 0.623 0.828 0.427 0.478 0.849 1 1 1 

Frontal_Inf_Tri_R_48 39    48 

(2.4) 

18 

(6.9) 

26 

(6.4) 
6 0.949 0.208 0.901 0.318 0.565 0.803 0.493 0.488 1 

Insula_R_47 41    38 

(3.9) 

18 

(4.9) 

-3 

(4) 
14 0.636 0.575 1 0.001 0.779 0.432 0.225 0.244 0.221 

Amygdala_L_28 42 
-20 

(1.9) 

2 

(4.8) 

-22 

(2.3) 
   6 0.792 0.497 0.682 0.647 0.565 0.803 0.493 1 1 

Ventral 

striatum_L_48 
43 

-19 

(4) 

5 

(5.8) 

-9 

(3.5) 
   11 0.999 0.009 1 0.001 0.051 1 0.002 1 1 

Midbrain 45 
-5 

(3.8) 

-15 

(2.1) 

-4 

(6.2) 
   9 0.007 1 0.653 0.62 0.088 1 1 1 1 

Precuneus_R_7 48    26 

(3.7) 

-50 

(2.3) 

1 

(3.5) 
5 0.897 0.353 0.463 0.867 0.91 0.34 1 0.166 0.211 

Temporal_Sup_L_41 52 
-43 

(3.4) 

-34 

(2.6) 

18 

(6.3) 
   6 0.995 0.051 0.901 0.318 0.565 0.803 1 0.276 1 

Frontal_Mid_L_46 63 
-30 

(4) 

37 

(2.3) 

33 

(6.2) 
   6 0.792 0.497 0.353 0.911 0.565 0.803 0.228 1 0.471 

Lingual_R_19 64    40 

(3.3) 

-78 

(5.3) 

-16 

(0.8) 
4 0.797 0.559 0.199 1 0.339 1 1 1 1 

Insula_R_48 66    41 

(2.1) 

-3 

(4.1) 

-2 

(4.2) 
7 0.134 0.978 0.955 0.172 0.783 0.522 1 1 1 

Insula_R_48 67    43 

(3.5) 

3 

(8.1) 

12 

(5.6) 
10 0.929 0.202 0.981 0.076 0.275 0.933 0.18 1 1 

Frontal_Sup_Medial_
L_0 

72    2 
(2.1) 

59 
(3.8) 

21 
(8.3) 

6 0.792 0.497 0.353 0.911 0.996 0.031 1 0.097 1 

Temporal_Inf_R_37 76    54 

(4.6) 

-54 

(7.7) 

-11 

(5.7) 
8 0.794 0.453 0.743 0.529 0.978 0.097 0.466 0.543 0.528 

SupraMarginal_R_48 90    61 

(4) 

-20 

(4.8) 

33 

(5.2) 
7 0.671 0.623 0.059 1 0.151 1 1 1 1 

Occipital_Mid_R_19 93    37 

(3.1) 

-87 

(2.3) 

11 

(1.2) 
3 0.926 0.381 0.298 1 0.858 0.556 1 1 1 

Fusiform_R_20 95    32 

(1.8) 

-26 

(5.5) 

-22 

(3.8) 
8 0.547 0.725 0.743 0.529 0.978 0.097 1 1 0.528 

Caudate head/Nucleus 

Accumbens_L_25 
99 

-7 

(5.5) 

14 

(8.6) 

-9 

(6.4) 
   8 0.937 0.206 0.981 0.087 0.903 0.289 0.505 1 0.031 

Postcentral_L_48 101 
-50 

(7) 

-16 

(4.4) 

18 

(4.3) 
   7 0.883 0.329 0.993 0.045 0.478 0.849 1 1 1 
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Thalamus_R_0 103    14 

(4.1) 

-14 

(3.4) 

0 

(5.5) 
9 0.007 1 0.999 0.008 0.637 0.667 1 1 0.107 

Insula_L_48 104 
-39 

(4) 

-4 

(5.6) 

6 

(5.4) 
   16 0.92 0.183 0.168 0.94 0.013 1 1 1 1 

SupraMarginal_R_40 106    46 

(4.5) 

-35 

(4.5) 

39 

(3) 
8 0.937 0.206 0.471 0.803 0.401 0.885 0.466 1 1 

Hippocampus_R_37 110    35 

(5.5) 

-30 

(5.8) 

-3 

(5.5) 
15 0.547 0.657 0.913 0.201 0.957 0.121 0.109 0.596 0.614 

Temporal_Pole_Sup_

R_48 
111    43 

(6.5) 

8 

(3.9) 

-16 

(5.1) 
13 0.955 0.126 0.325 0.86 0.936 0.174 0.242 1 1 

Rolandic_Oper_R_48 113    60 

(3.9) 

-2 

(5.6) 

16 

(6.5) 
9 0.007 1 1 0.001 0.961 0.142 1 1 1 

Frontal_Inf_Tri_L_45 115 
-42 

(4.8) 

38 

(5.7) 

7 

(6.4) 
   12 0.185 0.936 0.935 0.176 0.689 0.568 0.516 1 1 

Anterior 

Insula/Frontal 

Operculum_L 

116 
-38 

(5.7) 

13 

(6.4) 

-19 

(7.2) 
   10 0.997 0.017 0.018 1 0.565 0.725 1 0.509 1 

Brainstem 118    4 

(5.9) 

-34 

(3.4) 

-42 

(4.6) 
7 0.671 0.623 0.059 1 0.151 1 1 1 1 
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1. Supplementary Methods 

1.1. Sample characteristics of the included studies 

In the end, the final dataset was based on 1558 substance-dependent individuals (mean age: 

36.9 years) with an average history of abuse of 11.56 years (information about the history of 

abuse was not available for 20 studies). In the majority of the studies, the sample included only 

males (24 studies, 37.5 %), or the majority of male participants (25 studies, 39.1%), whereas in 

the minority of the studies the sample included only females (3 studies, 4.7%) or the majority 

of female participants (1 study, 1.6%). In 9 studies (14.1%) gender of the participants was 

balanced, whereas in 2 studies (3%) this information was not available. Studies on legal (M = 

22, SD = 17) and illegal substances (M = 23, SD = 10), on average, did not differ significantly 

with respect to sample size (Wilcoxon test, W = 448.5, p = .12). TS (M = 25, SD = 16) and 

NST individuals (M = 21, SD = 12), on average, did not differ significantly with respect to 

sample size (Wilcoxon test, W = 502.5, p = .71). 

Subjects from studies on legal (M = 35.4 years, SD = 8.6 years, NA = 1 study) and illegal 

substances (M = 38.5 years, SD = 6.2 years, NA = 0 studies), on average, did not differ 

significantly with respect to age (Wilcoxon test, W = 630, p = .07). TS (M = 36.3 years, SD 

= 5.9 years, NA = 0 studies) and NST individuals (M = 37.8 years, SD = 9.3 years, NA = 1 

study) did not differ significantly in terms of mean age of the participants (Wilcoxon test, W 

= 472, p = .81). Studies on legal (M = 13.2 years, SD = 7.4 years, NA = 15 studies) and illegal 

substances (M = 10.8 years, SD = 4.9 years, NA = 5 studies) did not differ significantly in 

terms of history of abuse (Wilcoxon test, W = 235.5, p = .29), whereas studies with treatment-

seeking participants on average had a briefer history of abuse (M = 10.6 years, SD = 4.6 

years, NA = 8 studies) compared to not-seeking treatment participants (M = 15 years, SD = 7.2 

years, NA = 12 studies; Wilcoxon test, W = 129, p = .03). 
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2. Supplementary Tables 

2.1. Table S3.1. 

Author(s) 
Drug of 
Primary 

Abuse 

Cue-reactivity 

Paradigm 
Sample size Sample characteristics Drug cue Baseline condition Cue-induced craving assessment Abstinence 

Main route 
of 

administrati

on 

History of 

abuse 

Additio
nal 

substanc

es 

Treatment 

status 

Bach et al., 
2019 

Alcohol 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Block. 
 

Participants were 

instructed to watch 

and attend to the 

stimuli. 

 

 

 

 

 
 

 

 

 

DA: 50 

HC: 35 

Sex 

DA: all men HC: all men 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than alcohol abuse 

or dependence, except 

nicotine dependence 

 
Socio-economic status 

DA- education 

• 2 post-

secondary 

education 

• 14 

apprenticesh
ip only 

• 32 attended 

college or 

higher 

 

HC- education 

• 0 post-
secondary 

education 

• 5 

apprenticesh

ip only 

• 30 attended 

college or 
higher 

Alcohol: Alcohol-

related pictures 
(wine, beer, 

spirit). 

Neutral: Neutral 
objects. 

No assessment of cue-induced craving. 

17.2 days 

(averaged 
between the 

groups) 

Ingestion 

17.56 years 

(averaged 
between 

the groups) 

Cigarette
s 

TS (in-
patient 

treatment) 

Cortese et 

al., 2015 
Nicotine 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Block. 

 

Participants were 

instructed to watch 

and attend to the 
stimuli. 

DA:17 

 

Sex 

DA: 13 men, 4 women 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than nicotine and 

caffeine abuse or 

dependence 
 

Socio-economic status 

Not reported 

Nicotine: 

Smoking-related 

pictures 

(advertisement or 

digital photos). 

Neutral: Neutral 

images matched for 

intensity, color and 

complexity. 

Assessment: Before fMRI. 

Scale: Three 11-point Likert scales to 

measure craving amount [0 = ‘very little’; 

10 = ‘a great deal], craving intensity [0 = 

‘none’, 10 = ‘irresistible’] and craving 

control [0 = ‘no control’, 10 = ‘complete 

control’]. 

Results: Amount: mean = 7.6 (2.6); 
Intensity: mean = 6.5 (2.7); Control: mean 

= 6.5 (3.1). 

12 hours 

(minimum) 
Smoking 

12.2 ± 6.5 

years 

Not 

specified 
NST 
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Courtney et 

al., 2014 
Nicotine 

- Imaging: fMRI. 

- Modality: Visual 

(Videos). 
- Design: Block. 

 

Participants were 

instructed to watch 

and attend to the 

stimuli. 

DA:39 

 

Sex 

DA: 25 men,15 women 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than nicotine abuse 

or dependence. 

 

Socio-economic status 

Education 

DA: 14.55 years (± 3.73) 

Race 

• 28 Caucasian 

• 7 African 

American 

• 2 Asian 

• 3 Latino 

Nicotine: 

Smoking-related 

videos filmed in a 

first-person point 

of view (i.e. 
writing a letter 

and smoking a 

cigarette or 

standing outside 

of a nightclub 

smoking a 

cigarette). 

Neutral: Neutral 
videos matched for 

similar content except 

for the absence of 

smoking cues. 

Assessment: During fMRI. 

Scale: During the urge-rating period, 

participants were asked to rate their current 
urge to smoke using Likert scale ranging 

from 1 [No urge] to 4 [Very high urge].  

Results: Cigarette cues were found to be 

effective in eliciting greater self-reported 

craving compared to the neutral cues. 

  

Not specified 
(abstinence not 

required prior 

to scanning) 

Smoking 
Not 

specified 
Alcohol NST 

David et al., 
2007 

Nicotine 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Event-

related. 

 
Participants were 

instructed to watch 

and attend to indicate 

with a keypress the 

gender of the subject 

in each photograph. 

DA:8 
 

Sex 

DA: all women 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than nicotine abuse 
or dependence. 

 

Socio-economic status 

Not reported 

 

 

 

Nicotine: 

Smoking-related 

pictures (i.e. 

images of humans 

smoking 
cigarettes) taken 

from the 

International 

Smoking Image 

Series (ISIS). 

Control: Neutral 

pictures (i.e. images of 

humans holding pens 

or glasses in their 
hands and mouths) of 

the same size as 

smoking-related 

pictures. 

Assessment: Before and after stimulus 

presentation during fMRI. 

Scale: The Shiffman-Jarvik Craving Scale 

(SJCS) consists of five items; subjects are 
asked to rate each item from 0–100 (total 

500 maximum). 

Results: Average SJCS scores were not 

significantly different before and after the 

scans. 

Abstinence: 12 

hours 

(minimum) 
Smoking = 

prior to 

scanning 

Smoking 
38 ± 7.1 

years 
Not 

specified 
NST 

De Pirro et 

al., 2018 

Cocaine 

and 

heroin 

- Imaging: fMRI. 

- Modality: Imagery. 

- Design: Block. 

 

Participants were 

instructed to recall a 

typical drug 

experience and to rate 

the affective state 
produced by heroin 

versus cocaine in two 

settings (at home vs 

outside the home). 

DA: 20 

 

 

Sex 

DA: all men. 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than cocaine or 

heroin abuse or 

dependence. 

 

Socio-economic status 

Employment: 17 

employed, 3 

unemployed. 

 

Education: 13.6 years (± 

3.31). 

 

Cocaine: Scripts 

of situations in 

which cocaine is 

used (at 

home/outside 

home).      

Heroin: Scripts of 

situations in 

which heroin is 
used (at 

home/outside 

home). 

Neutral: Scripts of 

relaxing situations (at 

home or in their usual 

club). 

No assessment of cue-induced craving. 

Only vividness of imagery during fMRI is 

assessed. 

Not specified 

Cocaine and 

heroin: 

intranasal, 

smoking, 

intravenously 

 

Cocaine: 

15.25 years 

Heroin: 

13.20 years 

Methado

ne, 

heroin, 

cocaine 

TS 

(recruited 

from drug 

rehabilitati

on center) 
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Duncan et 

al., 2007 
Cocaine 

- Imaging: fMRI. 

- Modality: Imagery. 

- Design: Block. 

 

Participants were told 

to mentally reenact 

personalized scripts 
about cocaine use and 

a neutral experience 

both with and without 

a stressor present 

(anticipation of 

electrical shock). 

DA: 10 

 

Sex 

DA: all men. 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than cocaine abuse 

or dependence, with the 

exception of substance-
induced mood disorder 

or substance-induced 

mood disorder with 

psychotic features. 

 

Socio-economic status 

Education: 14.2 years (± 

1.5). 

 

Cocaine: 

Produced from a 

self-reported 

sensations 

checklist and 

from narratives of 
environmental 

contexts of 

personal drug use 

experiences. 

Neutral: Script 

consisting of an 

emotion- and drug-

neutral experience 
(getting up and 

dressing in the 

morning). 

Assessment: During fMRI Scans, at the 

end of each baseline period, immediately 

after completion of the neutral scripts, and 

again after completion of the cocaine 

scripts. 

Scale: 100-point visual analogue scale 

ranging from 1 [Not at all] to 100 [The 
most I’ve ever felt] assessing the craving 

level.                                                                                                                                                                 

Results: Craving responses were higher 

after cocaine scripts compared to baseline 

and compared to the neutral scripts.  

8 ± 4.9 days 

Smoking 

(freebase, 
crack) 

15.9 ± 6.2 

years 

Not 

specified 
TS 

Elton et al., 

2015 
Cocaine 

- Imaging: fMRI. 

- Modality: Imagery. 

- Design: Block. 
 

Subjects were 

instructed to relate to 

previous personal 

experiences associated 

with the personalized 

script. 

DA: 38 

 
Sex 

DA: all men. 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than cocaine abuse 

or dependence. 

 

Socio-economic status 
Education: 

• patients with a 

history of 

childhood 

maltreatment: 

12.7 years (± 1.7); 

• patients without a 
history of 

childhood 

maltreatment: 

12.2 years (± 1.1). 

 

Cocaine: 

Personalized drug 

use script. 

Neutral: Script 

describing nature 

scenes (beach, forest, 

lake, river). 

Assessment: After each imagery script. 

Scale: Participant rated their  cocaine 

craving and the vividness of the mental 

image on a scale ranging from 0 to 10.  
Results: The average reported urge to use 

cocaine did not meet the statistical 

significance for cocaine craving compared 

to neutral scripts. The cocaine script 

condition produced significantly greater 

ratings of vividness of the related mental 

image compared to the neutral script 

condition. 

Urine screening 

detected recent 

use of cocaine 

and other drugs 

of abuse 

Not specified 

14 years 
(averaged 

between 

maltreated 

and non-

maltreated) 

Cigarette

s, 

alcohol, 

marijuan

a, 

NST 

Falcone et 

al., 2016 
Nicotine 

- Imaging: fMRI. 
- Modality: Visual 

(Pictures). 

- Design: Event-

related. 

 

Participants were 

instructed to watch 

and attend to the 

stimuli. 

DA 

SlowMetab: 30 

NormalMetab: 39 

Sex 

DA_ SlowMetab: 19 

men, 11 women 

 

DA_ NormalMetab: 19 
men, 20 women 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than nicotine abuse 

or dependence. 

 

Socio-economic status 
DA SlowMetab 

Post- secondary 

education: 22/30 

 

Nicotine: 

Smoking-related 

pictures (i.e. 

images of people 

smoking or 

images of 

smoking-related 

objects, such as 

cigarettes or 

ashtrays). 

Neutral: Neutral 

pictures (i.e. images of 

people engaged in 

everyday tasks or 

unrelated objects, such 

as pencils) matched 

for visual features 

such as size, shape, 

and luminosity. 

Assessment: Before, during and after 

fMRI. 

Scale: A two-item subjective craving 
questionnaire was administered: 

participants were asked to rate the degree 

of craving on a scale ranging from 0 [Not 

at all] to 10 [Extremely]. 

Results: Slow metabolizers reported 

significantly less craving in both satiety 

and abstinence conditions compared to 

normal metabolizers, but increases in 

craving between the smoking session and 
the abstinence session were not different 

between slow and normal metabolizers. 

Abstinence: 24 

hours 

Smoking = 1 

hour 

Smoking 
Not 

specified 
None TS 
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DA NormalMetab 

Post- secondary 

education: 26/39 

 

DA SlowMetab 

Race 

• 21 African 

American 

• 7 

Caucasian 

• 2 Other 

 

 

DA NormalMetab 

Race 

 

• 18 African 

American 

• 19 

Caucasian 

• 1 Other 

• 1 Not 

reported 

 

 

 

 

 

Garavan et 

al., 2000 
Cocaine 

- Imaging: fMRI. 

- Modality: Visual 
(Videos). 

- Design: Block. 

 

Participants were 

instructed to watch 

and attend to the 

stimuli. After each 

video, subjects 

performed a working 

memory task unrelated 
to cue-reactivity. 

DA: 17 

HC: 14 

Sex 

DA: 14 men, 3 women; 
HC: 9 men, 5 women. 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than cocaine abuse 

or dependence. 

 

Socio-economic status 

Not reported. 

Cocaine: People 

engaged in drug-

specific dialogue 

while smoking 

"crack cocaine" 

and "drinking 

alcohol". 

Nature: Scenic 

outdoor images. 

Sex: Explicit group 

heterosexual activity. 

Assessment: Inside MRI scanner, after 

each movie. 

Scale: Questions focusing on subjects' 

responses to the movie. 

Results: DA showed significant higher 

craving composite scores compared to HC. 

Not reported 

Smoking 

(freebase, 

crack) 

11 years 

(range:2-

25) 

Not 

specified 
NST 

George et 

al., 2001 
Alcohol 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Block. 

 

Participants were 

instructed to watch 
and attend to the 

stimuli. 

DA: 10 

HC: 10 

Sex 

DA: 8 men, 2 women. 

HC: 8 men, 2 women 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than alcohol abuse 

or dependence 
 

Socio-economic status 

Not reported. 

 

Alcohol: Alcohol-

related pictures 

(wine, beer, 

liquor). 

Non-alcoholic 

beverages: Pictures of 

non-alcoholic 

beverages. 

Control: Blurred 

alcohol-related 
pictures. 

Assessment: Before and after the sip of 

alcohol (before fMRI), during cue-

reactivity and after fMRI. 

Scale: Assessment of current craving using 

a visual analogue scale ranging from 0 to 

100. 

Results: Alcoholic subjects had a higher 

self-reported of urge to drink alcohol 
compared to HC at all time points. 

Significant increase of craving levels 

across time points for both alcoholic 

subjects and social drinkers 

3.4 ± 2.2 days Ingestion 
Not 

specified 

Not 

specified 

(negative 

urine 

drug 

screenin
g) 

NST 
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Goudriaan 
et al., 2010 

Nicotine 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Event-

related. 

 

Participants were 

instructed to watch 

and attend to the 

stimuli. To ensure 
attentional focus, 

participants had to 

press a response 

button with their left 

index finger when a 

face was present in the 

picture and they had to 

press a response 

button with their right 

index finger when no 
face was present.  

DA:18 

• FTDN-

High: 10 

• FTDN-

Low:8 

 

HC: 17 

 

Sex 

DA: all men 

HC: all men 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than nicotine abuse 

or dependence 
 

Socio-economic status 

DA 

Education: 4.1 level (± 

1.1) 

 

HC 

Education: 4.3 level (± 

1.2) 

Nicotine: 

Smoking-related 

pictures (i.e. 
several persons 

smoking, detailed 

image of a hand 

with a cigarette). 

Neutral: Neutral 

pictures matched for 

complexity and similar 

content except for the 
absence of smoking 

cues (i.e. a hand with a 

magazine, persons 

talking). 

Assessment: Before and after fMRI. 

Scale: Smoking Urge Questionnaire [range 

1-7]. 

Results: Craving for smoking before 
scanning was higher in the smoking group 

compared with healthy controls. No 

differences between smoking craving 

before and after the cue reactivity task in 

the group. 

16-18 hours Smoking 
Not 

specified 
None TS 

Goudriann 

et al., 2013 
Cocaine 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Block. 

 

Participants were 

instructed to pay 

attention to the images 
and press a button 

when a target image 

(picture of an animal) 

is presented. 

DA: 13 

HC: 16 

 

Sex 

DA: not reported; HC: 

not reported. 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than cocaine abuse 
or dependence. 

 

Socio-economic status 

Not reported. 

 

Cocaine: 

Individuals 

preparing for 

cocaine use, 

individuals using 

cocaine, or 

cocaine user-

related objects, 

cocaine 
paraphernalia, 

different ways of 

administration 

(snorting, crack 

use). 

Neutral: Not 

specified. 

Assessment: Before and after scanning. 

Scale: Craving Urge Questionnaire (CUQ): 

8 items with a 7-point Likert scale ranging 

from 1 [Strongly disagree] to 7 [Strongly 

agree]. 
Results: No change in craving scores 

across conditions. 

At least 3 

weeks 
Not specified 

Not 

specified 

Cigarette

s 

TS (in 

treatment) 

Grusser et 

al., 2004 
Alcohol 

- Imaging: fMRI. 
- Modality: Visual 

(Pictures). 

- Design: Block. 

 

Participants were 

instructed to watch 

and attend to the 

stimuli. 

DA:10 

HC:10 

Sex 

DA: 5 men, 5 women 

HC:5 men, 5 women 

 
Co-occurring disorders 

No other axis I 

psychiatric condition 

other than alcohol abuse 

or dependence (and axis-

II disorders in HC). 

 

Socio-economic status 

Not reported 

 
 

Alcohol: Alcohol-

related pictures. 

Neutral: Affectively-

neutral pictures. 

Control: Scrambled 

alcohol-related 

pictures. 

Assessment: Before fMRI. 

Scale: Alcohol craving was measured 

using the Alcohol-Craving Questionnaire 

(ACQ). 

Results: No significant differences were 

detected between alcohol-dependent 

individuals and healthy controls. 

9 ± 9 weeks 

(range: 1-25) 
Ingestion 

Alcohol 

dependenc

e onset: 31 

years 

Mean age: 

36 years 

None TS 
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Hassani-

Abharian et 

al., 2015 

Heroin 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 
- Design: Block. 

 

Participants were 

instructed to watch 

drug-related and 

neutral pictures. 

DA: 25 

Sex 
DA: all men. 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than cocaine abuse 

or dependence. 

 

Socio-economic status 
Education: 8.57 years (± 

2.6) 

 

Marital status: 

• married: 15; 

• single: 5; 

• separated: 3; 

• divorced: 2. 

Heroin: 24 

pictures of heroin-

related pictures 

(e.g., crystallized-
heroin, 

paraphernalia, 

preparation, 

smoking, and co-

smoking related 

cues). 

Neutral: 24 pictures of 

neutral stimuli. 

Assessment and Scale: During trial 

intervals, subjects verbally reported their 

subjective feeling of cue induced craving 

(CIC). After fMRI procedure, participants 

reported the intensity of their “need for 

drug use” and “drug use imagination” on a 

0-100 visual analog scale. Afterwards, they 

completed positive and negative affect 

scale (PANAS) and desire for drug 

questionnaire (DDQ) with 3 components of 
“desire and intention to drug use”, 

“negative reinforcement” and “loss of 

control”.                                                                                                          

Results: Average verbally reported 

intensity of craving slightly increased 

during scanning. Correlation analysis 

among different self-reported variables 

exhibited no significant relationship except 

between the intensity of “drug use 

imagination” and “need for heroin use”, as 
well as between the intensity of “drug use 

imagination” and “verbal self- report of 

cue-induced craving”. 

4-6 hours Not specified 
3 ± 1.9 

years 

Not 

specified 

TS 

(in-patient 

treatment) 

He et al., 

2018 
Cocaine 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Block. 

 

Participants performed 

a cue task in the 
scanner to measure 

their brain activity 

when watching two 

categories of stimuli: 

cocaine-related 

pictures and natural 

scene pictures. 

Participants were 

asked to passively 
view the images. 

DA: 32 

HC: 7 

Sex 

DA: all men; HC: all 

men. 

 
Co-occurring disorders 

No other axis I 

psychiatric condition 

other than cocaine abuse 

or dependence. 

 

Socio-economic status 

Not reported. 

Cocaine: 
Cocaine-related 

pictures (e.g., 

cocaine lines, 

cocaine crystals). 

Neutral: Natural 

scenes (e.g., a garden, 

a tree). 

No assessment of cue-induced craving. 

USERS: < 1 

years 
ABS1: 1-5 

years 

ABS2: 6-10 

years 

ABS3: > 10 

years 

Not specified 
Not 

specified 

Not 

specified 
NST 

Hermann et 

al., 2006 
Alcohol 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Block. 

 

Participants were 

instructed to watch 

and attend to the 
stimuli 

DA: 10 

HC:10 

Sex 

DA: all men HC: all men 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than alcohol abuse 

or dependence 

 
Socio-economic status 

Not reported 

 

Alcohol: Alcohol-

related pictures. 

Neutral: Affectively-

neutral pictures; 

Control: Scrambled 

alcohol-related 

pictures. 

Assessment: Before and after fMRI. 

Scale: Alcohol wanting, the intention to 

consume alcohol, expected positive effects 

of alcohol consumption and whether 

alcohol could now improve negative 

feelings were assessed with 4 VAS [0-100 

mm]. 

Results: No pre/post difference in any 
VAS. 

15 ± 5 days 

(range: 8-21) 
Ingestion 

19 ± 10 

years 

Not 

specified 

(negative 

urine 

drug 

screenin

g) 

TS (in-

patient 

treatment) 
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Holla et al., 

2014 
Alcohol 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Block. 

 

Participants were 

instructed to watch 

and attend to the 

stimuli, and to indicate 

by means of button 
presses whether they 

experienced craving 

for alcohol after seeing 

the picture or not. 

 

 

 

DA:5 

Sex 

DA: all men 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than alcohol abuse 

or dependence, except 

nicotine dependence. 

 
Socio-economic status 

DA 

Education: 11.2 years 

 

 

Alcohol: Alcohol-

related pictures in 

5 scenarios (i.e. 

liquor stores, 

alcoholic 

beverage 

containers, 

glasses filled with 

alcohol, scenes of 
people sipping 

alcoholic 

beverages). 

Non-alcoholic 

beverages: Neutral 

pictures (i.e. bar 

stores, bottles, glasses 

filled with non-

alcoholic beverages, 

scene of people 
sipping non-alcoholic 

beverages). 

Assessment: During fMRI. 

Scale: Button presses. 

Results: Not specified. 

12-15 days Ingestion 

Alcohol 

dependenc

e onset: 

21.4 years 

Mean age: 

34.2 years 

Cigarette

s 
TS 

Hong et al. 

2017 
Nicotine 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Block. 

 

Participants were 

instructed to watch 

and attend to the 

stimuli. 

DA:15 

HC:15 

Sex 

DA: all men 

HC: all men 

 

Co-occurring disorders 
No other axis I 

psychiatric condition 

other than nicotine abuse 

or dependence. 

 

Socio-economic status 

DA 

Education: 11.9 years (± 

3.1) 

 
HC 

Education: 12.0 years (± 

3.7) 

 

Nicotine: 

Smoking-related 

pictures 

downloaded from 

Google with the 

search terms: 

‘positive 

smoking’, 

‘negative 

smoking’. 

Control: Pictures 

obtained as mosaic 

modification of 

tobacco-related 

images. 

No assessment of cue-induced craving. Not specified Smoking 
16.8 ± 7.4 

pack years 
Alcohol NST 

Huang et al. 
2018 

Alcohol 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Block. 
 

Participants were 

instructed to watch 

and attend to the 

stimuli. 

DA:11 

Sex 

DA: 8 men, 3 women 

 

Co-occurring disorders 

No other axis I 
psychiatric condition 

other than alcohol abuse 

or dependence. 

 

Socio-economic status 

Not reported 

Alcohol: Alcohol-
related pictures. 

Non-alcoholic 

beverages: Pictures of 

non-alcoholic 
beverages. 

Control: Blurred 

pictures. 

Assessment: Before fMRI. 

Scale: Assessment of current craving using 

a Numeric Rating Scale (question: “How 

much do you desire for alcohol?”). The 
range of the scale is not reported.  

Results: No statistics is provided. Mean 

subjective alcohol craving reported in 

Table 1 is 8.32 (standard deviation: 1.87). 

24 hours 
(minimum) 

Ingestion 
Not 

specified 
Not 

specified 
NST 

Janes et al. 

2015 
Nicotine 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Event-
related. 

 

Participants were 

instructed to watch 

and attend to the 

stimuli. To ensure 

attentional focus, 

participants were 

instructed to press a 

button when they see a 

DA:17 

 

Sex 

DA: 8 men, 9 women 

 
Co-occurring disorders 

No other axis I 

psychiatric condition 

other than nicotine abuse 

or dependence. 

 

Socio-economic status 

Education 

DA: 15.3 years (± 2.1) 

Nicotine: 

Smoking-related 
pictures 

comprised of 3 

categories: people 

smoking, people 

holding cigarettes 

and smoking-

related items such 

as cigarettes. 

Neutral: Neutral 
pictures matched for 

content with respect to 

people, body parts and 

manipulated objects 

(i.e. pens or paint 

brushes). 

Assessment: Before the fMRI. 

Scale: Brief Questionnaire for Smoking 

Urges (Brief-QSU). 

Results: Data not reported. 

1.5 hours Smoking 
9.5 ± 5.5 

pack years 
None NST 
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target image to ensure 

attention to the task. 

Janse Van 

Rensburg et 

al., 2009 

Nicotine 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Crossover. 

 

Participants were 

instructed to watch 

and attend to the 

stimuli. Participants 

were asked to press a 
button to ensure 

attentional focus. 

DA:10 

 

Sex 

DA: 6 men, 4 women 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than nicotine abuse 

or dependence 

 

Socio-economic status 
Not reported 

 

 

Nicotine: 

Smoking-related 

pictures (i.e. 

images of humans 

smoking 

cigarettes) taken 

from the 

International 

Smoking Image 
Series (ISIS). 

Neutral: Neutral 

pictures (i.e. images of 

humans holding pens 

or glasses in their 

hands and mouths) of 

the same size as 

smoking-related 

pictures. 

Assessment: Before fMRI. 

Scale: Three times before fMRI session the 

participants verbally rated their agreement 

to the statement ‘I have a desire to smoke’ 

[1 = ‘strongly disagree’, 7 = ‘strongly 

agree’]. 

Results: Baseline ‘desire to smoke’ was 4.4 

(0.58) in the control condition. 

15 hours Smoking 

8.2 ± 5.5 

years 

 

Not 

specified 
NST 

Kaag et al., 

2018 
Cocaine 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Event-

related. 

 

Participants were 
instructed to watch 

and attend to the 

stimuli. To ensure 

participants' attention, 

they were instructed to 

press a key on a 

response box when 

they see a picture of an 

animal. 

DA: 59 

HC: 58 

Sex 

DA: all men; HC: all 

men. 

 

Co-occurring disorders 
No other axis I 

psychiatric condition 

other than cocaine abuse 

or dependence. 

 

Socio-economic status 

Not reported. 

Cocaine: Photos 
of cocaine and 

individuals 

snorting cocaine. 

Neutral: Photos of 

individuals and objects 
visually matched to 

the cocaine pictures on 

color, composition and 

type of gesture. 

Assessment: Inside MRI scanner, at 

baseline and at the end of the experimental 

paradigm. 

Scale: Visual analogue scale ("How much 
do you crave for cocaine right now?") 

ranging from 0 [Not at all] to 10 

[Extremely]. 

Results: Only in DA, and not in HC, 

craving for cocaine significantly increased 

during the cue-reactivity task. 

33/59 positive 

on drug urine 

screening 

Intranasal 

6 ± 12 

years 

 

Cannabis
, 

MDMA, 

alcohol 

NST 

Kilts et al., 

2001 
Cocaine 

- Imaging: PET (O15). 

- Modality: Imagery. 

- Design: Block. 

 

Participants are 

instructed to mentally 
rehearse the situation 

illustrated by the 

individual imagery 

script. 

DA: 8 

Sex 

DA: all men. 

 

Co-occurring disorders 

No other axis I and II 

psychiatric condition 

other than cocaine abuse 

or dependence; 1 subject 

fulfilled DSM-IV criteria 
for nicotine dependence 

and 1 subject fulfilled 

DSM-IV criteria for 

marijuana abuse. 

 

Socio-economic status 

Not reported. 

Cocaine: Script-

guided imagery of 

autobiographical 

memories. 

Participants 

described vivid 

episodic 
memories of 

ritualistic acts of 

cocaine use and 

anticipatory 

arousal. 

Neutral: Neutral 

episodic memory 

recall, selected from 

either a beach or forest 

scene.                                                                                                                                                                                 

Anger: Anger-
episodic memory 

recall, selected from 

either a beach or forest 

scene. 

Assessment: Following offset of the 

scanner.                                                                                                                                                                                                                                                                                                   

Scale: The inductive properties of the 

imagery scripts were evaluated for each 

condition using 0 to 10 visual analogue 

scales. For the cocaine scripts, subjects 

self-rated the vividness of the mental image 

(“how vivid was the image?”) and the 
experience of drug craving (“how strong 

was the urge to use?”). 

Results: Anger-related script imagery was 

associated with mild to absent self-rated 

cocaine craving and it was significantly 

less compared to cocaine use scripts. 

3-30 days 

(negative urine 

screening 
before fMRI) 

Smoking 

(freebase, 
crack) 

10 ± 6 

years 

Cigarette

s (1/8 

subjects)

, 
marijuan

a (1/8 

subjects) 

TS 

(inpatient 
treatment) 
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Kim et al., 
2014 

Alcohol 

- Imaging: fMRI. 

- Modality: Visual 

(Videos). 

- Design: Block. 
 

Participants were 

instructed to watch 

and attend to the 

stimuli. 

DA: 38 
HC: 26 

Sex 

DA: 27 men, 11 women 

HC:20 men, 6 women 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than alcohol abuse 

or dependence (DA 

group) or nicotine (both 
groups). 

 

Socio-economic status 

DA 

Education: 11.6 years (± 

2.5) 

 

HC 

Education: 12.9 years (± 

3.5) 
 

Alcohol: Video 

depicting alcohol-
related scenes to 

induce craving. 

Control: Blurred 
video segment. 

Assessment: Before fMRI. 

Scale: Korean Alcohol Urge Questionnaire 

(AUQ-K). 
Results: Alcoholic subjects had higher 

AUQ-K scores compared to healthy 

controls.  

3-21 days Ingestion 
15.9 ± 9.5 

years 
Cigarette

s 
TS 

Kober et al., 

2016 
Cocaine 

- Imaging: fMRI. 

- Modality: Visual 

(Videos). 

- Design: Block. 
 

Participants were 

instructed to view six 

videos depicting 

cocaine, gambling, 

and sad scenarios. 

DA: 30 

 

Sex 

DA: 18 men, 12 women. 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than cocaine abuse 

or dependence. 
 

Socio-economic status 

Education: 

• men: 13.06 years 

(± 1.14); 

• women: 12.30 

years (± 1.06). 
 

Cocaine: Videos 

including cocaine 

use (e.g., 

presentation of 

cocaine and 
paraphernalia, 

preparation of a 

“crack hit,” 

repeated smoking, 

and getting a rush 

with a description 

of how good it 

was). 

Gambling: Videos 

including gambling 

experiences (e.g., 

spinning slot 
machines, rolling a 

dice). 

Sad: Videos 

describing sad 

experiences (e.g., 

death of a close family 

member, divorce). 

Assessment: After each run during fMRI. 

Scale: Urge to use cocaine and to gamble 

rated on a scale ranging from 1 [Not at all] 
to 10 [A lot].  

Results: Gambling videos were associated 

with the most intense responses compared 

to cocaine videos and sad videos. Cocaine 

videos were associated with more intense 

urges compared to the sad videos. 

Not specified Not specified 
Not 

specified 

Cigarette
s, 

alcohol, 

marijuan

a 

NST 

Koopmann 

et al., 2018 
Alcohol 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Block. 

 

Participants were 
instructed to watch 

and attend to the 

stimuli. 

DA: 41 

Sex 

DA: 30 men, 11 women 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than alcohol abuse 

or dependence, except 

from nicotine 
dependence in the last 12 

months 

 

Socio-economic status 

Not reported 

Alcohol: Alcohol-

related pictures 

(wine, beer, 

spirit). 

Neutral: Neutral 

objects. 

Assessment: During fMRI, after each 

block. 

Scale: Assessment of current craving using 

a visual analogue scale ranging from 0 [No 

craving at all] to 100 [Very intense 

craving].  

Results: No statistics is provided. Mean 
subjective alcohol cue-induced craving 

reported in Table 1 is 8.1 (standard 

deviation: 12.0). 

10.1 ± 5.6 days Ingestion 
Not 

specified 

Cigarette

s 

TS 

(inpatient 

treatment) 

Kosten et 

al., 2006 
Cocaine 

- Imaging: fMRI. 

- Modality: Visual 

(Videos). 

- Design: Block. 
 

Participants were 

instructed to watch the 

DA: 17 

 

Sex 

DA: 12 men, 5 women. 

 
Co-occurring disorders 

No other axis I 

psychiatric condition 

Cocaine: Videos 

of an actor 

pretending to 
smoke cocaine 

and get a rush. 

Neutral: Videos 

describing vegetable 
prices. 

Assessment: During fMRI, immediately 

after each video.  

Scale: Numbered scale ranging from 0 to 

10 to rate craving intensity. 
Results: No significant correlation between 

brain activity and craving ratings. 

10 days Not specified 6 years 

Cigarette

s, 
alcohol 

TS 

(participati

ng in a 
clinical 

trial) 
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videos and rate their 

craving. 

other than cocaine abuse 

or dependence. 

 

Socio-economic status 

Employment: 

• patients who 

relapsed from 

outpatient 

treatment: 5 
employed, 4 

unemployed; 

• patients who 

didn’t relapse 

from outpatient 

treatment: 6 

employed, 2 

unemployed. 
 

Education: 

• patients who 

relapsed from 

outpatient 

treatment: 12 

years (± 1.4); 

• patients who 
didn’t relapse 

from outpatient 

treatment: 13 

years (± 1.0). 

 

Krienke et 

al. 2014 
Alcohol 

- Imaging: fMRI. 

- Modality: Visual 
(Videos). 

- Design: Block. 

 

Participants were 

instructed to watch 

and attend to the 

stimuli. 

DA:30 

 

Sex 

DA: 23 men, 7 women 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than alcohol abuse 

or dependence. 

 

Socio-economic status 

Not reported 

 

 

 

Alcohol: Alcohol-
related videos 

tailored on the 

participant's 

preference (beer, 

wine or hard 

liquor). 

Control: neutral 

videos (i.e. two hands 

folding and coloring a 

paper boat; a person 

soldering). 

Assessment: During fMRI. 
Scale: The current craving level was 

assessed using a VAS ranging from 0 [No 

craving] to 10 [Heavy craving]. 

Results: There was a statistically 

significant increase in craving levels after 

the presentation of the alcohol-related 

compared to the control videos. 

27.4 days 

(range: 4-70) 
Ingestion 

171.9 

months 

Cigarette

s 
NST 

Lee et al., 

2013 
Alcohol 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Event-

related. 

 

Participants were 

instructed to watch 

and attend to the 
stimuli. Participants 

reported craving in 

response to alcohol-

related stimuli by 

means of a button 

press. 

DA: 17 

HC: 25 

Sex 

DA: 12 men, 5 women 

HC: 18 men, 5 women 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than alcohol abuse 

or dependence (except 

nicotine- or caffeine-
related disorders) 

 

Socio-economic status 

DA 

Education: 14.6 years (± 

2.1) 

Alcohol: Alcohol-

related pictures 

(i.e. 

advertisements for 

alcoholic 

beverages and 
pictures of bottles 

of beer and soju). 

Control: Non-

alcoholic beverage 

pictures (similar to the 

alcohol-related cues 

with respect to size, 
color and other 

physical properties). 

Assessment: Before and after fMRI. 

Scale: Participants were instructed: ‘For 

each of the following pictures, if you crave 

alcohol, press the left button. If you don’t 

crave alcohol, press the right button’. 

Results: During the craving paradigm, the 
patient group reported higher craving in 

response to alcohol-related stimuli 

compared to the control group. 

39 ± 44 days Ingestion 
8.4 ± 5.9 

years 

Not 

specified 

TS (out-

patient 

treatment) 
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HC 

Education: 16.7 years (± 

1.7) 

 

Li et al., 
2005 

Cocaine 

- Imaging: fMRI. 

- Modality: Imagery. 

- Design: Block. 

 

Participants were told 

to mentally reenact 
personalized scripts 

about cocaine use, 

about neutral 

experiences and about 

acceptable stressful 

situations. 

DA: 11 

 

Sex 

DA: 5 men; 6 women. 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than cocaine abuse 

or dependence. 

 
Socio-economic status 

Education: 

• men: 13.4 years 

(± 2.8); 

• women: 11.8 

years (± 1.0). 

 

Cocaine: Scripts 

about drug-use 

situations 

included meeting 
with a friend to 

use drugs together 

after being paid at 

work. 

Stress: Acceptable 

stressful situations 

included a breakup 

with a significant 

other, a verbal 

argument with a 

significant other or 

family member, and 
employment-related 

stress (e.g., being fired 

or laid off from work). 

Neutral: Include a 

beach scene, reading 

on a Sunday 

afternoon, an autumn 

day in the park. 

Assessment: Before and after each trial 

during fMRI. 

Scale: Rate your craving for cocaine on a 

Likert scale ranging from 0 [None] to 10 

[The highest level of craving ever 
experienced].                                                                                                                                                                                                                                 

Results: Drug cue trials elicited a greater 

change in craving rating compared with 

stress trials. 

2 weeks 
(minimum) 

Not specified 

12.6 years 

(averaged 

between 
males and 

females) 

Not 
specified 

TS 

(inpatient 
treatment) 

Li et al., 
2012 

Heroin 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Event-

related. 

 
Participants were 

instructed to watch 

drug-related and 

neutral pictures 

passively. 

DA: 24 
HC: 20 

 

Sex 

DA: all men; HC: all 

men. 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than cocaine abuse 

or dependence. 
 

Socio-economic status 

DA 

Education: 10.9 years (± 

3.1) 

 

HC 

Education: 10.1 years (± 

2.3) 

 

Heroin: Images 

of heroin 

injection, 
preparation, and 

paraphernalia 

Neutral: Images of 

household objects or 
chores. 

Assessment: Pre and post cue presentation. 

Scale: Subjective heroin craving was 

evaluated with a visual analogue scale 

ranging from 0 [Least craving] to 10 

[Strongest craving] using the question "To 

what extent do you feel the urge to use 
heroin?”. 

Results: Subjective craving scores after cue 

presentation were significantly higher than 

before cue presentation for the heroin- 

dependent patients. 

21.7 ± 16 days Not specified 
78.6 ± 50.1 

months 
Cigarette

s 

TS (in-

patient 
treatment) 

Li et al., 

2013a 
Heroin 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Event-

related. 

 

Participants were 
instructed to watch 

and attend to the 

stimuli. 

DA 

 

ST :19 

LT: 18 

Sex 

DA: all men 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than heroin abuse 

or dependence except 

nicotine dependence. 

 
Socio-economic status 

ST 

Education: 9.7 years 

(±2.2) 

 

LT 

Heroin: Heroin-

related pictures. 

Neutral: Neutral drug-

unrelated pictures. 

Assessment: Before and after the cue-

reactivity run. 

Scale: craving was assessed using a visual 

analogue scale ranging from 0 to 10 

answering to the question "To what extent 

do you feel the urge to use heroin?". 

Results: Subjective craving scores after cue 
exposure were significantly higher than 

before cue exposure for the short-term 

abstinence group, but not for the long-term 

abstinence group. 

Protracted 

abstinence: 

193.3 days 

Short 

abstinence: 
23.6 days 

Not specified 

Protracted 

abstinence: 

96.3 

months 

Short 

abstinence: 
80.5 

months 

Methado

ne 

TS (in-

patient 

treatment) 
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Education: 8.8 years 

(±2.3) 

 

 

 

Li et al., 

2013b 
Heroin 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Event-

related. 

 
Participants were 

instructed to watch 

and attend to the 

stimuli. 

 

DA :14 
HC: 15 

Sex 

DA: all men HC: all men 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than heroin abuse 

or dependence. 

 

Socio-economic status 
DA 

Education: 9.4 years (± 

2.6) 

 

HC 

Education: 9.2 years (± 

2.4) 

 

 

Heroin: Heroin-

related pictures. 

Neutral: Neutral 

pictures. 

Assessment: Before and after fMRI. 

Scale: Assessment of current craving using 

a visual analogue scale ranging from 0 to 

10. 

Results: The heroin-dependent group had a 
higher level of subjective craving after 

performing the cue-induced craving task, 

compared to controls. 

17.6 ± 5.7 days Not specified 
89.3 ± 50.5 

months 
None 

TS 

(recruited 

from drug 
rehabilitati

on center) 

Li et al., 

2015 
Heroin 

- Imaging: fMRI. 

- Modality: Visual 
(Pictures). 

- Design: Event-

related. 

 

Participants were 

instructed to watch 

drug-related and 

neutral pictures. 

DA: 44 

HC: 20 

 
Sex 

DA: all men; HC: all 

men. 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than cocaine abuse 

or dependence. 

 
Socio-economic status 

DA 

Education: 

• patients who 

relapsed: 9.5 

years (± 2.3); 

• patients who 
didn’t relapse: 9.2 

years (± 1.9). 

 

HC 

Education: 10.0 years (± 

2.3). 

 

Heroin: Pictures 

of heroin 

injection, 

preparation and 

paraphernalia. 

Neutral: Pictures of 

household objects or 

chores. 

Assessment: Pre- and post- scan.  
Scale: Subjective heroin craving was 

evaluated with a visual analogue scale ("To 

what extent do you feel the urge to use 

heroin?”) ranging from 0 to 10. 

Results: Subjects who relapsed showed 

significantly higher craving ratings after 

cue exposure compared to subjects who did 

not relapse. 

12 hours 

(minimum) 
Not specified 

Relapsers: 

69.2 

months 

Non-

relapsers: 

92.3 

months 

Cigarette

s, 

methado

ne 

TS 

(recruited 

from drug 

rehabilitati

on center) 
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Li et al., 

2019 
Nicotine 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Block. 

 

Participants were 

instructed to watch 

and attend to the 
stimuli. 

DA: 24 

 

Sex 

DA: 23 men, 1 woman 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than nicotine abuse 

or dependence 

 

Socio-economic status 

Not reported 

 

 

Nicotine: 

Smoking-related 

pictures. 

Control: Neutral 

pictures. 

Assessment: Before and after fMRI in each 

state. 

Scale: Tobacco Craving Questionnaire 

(TCQ). 

Results: The TCQ scores were 

significantly decreased after the scan in the 

hypnotic state (hypnotic state was not 

included in our meta-analysis). 

2 hours 

(minimum) 
Smoking 

17.92 ± 

6.83 years 

Not 

specified 
TS 

Liberman et 

al., 2018 
Nicotine 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Block. 

 

Participants were 

instructed to watch 
and attend to the 

stimuli. To ensure 

participants attention, 

a yellow dot was 

randomly presented 

once during each 

stimulus block. When 

the dot appeared, 

participants were 

asked to press on the 
reaction button.  

DA: 5 

HC: 5 

Sex 

DA: 1 man, 4 women 

HC: 1 man, 4 women 

 

Co-occurring disorders 

No other axis I 
psychiatric condition 

other than nicotine abuse 

or dependence. 

Participants were 

excluded if they had 

alcohol or other drugs 

dependence. 

 

Socio-economic status 

Not reported 

Nicotine: 

Smoking-related 

pictures (i.e. 
smoking persons, 

lit up cigarettes 

and hands holding 

cigarettes) taken 

from the 

International 

Smoking Image 

Series (ISIS). 

Control: Scrambled 

smoking-related 

pictures.. 

Assessment: Before and after fMRI. 

Scale: Brief Questionnaire for Smoking 

Urges (Brief-QSU). 

Results: Smoking participants showed a 

significant increase of craving after fMRI. 

Overnight 

abstinence 
Smoking 

Not 

specified 
None NST 

Lou et al., 
2012 

Heroin 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Block. 

 
Participants were 

instructed to watch 

drug-related and 

neutral pictures 

passively. 

 

 

 
DA 

 

ST:17 LT:17 

Sex 

DA: all men 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than heroin abuse 

or dependence. 
 

Socio-economic status 

ST 

Education: 7.7 years (± 

0.7) 

LT 

Education: 8.1 years 

(±0.4) 

 

Heroin: Pictures 
of people using 

heroin. 

Neutral: Pictures of 
people engaged in 

everyday activities. 

Assessment: Before and after each block. 

Scale: The current craving level was 

assessed using a Likert scale ranging from 

0 [Not at all] to 4 [Extremely]. 
Results: Craving significantly increased 

after heroin cues presentation in short- and 

long-term abstinence groups. Abstinence 

significantly increased craving ratings 

across cue types. 

Short-term 

abstinence: 1.2 

months 
Long-term 

abstinence: 

13.6 months 

Not specified 

Short-term 

abstinence: 

7 years 
Long-term 

abstinence: 

8.2 years 

Cigarette
s 

TS (in-
patient 

treatment) 

Mann et al., 

2014 
Alcohol 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Block. 

 

Participants were 

instructed to watch 

and attend to the 

stimuli. 

DA: 73 

 

Sex 

DA: 51 men, 22 women 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than alcohol abuse 

or dependence (apart 

from alcohol, nicotine 

and cannabis). 

 
Socio-economic status 

Alcohol: Alcohol-

related pictures. 

 

Neutral: Affectively 

neutral pictures. 

Control: Scrambled 

alcohol-related 

pictures (comparable 

in color distribution, 

contrast, and 

complexity).  

Assessment: Before and after fMRI. 

Scale: Alcohol craving was assessed by 

means of a VAS. 

Results: VAS results not reported. 

Range: 14-21 

days 
Ingestion 

Not 

specified 

Cigarette

s 

TS 

(clinical 

trial) 
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Not reported 

 

 

McBride et 
al., 2006 

Nicotine 

- Imaging: fMRI. 

- Modality: Visual 

(Videos). 

- Design: Block. 

 
Participants were 

instructed to watch 

and attend to the 

stimuli. 

DA:19 
 

Sex 

DA: 10 men, 9 women 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 
other than nicotine abuse 

or dependence 

 

 

Socio-economic status 

Not reported 

Nicotine: 

Smoking-related 

videos (i.e. people 

lighting 

cigarettes, 
smoking while 

socializing, 

blowing smoke 

rings) 

Neutral: Neutral 

videos (i.e. people 

getting their hair cut). 

Videos were similar in 

degree of facial 
exposure, movement, 

and physical 

characteristics of the 

actors. 

Assessment: During fMRI. 

Scale: The craving questionnaire consisted 

of 7 items taken from a larger battery 

(Tiffany and Drobes, 1991); participants 

rated their agreement with each question on 
a VAS ranging from 0 [Not at all] to 10 

[Extremely]. 

Results: Smoking videos were successful 

in significantly increasing subjective 

reports of craving. 

Abstinence: 12 

hours 

(minimum) 
Smoking = 

smoke as usual 

Smoking 
Not 

specified 
None NST 

Moran et 

al., 2017 
Nicotine 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Event-

related. 

 

Participants were 

instructed to watch 

and attend to the 

stimuli. To ensure 
participants attention, 

an occasional target 

stimulus (picture of 

animal) was presented 

and subjects were 

required to press a 

button in response to 

the target. 

DA: 19 

 

Sex 

DA: 9 men, 10 women 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than nicotine abuse 

or dependence. 
 

Socio-economic status 

DA 

Education: 14.4 years (± 

2.4) 

Nicotine: 

Smoking-related 

pictures 

comprised of 3 

categories: people 

smoking, people 
holding cigarettes 

and smoking-

related items such 

as cigarettes. 

Neutral: Neutral 

pictures (i.e. a person 

with pen in mouth, a 

hand holding a 
paintbrush and neutral 

items such as pens). 

Assessment: Before and after fMRI. 

Scale: Questionnaire for Smoking Urges 

(QSU). 

Results: Control smokers had significantly 

greater increase of craving than smokers 
with schizophrenia after fMRI 

(schizophrenic patients were not included 

in our meta-analysis). 

1.5 hours Smoking 
9.5 ± 5.2 

pack years 
None NST 

Myrick et 

al. 2008 
Alcohol 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Block. 

 

Participants were 

instructed to watch 

and attend to the 

stimuli. 

DA:24 

 

Sex 

DA: 18 men, 6 women 
 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than alcohol abuse 

or dependence 

 

Socio-economic status 

DA 

Education: 13.25 years 
(± 2.07) 

 

Alcohol: Alcohol-

related pictures 

(i.e. wine, beer, 

spirits). 

Non-alcoholic 

beverages: Pictures of 

non-alcoholic 

beverages. 

Control: Pictures 

matching the alcohol 

cues in color and hue 

but lack any object 

recognition. 

Assessment: During fMRI. 

Scale: Alcohol craving was assessed by 

means of a VAS ranging from 0 [No 

craving at all] to 100 [Severe craving] after 

each block. 

Results: Placebo-treated participants 

reported higher craving compared to both 

participants treated with the combination of 

naltrexone and ondansetron hydrochloride 

and social drinking controls. 

Not specified Ingestion 
Not 

specified 

Not 

specified 
NST 

Myrick et 

al., 2004 
Alcohol 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Block. 

 

Participants were 

instructed to watch 

DA: 10 

HC: 10 

Sex 

DA: 8 men, 2 women 

HC:8 men, 2 women 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

Alcohol: Alcohol-

related pictures. 

Control: Non-

alcoholic beverage 

pictures. 

Assessment: Before and during fMRI. 

Scale: Obsessive Compulsive Drinking 

Scale (OCDS) before scan and a VAS [0-

100 mm] for real-time craving after each 

block. 

Results: At baseline, the alcoholic group 

reported a higher OCDS score compared to 

24 hours 

(minimum) 
Ingestion 

Not 

specified 

Not 

specified 
NST 
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and attend to the 

stimuli. 

other than alcohol abuse 

or dependence 

(excluding caffeine). 

 

Socio-economic status 

DA 

Education: 15.15 years 

(± 1.73) 

 

HC 
Education: 16.30 years 

(± 1.57) 

 

DA 

Race: 7 Caucasian 

 

HC 

Race: 10 Caucasian 

 

the control group, and alcoholic subjects 

showed higher ratings of craving during 

viewing of alcohol pictures compared to 

non-alcoholic and control pictures. 

Park et al., 
2007 

Alcohol 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Block. 

 
Participants were 

instructed to watch 

and attend to the 

stimuli, and to indicate 

their craving levels 

after each block. 

DA: 9 
HC: 9 

Sex 
DA: 8 men, 1 woman 

HC:7 men, 2 women 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than alcohol abuse 

or dependence 

 

Socio-economic status 
DA 

Education: 14.00 years 

(± 1.25) 

 

HC 

Education: 12.9 years (± 

3.5) 

 

DA and HC: never 
married 

 

Alcohol: Alcohol-

related pictures 
(Korean beer and 

mild liquor). 

Control: Duplications 
of liquor pictures with 

blurred distortions. 

Assessment: Before and after the sip of 

alcohol (before fMRI), during fMRI. 

Scale: Obsessive Compulsive Drinking 

Scale (OCDS) before scan (pre- and post-

sip), and a one-item Likert scale (range 
from 1 to 7 points) before and after scan. 

Results: Alcohol-dependent individuals 

had higher craving levels than controls pre- 

and post-sip. Alcoholic subjects showed 

higher levels of craving during visual cue 

compared with controls. 

24 hours 
(minimum) 

Ingestion 
Not 

specified 
Cigarette

s 
NST 

Potenza et 

al., 2012 
Cocaine 

- Imaging: fMRI. 

- Modality: Imagery. 

- Design: Block. 

 
Participants were told 

to mentally reenact 

individualized drug-

associated scripts and 

neutral relaxing scripts 

were generated in 

agreement with the 

clinical interview 

session. 

DA: 30 

HC: 36 

 

Sex 

DA: 14 men,16 women; 

HC: 18 men, 18 women. 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 
other than cocaine abuse 

or dependence, with the 

exception of alcohol or 

tobacco dependence. 

 

Socio-economic status 

Education: 

• men: 12.1 years 

(± 1.8); 

• women: 12.6 

years (± 1.1). 

Cocaine: 

Involved 

descriptions of 

anticipation and 
consummatory 

phases of 

substance use 

(e.g., being at a 

bar and being 

offered cocaine, 

using cocaine 

with a drug-using 

buddy). 

Stress: Including 

familial conflicts and 

work-related stress. 

Neutral: Including 

resting on a beach or a 

fall day in the park. 

Assessment: During scanning, pre- and 
post-trial. 

Scale: Likert scale ranging from 0 to 10. 

Results: Significant higher craving (and 

anxiety) ratings increase in cocaine scripts 

in cocaine addicted individuals compared 

to comparison subjects. 

2 weeks 

(minimum) 
Not specified 

9.85 years 

(averaged 

between 

males and 

females) 

Cigarette

s, 

alcohol 

TS 

(inpatient 

treatment) 
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Prisciandaro 

et al., 2013a 
Cocaine 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 
- Design: Block. 

 

Participants were 

instructed to watch 

and attend to the 

stimuli. 

DA: 30 

 

Sex 

DA: 

• with cocaine 

positive Urine 

Drug Screen 

(UDS+): 5 men, 1 

woman; 

• with cocaine 

negative Urine 

Drug Screen 

(UDS-): 20 men, 

4 women. 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 
other than cocaine abuse 

or dependence. Patients 

were excluded if they 

met DSM-IV criteria for 

non-cocaine substance 

dependence (except 

caffeine, nicotine, 

marijuana or alcohol). 

 

Socio-economic status 

Employment: 

• UDS+: 1 

employed, 5 

unemployed; 

• UDS-: 2 

employed, 22 

unemployed. 
 

Education: 

• UDS+: 4 

graduated from 

high school, 2 

didn’t; 

• UDS-: 21 
graduated from 

high school, 3 

didn’t. 

 

Marital status: 

• UDS+: all 

married; 

• UDS-: 18 
married, 6 

unmarried. 

 

Cocaine: Pictures 
of cocaine and 

related objects 

(e.g., crack pipe). 

Neutral: Objects (e.g., 

furniture).                                                                                                                                                                                               
Control: Images that 

lack object recognition 

processes, but matched 

by color and 

brightness. 

Assessment: Inside MRI scanner, after 

each block.  

Scale: Rate their craving, from 0 [None] to 

4 [Severe], using a handpad.  
Results: Participants with positive urine 

screening at one-week follow-up did not 

significantly differ from those with 

negative urine screening at follow-up in 

terms of subjective craving to cocaine 

minus neutral cues during the cue-

reactivity task. 

Participants 

were required 

to provide 

negative 
alcohol breath 

and urine drug 

screens for all 

drugs of abuse 

expect 

marijuana. 

Not specified 
Not 

reported 

Cigarette
s, 

marijuan

a, 

alcohol 

TS 
(participati

ng in a 

clinical 

trial) 
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Prisciandaro 

et al., 2013b 
Cocaine 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Block. 

 

Subjects were 

instructed to look at 
the pictures and to rate 

their craving. 

DA: 25 

 

Sex 

DA: 

• patients treated 

with d-cycloserine 

(DCS): all men; 

• patients treated 

with placebo: 13 
men, 2 women. 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than cocaine abuse 

or dependence. Patients 

were excluded if they 

met DSM-IV criteria for 
non-cocaine substance 

dependence (except 

caffeine, nicotine, 

marijuana or alcohol). 

 

Socio-economic status 

Education: 

• patients treated 

with d-cycloserine 
(DCS): 9 

graduated from 

high school, 1 

didn’t; 

• patients treated 

with placebo: 13 

graduated from 

high school, 2 
didn’t. 

 

Marital status: 

• patients treated 

with d-cycloserine 

(DCS): 1 married, 

9 unmarried; 

• patients treated 

with placebo: 4 

married, 11 

unmarried. 

 

Cocaine: 

Fourteen of the 30 

pictures contained 

both cocaine and 

cocaine 

paraphernalia 

(e.g., lighter, 

crack pipe, rolled 

paper money, 

razor), 12 
contained cocaine 

only, and 4 

depicted cocaine 

use. 

Neutral: Pictures of 

neutral objects (e.g. 

furniture). 

Assessment: During the task, after each 

block using a handpad. 

Scale: On a scale ranging from 0 [None] to 

4 [Severe].  

Results: Higher craving during cocaine 

versus neutral pictures. No significant 
change in craving pre- to post-fMRI. 

72 hours Not specified 

Cocaine 

dependenc

e onset: 

33.5 years 

Mean age: 

48.8 years 

Cigarette

s, 

marjuana 

TS 

(participati

ng in a 

clinical 

trial) 

Prisciandaro 

et al., 2014 
Cocaine 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 
- Design: Block. 

 

Participants were 

instructed to watch 

and attend to the 

stimuli.  

DA: 33 

 

Sex 

DA: 33 men, 5 women. 

 

Co-occurring disorders 
No other axis I 

psychiatric condition 

other than cocaine abuse 

or dependence. Patients 

were excluded if they 

met DSM-IV criteria for 

non-cocaine substance 

dependence (except 

Cocaine: Pictures 
of cocaine and 

related objects 

(e.g., crack pipe). 

Neutral: Objects (e.g., 

furniture)                                                                                                                                                                                               
Control: Images that 

lack object recognition 

processes, but matched 

by color and 

brightness. 

Assessment: Inside MRI scanner during the 

task, after each block. 
Scale: Rate their craving, from 0 [None] to 

4 [Severe], using a handpad.  

Results: Subjective craving was 

significantly higher following cocaine 

pictures vs neutral objects blocks. 

72 hours Not specified 

TS = 18.11 

± 9.31 
years 

NST = 

17.5 ± 5.79 

years 

Cigarette

s 

TS 
(outpatient 

treatment) 

and NST 
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caffeine, nicotine, 

marijuana or alcohol). 

 

Socio-economic status 

Education: 18 attended 

college, 20 didn’t. 

 

Marital status: 7 married, 

31 unmarried. 

 

Ray et al., 

2015 
Cocaine 

- Imaging: fMRI. 

- Modality: Visual 

(Videos). 

- Design: Block. 

 

Participants were 

instructed to watch 

and attend to the 
stimuli. 

DA: 20 

HC: 17 

Sex 

DA: 15 men, 5 women; 

HC: 13 men, 4 women. 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than cocaine abuse 

or dependence. 
 

Socio-economic status 

Not reported. 

Cocaine: Pictures 

of smokable 

cocaine, 

paraphernalia, and 

people smoking 

cocaine. 

Neutral: Nature 

scenes. 

Assessment: Inside MRI scanner, after the 

presentation of the first cocaine cue and 
neutral cue blocks. Craving ratings were 

collected also post-fMRI using the 10-item 

CCQ-Brief. 

Scale: Three-item version of the cocaine-

craving questionnaire (CCQ-Brief). The 

items appeared one at a time on the screen, 

and participants had to press a button to 

rate their craving for cocaine on a seven-

point scale from 1 [Strongly Disagree] to 7 

[Strongly Agree]. 
Results: During the cue exposure task DA 

showed higher craving ratings to the 

cocaine cues compared to HC. Post-fMRI 

ratings showed that DA had a higher 

craving rating compared to HC. 

72 hours 

Smoking 

(freebase, 

crack) 

16 years 

(range:3-

34) 

Cigarette

s, 

alcohol 

NST 

Tabatabaei-

Jafari et al., 

2014 

Heroin 

 
- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Block. 

 

Participants were 

instructed to watch 

and attend to the 

stimuli. 

DA 

 

MMT:20 ABT:20 

 

HC:20 

Sex 

DA: all men; HC: all 

men 

 
Co-occurring disorders 

No other axis I 

psychiatric condition 

other than heroin abuse 

or dependence. Patients 

were excluded if they 

had a history of 

multidrug use except 

nicotine, alcohol, and 

benzodiazepines. 
 

Socio-economic status 

Not reported 

Heroin: Heroin-

related pictures. 

Neutral: Neutral drug-

unrelated pictures. 

Assessment: Before and after fMRI. 

Scale: Desires for Drugs Questionnaire 

(DDQ): answer the questions on a 7-point 

Likert scale. 

Results: No significant change in craving 

levels after cue presentation in either 

group. 

Abstinence: 9.2 

months 

Methadone: 

11.61 months 

Smoking 

Abstinence

: 11.35 

years 

Methadone

: 11.05 

years 

Methado

ne, 

cigarette

s 

TS 

(recruited 

from drug 

rehabilitati

on center) 
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Tang et al., 

2012 
Nicotine 

- Imaging: fMRI. 

- Modality: Visual 

(Videos). 

- Design: Block. 

 
Participants were 

instructed to watch 

and attend to the 

stimuli. 

DA Met-Fast:15 

DA Met-Slow:16 

Sex 

DA Met-Fast: 11 men, 4 

women 

DA Met-Slow: 12 men, 

4 women 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than nicotine abuse 
or dependence. 

 

Socio-economic status 

Race 

DA Met-Fast 

• 8 

Caucasian 

• 3 Asian 

• 4 

Latin/Hisp

anic 

DA Met-Slow 

 

• 8 

Caucasian 

• 6 Asian 

• 2 

Latin/Hisp

anic 

 

 

Nicotine: 

Smoking-related 

videos (i.e. 

lighting 
cigarettes, 

smoking while 

socializing). 

Neutral: Neutral 

videos (except for the 

absence of smoking 

cues, i.e. getting hair 

cut), similar in terms 

of facial exposure, 
movement, and 

physical 

characteristics of the 

actors and did not 

include audio. 

Assessment: Before and during fMRI. 

Scale: The craving questionnaire consisted 

of 3 items taken from a larger battery 

(Tiffany and Drobes, 1991); participants 

rated their agreement with each question by 

means of a Likert scale  ranging from 0 

[Not at all] to 20 [Extremely]. 

Results: Craving scores were calculated by 
subtracting craving levels before scanning 

from craving after scanning. There were no 

significant differences between fast and 

slow nicotine metabolism groups, and 

normal and reduced genotype groups in 

changes in craving scores. 

Smoking as 

usual 
Smoking 

12 ± 5.2 

years 
 

None NST 

Tomasi et 

al., 2015 
Cocaine 

- Imaging: fMRI. 

- Modality: Visual 

(Videos). 

- Design: Block. 

 

Participants were 

instructed to watch the 
screen continuously 

and to press a response 

button with their right 

thumb whenever they 

liked the features of 

the scene. 

DA: 20 

Sex 

DA: all men. 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 
other than cocaine abuse 

or dependence. 

 

Socio-economic status 

Not reported. 

Cocaine: Scenes 

that simulated 

purchase, 

preparation, and 
smoking of 

cocaine. 

Neutral: Scenes about 

routine 

administrative/technic

al work.  

Food: Scenes 

portraying scenes of 

serving and 
consuming ready to 

eat foods (i.e., 

meatballs, pasta, 

omelets, burger, and 

pancakes). 

Assessment: During fMRI. 

Scale: The more the subjects pressed the 

response button during the food, cocaine, 

and neutral epochs the more they liked the 

features displayed in the respective scenes. 

The number of button presses was used to 

compute relative valences in a scale from 0 
to 10. 

Results: The valences were lower for 

neutral cues than for food or cocaine cues 

but did not differ for food and cocaine 

cues. 

Positive urine 

testing (cocaine 

use within 72 
hours) 

Smoking 

(freebase, 

crack) and/or 
intravenously 

19.4 years 

(computed 

with 

“Enaguge 

Digitalizer

”(Mitchell 
et al.) from 

the upper 

plot in 

Figure 8) 

Cigarette

s 
NST 

Volkow et 

al., 2010 
Cocaine 

- Imaging: PET 

(18FDG). 

- Modality: Visual 

(Videos). 

- Design: Block. 

 

Participants are 

instructed to look at 

the videos and rate 
their craving. 

DA: 24 

 

Sex 

DA: 21 men; 3 women. 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than cocaine abuse 

or dependence. 

 
Socio-economic status 

Education: 13 years (± 

2). 

Cocaine: 

Cocaine-cue 

video with no 

instruction to 

inhibit craving 

responses, 

portraying scenes 

that simulated 

purchase, 

preparation, and 
smoking of 

cocaine. 

Baseline: Eyes open, 

no video exposure. 

Assessment: Pre and post video exposure. 

Scale: Visual analogue scale ranging from 

1 to 10 for self-reports of “cocaine craving” 

and CCQ-brief. 

Results: Significant increase of craving 

from pre to post cocaine video exposure in 

the no-inhibition condition. 

2.5 ± 2 days 

Smoking 

(freebase, 

crack) 

17 ± 6 

years 

Cigarette

s 
NST 
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Vollstädt-

Klein et al., 

2010 

Alcohol 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Block. 

 

Participants were 

instructed to watch 

and attend to the 
stimuli. 

DA:21 

 

Sex 

DA: 12 men, 9 women 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than alcohol abuse 

or dependence (and 

tobacco) 

 
Socio-economic status 

Not reported 

 

Alcohol: Alcohol-

related pictures 

(i.e. wine, beer, 

spirits). 

Control: Neutral 

stimuli taken from the 

International Affective 

Picture Series (IAPS) 

and were matched for 

color distribution and 

complexity to the 

alcohol cues. 

Assessment: During fMRI after each block. 

Scale: Alcohol craving was assessed by 

means of a VAS ranging from 0 [No 

craving at all] to 100 [Severe craving] after 

each block. 

Results: VAS results not reported.  

1.2 ± 0.9 days Ingestion 
Not 

specified 

Not 

specified 
NST 

Vollstädt-

Klein et al., 

2011 

Nicotine 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Block. 

 

Participants were 

instructed to watch 
and attend to the 

stimuli. After the 

scanning session 

participants performed 

an unannounced 

recognition task, to 

test whether they paid 

sufficient attention to 

the stimuli during the 

fMRI session. 

DA:22 

HC:21 

Sex 

DA: all men 

HC: all men 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than nicotine abuse 

or dependence 

 

Socio-economic status 

Not reported 

 

 

Nicotine: 
Smoking-related 

advertisements 

taken from print 

media. 

Neutral: Neutral 

advertisements taken 

from print media (i.e. 
areas household, 

personal hygiene and 

clothing) and matched 

to tobacco advertisings 

regarding complexity, 

colors and content. 

Assessment: During fMRI. 

Scale: After each block, the participants 
were asked to rate their craving on a VAS 

ranging from 0 [No craving at all] to 100 

[Extreme craving]. 

Results: Smokers reported substantially 

more subjective craving after presentation 

of tobacco advertisement (mean 􏰓= 41.3) 

􏰓 than after control advertisement (mean = 

27.8). 

Prior to 

scanning 
Smoking 

14.6 ± 7.2 

years 

 

None NST 

Wang et al., 

2014 
Heroin 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 
- Design: Event-

related. 

 

Participants were 

instructed to watch 

and attend to the 

stimuli. 

 
DA 

A: 15 

B: 15 

 

HC: 17 

Sex 

DA: all men; HC: all 

men 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than heroin abuse 

or dependence, except 
nicotine. 

 

Socio-economic status 

DA education: 

• A: 9.2 years 

(± 1.6) 

• B: 9.47 years 

(± 2.7) 
 

HC education: 10.6 ± 2.4 

 

Heroin: Images 
of heroin 

injection, 

preparation, and 

paraphernalia. 

Neutral: Images of 

household objects or 

chores. 

Assessment: Before and after fMRI. 

Scale: Assessment of current craving using 
a visual analogue scale ranging from 0 to 

10. Results: No significant change in 

craving levels after cue presentation in 

either group. No significant different 

craving levels between the groups. 

Group A: 7.92 

months 

Group B: 29.62 

months 

Not specified 

Group A: 
48.6 

months 

Group B: 

49.64 

months 

Methado

ne 

TS (out-

patient 

treatment) 
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Wang et al., 

2015 
Heroin 

- Imaging: fMRI. 
- Modality: Visual 

(Pictures). 

- Design: Event-

related. 

 

Participants were 

instructed to watch 

and attend to the 

stimuli. 

 

 

 

DA: 32 

Sex 

DA: 17 men, 15 women. 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than heroin abuse 

or dependence with the 

exception of opioid and 

nicotine dependence, 
non-dependent cocaine 

abuse and depressive 

disorders. 

 

Socio-economic status 

Education: 13.2 years 

(±1.9) 

 

Race: 

• 28 

Caucasian 

• 2 African 

American 

• 2 Asian 

Heroin: Images 

of heroin 

injection, 

paraphernalia and 

preparation. 

Neutral: Household 

objects or chores, 

graphically and 

contextually matched 

to the heroin-related 

stimuli. 

Assessment: Pre and post cue reactivity 

task. 
Scale: Craving for heroin were assessed on 

a scale ranging from 0 [Not at all] to 9 

[Extremely]. 

Results: A significant increase of craving 

scores was observed across treatment 

groups. The magnitude of cue-induced 

craving was significantly reduced in the 

treatment group after the last drug 

administration. 

Not specified 

(fMRI after 

detoxification) 

Intravenous 
Not 

specified 

Not 

specified 

TS 

(participati

ng in a 

clinical 

trial) 

Wei et al., 

2019 
Heroin 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Event-
related. 

 

Participants were 

instructed to watch 

and attend to the 

stimuli. 

 

 
 

DA MMT:18 

PA:23 

 

HC: 20 

Sex 

DA: all men; HC: all 
men 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than heroin abuse 

or dependence. Patients 

were excluded if they 

met a drug abuse history 

other than heroin 
dependence. 

 

Socio-economic status 

HC 

Education: 11.1 years (± 

2.3) 

 

MMT 

Education :10.3 years 
(±2.2) 

 

PA 

Education :10.4 years 

(±2.0) 

Heroin: Images 
of heroin 

injection, 

paraphernalia and 

preparation. 

Neutral: Household 

objects or chores. 

Assessment: Pre and post fMRI scan. 

Scale: Craving was assessed using a Likert 

scale ranging from 0 [Least craving] to 10 
[Strongest craving] answering to the 

question “To what extent do you feel the 

urge to use heroin?”.  

Results: No significant increase in craving 

was observed in the short- nor long-

abstinence groups. 

Methadone: 5.6 
months 

Protracted 

abstinence: 6 

months 

Not specified 

Methadone

:88.86 
months 

Protracted 

abstinence: 

99.3 

months 

Cigarette

s 

TS 
(recruited 

from drug 

rehabilitati

on center) 

Wrase et al., 
2007 

Alcohol 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Event-

related. 
 

Participants were 

instructed to passively 

view the stimuli. 

DA:13 
HC:16 

Sex 

DA: all men HC: all men 

 

Co-occurring disorders 

No other axis I 
psychiatric condition 

other than alcohol abuse 

or dependence 

 

Socio-economic status 

Alcohol: Alcohol-
related pictures. 

Control: Neutral 

stimuli all inanimate 

and matched for 
complexity and color 

with the alcohol cues. 

No assessment of cue-induced craving. 
11.5 ± 7.5 days 
(range: 5-37) 

Ingestion 
12.69 ± 

7.09 years 
Cigarette

s 

TS (in-

patient 
treatment) 
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Participants had to 

confirm every viewed 

picture with a button 

press with the right 

thumb. 

DA 

Education: 9.06 years (± 

1.69) 

 

HC 

Education: 11.69 years 

(± 1.54) 

 

Xiao et al., 

2006 
Heroin 

- Imaging: fMRI. 

- Modality: Visual 
(Pictures). 

- Design: Block. 

 

Participants were 

instructed to watch 

drug-related and 

neutral pictures 

passively for future 

recognition. Eye-

tracking to ensure 
attention to the 

stimuli. 

DA: 14 

 

Sex 
DA: all men. 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than cocaine abuse 

or dependence. 

 

Socio-economic status 
Not reported. 

 

Heroin: Drug-

related pictures. 

Neutral: Neutral 

scenes pictures. 

Assessment: Only pre-fMRI interview. 

Scale: Craving measured on a scale 

ranging from 1 to 5. 

Results: The interview indicated that 

participants showed a moderate (3.5) level 

of craving. 

8.5 hours Not specified 

7.1 years 

(range: 2-

16) 

Not 

specified 

TS 

(in-patient 

treatment) 

Yalachkov, 

Kaiser, 
Naumer, 

2009 

Nicotine 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Block. 
 

Participants were 

instructed to watch 

and attend to the 

stimuli. 

DA:15 
HC:15 

Sex 

DA: 6 men, 9 women 

HC: 6 men, 9 women 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than nicotine abuse 
or dependence. 

 

Socio-economic status 

Not reported 

 

 

 

 

Nicotine: 

Smoking-related 

pictures (i.e. 

images of humans 

smoking 
cigarettes) taken 

from the 

International 

Smoking Image 

Series (ISIS). 

Neutral: Neutral 

pictures (i.e. images of 

humans holding pens 

or glasses in their 
hands and mouths) of 

the same size as 

smoking-related 

pictures. 

No assessment of cue-induced craving. 
Smoking as 

usual 
Smoking 

Not 
specified 

Not 
specified 

NST 

Zanchi et 

al., 2015 
Nicotine 

- Imaging: fMRI. 

- Modality: Visual 

(Videos). 

- Design: Block. 

 

Participants were 

instructed to watch 

and attend to the 

stimuli. 

DA:14 

HC:18 

Sex 
DA: 4 men, 10 women 

HC: 7 men, 11 women 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than nicotine abuse 

or dependence. 

 

Socio-economic status 

Not reported 

Nicotine: 
Smoking-related 

videos filmed in a 

first-person point 

of view (i.e. 

writing a letter 

and smoking a 

cigarette or 

standing outside 

of a nightclub 

smoking a 
cigarette). 

Neutral: Neutral 

videos matched for 

similar content except 

for the absence of 

smoking cues. 

Assessment: During fMRI. 

Scale: After each video participants were 

asked to rate the degree of craving by 

means of a Likert scale ranging from 0 [No 

craving] to 7 [High craving]. 

Results: Smoking videos induced higher 

craving in smokers than in non-smokers. 

15 minutes Smoking 
29.3 ± 6 

years 

Not 

specified 
NST 

Zeng et al., 

2018 
Heroin 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Block. 

 

Participants were 

instructed to watch 

drug-related and 

neutral pictures (in 
isolation, with tool 

DA: 37 

HC: 29 

 

Sex 

DA: 24 men, 13 women; 

HC: 19 men, 10 women. 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than cocaine abuse 
or dependence. 

Heroin: Drug 

images containing 

only the drug 

itself, drug use 

tool images 

consisting of 

pictures of a 

syringe and other 

tools for using 
heroin and drug 

Neutral: Including 

granular material 

pictures, daily life 

manipulable object 

pictures and pictures 

of people engaged in 

activities using 

manipulable objects. 

Assessment: Pre- and post-fMRI. 

Scale: Visual Analogue Scale ranging from 

0 to 7 to rate the current craving for heroin. 

Results: No significant increase in craving 

ratings from pre- to post-fMRI. 

42.11 ± 21.65 

months 
Nor specified 

21.32 ± 

47.32 

months 

Cigarette

s, 

alcohol 

TS 

(recruited 

from drug 

rehabilitati

on center) 
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present, with body 

parts engaged in drug-

taking actions) and to 

press a button to 

declare that they have 

seen the picture 

clearly. 

 

Socio-economic status 

DA 

Education: 9.83 years (± 

1.8). 

 

HC 

Education: 10.41 years 

(± 1.16). 

 

using action 

images containing 

people engaged in 

the activities of 

using tools to 

absorb or inject 

heroin. 

Zhang et al., 
2018 

Cocaine  

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Block. 

 
Participants were 

asked to look at the 

pictures and think 

about how they may 

relate to the scenes. 

DA: 23 

Sex 

DA: 17 men, 6 women. 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 
other than cocaine abuse 

or dependence. 

 

Socio-economic status 

Not reported. 

Cocaine: Pictures 

displaying people 

preparing and 
snorting/smoking 

cocaine. 

Neutral: Scenes of 

people performing 

various acts with 
similar color and 

complexity as 

inspected visually. 

Assessment: Inside scanner, at the end of 

each block. 

Scale: After each block it was assessed by 

means of visual analogue scale ranging 

from 0 [No craving] to 10 [Highest craving 
ever]. 

Results: DA reported higher craving when 

viewing cocaine pictures as compared with 

viewing neutral pictures. 

12.1 ± 5.8 days Not specified 
16 ± 9.7 

years 
Cigarette

s 

TS 

(inpatient 
treatment) 

Zijlstra et 

al., 2009 
Heroin 

- Imaging: fMRI. 

- Modality: Visual 

(Pictures). 

- Design: Block. 

 

 

Participants were 

instructed to watch 

and attend to the 
stimuli. 

 

 

 

 

 

DA: 12 

Sex 

DA: all men 

 

Co-occurring disorders 

No other axis I 

psychiatric condition 

other than heroin abuse 

or dependence. 

 

Socio-economic status 
Not reported 

 

Heroin: Pictures 

depicting drug 

preparation and 

objects used for 

the preparation 

for a dose of 

heroin for 

inhalation. 

Baseline: Black 

screen with a centered 

white crosshair. 

Assessment: Desires for Drugs 

Questionnaire (DDQ) at baseline during the 

intake, and at the end of fMRI.                                                                                                                                                                                                                         

Scale: DDQ for desire and intention to take 

drugs: 7 questions with response on a 7-

point Likert scale. 

Results: No significant increase of heroin 

craving was observed after cue 
presentation. 

8.8 weeks Intranasal 
16 ± 6.8 

years 

Cigarette

s 

TS (in-

patient 

treatment) 

 

Table S3.1 | Studied included in the meta-analysis. Brief description of the experimental paradigms included and of the population involved in the included 

studies. The column ‘Cue-reactivity paradigm’ contains information about the imaging modality, type of stimuli used (pictures, videos, imagery scripts), fMRI 

task design (block, event-related), and instructions given to the participants. The columns ‘Sample size’ and ‘Sample characteristics’ report basic information 

about the sample (number of participants, sex distribution, co-occurring disorders, and socio-economic status). The columns ‘Drug cue’ and ‘Baseline condition’ 

contain information about the content of the experimental and control stimuli, respectively (only [cue > baseline] contrasts were included). The column ‘Cue-
induced craving assessment’ contains a summary of the craving assessments and eventual changes in craving due to the cue-reactivity paradigm. The column 

‘Abstinence’ reports the average time (if not otherwise specified) of abstinence before the fMRI session. The column ‘Main route of administration’ contains 

information about the preferred route of administration of the substance. The column ‘History of abuse’ report the average (if not otherwise specified) time of 

substance use; pack years = numbers of packs of cigarettes smoked per day * number of years smoking. The column ‘Treatment status’ reports whether 

participants were treatment-seeking (TS) or not-seeking treatment (NST) at the time of the study. fMRI, functional Magnetic Resonance Imaging; PET, Positron 

Emission Tomography; VAS, Visual Analogue Scale. Taken from: Devoto et al. Transl. Psych.
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2.2. Table S3.2 

 
  Left hemisphere Right hemisphere   CoS TR CoSxTR 

Cluster 

ID 
Centroid label (BA) 

X 

(SD) 

Y 

(SD) 

Z 

(SD) 

X 

(SD) 

Y 

(SD) 

Z 

(SD) 
N 

# of 

contributing 

studies 

L IL TS NST   

2 Putamen    23 

(2.4) 

5 

(1.9) 

-4 

(5.6) 
8 8 .316 .881 .664 .618 .313 

6 
Superior medial 

frontal gyrus (10) 

-4  

(9) 

58 

(3.7) 

24 

(4.9) 
   9 3 .062 .987 .931 .206 1 

7 Amygdala (34)    25 

(3.8) 

1 

(3.5) 

-20 

(2.8) 
9 5 .891 .313 .559 .707 1 

8 Hippocampus (35)    23 

(5.4) 

-10 

(2.5) 

-18 

(6.1) 
14 8 .928 .197 .771 .419 1 

18 Precuneus (23)    9 

(3.6) 

-52 

(4.9) 

35 

(5.2) 
8 7 .316 .881 .967 .13 .313 

19 
Middle temporal 

gyrus (37) 
   52 

(3.6) 

-57 

(3.4) 

1 

(6.2) 
9 5 .891 .313 .293 .901 1 

20 
Inferior temporal 

gyrus (37) 
   51 

(5.2) 

-66 

(3.2) 

-6 

(4.6) 
22 10 .861 .267 .239 .879 .581 

21 
Inferior occipital 

gyrus (19) 

-46 

(4.5) 

-70 

(3.8) 

-8 

(3.9) 
   17 4 .616 a .583 a .552 .645 .102 

22 
Inferior temporal 

gyrus (37) 

-51 

(3.4) 

-63 

(4.2) 

-5 

(5.8) 
   17 8 .995 .027 b .076 .977 1 

27 Caudate 
-10 
(3) 

5 
(2.9) 

7 
(4.6) 

   12 9 .964 .134 .121 .968 1 

28 Caudate 
-13 

(6.7) 

17 

(3.8) 
2 (4)    9 7 .687 .582 .794 .441 .032 b 

29 Ventral striatum (25)    12 

(3.6) 

-1 

(3.2) 

-13 

(2.8) 
8 5 .972 .154 .382 .858 1 

30 Nucleus accumbens    8 

(3.4) 

8 

(5.6) 

-6 

(6.1) 
19 10 .986 .049 b .597 .59 1 
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37 Precuneus (23) 
-9 

(3.7) 

-57 

(3.6) 

33 

(3.4) 
   12 8 .098 .969 .742 .474 .052 

38 
Posterior cingulum 

(23) 
-4 (3) 

-50 

(4.9) 

26 

(3.7) 
   19 15 .735 .443 .41 .762 .225 

42 
Inferior parietal 

lobule(40) 
   37 

(4.7) 

-50 

(5.2) 

51 

(4) 
16 10 .74 .454 .627 .576 .513 

47 
Middle occipital 

gyrus (19) 
   49 

(3.7) 

-77 

(4.9) 

4 

(4.3) 
6 5 .7 a .626 a .607 .716 1 

50 
Posterior cingulum 

(23) 

-4 

(6.8) 

-32 

(4.6) 

31 

(3.3) 
   12 10 .447 .764 .742 .474 1 

51 

Inferior frontal 

gyrus, pars 

opercularis (44) 

   47 

(3.4) 

9 

(2.1) 

25 

(4.6) 
10 9 .989 .076 .461 .779 1 

60 
Middle cingulum 

(24) 
   1 

(4.4) 

3 

(8.7) 

34 

(4.4) 
11 8 .947 .181 .165 .953 1 

61 Cuneus 
0 

(4.3) 

-71 

(3.4) 

29 

(2.4) 
   5 3 .252 .94 .934 .266 1 

62 

Calcarine 

scissure/Precuneus 

(17/30) 

0 

(6.3) 

-59 

(5.1) 
15 (4)    12 6 .995 .036 b 

.032 

b 
.996 1 

68 Lingual gyrus (27) 
-15 

(5.3) 

-35 

(4.8) 

-6 

(5.3) 
   10 9 .515 a .728 a .461 .779 1 

69 
Midbrain (ventral 

tegmental area) 

-5 

(2.8) 

-23 

(6.7) 

-9 

(4.7) 
   12 9 .995 .036 b 

.032 

b 
.996 .438 

82 Hippocampus (30)    17 (6) 
-24 

(3.3) 

-7 

(6.3) 
11 10 .36 .833 .982 .067 .343 

92 
Medial orbitofrontal 

gyrus (10) 

-5 

(5.6) 

52 

(4.7) 

-4 

(4.9) 
   15 11 .47 .726 .701 .5 .006 c 

95 Caudate    13 (5) 
14 

(5.4) 

9 

(5.8) 
21 17 .923 .174 .153 .934 1 

96 
Anterior cingulate 

cortex (32) 

-5 

(5.9) 

45 

(4.5) 

18 

(5.8) 
   20 9 .622 a .562 a .087 .97 .54 
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97 
Hippocampus/amyg

dala (35/28) 

-21 

(4.2) 

-5 

(3.7) 

-21 

(3.3) 
   17 9 1 .005 c .076 .977 1 

101 Nucleus accumbens -7 (4) 
11 

(4.9) 

-10 

(5.3) 
   18 10 .934 .165 .293 .854 .506 

103 
Perigenual anterior 

cingulate cortex (32) 
   2 

(4.5) 

40 

(3.5) 
5 (7) 16 12 .344 .817 .908 .204 .045 b 

107 
Inferior occipital 

gyrus (19) 
   37 (5) 

-78 

(4.2) 

-12 

(3.3) 
10 8 .989 .076 .221 .932 1 

114 
Dorsal anterior 

cingulate cortex (24) 

0 

(2.3) 

29 

(4.2) 

22 

(6.1) 
   13 7 .003 c 1 .999 .004 c 1 

116 Thalamus    1 

(3.6) 

-11 

(3.7) 

4 

(4.7) 
24 10 .913 .181 .158 .927 .04 b 

 

Table S3.2 | Results of the cluster composition analysis for all the clusters overlapping with the ALE map. For each cluster, the following 

information are reported: cluster ID, anatomical label according to the AAL (and Brodmann area, BA), centroid coordinates (standard deviation) 

in MNI, number of contributing foci, number of contributing studies, p-values for the binomial tests (class of substances, treatment status) and for 

the Fisher’s exact tests (class of substances-by-treatment status interactions). a, undifferentiated clusters; b, p < .05; c, p < .01. 
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2.3. Table S3.3 

 

Table S3.3 | Full list of words identified by Neurosynth. Full list of 100 terms identified by Neurosynth for all the CCA maps. Each term is clickable and 

redirects to the corresponding Neurosynth page.  
a, words considered for discussion. In brackets are semantic complements taken from the exploration of the papers contributing to the term.  

 

Undifferentiated  Class of substances  Treatment status  Class of substances-by-

treatment status 

Word r-value  Word r-value  Word r-value  Word r-value 

traits (personality) a 0.09  tools a 0.098  midbrain 0.098  engagement a 0.238 

medial prefrontal 0.088  ventral 0.089  substantia 0.09  cortex vmpfc 0.236 

mpfc 0.081  motivational a 0.078  gyrus cerebellum 0.082  vmpfc 0.23 

cingulate cortex 0.077  midbrain 0.076  periaqueductal 0.079  ventromedial prefrontal 0.188 

mentalizing a 0.075  anticipation a 0.076  parietal occipital 0.077  ventromedial 0.184 

beliefs a 0.074  nucleus accumbens 0.075  cortex precuneus 0.066  referential (self) a 0.161 

anterior cingulate 0.071  accumbens 0.072  dmn 0.056  mpfc 0.151 

medial 0.069  addiction a 0.072  aversive a 0.056  connectivity 0.15 

anterior 0.068  reward anticipation 

a 
0.071  reversal (learning) a 0.055  midline 0.141 

cortex acc 0.066  nucleus 0.07  network dmn 0.054  self referential 0.14 

cingulate 0.066  outcome a 0.069  pcc 0.052  cortex mpfc 0.138 

trait 0.064  hypothalamus 0.069  anticipatory a 0.052  cingulate cortex 0.138 

acc 0.063  ventral striatum 0.068  ventral tegmental 0.049  anterior cingulate 0.129 

craving a 0.059  substantia 0.068  hypothalamus 0.049  medial prefrontal 0.129 

cortex mpfc 0.058  striatum 0.066  tegmental 0.048  default mode 0.129 

visual stimuli a 0.057  motivation 0.066  heart (rate) a 0.047  default 0.128 
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contexts a 0.055  mesolimbic 0.064  precuneus 0.045  cingulate 0.122 

autobiographical a 0.053  subjective a 0.061  intense (emotion) a 0.043  medial 0.118 

moral (decision-

making) a 
0.052  behavior a 0.061  posterior cingulate 0.041  prefrontal cortex 0.117 

prefrontal cortex 0.051  monetary reward a 0.06  default mode 0.039  posterior cingulate 0.112 

emotion regulation a 0.051  reward 0.059  brainstem 0.038  network dmn 0.104 

stress a 0.05  complex a 0.058  episodic memory a 0.038  dmn 0.103 

prefrontal 0.049  lateral occipital 0.057  dopaminergic 0.038  functional connectivity 0.103 

cortex anterior 0.048  dopaminergic 0.057  default 0.037  pcc 0.099 

emotional 0.045  monetary 0.055  nucleus 0.037  cortex posterior 0.095 

oscillations a 0.045  gyrus cerebellum 0.054  episodic 0.036  anterior 0.092 

posterior cingulate 0.041  rewarding 0.054  autobiographical a 0.035  ventral striatum 0.091 

occipital cortex 0.039  behaviors 0.052  ventral 0.033  prefrontal 0.09 

personality 0.039  periaqueductal 0.051  cognitive emotional 

a 
0.032  acc 0.088 

object recognition a 0.039  parietal occipital 0.051  medial frontal 0.032  value a 0.085 

placebo a 0.039  probabilistic a 0.051  amnestic 0.03  rostral 0.083 

lateral occipital 0.038  ventral tegmental 0.05  thalamus 0.03  medial orbitofrontal 0.082 

attended a 0.037  tegmental 0.049  cortex pcc 0.029  rostral anterior 0.081 

occipital temporal 0.035  objects a 0.049  force a 0.028  reward a 0.079 

dorsal medial 0.035  object 0.048  anticipation 0.028  medial pfc 0.078 

abuse a 0.034  incentive delay a 0.048  junction tpj 0.028  cortex acc 0.076 

selective 0.033  rewards 0.047  fear a 0.026  traits (personality) a 0.074 

default mode 0.033  form a 0.047  reward a 0.026  rest 0.072 

dmn 0.032  incentive 0.044  cortex posterior 0.025  dorsal attention 0.07 

referential 0.032  sighted a 0.043  heart rate 0.024  ventral anterior 0.067 
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personality traits 0.032  cortex precuneus 0.043  mild cognitive a 0.023  personality 0.064 

mt 0.031  monetary incentive 0.042  striatum 0.023  choose a 0.063 

spectrum disorder 0.031  modality 0.042  resting state 0.022  cortex pcc 0.062 

preferences 0.031  visual motion 0.041  pain a 0.022  arousal a 0.062 

object 0.03  self report 0.041  tpj 0.022  striatum 0.061 

default 0.029  lexical 0.04  posterior 0.022  task positive a 0.058 

stream 0.029  abstract 0.038  medial 0.021  autobiographical a 0.058 

resting state 0.028  posterior 0.038  personal a 0.02  default network 0.055 

familiar 0.028  multisensory 0.038  sensation a 0.019  rewards 0.054 

social 0.027  aversive 0.037  motivational 0.019  monetary a 0.05 

resting 0.027  stream 0.037  autobiographical 

memory 
0.019  moral (decision-

making) a 
0.047 

passively 0.027  reversal 0.037  skin conductance 0.017  contexts a 0.044 

readers 0.026  dmn 0.036  painful 0.017  resting 0.043 

word pairs 0.026  striatal 0.036  autonomic 0.017  hubs 0.042 

ventral visual 0.026  reinforcement 0.036  midline 0.016  monetary incentive a 0.042 

mesolimbic 0.026  inferior temporal 0.035  rewards 0.016  expectations a 0.042 

chinese 0.025  network dmn 0.035  mesolimbic 0.015  resting state 0.041 

objects 0.025  money 0.034  reward anticipation 0.015  valence a 0.041 

encoding 0.025  occipitotemporal 0.034  retrosplenial cortex 0.014  remembering 0.04 

characters 0.025  anticipatory 0.034  vmpfc 0.014  risky 0.039 

emotion 0.024  medial lateral 0.033  basal ganglia 0.014  solving 0.039 

extrastriate 0.023  pcc 0.033  ganglia 0.014  nucleus 0.037 

parahippocampal 

gyrus 
0.023  value 0.032  video clips 0.014  striatal 0.037 

color 0.022  preferences 0.032  electrical 0.014  ventral medial 0.037 
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occipito temporal 0.022  vision 0.032  resting 0.012  personal 0.036 

visual cortex 0.022  risky 0.032  insular cortex 0.011  anticipation 0.036 

personal 0.021  risk taking 0.032  conditioning 0.011  motivational 0.036 

occipitotemporal 0.021  occipito temporal 0.031  subcortical 0.011  caudate 0.036 

insula anterior 0.021  sexual 0.03  mentalizing 0.01  thinking 0.035 

functional 

connectivity 
0.021  heart 0.03  nociceptive 0.01  gains 0.034 

gestures 0.02  early visual 0.03  memories 0.01  incentive 0.034 

orthographic 0.02  prediction error 0.029  striatal 0.009  dmpfc 0.034 

emotional valence 0.02  intense 0.029  retrosplenial 0.009  caudate nucleus 0.034 

medial frontal 0.02  familiar 0.029  ventromedial 0.008  cognitive emotional 0.033 

visual word 0.02  precuneus 0.028  neutral 0.008  mental states 0.033 

learning 0.019  delay 0.028  ventral striatum 0.008  retrosplenial 0.033 

occipital 0.019  reinforcement 

learning 
0.027  monetary 0.008  orbitofrontal 0.032 

category 0.019  dorsolateral pfc 0.026  cingulate cortex 0.007  nucleus accumbens 0.031 

parahippocampal 0.019  words 0.026  amygdala 0.007  social interactions 0.03 

self referential 0.018  action 0.026  nuclei 0.006  retrosplenial cortex 0.029 

reactions 0.018  recognition 0.026  noxious 0.006  thalamus 0.029 

word form 0.018  occipito 0.026  basal 0.006  dorsal striatum 0.028 

ratings 0.018  perceptual 0.025  medial prefrontal 0.006  intense 0.028 

learning task 0.017  posterior cingulate 0.025  cingulate 0.006  incentive delay 0.027 

matching 0.017  conceptual 0.025  prefrontal cortex 0.005  construction 0.027 

motion 0.017  word form 0.025  semantic 0.005  cortico 0.027 

visual motion 0.017  eating 0.025  vi 0.004  dopamine 0.027 

form 0.017  gambling 0.025  retrieval 0.004  accumbens 0.026 
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lobe mtl 0.017  avoidance 0.024  memory 0.003  memory retrieval 0.026 

network dmn 0.017  brainstem 0.024  prefrontal 0.002  sexual 0.025 

lobe 0.017  unfamiliar 0.024  insula 0.002  emotion 0.025 

valence 0.016  verbs 0.024  controls 0.001  rewarding 0.025 

temporal cortex 0.016  visual word 0.024  disorder 0.001  mesolimbic 0.025 

cortex hippocampus 0.016  default mode 0.024  chronic 0  risk taking 0.024 

tools 0.016  speakers 0.023  cerebral cortex 0  posterior 0.023 

mtl 0.016  episodic memory 0.023  questionnaire 0  regulate 0.022 

visual 0.016  default 0.022  reference 0  limbic 0.022 

pseudowords 0.016  dorsal striatum 0.022  categorization 0  confidence 0.022 

watching 0.015  languages 0.022  correction 0  losses 0.022 

visuo 0.015  animal 0.022  rt 0  autobiographical 

memory 
0.021 
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3. Supplementary Figures 

3.1. Figure S3.1 

 

 

Figure S3.1 | Paper selection strategy. Flowchart of the study search and selection process 

that led to the identification of 64 final studies.
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3.2. Figure S3.2 

 

 

Figure S3.2 | Results of the ALE meta-analysis. The results of the ALE meta-analysis are 

overlaid on a structural template in MNI space. This map was used to perform the cross-

validation method described in the methods section. 
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1. Supplementary Methods 

1.1. Randomization code 

The randomization code was made accessible (by an independent investigator not involved with 

any other aspects of the trial) only to the treating investigator at the first treatment session. The 

independent investigator could be contacted at any time to unblind the randomization code, but 

only in the case of serious adverse events. Participants and other investigators were unaware of 

the type of treatment to which they were assigned, and the magnetic stimulation coil for active 

and sham treatments (dTMS sessions) was the same. Magnetic cards encoding for real or sham 

stimulation were used to activate the dTMS device or not, according to the randomization 

sequence. Both real and sham stimulation produced identical sounds and scalp sensations 

during the sessions. In the cue condition, each daily repetitive dTMS session was preceded by 

showing the patients pictures of their favourite food, identified during the interview with the 

subjects at the Screening visit. In the cue condition, each daily repetitive dTMS session was 

preceded by showing the patients pictures of their favourite food, identified during the interview 

with the subjects at the Screening visit. Since all subjects but one (in the realTMS group) were 

exposed to food cues prior to the daily stimulation, the factor cue-condition was not taken into 

account in data analysis. 

 

1.2. Diet and lifestyle recommendations 

The energy requirement was calculated by the dietitian based on the measured basal metabolic 

rate (via indirect calorimetry) and the physical activity of each subject identified at the 

Screening visit. 300 kcal/day were subtracted from this amount of energy to obtain the 

recommended hypocaloric diet. The daily dietary intake included approximately 45% to 50% 

calorie intake from carbohydrates, up to 30% of calories from fats, and 20% to 25% of calories 

from proteins. At each follow-up visit, the dietitian confirmed the reduction of food intake with 

a direct interview. The participants were also instructed to engage in moderate-intensity 

physical activity (e.g., 30-minute walking every day) during the study. 

 

2. Supplementary results 

2.1. Drop-out patients 

In the real stimulation group, one patient reported an asymptomatic incidentaloma diagnosed 

while performing the fMRI, the study was discontinued to allow the patient to proceed with the 

necessary therapeutic itinerary; another patient decided to stop the study after the first session 
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due to treatment intolerance; the last patient decided to voluntarily withdraw from the studio, 

immediately after randomization, for personal reasons. 

In the sham stimulation group, three patients decided to voluntarily withdraw from the studio, 

immediately after randomization, for personal reasons; one patient decided to stop the study 

after the first 5 sessions due to treatment ineffectiveness. 

 

2.2. Table S4.1 

Table S4.1. Complete results of the Neurosynth analysis | Full list of 50 terms and correlation values resulted 

from the Neurosynth analysis for the (A) mOFC and (B) occipital pole rsFC maps. Anatomical-related terms are 

highlighted in bold. 

 

A) mOFC   B) Occipital pole 

Term Correlation  Term Correlation 

medial orbitofrontal 0.464  v1 0.508 

ventromedial 0.438  primary visual 0.397 

ventromedial prefrontal 0.425  visual cortex 0.353 

orbitofrontal 0.419  lingual gyrus 0.341 

vmpfc 0.410  early visual 0.311 

orbitofrontal cortex 0.409  cuneus 0.268 

ofc 0.359  lingual 0.266 

cortex ofc 0.352  visual 0.230 

cortex vmpfc 0.337  occipital 0.187 

subgenual 0.294  sighted 0.147 

ventral medial 0.260  visual cortices 0.142 

value 0.199  occipital cortex 0.130 

medial 0.197  mental imagery 0.124 

reward 0.180  metabolism 0.100 

medial prefrontal 0.171  visual stimulus 0.096 

reinforcement 0.133  eye movement 0.091 

anterior cingulate 0.126  vision 0.069 

cingulate 0.123  occipito 0.056 

prefrontal cortex 0.121  mt 0.054 

ventral striatum 0.119  sensory information 0.047 

orbital 0.118  erp 0.044 

social 0.115  visual field 0.038 

medial lateral 0.114  negativity 0.037 

spectrum disorder 0.114  invasive 0.034 

food 0.113  naturalistic 0.034 

prefrontal 0.112  category 0.033 

striatum 0.106  occipital lobe 0.031 

anterior 0.106  occipital temporal 0.031 
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amygdala 0.100  agent 0.031 

cingulate cortex 0.099  navigation 0.029 

valence 0.097  low level 0.028 

rewards 0.093  integrative 0.027 

rostral anterior 0.089  visual stream 0.026 

olfactory 0.089  eye movements 0.026 

positive negative 0.089  pair 0.026 

arousal 0.083  categorization 0.025 

autonomic 0.083  parietal lobules 0.025 

suffering 0.080  imagery 0.025 

mentalizing 0.078  extrastriate 0.024 

decision 0.077  middle occipital 0.024 

affective 0.077  add 0.024 

implicit 0.076  competition 0.024 

pleasant 0.073  blind 0.023 

computation 0.071  modalities 0.022 

choices 0.070  temporal frontal 0.022 

conductance 0.068  inferior superior 0.021 

skin conductance 0.068  concept 0.021 

taste 0.065  v5 0.021 

emotional 0.065  remembering 0.021 

subjective 0.064  retrosplenial 0.021 
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1. Supplementary Tables 

1.1. Table SA1.1 

 

Table SA1.1 | Results of CluB with User’s Spatial Criterion set to 7 mm. For each cluster, the anatomical label according with the AAL the mean centroid 

coordinates in MNI stereotaxic space, the standard deviation along the three axes and the cardinality (N) are reported. Taken from: Berlingeri et al. 2019. 

 

  Left Hemisphere Right Hemisphere 

  μx μy μz SDx SDy SDz N μx μy μz SDx SDy SDz N 

Inferior Frontal Gyrus, pars 

Orbitalis 

-40 23 -13 5.31 8.16 8.50 12 52 34 -2 4.88 5.03 5.15 10 

Inferior Frontal Gyrus, pars 

Triangularis 

-42 32 29 4.27 4.08 11.08 6 57 34 16 3.21 7.21 5.09 7 

 
-46 37 3 6.72 5.11 6.64 14 

       

Inferior Frontal Gyrus, pars 

Opercularis 

-47 12 18 4.63 5.47 8.65 19 
       

Rolandic Operculum 
       

60 9 6 8.32 8.33 11.06 12 

Middle Frontal Gyrus 
       

39 39 40 3.06 3.06 6.93 3 

Middle Frontal Gyrus, pars 

Orbitalis 

-36 51 -7 5.18 4.15 8.79 5 37 45 -15 8.64 8.01 4.22 10 

Superior Frontal Gyrus -14 57 38 6.00 5.76 8.00 5 
       

Superior Medial Frontal Gyrus 
       

10 58 36 9.59 4.75 7.13 8 

        
7 38 58 8.08 1.91 4.43 4 
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Gyrus Rectus -3 50 -19 4.16 7.21 4.16 3 
       

Anterior Cingulum -9 22 25 7.55 10.56 12.12 10 
       

Supplementary Motor Area -7 7 67 8.59 10.70 6.24 12 
       

Precentral Gyrus -45 4 55 5.75 6.89 3.91 10 36 -10 58 2.61 8.29 10.77 5 

 
-39 5 38 4.93 7.87 3.40 11 49 10 43 4.60 8.65 3.03 5 

 
-27 -25 73 8.33 8.33 1.15 3 

       

Postcentral Gyrus -60 -10 33 2.31 10.55 11.53 7 
       

Paracentral Lobule 
       

5 -27 60 8.25 3.83 6.32 4 

Superior Parietal Lobule -31 -63 60 3.03 3.90 6.16 5 
       

Inferior Parietal Lobule -50 -42 57 4.29 5.90 7.42 9 48 -42 56 8.29 9.63 4.97 6 

Supramarginal Gyrus 
       

65 -39 26 4.76 5.51 8.49 4 

Superior Temporal Gyrus -53 -44 24 7.12 7.86 6.36 10 
       

 
-58 4 -10 2.63 5.96 7.71 10 

       

Superior Temporal Pole -28 8 -29 5.17 8.17 5.20 9 48 15 -19 7.13 5.29 8.16 12 
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Middle Temporal Gyrus -57 -45 4 4.98 9.55 4.55 15 55 -26 -12 7.17 4.45 6.81 14 

 
-62 -20 -7 4.78 6.77 8.53 15 62 -45 -4 3.71 7.69 10.58 16 

Inferior Temporal Gyrus -62 -41 -15 4.63 2.73 8.45 6 
       

Fusiform Gyrus -42 -47 -24 1.98 5.35 7.29 8 
       

Precuneus -10 -53 71 11.35 6.72 7.95 5 6 -51 9 9.32 5.02 8.79 5 

Cuneus 
       

7 -92 24 4.73 5.26 8.06 4 

Lingual Gyrus 
       

25 -98 -13 7.48 3.99 5.64 15 

        
10 -76 -10 7.27 9.50 6.20 6 

Superior Occipital Gyrus 
       

20 -103 5 3.58 2.76 4.84 6 

        
27 -63 37 1.15 3.06 4.16 3 

Middle Occipital Gyrus -25 -100 2 5.61 4.18 4.25 12 38 -90 3 6.62 6.69 6.02 6 

 
-32 -73 34 6.36 7.01 9.91 10 

       

Inferior Occipital Gyrus -18 -102 -11 4.86 3.24 3.66 12 
       

 
-30 -93 -11 5.95 5.06 4.75 14 

       

 
-43 -69 -14 5.25 9.10 7.93 10 
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Parahippocampal Gyrus -26 -12 -24 4.87 5.18 5.18 8 
       

 
-14 -27 -10 9.10 5.93 6.54 5 

       

Hippocampus 
       

25 -20 -7 7.08 5.43 9.17 9 

        
22 -4 -17 8.97 9.02 9.09 10 

Vermis 
       

5 -61 -38 5.85 7.48 10.05 8 

Cerebellum, Crus I 
       

29 -83 -25 5.13 4.43 4.43 7 

        
38 -60 -26 6.89 10.36 5.53 10 

Cerebellum, Crus II -23 -81 -42 12.25 5.49 5.46 9 30 -76 -45 9.59 4.54 4.13 8 

Thalamus -7 -6 1 5.38 10.09 9.30 7 
       

No Region -26 -45 24 3.65 10.06 13.95 7               
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1.2. Table SA1.2 

 

Table SA1.2 | Results of CluB with User’s Spatial Criterion set to 8 mm. For each cluster, the anatomical label according with the AAL the mean centroid 

coordinates in MNI stereotaxic space, the standard deviation along the three axes and the cardinality (N) are reported. Taken from: Berlingeri et al. 2019. 

 

  Left Hemisphere Right Hemisphere 

  μx μy μz SDx SDy SDz N μx μy μz SDx SDy SDz N 

Inferior Frontal Gyrus, pars 

Orbitalis  

-40 23 -13 5.31 8.16 8.50 12 
       

Inferior Frontal Gyrus, pars 

Triangularis 

-42 32 29 4.27 4.08 11.08 6 54 34 5 4.86 5.81 10.44 17 

 
-43 40 1 7.54 8.01 8.35 19 

       

Inferior Frontal Gyrus, pars 

Opercularis  

-47 12 18 4.63 5.47 8.65 19 
       

Rolandic Operculum 
       

60 9 6 8.32 8.33 11.06 12 

Medial Frontal Gyrus, pars 

Orbitalis 

       
37 45 -15 8.64 8.01 4.22 10 

Medial Frontal Gyrus  
       

46 21 42 6.39 16.80 4.66 8 

Superior Frontal Gyrus 
       

1 57 37 14.71 4.93 7.23 13 

        
7 38 58 8.08 1.91 4.43 4 

Gyrus Rectus -3 50 -19 4.16 7.21 4.16 3 
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Anterior Cingulum -9 22 25 7.55 10.56 12.12 10 
       

Supplementary Motor Area -7 7 67 8.59 10.70 6.24 12 
       

               

Precentral Gyrus -27 -25 73 8.33 8.33 1.15 3 36 -10 58 2.61 8.29 10.77 5 

 
-42 4 46 6.06 7.26 9.22 21 

       

Postcentral Gyrus -60 -10 33 2.31 10.55 11.53 7 
       

Postcentral Lobe 
       

5 -27 60 8.25 3.83 6.32 4 

Superior Parietal Lobule -20 -58 65 13.64 7.39 8.80 10 
       

Inferior Parietal Lobule -50 -42 57 4.29 5.90 7.42 9 48 -42 56 8.29 9.63 4.97 6 

Supramarginal Gyrus 
       

65 -39 26 4.76 5.51 8.49 4 

Superior Temporal Gyrus -53 -44 24 7.12 7.86 6.36 10 
       

 
-58 4 -10 2.63 5.96 7.71 10 

       

Superior Temporal Pole -28 8 -29 5.17 8.17 5.20 9 48 15 -19 7.13 5.29 8.16 12 

Medial Temporal Gyrus -59 -43 -2 5.15 8.30 10.19 21 55 -26 -12 7.17 4.45 6.81 14 

 
-62 -20 -7 4.78 6.77 8.53 15 62 -45 -4 3.71 7.69 10.58 16 
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Precuneus 
       

6 -51 9 9.32 5.02 8.79 5 

Cuneus 
       

7 -92 24 4.73 5.26 8.06 4 

Lingual Gyrus 
       

10 -76 -10 7.27 9.50 6.20 6 

        
25 -98 -13 7.48 3.99 5.64 15 

Fusiform Gyrus -42 -47 -24 1.98 5.35 7.29 8 
       

Superior Occipital Gyrus 
       

27 -63 37 1.15 3.06 4.16 3 

Medial Occipital Gyrus -32 -73 34 6.36 7.01 9.91 10 29 -97 4 10.53 8.36 5.26 12 

Inferior Occipital Gyrus -25 -98 -7 7.27 5.83 7.56 38 
       

 
-43 -69 -14 5.25 9.10 7.93 10 

       

Hippocampus -21 -18 -18 8.82 9.04 9.01 13 23 -12 -12 8.08 11.17 10.44 19 

Vermis 
       

5 -61 -38 5.85 7.48 10.05 8 

Cerebellum, Crus I 
       

38 -60 -26 6.89 10.36 5.53 10 

Cerebellum, Crus II -23 -81 -42 12.25 5.49 5.46 9 29 -79 -36 7.61 5.50 11.44 15 

Thalamus -7 -6 1 5.38 10.09 9.30 7 
       

No Region -26 -45 24 3.65 10.06 13.95 7               
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1.3. Table SA1.3 

 

Table SA1.3 | Results of CluB with User’s Spatial Criterion set to 9 mm. For each cluster, the anatomical label according with the AAL the mean centroid 

coordinates in MNI stereotaxic space, the standard deviation along the three axes and the cardinality (N) are reported. Taken from: Berlingeri et al. 2019. 

 

  Left Hemisphere Right Hemisphere 

  μx μy μz SDx SDy SDz N μx μy μz SDx SDy SDz N 

Inferior Frontal Gyrus, 

pars Orbitalis 

-40 35 -2 4.90 1.03 6.07 6 47 20 -11 5.26 4.32 4.12 4 

        
46 40 -17 1.63 5.00 2.58 4 

        
52 34 -2 4.88 5.03 5.15 10 

Inferior Frontal Gyrus, 

pars Triangularis 

-43 32 23 5.26 5.00 5.00 4 57 34 16 3.21 7.21 5.09 7 

 
-50 38 7 3.92 6.50 3.69 8 

       

Inferior Frontal Gyrus, 

pars Opercularis 

-45 11 24 5.01 5.89 5.99 11 43 12 17 7.07 0.00 7.07 2 

 
-49 14 10 2.60 4.46 2.14 8 62 17 2 1.00 2.58 4.90 4 

Middle Frontal Gyrus -37 15 57 1.41 4.24 7.07 2 39 39 40 3.06 3.06 6.93 3 

 
-42 32 42 2.83 2.83 5.66 2 

       

 
-36 9 36 3.27 5.50 1.38 7 
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Middle Frontal Gyrus, 

pars Orbitalis 

-36 51 -7 5.18 4.15 8.79 5 32 49 -13 5.85 7.76 4.52 6 

Superior Frontal Gyrus -16 19 63 6.00 5.03 7.02 3 21 57 38 6.43 3.06 6.00 3 

 
-14 57 38 6.00 5.76 8.00 5 

       

Superior Medial 

Frontal Gyrus 

       
4 58 34 3.16 5.83 8.05 5 

        
7 38 58 8.08 1.91 4.43 4 

Gyrus Rectus -3 50 -19 4.16 7.21 4.16 3 
       

Anterior Cingulum -17 38 19 4.24 0.00 1.41 2 
       

Middle Cingulum -6 22 39 3.65 8.39 6.19 4 
       

Supplementary Motor 

Area 

-9 -3 71 4.38 6.87 3.03 5 3 9 64 3.42 4.76 6.53 4 

Precentral Gyrus -27 -25 73 8.33 8.33 1.15 3 36 -10 58 2.61 8.29 10.77 5 

 
-47 1 54 4.41 3.70 3.28 8 49 10 43 4.60 8.65 3.03 5 

 
-44 -3 42 2.31 3.83 3.42 4 65 6 20 1.41 5.66 8.49 2 

               

Postcentral Gyrus -45 -37 65 3.06 6.43 4.16 3 
       

 
-59 -16 43 1.15 8.17 1.91 4 
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-61 -3 21 3.06 9.02 3.06 3 

       

Paracentral Lobule 5 -27 60 8.25 3.83 6.32 4 
       

Insula -37 16 -4 5.93 6.84 4.77 5 
       

Superior Parietal 

Lobule 

-17 -49 71 8.33 4.16 11.02 3 41 -50 57 2.31 5.29 7.02 3 

 
-31 -63 60 3.03 3.90 6.16 5 

       

Inferior Parietal Lobule -53 -45 52 2.07 3.01 3.67 6 55 -34 54 5.77 3.46 2.00 3 

Supramarginal Gyrus -58 -44 28 3.67 9.16 3.67 6 65 -39 26 4.76 5.51 8.49 4 

Superior Temporal 

Pole 

-58 4 -10 2.63 5.96 7.71 10 43 15 -28 5.29 2.00 2.83 4 

 
-41 28 -19 4.43 4.00 4.43 7 

       

 
-29 17 -30 5.00 4.43 5.16 4 

       

Middle Temporal Pole 56 10 -18 4.43 3.65 3.65 4 
       

Superior Temporal 

Gyrus 

-45 -45 19 1.15 6.63 6.22 4 63 2 -4 3.46 8.06 4.32 4 

Middle Temporal 

Gyrus 

-57 -52 5 6.23 6.23 5.45 8 60 -53 3 3.74 4.60 3.63 5 

 
-58 -36 2 3.55 2.83 2.83 7 65 -38 -1 3.21 3.55 7.46 7 

 
-63 -22 -2 5.01 6.31 4.60 10 55 -26 -9 7.87 3.90 2.43 11 
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-60 -16 -16 4.34 6.39 4.98 5 

       

Inferior Temporal 

Gyrus 

-62 -41 -15 4.63 2.73 8.45 6 61 -47 -19 2.58 5.74 4.16 4 

        
57 -24 -24 4.62 6.93 2.00 3 

Fusiform Gyrus -43 -63 -18 3.50 3.50 5.85 6 
       

 
-42 -47 -24 1.98 5.35 7.29 8 

       

Precuneus -27 -49 14 3.46 7.02 5.26 4 1 -59 70 1.41 4.24 2.83 2 

        
10 -48 15 10.00 3.46 3.06 3 

Cuneus 
       

7 -92 24 4.73 5.26 8.06 4 

Lingual Gyrus 
       

16 -84 -6 3.46 3.46 6.00 3 

        
16 -102 -15 4.34 2.61 4.82 5 

Superior Occipital 

Gyrus 

       
27 -63 37 1.15 3.06 4.16 3 

        
20 -103 5 3.58 2.76 4.84 6 

Middle Occipital 

Gyrus 

-33 -73 39 7.47 8.46 3.80 7 38 -90 3 6.62 6.69 6.02 6 

 
-30 -74 22 2.00 2.00 10.00 3 

       

 
-25 -100 2 5.61 4.18 4.25 12 
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Inferior Occipital 

Gyrus 

-43 -79 -7 7.90 5.26 4.43 4 30 -96 -11 3.75 3.05 5.82 10 

 
-18 -102 -11 4.86 3.24 3.66 12 

       

 
-30 -93 -11 5.95 5.06 4.75 14 

       

Amygdala -28 2 -28 5.90 1.41 5.55 5 
       

Parahippocampal 

Gyrus 

-20 -25 -14 3.46 6.11 3.46 3 21 -27 -16 1.15 1.15 4.00 3 

 
-26 -12 -24 4.87 5.18 5.18 8 18 -7 -22 5.59 8.38 4.68 7 

Vermis -1 -55 0 1.41 4.24 2.83 2 4 -69 -14 3.46 6.11 3.46 3 

        
2 -54 -31 5.51 2.83 7.72 4 

Cerebellum, Crus I 
       

41 -69 -25 3.35 5.22 5.02 5 

        
29 -83 -25 5.13 4.43 4.43 7 

Cerebellum, Crus II -13 -82 -41 5.97 4.90 3.42 4 25 -79 -44 7.01 3.03 3.85 5 

 
-32 -80 -44 7.87 6.32 6.63 5 39 -71 -48 5.03 1.15 3.46 3 

Cerebellum VI 
       

34 -52 -28 8.17 6.16 6.23 5 

Cerebellum VIII 8 -68 -45 4.62 1.00 6.00 4 
       

Thalamus -3 -13 8 1.91 4.12 5.97 4 
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Caudate -9 15 15 9.85 5.29 1.15 4 
       

Putamen 
       

27 -17 -2 7.87 3.03 7.04 6 

        
30 5 -6 11.14 1.15 5.29 3 

Pallidum -12 3 -7 2.00 8.08 4.16 3 
       

No Region -25 -39 38 4.16 12.22 5.29 3 
       

  -4 -30 -3 0.00 5.66 1.41 2               
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1.4. Table SA1.4 

 

Table SA1.4 | Results of CluB with User’s Spatial Criterion set to 10 mm. For each cluster, the anatomical label according with the AAL the mean 

centroid coordinates in MNI stereotaxic space, the standard deviation along the three axes and the cardinality (N) are reported. Taken from: Berlingeri et al. 

2019. 

 

  Left Hemisphere Right Hemisphere 

  μx μy μz SDx SDy SDz n μx μy μz SDx SDy SDz n 

Inferior Frontal Gyrus, pars 

Triangularis 
-43 40 1 7.54 8.01 8.35 19 54 34 5 4.86 5.81 10.44 17 

Inferior Frontal Gyrus, pars 

Opercularis 
-46 17 21 4.85 9.85 10.17 25        

Anterior Cingulum -9 22 25 7.55 10.56 12.12 10        

Superior Medial Frontal 

Gyrus 
       2 53 42 13.48 9.72 11.24 17 

Middle Frontal Gyrus, pars 

Opercularis 
       28 46 -16 19.44 7.85 4.41 13 

Supplementary Motor Area -7 7 67 8.59 10.70 6.24 12        

Precentral Gyrus -46 1 43 9.63 10.27 11.12 28 42 9 48 7.16 20.89 10.82 13 

Paracentral Lobule -9 -26 65 18.86 5.59 8.14 7        

Superior Parietal Lobe -20 -58 65 13.64 7.39 8.80 10        

Inferior Parietal Lobule -50 -42 57 4.29 5.90 7.42 9        

Supramarginal Gyrus -42 -44 24 14.68 8.53 9.78 17 55 -41 44 11.08 8.06 16.50 10 

Superior Temporal Pole -35 17 -20 7.66 10.80 10.79 21 54 12 -7 9.48 7.45 15.64 24 

Middle Temporal Gyrus -59 -43 -2 5.15 8.30 10.19 21 59 -36 -8 6.53 11.64 9.79 30 
 -61 -10 -8 4.38 13.39 8.19 25        

Fusiform Gyrus -42 -59 -18 4.03 13.50 9.06 18        

Cuneus        15 -79 29 11.31 15.95 9.37 7 

Lingual Gyrus        8 -65 -1 8.15 15.26 12.27 11 

Middle Occipital Gyrus -32 -73 34 6.36 7.01 9.91 10        

Inferior Occipital Gyrus -25 -98 -7 7.27 5.83 7.56 38 27 -97 -5 8.97 6.21 10.00 27 

Hippocampus        23 -12 -12 8.08 11.17 10.44 19 

Vermis        5 -61 -38 5.85 7.48 10.05 8 
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Cerebellum, Crus I        33 -72 -32 8.31 12.04 10.49 25 

Cerebellum, Crus II -23 -81 -42 12.25 5.49 5.46 9        

Thalamus -16 -14 -12 10.37 10.91 13.01 20        

No region -16 -14 -12 10.37 10.91 13.01 20               
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1.5. Table SA1.5 

 

Table SA1.5 | Results of CluB with User’s Spatial Criterion set to 11 mm. For each cluster, the anatomical label according with the AAL the mean 

centroid coordinates in MNI stereotaxic space, the standard deviation along the three axes and the cardinality (N) are reported. Taken from: Berlingeri et al. 

2019. 

 

  Left Hemisphere Right Hemisphere 

  μx μy μz SDx SDy SDz N μx μy μz SDx SDy SDz N 

Inferior Frontal Gyrus, 

pars Orbitalis 
       54 21 -2 7.82 12.89 14.78 41 

Inferior Frontal Gyrus, 

pars Triangularis 
-43 40 1 7.54 8.01 8.35 19        

Inferior Frontal Gyrus, 

pars Opercularis 
-46 17 21 4.85 9.85 10.17 25        

Middle Frontal Gyrus, 

pars Orbitalis 
       28 46 -16 19.44 7.85 4.41 13 

Superior Medial Frontal 

Gyrus 
       2 53 42 13.48 9.72 11.24 17 

Supplementary Motor 

Area 
-7 7 67 8.59 10.70 6.24 12        

Precentral Gyrus -46 1 43 9.63 10.27 11.12 28 42 9 48 7.16 20.89 10.82 13 

Inferior Parietal Lobule -50 -42 57 4.29 5.90 7.42 9        

Supramarginal Gyrus -42 -44 24 14.68 8.53 9.78 17 55 -41 44 11.08 8.06 16.50 10 

Superior Temporal Pole -35 17 -20 7.66 10.80 10.79 21        

Middle Temporal Gyrus -59 -43 -2 5.15 8.30 10.19 21 59 -36 -8 6.53 11.64 9.79 30 
 -61 -10 -8 4.38 13.39 8.19 25        

Fusiform Gyrus -42 -59 -18 4.03 13.50 9.06 18        

Precuneus -16 -45 65 16.47 17.26 8.27 17        

Middle Occipital Gyrus -32 -73 34 6.36 7.01 9.91 10        

Inferior Occipital Gyrus -25 -98 -7 7.27 5.83 7.56 38 27 -97 -5 8.97 6.21 10.00 27 

Calcarine Sulcus        11 -70 11 9.85 16.71 18.77 18 

Hippocampus        23 -12 -12 8.08 11.17 10.44 19 

Cerebellum, Crus I        33 -72 -32 8.31 12.04 10.49 25 
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Cerebellum, 7b -10 -71 -40 17.28 12.12 8.06 17        

Thalamus -16 -14 -12 10.37 10.91 13.01 20        

Caudate -9 22 25 7.55 10.56 12.12 10               
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1.6. Table SA1.6 

 

Table SA1.6 | Results of CluB with User’s Spatial Criterion set to 12 mm. For each cluster, the anatomical label according with the AAL the mean 

centroid coordinates in MNI stereotaxic space, the standard deviation along the three axes and the cardinality (N) are reported. Taken from: Berlingeri et al. 

2019. 

 

  Left Hemisphere Right Hemisphere 

  μx μy μz SDx SDy SDz N μx μy μz SDx SDy SDz N 

Inferior Frontal Gyrus, 

pars Orbitalis 
       54 21 -2 7.82 12.89 14.78 41 

Inferior Frontal Gyrus, 

pars Triangularis 
-43 40 1 7.54 8.01 8.35 19        

Inferior Frontal Gyrus, 

pars Opercularis 
-46 17 21 4.85 9.85 10.17 25        

Middle Frontal Gyrus, 

pars Orbitalis 
       28 46 -16 19.44 7.85 4.41 13 

Superior Medial 

Frontal Gyrus 
-2 41 35 12.80 17.95 13.90 27        

Supplementary Motor 

Area 
-7 7 67 8.59 10.70 6.24 12        

Precentral Gyrus -46 1 43 9.63 10.27 11.12 28 42 9 48 7.16 20.89 10.82 13 

Superior Parietal 

Lobule 
-28 -44 62 21.51 14.25 8.91 26        

Supramarginal Gyrus 55 -41 44 11.08 8.06 16.50 10        
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Angular Gyrus -38 -55 28 12.97 16.09 10.75 27        

               

Superior Temporal 

Pole 
-35 17 -20 7.66 10.80 10.79 21        

Middle Temporal 

Gyrus 
-61 -10 -8 4.38 13.39 8.19 25 59 -36 -8 6.53 11.64 9.79 30 

Inferior Temporal 

Gyrus 
-51 -51 -9 9.40 13.47 12.68 39        

Inferior Occipital 

Gyrus 
-25 -98 -7 7.27 5.83 7.56 38 27 -97 -5 8.97 6.21 10.00 27 

Calarine Sulcus 11 -70 11 9.85 16.71 18.77 18        

Hippocampus -16 -14 -12 10.37 10.91 13.01 20 23 -12 -12 8.08 11.17 10.44 19 

Cerebellum, Crus I 33 -72 -32 8.31 12.04 10.49 25        

Cerebellum VIIb -10 -71 -40 17.28 12.12 8.06 17               
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1.7. Table SA1.7 

 

Table SA1.7 | Results of CluB with User’s Spatial Criterion set to 13 mm. For each cluster, the anatomical label according with the AAL the mean 

centroid coordinates in MNI stereotaxic space, the standard deviation along the three axes and the cardinality (N) are reported. Taken from: Berlingeri et al. 

2019. 

 

  Left Hemisphere Right Hemisphere 

  μx μy μz SDx SDy SDz N μx μy μz SDx SDy SDz N 

Inferior Frontal Gyrus, 

pars Orbtalis 

-39 28 -10 8.65 15.24 13.99 40 54 21 -2 7.82 12.89 14.78 41 

Middle Frontal Gyrus, 

pars Orbitalis 

28 46 -16 19.44 7.85 4.41 13 
       

Superior Medial Frontal 

Gyrus 

-2 41 35 12.8 17.95 13.90 27 
       

Supplementary Motor 

Area 

-7 7 67 8.59 10.70 6.24 12 
       

Precentral Gyrus -46 8 33 7.69 12.91 15.34 53 42 9 48 7.16 20.89 10.82 13 

Superior Parietal Lobule -28 -44 62 21.51 14.25 8.91 26 
       

Supramarginal Gyrus 
       

55 -41 44 11.08 8.05 16.51 10 

Angular Gyrus -38 -55 28 12.97 16.90 10.75 27 
       

Middle Temporal Gyrus -61 -10 -8 4.38 13.39 8.19 25 59 -36 -8 6.53 11.64 9.79 30 
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Inferior Temporal Gyrus -51 -51 -9 9.40 13.47 12.68 39 
       

Inferior Occipital Grus -25 -98 -7 7.27 5.83 7.56 38 
       

Calcarine Sulcus 
       

20 -86 1 12.17 17.54 16.02 45 

Hippocampus -16 -14 -12 10.37 10.91 13.01 20 23 -12 -12 8.08 11.17 10.44 19 

Cerebelum, Crus I 
       

33 -72 -32 8.31 12.04 10.49 25 

Cerebellum VIIb -10 -71 -40 17.28 12.12 8.06 17               
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1.8. Table SA1.8 

 

Table SA1.8 | Results of CluB with User’s Spatial Criterion set to 14 mm. For each cluster, the anatomical label according with the AAL the mean 

centroid coordinates in MNI stereotaxic space, the standard deviation along the three axes and the cardinality (N) are reported. Taken from: Berlingeri et al. 

2019. 

 

  Left Hemisphere Right Hemisphere 

  μx μy μz SDx SDy SDz N μx μy μz SDx SDy SDz N 

Inferior Frontal Gyrus, 

pars Orbitalis 
-39 28 -10 8.65 15.24 13.99 40 48 27 -5 15.99 15.97 14.30 54 

Superior Medial Frontal 

Gyrus 
-2 41 35 12.80 17.95 13.90 27        

Supplementary Motor 

Area 
-7 7 67 8.59 10.70 6.24 12        

Precentral Gyrus -46 8 33 7.69 12.91 15.34 53 42 9 48 7.16 20.89 10.82 13 

Superior Parietal Lobule -28 -44 62 21.51 14.25 8.91 26        

Supramarginal Gyrus        55 -41 44 11.08 8.06 16.51 10 

Angular Gyrus -38 -55 28 12.97 16.90 10.75 27        

Middle Temporal Gyrus -61 -10 -8 4.39 13.39 8.19 25 59 -36 -8 6.53 11.64 9.79 30 

Inferior Temporal Gyrus -51 -51 -9 9.40 13.47 12.68 39        
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Inferior Occipital Gyrus -25 -98 -7 7.27 5.83 7.56 38        

Calcarine Sulcus        20 -86 1 12.17 17.54 16.02 45 

Hippocampus -16 -14 -12 10.37 10.91 13.01 20 23 -12 -12 8.08 11.17 10.44 19 

Cerebellum. Crus I        33 -72 -32 8.31 12.04 10.49 25 

Cerebellum VIIb -10 -71 -40 17.28 12.12 8.06 17               
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