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Chapter 1  

Option-Implied Network Measures of Tail 
Contagion and Stock Return Predictability 

Manuela Pedio (2019) 
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1.1. Introduction 

The financial crisis of 2007-2009 has taken under the spotlight the role of financial asset 

connectedness as a source of systematic risk. Such risk would operate through different 

channels as network connections inflate the exposures to systematic risk factors and 

reduce any diversification benefits. Yet, a unified framework for the measurement of 

systematic network risk has been elusive. Nonetheless, a number of heterogenous 

approaches have appeared in the literature, often measuring different and not directly 

comparable quantities. In this paper, we propose a novel, forward-looking volatility 

spillover index implicit in the network structure of individual stock option-implied 

volatilities, in contrast to backward-looking realized volatilities employed by the earlier 

literature following the seminal work by Diebold and Yilmaz (2012). 

One of the first attempts to capture connectedness across financial assets has been made 

by Engle and Kelly (2012) who proposed the equi-correlation approach, based on the 

average of the pairwise linear correlations across asset returns; Billio, Getmansky, Lo, 

and Pelizzon (2012) developed a number of statistical measures of connectedness based 

on principal components analysis and on networks constructed using the notion of 

Granger causality. Other authors have chosen not to model connectedness explicitly, 

but they propose to compute the risk measures for individual firms conditional on the 

system being under distress to account for the risk of potential spillovers. Examples of 

such approaches are the CoVaR developed by Adrian and Brunnermeir (2016), the 

systemic expected shortfall (SES) proposed by Acharya, Pedersen, Philippon, and, 

Richardson (2017), and the SRISK advocated by Brownlees and Engle (2016).  

Diebold and Yilmaz (2009, 2012) have exploited the concept of forecast error variance 

decomposition (henceforth FEVD) applied to a vector autoregressive (VAR) model 

applied to forecast (stock) realized volatilities to compute a measure of aggregate asset 

volatility connectedness that they call (volatility) spillover index. More specifically, 

using the FEVD, Diebold and Yilmaz measure what portion of the forecast error of the 

historical volatility of a stock (or any other asset) is due to innovations to the volatilities 
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of the other stocks in the system, interpreted as a weighted, directed graph. 

Consequently, an increase in their index (defined as the ratio between the sum of all the 

elements of the FEVD matrix excluding those on the main diagonal and the sum of all 

the elements of the FEVD matrix) signals an increase of the spillover of volatility shocks 

from one stock (asset) to the others. When the final goal is to capture spillover (or 

“contagion”) risk, this approach has several advantages. As a matter of fact, while asset 

returns tend to co-move also in tranquil times, their volatilities only move together in 

times of market turmoil, and this makes volatility spillover indices powerful predictors 

of crisis regimes and bear states.  In addition, the use of the FEVD enables a researcher 

to capture forms of contagion occurring in complex, non-linear ways that go beyond a 

simple increase in the contemporaneous correlations among the assets. Indeed, in their 

framework, an increase in aggregate volatility connectedness may be caused either by 

an increase of the direct links between the (volatilities of) the asset returns as captured 

by the lead-lag relationship in the VAR by an increase in the covariances of their 

innovations, or (as it is most likely during a crisis) by a combination of the two. Of 

course, disentangling the two drivers of the dynamics of the volatility spillover index 

may be highly informative. 

In this paper, we build on the Diebold and Yilmaz’s seminal research and extend it in 

several important ways. First, we propose to extrapolate the volatility spillover index 

from the network of option-implied volatilities, in contrast to realized volatilities. The 

main advantage of using option market information is that option prices are forward 

looking by their nature and therefore they embed the (risk-neutral) expectations of the 

investors about future volatility over the remaining life of the option. More precisely, if 

option markets were efficient, (at-the-money) option implied volatility should be 

regarded as an unbiased (under the risk-neutral measure) forecast of the future realized 

volatility of the underlying between time t and the maturity of the option. Previous 

literature (see, e.g., Christensen and Prabhala, 1998; Fleming, 1998; Blair, Poon, and 

Taylor, 2001) has empirically shown that – despite being a biased forecast of ex-post 

realized volatility (see, e.g., McGee and McGroathy, 2017) – implied volatility has a 
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larger information content concerning future volatility than past realized volatility. 

Therefore, in this paper we build on this empirical finding that makes us postulate that 

a network based on implied volatilities may be more informative about future volatility 

spillovers than a network based on realized volatilities. 

To this purpose, we collect the option implied volatilities for options on common stocks 

traded on regulated U.S. stock markets from the IvyDB database of OptionMetrics for 

a period spanning from January 2006 to December 2017. We base the construction of 

the implied volatility network (and consequently of the implied volatility spillover index) 

on at-the-money (ATM) options  with a maturity closest to 60 days and that were 

traded at least once a week in our sample period.1 Based on these filters, we select a 

panel of 70 stocks that were characterized by liquid options and that were included in 

the S&P 500 index over our sample period.  

Second, we assess the predictive content of (time-varying) volatility connectedness – as 

summarized by the spillover index – for the equity risk premium and for individual stock 

returns. More precisely, we compare the forecasting power of two version of the spillover 

index: the one based on realized, backward-looking volatilities (RV) as in Diebold and 

Yilmaz (2009, 2012) and the one based on implied, forward-looking volatilities (IV) that 

we propose. To the best of our knowledge, this is the first paper that attempts to 

investigate whether a measure of (volatility) spillover risk has out-of-sample (henceforth, 

OOS) predictive power for stocks returns. In this respect, there are a few papers that 

relates to ours. Allen, Bali, and Tang (2012) develop a measure of systemic risk called 

CATFIN and find that it predicts future economic downturns as well as the cross-section 

of equity excess returns. However, CATFIN specifically captures the risk of spillovers 

from the financial sector to the real economy. Conversely, our analysis is not limited to 

the financial sector; instead, we investigate the predictive power of changes in the 

 
1 There are several reasons that motivate the use of ATM options. First, as stated above, 
when markets are efficient, ATM implied volatility should be an efficient forecast of future 
realized volatility. Second, ATM options are the most sensitive to changes in volatility. 
Third, ATM options are typically the most liquid (see, e.g., Baltussen et al., 2018).  



5 

transmission of volatility shocks of a set of stocks representative of the entire S&P 500 

index. Piccotti (2017) argues that (time-varying) financial contagion risk is non 

diversifiable and therefore it should be related to the equity risk premium. Despite using 

a variance decomposition approach similar in spirit to Diebold and Yilmaz, similarly to 

Allen et al. (2012) and in contrast to us, he only features the financial sector as a source 

of contagion and does not use option-implied information. 

Buraschi and Tebaldi (2017) postulate the existence of a super-critical equilibrium in 

which the equity risk premium is composed by two terms: one which captures the linear 

exposure to instantaneous market risk, and a network risk premium proportional to 

firms' exposures to cascades of firm-specific distress shocks. Billio, Caporin, Panzica, 

and Pelizzon (2017) have extended the classical, ICAPM, factor-based model to include 

network effects and exploit spatial econometrics to postulate a framework in which the 

network structure acts as an inflating factor for systematic exposure to common risk 

factors. However, differently from us, these papers do not feature contagion as a result 

of network dynamics in the second moment of the (option-implied) distribution of stock 

returns. 

We report a number of interesting results. First, the (changes in) both the RV-based 

and IV-based spillover indices show in-sample predictive power for the equity risk 

premium and for the excess returns of more than one-third of the stocks under 

investigation. Interestingly, while the slope coefficient associated with the IV-based 

spillover index is positive, signaling that an increase in the index is associated with 

higher future excess returns (to compensate for higher risk), the opposite is true for the 

RV-based spillover index. Notably, the results hold true when the two indices are both 

used in a predictive regression for stock excess returns (and for the aggregate equity risk 

premium). This confirms that the two indices carry different information content and 

that one is not able to subsume the other.  

However, when the out-of-sample (OOS) predictive accuracy is examined, the IV-based 

spillover index shows a considerably stronger forecasting power than its RV-based 

counterparts. More specifically, the RV-based spillover index is not able to outperform 
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a simple, historical mean forecast (which is used as a no-predictability benchmark in 

our analysis), as it delivers a negative OOS R-square (as defined by Campbell and 

Thompson, 2008). Conversely, the IV-based spillover index yields a positive OOS R-

square of 2.11%, as far as the predictive regression for the equity risk premium is 

concerned. The results from the individual stock predictive regressions are similar: when 

the RV-based spillover index is used as a predictor, the average OOS R-square turns 

out to be negative; conversely, the average OOS R-square for predictive regressions 

relying on the IV-based spillover index is positive and equal to 0.33%.  

Because it is well known that the existence of an appreciable statistical forecasting 

accuracy does not always generate economic value to an investor willing to exploit 

predictability, we corroborate the results concerning the equity risk premium 

implementing two alternative investment strategies: a simple switching strategy by 

which the investor allocates all her wealth alternatively to stocks or to the riskless bond, 

depending on the predicted sign of excess stock returns (as proposed by Pesaran and 

Timmerman, 1995); a mean-variance (MV) strategy applied to asset menu consisting of 

equity and the riskless bond. These exercises confirm the earlier results: an investor 

using the forecasts based on the RV spillover index will not be able to consistently 

outperform an investor who relies on a simple historical mean forecast; on the contrary 

a MV investor who exploits the forecasts based on the IV spillover index will obtain a 

utility gain of 3.29% on annualized basis, which may also be interpreted as the maximum 

fee that could be charged to switch from a MV strategy based on historical mean 

forecasts to IV spillover index-based ones.  

Interestingly, much of the predictive power of the IV-based spillover index is expressed 

in times of high volatility. Indeed, when we split our sample period in two sub-samples 

characterized by high and low volatility, none of the two spillover indices displays a 

positive OOS R-square in the low volatility period; on the contrary, the IV spillover 

index largely outperforms the benchmark in the high volatility period, as shown by an 

OOS R-square equal to 6.65%.  
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Finally, because the literature has emphasized that the VIX index shows some predictive 

power for the equity risk premium (see, e.g., Banerjee, Doran, and Peterson, 2007), we 

investigate whether the IV spillover index is just a more complex way to capture the 

same information already contained in the VIX. We find that the inclusion of (the 

changes of) the VIX index in the predictive regression for the equity risk premium does 

not subsume the predictive power of the IV spillover index.  

The rest of the paper is organized as follows. In Section 1.2, we present the methodology 

employed to construct the implied (realized) volatility index. In Section 1.3, we describe 

the data together with the filters that we have applied to construct time-series of option 

implied volatilities from the panel data available in Optionmetrics. In Section 1.4, we 

compare the spillover index based on option implied volatilities with its counterpart 

obtained from realized volatilities (as in Diebold and Yilmaz, 2009, 2012). In Section 

1.5, we compare the predictive power of implied and realized volatility spillover indices 

for the equity risk premium and the excess returns of individual stocks both in-sample 

and OOS. In Section 1.6, we discuss whether the predictive power displayed by the 

implied volatility spillover index is subsumed by the VIX index. Section 1.7 concludes. 

 

1.2. Methodology 

1.2.1. Measuring volatility connectedness among assets 

To construct the realized and implied volatility spillover indices, we rely on the 

procedure suggested by Diebold and Yilmaz, which starts from the estimation of a 

standard VAR(p),  

    𝒚𝒚�𝑡𝑡 = 𝝂𝝂 + �𝐀𝐀𝑖𝑖

𝑝𝑝

𝑖𝑖=1

𝒚𝒚�𝑡𝑡−𝑖𝑖 + 𝒖𝒖𝑡𝑡, (1.1) 

where 𝝂𝝂 is a vector of intercepts, 𝒚𝒚�𝑡𝑡 and 𝒚𝒚�𝑡𝑡−𝑖𝑖 are vectors collecting the log of the realized 

(or, as in our application, option-implied) volatilities of K assets at t and t-i, respectively, 

and 𝒖𝒖𝑡𝑡~𝐼𝐼𝐼𝐼𝐼𝐼 (0,𝚺𝚺𝑢𝑢) is a vector of independently and identically distributed disturbances. 
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For the sake of illustration, in what follows, we consider a zero-mean VAR(1) for the 

de-meaned variables, 𝒚𝒚𝑡𝑡 = 𝒚𝒚�𝑡𝑡 − 𝝁𝝁, 

𝒚𝒚𝑡𝑡 = 𝐀𝐀1𝒚𝒚𝒕𝒕−𝟏𝟏 +  𝒖𝒖𝑡𝑡, 
 

(1.2) 

where 𝝁𝝁 = (𝐈𝐈K − 𝐀𝐀𝟏𝟏)−𝟏𝟏𝝂𝝂. This is without loss of generality because any VAR(p) process 

can always be rewritten as a de-meaned VAR(1) through a companion form 

transformation.2 Additionally, we assume that the VAR model in (1.2) is covariance 

stationary, which is a necessary and sufficient condition for the process to possess a 

(infinite) moving average representation, by Wold’s representation theorem. 

It can be shown that, given a stable VAR(p), the minimum mean square error (MSE) 

predictor for forecast horizon h at forecast origin t is the conditional expected value: 

   𝑬𝑬𝒕𝒕(𝒚𝒚𝑡𝑡+ℎ) = 𝑬𝑬𝒕𝒕(𝒚𝒚𝑡𝑡+ℎ|Ω𝑡𝑡) = 𝑬𝑬𝒕𝒕(𝒚𝒚𝑡𝑡+ℎ|{𝒚𝒚𝑠𝑠|𝑠𝑠 ≤ 𝑡𝑡}). (1.3) 

This predictor minimizes the MSE of each component of 𝒚𝒚𝑡𝑡, i.e., if we call 𝒚𝒚𝑡𝑡∗(ℎ) any h-

step predictor at origin t, we obtain that  

     MSE[𝒚𝒚𝑡𝑡∗(ℎ)] ≥  MSE[𝑬𝑬𝒕𝒕(𝒚𝒚𝑡𝑡+ℎ)]. (1.4) 

This can be seen by noting that  

MSE[𝒚𝒚𝑡𝑡∗(ℎ)] = 𝐸𝐸{[𝒚𝒚𝑡𝑡+ℎ − 𝐸𝐸𝑡𝑡(𝒚𝒚𝑡𝑡+ℎ) + 𝐸𝐸𝑡𝑡(𝒚𝒚𝑡𝑡+ℎ) − 𝒚𝒚𝑡𝑡∗(ℎ)] × [𝒚𝒚𝑡𝑡+ℎ − 𝐸𝐸𝑡𝑡(𝒚𝒚𝑡𝑡+ℎ) +

𝐸𝐸𝑡𝑡(𝒚𝒚𝑡𝑡+ℎ) − 𝒚𝒚𝑡𝑡∗(ℎ)]′} = MSE[𝑬𝑬𝒕𝒕(𝒚𝒚𝑡𝑡+ℎ)] + 𝐸𝐸{[𝐸𝐸𝑡𝑡[𝒚𝒚𝑡𝑡+ℎ] − 𝒚𝒚𝑡𝑡∗(ℎ)][𝐸𝐸𝑡𝑡[𝒚𝒚𝑡𝑡+ℎ] −

𝒚𝒚𝑡𝑡∗(ℎ)]′}, 

(1.5) 

where the fact that 𝐸𝐸��𝒚𝒚𝑡𝑡+ℎ − 𝐸𝐸𝑡𝑡[𝒚𝒚𝑡𝑡+ℎ]�[𝐸𝐸𝑡𝑡[𝒚𝒚𝑡𝑡+ℎ] − 𝒚𝒚𝑡𝑡∗(ℎ)]′� = 0 has been exploited (see 

Lütkepohl, 2005, for further details).  

Therefore, the optimal h-step-ahead prediction for 𝒚𝒚𝑡𝑡+ℎ = 𝐀𝐀1ℎ𝒚𝒚𝒕𝒕 + ∑ 𝐀𝐀1𝑖𝑖ℎ−1
𝑖𝑖=0 𝑢𝑢𝑡𝑡+ℎ−𝑖𝑖 is given 

by its conditional expected value, i.e.,  

    𝒚𝒚�𝑡𝑡+ℎ|𝑡𝑡 = 𝑬𝑬𝒕𝒕(𝒚𝒚𝑡𝑡+ℎ) =  𝐀𝐀1ℎ𝒚𝒚𝒕𝒕, (1.6) 

which yields a h-step-ahead forecast error equal to 

 
2 See Hamilton (1994), Chapter 10, for a complete derivation.   
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    𝒚𝒚�𝑡𝑡+ℎ|𝑡𝑡 − 𝒚𝒚𝑡𝑡+ℎ = �𝐀𝐀1𝑖𝑖
ℎ−1

𝑖𝑖=0

𝑢𝑢𝑡𝑡+ℎ−𝑖𝑖 = �𝝓𝝓𝑖𝑖

ℎ−1

𝑖𝑖=0

𝑢𝑢𝑡𝑡+ℎ−𝑖𝑖, (1.7) 

where the vectors 𝝓𝝓𝑖𝑖 collect the coefficients of the moving average representation of the 

VAR. Therefore, the forecast error covariance matrix is  

   𝚺𝚺𝑦𝑦(ℎ) = E ���𝐀𝐀1𝑖𝑖
ℎ−1

𝑖𝑖=0

𝑢𝑢𝑡𝑡+ℎ−𝑖𝑖���𝐀𝐀1𝑖𝑖
ℎ−1

𝑖𝑖=0

𝑢𝑢𝑡𝑡+ℎ−𝑖𝑖�

′

� = �𝐀𝐀1𝑖𝑖 𝚺𝚺𝑢𝑢(𝐀𝐀1𝑖𝑖 )′
ℎ−1

𝑖𝑖=1

. (1.8) 

We shall denote with Θ(ℎ) the h-step-ahead FEVD matrix; each element 𝜃𝜃𝑗𝑗,𝑘𝑘(ℎ) of Θ(ℎ) 

measures the share of total variability of 𝑦𝑦�𝑗𝑗,𝑡𝑡+ℎ (i.e., the h-step-ahead forecast of the 

variable j), that is due to a shock to the variable 𝑦𝑦𝑘𝑘. Obviously, the diagonal element 

𝜃𝜃𝑗𝑗,𝑗𝑗(ℎ) is the proportion of total variability of 𝑦𝑦�𝑗𝑗,𝑡𝑡+ℎ due to its own innovation. Formally,  

    𝜃𝜃𝑗𝑗,𝑘𝑘(ℎ) =
𝜎𝜎𝑗𝑗𝑗𝑗−1 ∑ (𝒆𝒆𝑗𝑗′ℎ−1

𝑖𝑖=0 𝝓𝝓𝑖𝑖𝚺𝚺𝑢𝑢𝒆𝒆𝑘𝑘)2 
∑ (𝒆𝒆𝑗𝑗′ℎ−1
𝑖𝑖=0 𝝓𝝓𝑖𝑖𝚺𝚺𝑢𝑢𝝓𝝓𝑖𝑖

′𝒆𝒆𝑗𝑗)
, (1.9) 

where 𝜎𝜎𝑗𝑗𝑗𝑗 is the standard deviation of the error term for the jth equation and 𝒆𝒆𝑗𝑗 is a 

selection vector that lists one as the jth element and zeros elsewhere. Notably, while the 

FEVD relies on the orthogonality of the shocks, the generalized FEVD (GFEVD) in 

(1.6), firstly proposed by Pesaran and Shin (1998), uses the original, non-orthogonalized 

shocks, but appropriately accounts for the correlations among them. This avoids the 

need to enforce orthogonality through identification schemes, for instance, in the form 

of a Cholesky factorization, which would heavily depend on the ordering of the variables. 

Moreover, such schemes would turn out to be unsuitable to our high-dimensional 

application, as a large number of different and equally plausible orderings would in 

principle be possible. Importantly, due to the covariance between the original shocks, 

∑ 𝜃𝜃𝑗𝑗,𝑘𝑘(ℎ) ≠ 1𝐾𝐾
𝑘𝑘=1 , which would instead be the case in a standard FEVD. Therefore, 

following Diebold and Yilmaz (2012), we normalize each entry of the GFEVD matrix as  

𝜃𝜃�𝑗𝑗,𝑘𝑘(ℎ) =
𝜃𝜃𝑗𝑗,𝑘𝑘(ℎ)

∑ 𝜃𝜃𝑗𝑗,𝑘𝑘(ℎ)𝐾𝐾
𝑘𝑘=1

. (1.10) 

The sum of the non-diagonal elements of the jth row of the FEVD matrix is the total 

contribution of volatility shocks to the rest of the system to the uncertainty (as measured 

by the forecast error) on the volatility of asset j; conversely, the sum of the non-diagonal 
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elements of the jth column is the total contribution of a volatility shock to asset j to the 

uncertainty on the volatility in the rest of the system. Overall, an increase (decrease) of 

the shares of forecast errors that are explained by other variables than the one being 

predicted denotes an increase (decrease) of the connectedness among the assets, i.e., an 

increase in the proportion of idiosyncratic (volatility) shocks transmitted to (and 

received from) the rest of the system. The aggregate volatility connectedness is well 

captured by the volatility spillover index, computed as   

𝑆𝑆𝑆𝑆(ℎ) =

∑ 𝜃𝜃�𝑗𝑗,𝑘𝑘(ℎ)𝐾𝐾
𝑘𝑘,𝑗𝑗=1
𝑘𝑘≠𝑗𝑗

∑ 𝜃𝜃�𝑗𝑗,𝑘𝑘(ℎ)𝐾𝐾
𝑘𝑘,𝑗𝑗=1

. (1.11) 

In order to capture the time-varying nature of volatility connectedness, we use a rolling 

window approach. More precisely, to compute 𝑆𝑆𝐼𝐼𝑡𝑡(ℎ), we estimate the VAR model using 

the 50 more recent observations of the realized (implied) volatility time series (that we 

shall describe in Section 1.3) and the associated FEVD; then we proceed recursively 

until the end of the sample.  

At least two remarks are in order. First, as pointed out by Diebold and Yilmaz (2014), 

there exists an obvious parallel between a FEVD matrix and the adjacency matrix of a 

weighted, directed network, in which the shares of the forecast error decomposition 

assigned to each asset in the graph represent the “distances” between them, considered 

in pairs.3 In this respect, the spillover index represents a measure of the overall 

connectivity of the volatility network. Second, in this framework, an increase in 

aggregate volatility connectedness may be caused either by an increase of the direct 

links between the (volatilities of) the assets as captured by the lead-lag relationship in 

 
3 The adjacency matrix A of a simple network is filled with zero and one entries; more 
precisely 𝐴𝐴𝑖𝑖𝑖𝑖 is equal to one when there exists a link between entity i and entity j and to 
zero otherwise. In the case of a weighted network (such as the one described by the FEVD), 
the entries are weights that denote the strength of the link and not only its existence. In 
addition, the FEVD represents a directed network, since it does not have to be symmetric; 
therefore, the strength of the link between i and j may differ from the strength of the link 
between j and i. 
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the VAR, by an increase in the covariances of their innovations, or (as it is most likely 

during a crisis) by a combination of the two. 

1.2.2. Estimation of a large dimensional VAR through LASSO 

Because in our application we base the construction of the spillover indices on high-

dimensional (𝑁𝑁=70) VAR models, we deem the conventional least square estimation 

inappropriate and resort instead on the least absolute shrinkage and selection operator 

(LASSO) introduced by Tibshirani (1996). More specifically, the LASSO is a 

regularization technique that imposes a 𝐿𝐿1 penalty on the least square objective function, 

shrinking coefficients towards zero. Because of the nature of the penalty, LASSO shrinks 

some coefficients towards zero (also setting some of them precisely to zero), thus 

producing sparse vector autoregressive matrices. This is particularly suitable to our 

application, as many of the off-diagonal coefficients are likely to be zero in the true, 

unobserved model.4 

In practice, the LASSO estimator is obtained by solving  

       𝑚𝑚𝑚𝑚𝑚𝑚
𝐀𝐀,𝝂𝝂

��𝐲𝐲𝑡𝑡 − 𝝂𝝂 −�𝛟𝛟𝑖𝑖𝐲𝐲𝑡𝑡−1

𝑝𝑝

𝑖𝑖=1

�
𝑇𝑇

𝑡𝑡=1

2

+ 𝜆𝜆‖𝛟𝛟‖1 (1.12) 

where 𝛟𝛟 = (𝛟𝛟1,𝛟𝛟2, … ,𝛟𝛟𝑃𝑃), ‖𝛟𝛟‖1 is the 𝐿𝐿1-norm of the matrix 𝛟𝛟, 𝜆𝜆 is a tuning 

parameter, and the rest of the notation is consistent with that employed in equation 

(1.1).  

Because the LASSO objective function is not differentiable, the problem has to be solved 

numerically. In particular, following Friedman et al. (2010), we use a coordinate descent 

algorithm that consists of partitioning equation (1.9) into scalar subproblems for each 

 
4 In our VAR model, all the volatility series are treated as endogenous, i.e., the implied 
(realized) volatility of stock j depends on its own lags and on the past realizations of implied 
(realized) volatility of all the other stocks in the system. However, in normal times we expect 
that the implied volatility of stock j depends on the lags of only a subset of stocks (e.g., the 
ones in the same industry). However, it is important to notice that sparsity in the VAR 
matrix does not imply sparsity in the FEVD matrix as in the generalized FEVD the shocks 
are not orthogonal.  
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[𝛟𝛟]𝑖𝑖,𝑗𝑗 which we solve component-wise, and iterating until convergence. The tuning 

parameter 𝜆𝜆 is selected via data-driven cross-validation, i.e., starting from a grid of 

potential values, we select the one that minimizes the one-step-ahead mean square 

forecast error (MSFE).5 While other regularization techniques are also available, our 

preference for the LASSO is justified by the fact that it has been shown to outperform 

several conventional subset selection methods (such as, for example, stepwise 

regressions) . For instance, Hsu et al. (2008) perform a simulation study to evaluate the 

forecasting performance of a set of different variable selection procedures for VAR 

models (including LASSO); they find that LASSO not only yields the lowest one-step-

ahead mean square forecast error, but also has the highest precision in estimating 𝚺𝚺𝑢𝑢, 

which is particularly relevant in our application, because the FEVD will depend on its 

estimate. 

 

1.3. Data 

Our data come from a number of sources. To construct the IV spillover index, we collect 

option data from the IvyDB database by OptionMetrics, which contains daily, closing 

bid and offer prices, trading volumes, open interest, strikes, maturities, and the common 

“greeks” for all the US-listed index and equity options. In addition, OptionMetrics data 

also include the IVs computed in correspondence to the midpoint of the best closing bid 

and best closing offer prices of each option.6 Because options on individual stocks have 

 
5 To estimate the model, we use the R package BigVAR by Nicholson, Matteson, and Bien 
(2019). Additional details about the solution algorithm and the cross-validation procedure 
for the choice of 𝜆𝜆 can be found in Nicholson, Matteson, and Bien (2017). 
6 The option price used to compute implied volatilities is an average between the maximum 
bid and the minimum ask, selected across all the exchanges the contract is traded on. Up 
to March 4, 2008, option prices used in the implied volatility calculation are end-of-day 
prices. Since March 5, 2008, OptionMetrics has started capturing the best bid and best ask 
prices as close to 4 p.m. as possible in the attempt to better synchronize the reported option 
prices with the closing price of the underlying. The problem of non-synchronous trading 
between stocks and options due to different closing times of the exchanges has been pointed 
out by Battalio and Schultz (2006). However, this does not appear to represent a relevant 
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an American-style exercise feature, option implied volatilities are computed using an 

algorithm based on the binomial tree model of Cox, Ross, and Rubinstein (1979) to 

account for the early exercise premium. 

We retain only options on common stocks traded on the New York Stock Exchange 

(NYSE), the American Stock Exchange (AMEX), and the National Association of 

Securities Dealers Automated Quotation (NASDAQ). Furthermore, by applying 

standard filters used in the literature (see, e.g., Bali and Hovakimian, 2009; Driessen, 

Maenhout, and Vilkov, 2009; Goyal and Saretto, 2009; Baltussen, Van Bekkum, and 

Van der Grient, 2018), we exclude options on closed-end funds and real estate 

investment trusts (REITs) and options with zero open interest or zero trading volume 

on any given day.7 We also apply a set of filters to clean the data from mis-reported 

prices, outliers, and microstructural biases (see, e.g., Goyal and Saretto, 2009 and 

Baltussen et al., 2018). Specifically, we discard observations for which the bid-ask spread 

exceeds 50% of the average between the best bid and the best offer or it is lower than 

the minimum tick size (which is 0.05 USD for options trading below 3 USD and 0.10 

USD in all other cases). We also delete observations with missing or extreme values for 

the implied volatility (less than 3% or higher than 150%).8  

 
issue for the purposes of our analysis, also because most of our data concern a period 
posterior to March 2008. 
7 To achieve this goal, we merge the information contained in the Option Price file with the 
security data from the Security file. We retain only options whose underlying stock has 
Issue Type equal to zero (which corresponds to common stocks), a SIC code different from 
6720 – 6730 and 6798 (because these codes identify closed-end funds and REITs) and an 
Exchange Flag equal to 1, 2, 4, and 8 (corresponding to NYSE, AMEX, NASDAQ and 
NASDAQ Small Cap, respectively). Additionally, for each date, we only retain the 
observations with strictly positive Volume and Open Interest.  
8 These filters also remove all the observations for which the implied volatility is set to -
99.99 by OptionMetrics. These are options with non-standard settlement, options for which 
the midpoint of the bid-ask price is below the intrinsic value, whose vega is below 0.5, for 
which the implied volatility calculation fails to converge or the underlying closing price is 
not available. 
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Given that estimating a VAR model on a panel of implied volatilities requires 

constructing regularly spaced time-series, we need to select one observation of the 

implied volatility for each underlying stock at each date. Because it would be impossible 

to find a sufficiently large number of stocks with at least one option trading on every 

day, we settle for a weekly frequency. Additionally, while the OptionMetrics dataset 

starts in 1996, we restrict our sample to the period January 2006 – December 2017, 

because before this date the number of options available would be insufficient to support 

our application. For instance, over the period January 1996 – February 2003, Carr and 

Wu (2008) are able to find only 35 options on individual stocks with at least 600 days 

of active trading (which represents approximately one-third of the total number of 

trading days in their sample).  

To select one observation of the IV for each underlying stock and for each week, we use 

the following rules to ensure that the resulting time-series are as homogenous as possible 

in terms of time to maturity and moneyness of the options that are used to construct 

them. First, we retain only put options with an effective time to maturity (that we 

compute as the difference between the stated maturity and the calendar date) ranging 

between 7 and 120 days, as short-term options are usually the most liquid and actively 

traded. We focus on at-the-money (ATM) options, which are the most sensitive to 

changes in volatility (i.e., have maximum vega) and therefore we focus our analysis only 

on options with moneyness ranging between 0.9775 and 1.0225. We compute moneyness 

as the ratio between the strike and the closing price of the underlying. In this respect, 

our sample construction choices are close to Goyal and Saretto’s (2009), who also build 

time-series of option implied volatilities. When more than one option with these 

characteristics is available on a given day, we retain the contract closer to having 60 

days left to maturity.9  

Once we have distilled one observation per day per each underlying stock, we build a 

Wednesday-to-Wednesday weekly time series. However, when no option with the 
 

9 We choose options close to 60 days to maturity because the average time to maturity of 
the options left in our sample after filtering is around 60 days.  
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required characteristics happened to have been traded on a Wednesday for a given 

underlying, we take the previous day’s observation; if no option had been traded on 

Tuesday too, we use the Thursday’s observation. Only residually, we also rely on 

Monday and Friday observations, but this happens in less than 5% of the records in our 

sample. If in a given week there is no traded option for an underlying stock, we record 

that date as a missing value.10  

To include a stock option series in our analysis, we require that less of 5% of the 

observations be missing values and that no more than three consecutive missing values 

to appear in the sample. The remaining missing values that do not cause the exclusion 

of an IV time series are filled using a one-month rolling mean estimate.11 Table 1 lists 

the stocks that satisfy our requirements and that are therefore included in the analysis. 

These are mostly S&P 500 stocks, the largest one being Apple, with an average market 

capitalization of USD 399 billion over the sample period and the smallest is Abercrombie 

& Fitch, with an average market cap of just USD 3 billion. In Table 1.1, we also report 

the industry to which the stocks belong. The selected stocks cover a broad set of different 

sectors, including technology, energy, consumer discretionary, financials, industrials, and 

health care.  

 
10 There is a total of 1,018 missing values in our sample for an average of 15 missing 
observations for each of the 70 series. Considering that each series includes 617 observations 
for a total sample of 43,190 observations, missing values represent less than 2.5% of the 
sample. The maximum number of missing values for a series is 30 in the case of AON Plc. 
There are three stocks with zero missing values, namely Apple, Costco Wholesale Corp, and 
Intuitive Surgical. For what concerns the cross-sectional dimension, on any given date in 
the sample, there are on average two stocks for which the value of the implied volatility is 
not observed.  
11 We believe that this choice is likely to have a minimal impact on our results. Appendix 
A shows the series of the implied volatility of AON Plc, which is the series with the 
maximum number of missing values, under two different assumptions concerning the length 
of the window for the moving-average used to fill the missing values: 1 month (i.e., 4 weekly 
observations, which is our chosen length) and 3 months (12 weekly observations). We note 
that the two series are almost indistinguishable. 
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For the stocks in the list, we also compute realized volatilities. To match the implied 

volatilities, which represent the expectation at time t of the annualized volatility over 

the next 60 days (given that we choose options close to 60 days to maturity), we use 

the annualized realized volatility over the past 60 days as a predictor of the realized 

volatility over the next 60 days such that  

𝐸𝐸𝑡𝑡�𝑅𝑅𝑅𝑅𝑡𝑡,𝑡𝑡+60� = �365
60

��
𝑆𝑆𝑡𝑡+𝑖𝑖 − 𝑆𝑆𝑡𝑡+𝑖𝑖−1

𝑆𝑆𝑡𝑡+𝑖𝑖−1
�

60

𝑖𝑖=1

2

, (1.13) 

where 𝑆𝑆𝑡𝑡 is the price of the stock at time t, retrieved from Bloomberg. We elect to use 

Bloomberg prices instead of the stock prices provided by OptionMetrics, because the 

latter are not adjusted for stock splits. Table 1.1 shows the average realized and implied 

volatilities for each stock over the sample period. Average realized volatilities range from 

16% for Kimberly-Clark Corp to 45% for Abercrombie & Fitch; the implied volatilities 

range from 17% to 46%. Notably, the average implied volatilities tend to be higher than 

the average realized volatilities, consistently with the literature that has documented 

the existence of a positive spread between realized and implied volatilities (see, e.g., Bali 

and Hovakimian, 2009).  

Bloomberg prices are also used to construct a weekly series of returns for each stock in 

the sample. Excess returns are obtained by subtracting the one-month Treasury bill rate 

from the Federal Reserve Economic Data (FRED) repository of the St. Louis Fed. 

However, as one may object that our data are collected at weekly frequency, we also 

compute excess returns by subtracting the one-week US-based LIBOR rate (also 

collected from FRED) as a robustness check. Finally, we obtain the closing values of 

the S&P 500 Index and the Chicago Board Options Exchange (CBOE) S&P 500 

Volatility Index (the VIX) from the Wharton Research Data Service (WRDS).  

 

1.4. Implied and realized volatility spillover indices 

The first step of our analysis is to construct alternative volatility spillover indices using 

either implied or realized volatilities. Following the procedure described in Section 1.2, 



17 

we recursively estimate a VAR model for the implied (realized) volatilities of the 70 

stocks in our sample using a 50-week rolling window (meaning that the first value of the 

two indices are obtained with reference to December 13, 2006).12 Besides the rolling 

window length, there are other two key choices that we need to make, namely the 

number of lags to be included in the VAR model and the forecast horizon of the FEVD. 

As far as the choice of the VAR order is concerned, we rely on a standard model selection 

procedure based on the Bayesian information criterion (BIC). In the case of the VAR 

estimated on realized volatilities, our specification search shows that a VAR(1) model 

yields a BIC equal to 7.285, while the BIC is equal to 7.291 and 7.293 for the VAR(2) 

and VAR(3), respectively. For what concerns implied volatilities, a VAR(1) yields a 

BIC of 7.282, while the BIC is equal to 7.290 and 7.291 for VAR(2) and VAR(3), 

respectively. Therefore, we estimate a VAR(1), which minimizes the BIC for both the 

implied and the realized volatilities. In both cases the estimated VAR matrix is rather 

sparse, as we expected.13 Notably, the use of the LASSO algorithm allows us to estimate 

the rolling VAR even if the number of observations available for each recursion (which 

is 50 periods times 70 stocks, i.e., 3500) is less than the number of the parameters to be 

estimated (i.e., the 4900 coefficients in the vector-autoregressive matrix).     

As far as the forecast horizon of the FEVD is concerned, no optimal selection procedure 

exists. In fact, as pointed out by Diebold and Yilmaz (2014), different horizons may 

 
12 In a further robustness check, we also estimate the two indices using a 100-week rolling 
window. The resulting indices are characterized by dynamics that resemble those obtained 
using a 50-week rolling window but are smoother and therefore less informative. A 
comparison of the two indices estimated using alternatively the 50- and 100-week rolling 
windows is performed in Figure A2 of Appendix A.  
13 Figure A3 of Appendix A shows the sparsity plot of the vector autoregressive matrix of 
the VAR fitted on the realized volatilities (the one concerning implied volatilities is not 
reported as it is almost identical), which is available as a standard output from the R 
package BigVAR. Each of the squares represents one of the 70 × 70 coefficients. The darker 
is the colour, the bigger is the coefficient (in absolute value). A white square denotes that 
the coefficient has been set to zero. The picture shows that there are large coefficients on 
the main diagonal (as expected, because volatility tends to be highly persistent) but a lot 
of the coefficients out of the main diagonal has been set to zero. 
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carry different information. As we increase the forecast horizon, we get close to the 

unconditional variance decomposition, that is obtained when 𝐻𝐻 → ∞. Conversely, in our 

application, we are more interested in the short-term volatility spillovers and therefore 

we believe that 𝐻𝐻 = 2 may represent an appropriate horizon. However, to check the 

robustness of our indices to alternative assumptions, we also experiment with different 

choices of H. In particular, in Figure 1.2, we depict the RV (Panel A) and the IV (Panel 

B) spillover indices computed setting 𝐻𝐻 = 2. The dotted lines represent the mean and 

median values obtained when we compute the indices setting H at all the possible 

horizons between 2 and 10 weeks. As one can notice, despite being higher in levels, the 

dotted lines approximately describe the same evolution as the indices based on a 2-week 

ahead forecast horizon. This is true for both the RV and the IV indices and entails that 

in our application different horizons convey almost the same information. Therefore, in 

what follows we focus exclusively on the case H = 2. 

Both the IV and the RV indices show three peaks. The first peak corresponds to the 

financial crisis of 2007-2009; the second one straddles the period 2010-2012, 

approximately corresponding to the European sovereign crisis; the third peak starts in 

2013/2014 and ends in 2016/2017 (the exact timing depends on whether we examine the 

IV or at the RV index). While the first two peaks have an obvious interpretation and 

also correspond to sharp increases in the VIX, the third peak is harder to explain.14 

However, at least to some extent, the last peak appears to coincide with the tightening 

of the US monetary policy that started in December 2015 that triggered what has been 

dubbed the “Taper tantrum” by some market commentators.15 Interestingly, the IV 

index started to increase before its RV counterpart did both during the financial crisis 

and during the last peak, thus corroborating our conjecture that the IV spillover index 

could be a better real-time predictor of equity returns that its RV counterpart.  

 
14 Interestingly, similar peaks are also visible in the aggregate SRISK Index computed 
according to the methodology proposed by Brownlees and Engle (2016). Their updated 
index can be found at https://vlab.stern.nyu.edu/welcome/srisk.  
15 See e.g., https://www.cnbc.com/id/100829208.  

https://vlab.stern.nyu.edu/welcome/srisk
https://www.cnbc.com/id/100829208
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To check that the dynamics of our indices do not depend on our specific choices 

concerning the (underlying) stocks included in the sample, we also randomly exclude 

ten stocks from our list and compute afresh the spillover indices. The exercise is repeated 

ten times, and the results are plotted in Figure 1.2. In particular, the solid line represents 

our baseline RV (IV) spillover index (based on the entire sample and assuming 𝐻𝐻 = 2); 

the dotted lines represent the minimum and the maximum values of the indices 

estimated using the randomly selected subsamples of 60 stocks. We observe that the 

differences between the baseline indices and the dotted lines are minimal and therefore 

we conclude that stock selection is not the main driver for the observed behavior of the 

indices. 

 

1.5. Predictive power of the spillover indices  

In this Section, we evaluate the in-sample and OOS predictive power of the IV spillover 

index for the (excess) returns of the S&P 500 Index and for the individual stocks 

included in our sample; we shall compare such empirical performances with those offered 

by the RV counterpart and a standard benchmark, i.e., the historical mean (similar, for 

instance, to Campbell and Thompson, 2008 and Welch and Goyal 2008). More precisely, 

we estimate the predictive regression  

     𝑟𝑟𝑡𝑡+1,𝑗𝑗 = 𝛼𝛼𝑗𝑗 + 𝛽𝛽𝑗𝑗
(𝑅𝑅𝑅𝑅)∆𝑅𝑅𝑅𝑅𝑡𝑡 + 𝛽𝛽𝑗𝑗

(𝐼𝐼𝐼𝐼)∆𝐼𝐼𝐼𝐼𝑡𝑡 + 𝜀𝜀𝑡𝑡+1,𝑗𝑗 (1.14) 

where 𝑟𝑟𝑡𝑡+1,𝑗𝑗 is the weekly excess return (over the one-month T-bill) of an individual 

stock j or of the S&P 500 index, ∆𝑅𝑅𝑅𝑅𝑡𝑡 (∆𝐼𝐼𝐼𝐼𝑡𝑡) is the change between time 𝑡𝑡 − 1 and 𝑡𝑡 of 

the realized (implied) volatility spillover index, and 𝜀𝜀𝑡𝑡+1,𝑗𝑗 is an i.i.d shock with zero 

mean and volatility 𝜎𝜎𝑗𝑗.16 As we are mostly interested in comparing the predictive 

performance of the two spillover indices, we also estimate (1.11) after either setting 

 
16 Notably, we regress (excess) returns on the changes of the indices, because the two 
variables are non-stationary in levels. However, unreported results show that using the log 
of the indices instead of their changes does not improve predictability (instead, it destroys 
it). Therefore, we believe that changes in volatility spillovers are more important than the 
intensity of the spillovers to explain future stock returns. 
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𝛽𝛽𝑗𝑗
(𝑅𝑅𝑅𝑅) = 0 or 𝛽𝛽𝑗𝑗

(𝐼𝐼𝐼𝐼) = 0, alternatively. In the next subsection, we discuss the in-sample 

results, while in the following subsections, we examine the OOS predictive performance 

of the spillover indices.  

1.5.1. In-sample results 

Table 1.2 reports the estimates of the predictive regressions of the excess returns of the 

S&P 500 on (the changes of) both the spillover indices (model I) and (the changes of) 

each of the two alternative indices (models II and III), together with the R-squares of 

the regressions. A first interesting result that we report is that, while equity (excess) 

returns load negatively on the (changes of) the RV index in the previous period, they 

load positively on (changes of) the IV index in the previous period. More specifically, 

S&P 500 excess returns display a slope coefficient of -0.31 on the lagged (changes of) 

RV index and of 0.46 on the (changes of) IV index. Both coefficients turn out to be 

statistically significant both in the individual predictive regressions and when the two 

indices are used in combination to forecast the equity risk premium. The estimates of 

the coefficients of the two predictors change only slightly when they are used in 

combination.   

Table 3 displays the results concerning the predictive regressions for the individual stock 

(excess) returns. To save space and foster interpretation, we only report the average of 

the coefficients across each sector.17 In particular, we consider the following seven 

sectors: consumer discretionary (11 stocks), energy (11 stocks), financials (6 stocks), 

health care (10 stocks), industrials (11 stocks), materials (8 stocks), and technology (5 

stocks). The remaining 8 stocks are aggregated under the category “Other” because we 

 
17 To save space, in this case, we do not report the results for the regressions where the 
(changes of) the two indices in the previous period are used simultaneously to predict the 
stock excess returns. Overall, the results are coherent with what has been discussed for the 
prediction of the equity risk premium: both spillover indices show in-sample predictive 
power for the stock excess returns. Indeed, in the case of approximately one-third of the 
stocks, both coefficients are statistically significant at least at a 5% test size level; this 
proportion grows to a half when a test size level of 10% is considered. A summary of the 
results is available in Appendix B (Table B1). 
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do not have enough observations to compute meaningful averages for the sectors to 

which they belong. We also report the average value of the slope coefficients across all 

stocks.   

The results obtained for the individual stocks tend to mimic what we already commented 

in the case of the equity risk premium. Notably, the average of the coefficients obtained 

from the regressions on the individual stocks (“𝛽𝛽 coeff. All” in Table 1.3), which are -

0.36 and 0.41 for the RV and the IV, respectively, are not far from the estimates that 

we obtained for the equity risk premium (i.e., -0.31 and 0.46 for RV and IV spillover 

indices, respectively). Additionally, the variability of the coefficients across all stocks is 

quite moderate, especially in the case of RV regressions, where the minimum value for 

the estimated slope coefficients is -0.78 and the maximum is -0.10, with a standard 

deviation of 0.15 only. There is more heterogeneity as far as the slope coefficients in the 

IV regressions are concerned; indeed, they range from 0 to 1.03, with a standard 

deviation of 0.21. Interestingly, among the sectors, technology stocks are those that 

imply the smallest (in absolute value) coefficients for both the RV and IV predictive 

regressions (their averages are -0.23 and 0.34, respectively). Conversely, materials and 

energy are the sectors with the largest (in absolute value) average estimated coefficients 

(-0.44 and -0.42, respectively) for what concerns the RV regressions; energy and financial 

stocks are those implying the largest average coefficients in the IV regressions (0.71 and 

0.52, respectively).  

Figures 1.3 and 1.4 depict the distributions of the estimated slope coefficients and the 

associated t-statistics obtained from the RV (Figure 1.3) and IV (Figure 1.4) regressions. 

In the case of the RV regressions, we note that the coefficients turn out to be statistically 

significant for more than a half (namely, 51) of the stocks, when we set a test size of 

10%; however, the number decreases to 10 when we impose a more restrictive test size 

of 1%. For what concerns the IV regressions, the distribution of the estimated 

coefficients appears to be bimodal, with most of the coefficients ranging between 0.26 

and 0.39 and then between 0.65 and 0.77. Similarly to the RV regressions, 50 coefficients 
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are statistically significant at a 10% test size; however, in this case 20 stocks (i.e., one-

fourth of the total) display an estimated slope that is also significant at a 1% size.  

All in all, we find evidence of in-sample predictive power from both the RV and the IV 

indices, even when they are used jointly (which means that they are both useful to 

predict stock returns). The R-squares are generally low as they range from 0.73 to 2.06 

percent and from 0.92 to 2.41 percent, for the RV and IV index, respectively; the R-

squares for the equity risk premium predictive regressions are 1.44% for RV index and 

2.51% for the IV index, respectively. However, these values are comparable with those 

reported in the literature for equity premium in-sample predictive regressions (usually 

estimated on monthly data). For instance, in their seminal study, Fama and French 

(1988) report monthly R-square statistics of approximately 1% for a predictive 

regression on the dividend price ratio; more recently Campbell and Thompson (2008) 

report values of the R-square that range between 0.05% and 3.48% from predictive 

regressions of the (monthly) excess returns of the S&P 500 on a broad set of predictors 

(e.g., the dividend yield, the term spread, the book-to-market ratio, etc.).  

1.5.2. Out-of-sample predictive performance 

Considering that a forecaster is typically more interested in the OOS than in the in-

sample predictive performance, in this subsection, we analyze the results obtained when 

we recursively estimate the predictive regression and recursively use the information 

available at time t to forecast the excess return of the S&P 500 (or of each of the 

individual stocks) at time 𝑡𝑡+1 as  

      𝑟̂𝑟𝑡𝑡+1|𝑡𝑡,𝑗𝑗
(𝑚𝑚) = 𝛼𝛼�𝑗𝑗

(𝑚𝑚) + 𝛽̂𝛽𝑗𝑗
(𝑚𝑚)𝑥𝑥𝑡𝑡,𝑚𝑚, (1.15) 

where 𝑥𝑥𝑡𝑡,𝑚𝑚 is the change of the RV (IV) index between t and t-1, and 𝛼𝛼�𝑗𝑗
(𝑚𝑚) and 𝛽̂𝛽𝑗𝑗

(𝑚𝑚) are 

the ordinary least square (OLS) estimates of the regression coefficients obtained using 

the data available at time t. In our application, we use data from December 20, 2006 

through December 5, 2007 as the initial estimation period and we obtain the forecast 

for the excess return of stock/index j over the week of December 5 through 12 in 2007 

using the changes of the RV (IV) index over the week Nov. 28 – Dec. 5, 2007. Next, we 
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proceed recursively by adding one observation to our estimation sample in an expanding 

window fashion, until the end of the OOS period (i.e., December 27, 2017).  

To evaluate the OOS predictive performance of the two alternative indices, we use the 

standard OOS statistics suggested in Campbell and Thompson (2008), Goyal and Welch 

(2008), and Rapach et al. (2010). For each predictive regression, we compute the mean 

square forecast error (MSFE) for the security/index j and the predictor 𝑚𝑚 = 𝑅𝑅𝑅𝑅, 𝐼𝐼𝐼𝐼 as 

     𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗
(𝑚𝑚) =

1
𝑛𝑛2
��𝑟𝑟𝑗𝑗,𝑛𝑛1+𝑠𝑠 − 𝑟̂𝑟𝑗𝑗,𝑛𝑛1+𝑠𝑠|𝑛𝑛1+𝑠𝑠−1

(𝑚𝑚) �
2

𝑛𝑛2

𝑠𝑠=1

 (1.16) 

where 𝑛𝑛1 = 50 is the number of observations that are used as the initial in-sample 

estimation period, 𝑛𝑛2 = 𝑇𝑇 − 𝑛𝑛1 is the number of observations in the OOS period, 

𝑟̂𝑟𝑗𝑗,𝑛𝑛1+𝑠𝑠|𝑛𝑛1+𝑠𝑠−1
(𝑚𝑚)  is the forecast of the excess return of the asset j obtained as in (1.15), and 

𝑟𝑟𝑛𝑛1+𝑠𝑠 is the realized return that is actually observed. We also compute the MSFE of a 

model that assumes constant expected (excess) returns implying that the historical 

average is the best prediction for future excess returns:  

     𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗
(𝑏𝑏𝑏𝑏𝑏𝑏) =

1
𝑛𝑛2
��𝑟𝑟𝑗𝑗,𝑛𝑛1+𝑠𝑠 − 𝑟̅𝑟𝑗𝑗,𝑛𝑛1+𝑠𝑠�

2
𝑛𝑛2

𝑠𝑠=1

 (1.17) 

where 𝑟̅𝑟𝑗𝑗,𝑛𝑛1+𝑠𝑠 = 1
𝑛𝑛1+𝑠𝑠−1

∑ 𝑟𝑟𝑡𝑡
𝑛𝑛1+𝑠𝑠−1
𝑡𝑡=1 .  

As it is typical of the literature, for each predictive model, we report the difference 

between the square root of the MSFE (RMSFE) of the benchmark model, denoted as 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗
(𝑏𝑏𝑏𝑏𝑏𝑏) and the RMSFE of the predictive model, denoted as 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗

(𝑚𝑚).This 

difference, denoted as ΔRMSFE, is positive when using (the change of) the RV (IV) 

index as a predictor reduces the forecast error. When the ΔRMSFE is positive, we also 

test whether the gain in predictive accuracy is statistically significant, i.e., we test 

𝐻𝐻0: 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗
(𝑏𝑏𝑏𝑏𝑏𝑏) ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗

(𝑚𝑚) against 𝐻𝐻𝑎𝑎: 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗
(𝑏𝑏𝑏𝑏𝑏𝑏)  > 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗

(𝑚𝑚). Because the standard 

Diebold and Mariano (1995) and West (1996) (DMW) statistics have a non-standard 

asymptotic distribution when comparing forecasts from nested models, as it is our case 

because the benchmark corresponds to 𝛽̂𝛽𝑗𝑗
(𝑚𝑚) = 0, we rely on the MSFE-adjusted statistic 



24 

proposed by Clark and West (2007, henceforth CW). As suggested by CW, we first 

compute 

       𝑑̃𝑑𝑗𝑗,𝑛𝑛1+𝑠𝑠 
(𝑚𝑚) = �𝑟𝑟𝑗𝑗,𝑛𝑛1+𝑠𝑠 − 𝑟̅𝑟𝑗𝑗,𝑛𝑛1+𝑠𝑠�

2
+ 

    − ��𝑟𝑟𝑗𝑗,𝑛𝑛1+𝑠𝑠 − 𝑟̂𝑟𝑗𝑗,𝑛𝑛1+𝑠𝑠|𝑛𝑛1+𝑠𝑠−1
(𝑚𝑚) �

2
− �𝑟̅𝑟𝑗𝑗,𝑛𝑛1+𝑠𝑠 − 𝑟̂𝑟𝑗𝑗,𝑛𝑛1+𝑠𝑠|𝑛𝑛1+𝑠𝑠−1

(𝑚𝑚) �
2
� 

(1.18) 

and then we regress 𝑑̃𝑑𝑗𝑗,𝑛𝑛1+𝑠𝑠 
(𝑚𝑚)  on a constant for 𝑠𝑠 = 1, …𝑛𝑛2; the MSFE-adjusted statistic 

is the t-statistic corresponding to the constant.  

Additionally, we compute the OOS R-square, firstly proposed by Campbell and 

Thompson (2008), which measures the proportional reduction in the MSFE of the 

predictive regression forecasts relative to the historical mean benchmark: 

    𝑅𝑅2(𝑂𝑂𝑂𝑂𝑂𝑂)𝑗𝑗
(𝑚𝑚) = 1 −

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗
(𝑚𝑚)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗
(𝑏𝑏𝑏𝑏𝑏𝑏). (1.19) 

A negative value of 𝑅𝑅2(𝑂𝑂𝑂𝑂𝑂𝑂)𝑗𝑗
(𝑚𝑚) indicates that the predictive model m fails to 

outperform the historical mean for stock j (or the S&P index).  

However, as emphasized, for instance, by Campbell and Thompson (2008), the OOS R-

square is insufficient to gauge whether the additional amount of return predictability (if 

any) obtained through the use of the two spillover indices is economically meaningful. 

For instance, Dal Pra, Guidolin, Pedio, and Vasile (2018) note that best model in terms 

of statistical predictive accuracy are not necessarily the ones that deliver the maximum 

economic value. In addition, as observed by Rapach et al. (2010), the OOS R-square 

neglects the risk borne by an investor over the holding period. For this reason, with 

reference to the evaluation of the predictive power of the spillover indices for the equity 

risk premium, we also implement two different allocation strategies based on the 

alternative forecasting models.  

First, following Pesaran and Timmerman (1995), we construct a simple switching 

strategy, whereby the investor uses the forecasts based on the predictive regressions to 

allocate all the available wealth alternatively to stocks or risk-free bills, depending on 

the sign of the forecasted equity risk premium (i.e., when the predicted sign is positive, 

the investor allocates all her wealth to equity and viceversa). More precisely, the realized 
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wealth at the end of each holding period (which in our case is equal to one-week) is 

equal to:  

       𝑊𝑊𝑡𝑡+1 = 𝑊𝑊𝑡𝑡[(1 + 𝑟𝑟𝑡𝑡+1)𝐼𝐼(𝐸𝐸𝐸𝐸)𝑡𝑡 + (1 + 𝑟𝑟𝑟𝑟𝑡𝑡+1)(1 − 𝐼𝐼(𝐸𝐸𝐸𝐸)𝑡𝑡] (1.20) 

where 𝑊𝑊t is wealth at the beginning of the period (which we normalize to 1, as typical 

in the literature), 𝑟𝑟𝑡𝑡+1 is the realized excess equity return between 𝑡𝑡 and 𝑡𝑡 + 1, 𝑟𝑟𝑟𝑟𝑡𝑡+1 is 

the rate of the one-month T-bill between t and 𝑡𝑡 + 1, and 𝐼𝐼(𝐸𝐸𝐸𝐸)𝑡𝑡 is a dummy variable 

that equals 1 when the predicted sign is positive and all wealth is invested in the index, 

and 0 otherwise. This exercise is recursively repeated over the OOS period, so that on 

every weak the investor selects her optimal portfolio based on all the data available up 

to that point. The (annualized) average return and Sharpe ratio (SR) achieved using 

the competing forecasting models are then compared using the same statistics computed 

when the historical mean forecast is employed.  

Second, following Campbell and Thompson (2008), Welch and Goyal (2008), and 

Rapach, Strauss, and Zhou (2010), we also compute the (annualized) returns, Sharpe 

ratios and realized utilities obtained by a mean-variance investor who allocates her 

wealth between stocks and risk-free bills (at a weekly frequency) using the forecasts of 

the equity risk premium from the alternative predictive models. More precisely, the 

investor is supposed to maximize 

U(𝑊𝑊t+1) = 𝐸𝐸𝑡𝑡[W𝑡𝑡+1]  −  
γ
2

 𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡[𝑊𝑊t+1], (1.21) 

with an investment horizon equal to one week and a risk aversion coefficient, 𝛾𝛾, equal 

to 3.18 Terminal wealth depends on realized asset returns and on the selected portfolio 

weights in standard, linear ways. This allows us to optimize an objective function that 

 
18 The choice of a risk aversion coefficient of 3 is quite standard in the predictability 
literature (see, e.g., Campbell and Thompson, 2008 and Welch and Goyal, 2008). However, 
our main results are robust to different choices of the risk aversion coefficient. For instance, 
an investor with a risk aversion coefficient of 5 who uses (the changes of) the IV spillover 
index as a predictor of the equity excess returns would achieve an (annualized) utility gain 
of 3.64%; similarly, an investor with a risk aversion coefficient of 3 who uses the same 
predictor would obtain a utility gain of 3.29% per annum, as we shall discuss below.  
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reflects total one-period portfolio returns. An investor determines the optimal weights 

to be assigned to the risky asset at time t (to be held fixed until time 𝑡𝑡 + 1) according 

to the formula 

𝜔𝜔𝑡𝑡
∗ =

1
𝛾𝛾
𝑟̂𝑟𝑡𝑡+1|𝑡𝑡

(𝑚𝑚)

𝜎𝜎�𝑡𝑡+1|𝑡𝑡
2  , (1.22) 

where 𝑟̂𝑟𝑡𝑡+1|𝑡𝑡
(𝑚𝑚)  is the equity risk premium forecast based on the predictive model m and 

𝜎𝜎�𝑡𝑡+1|𝑡𝑡
2  is a historical estimate of the covariance matrix (similar to Campbell and 

Thompson, 2008, Goyal and Welch, 2008, and Rapach et al., 2010).19 The allocation to 

the risk-free asset is then simply equal to 1 − 𝜔𝜔𝑡𝑡
∗. As a benchmark, we also compute 

the weights obtained when the historical mean forecast is used in the optimization 

process, i.e.,  

𝜔𝜔𝑡𝑡
∗(𝑏𝑏𝑏𝑏𝑏𝑏) =

1
𝛾𝛾
𝑟̅𝑟𝑡𝑡+1|𝑡𝑡

𝜎𝜎�𝑡𝑡+1|𝑡𝑡
2  . (1.23) 

The average, realized utility level from each predictive model is computed as   

𝜈𝜈�(𝑚𝑚) =  μ�𝑃𝑃
(𝑚𝑚) −  

1
2

 γ𝜎𝜎�𝑃𝑃
2 (𝑚𝑚), (1.24) 

where μ�𝑃𝑃
(𝑚𝑚) and 𝜎𝜎�𝑝𝑝

2 (𝑚𝑚) are the sample mean and variance of the ex-post, realized returns 

over the OOS period from the optimal portfolio formed by exploiting model (m) to 

originate the forecasts of the equity risk premium. We also compute 𝜈𝜈�(0), the average 

utility that the investor obtains when she uses the historical mean forecast in the 

optimization process, as in (1.23). The difference between 𝜈𝜈�(𝑖𝑖) and 𝜈𝜈�(0) is the utility gain 

arising from using a predictive model for the equity risk premium and can be interpreted 

as the risk-free compensation an investor is willing to pay to switch from a strategy 

based on the historical mean to a strategy based on each of the predictive models 

proposed. A predictive model generates economic value with respect to the benchmark 

if the utility gain is positive.  

 
19 Similarly to Campbell and Thompson (2008) and Rapach et al. (2010), we constrain the 
weight attached to the equity to be positive and we allow a maximum leverage of 50% (i.e., 
𝜔𝜔𝑡𝑡

∗ is set to be lower than or equal to 150%). 
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1.5.2.1 Individual stock predictions  

In Table 1.4, we report the predictive accuracy statistics for the individual stocks. To 

foster interpretation, we do not report the results for the 70 individual stocks but focus 

instead on their averages across sectors. For this reason, the CW statistics for the 

statistical significance of ΔRMSFE are not reported. However, complete results are 

displayed in Table 2B of Appendix B. Interestingly, the RV index does not show any 

OOS predictive power for the excess returns of the individual stocks as it fails to 

outperform the benchmark. On the contrary, the IV spillover index significantly 

outperforms the benchmark for many of the individual stocks.20 On average, when the 

changes of the IV index are used as predictor for the individual stock returns, the OOS 

R-squares is 0.33% but this figure increases to 0.76% when we only consider the stocks 

with a positive OOS R-squares. Most of the predictability seems to come from the energy 

sector, which deliver average values of the R-square coefficient equal to 1.05%, while 

technology stocks display a negative average R-square and consumer discretionary 

stocks have an average R-square close to zero.  

In Table 1.4, we report the percentage of correct sign predictions (computed as an 

average across sectors). Interestingly, prediction models based alternatively on the RV 

and IV spillover indices show approximately the same proportion of correct sign 

predictions, slightly above 50%; this proportion is in turn not dissimilar from the one 

displayed by the benchmark model. More precisely, on average a predictive model based 

on the RV spillover index display 51.51% of correct sign predictions, while this 

percentage is equal to 50.88 for the IV predictive model and to 50.66 for the benchmark 

model (i.e., the historical mean prediction). Therefore, we conclude that the different 

forecasting power of the two predictive models (and the fact that the IV predictive 

 
20 In particular, Table B2 in the Appendix B shows that when the changes in the RV 
spillover index are used to predict stock returns, the Campbell and Thompson R-squares 
are never positive and statistically significant. Instead, when the changes in the IV spillover 
index are used as predictors, 45 out of 70 stocks display a positive OOS R-square. The 
differences in the MSFE between the benchmark and the predictive model are statistically 
significant (at least at a 10% test size) in 40 cases.  
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model outperforms the benchmark as far as RMSE is concerned) may not come from a 

higher ability of the IV index to forecast the correct sign of future stock returns; instead, 

we conjecture that the outperformance of the IV predictive model is linked to a better 

ability to produce accurate forecast during times of market distress, a hypothesis that 

we shall investigate further in Section 1.5.4.  

1.5.2.2 Equity risk premium predictions 

Although the evidence in favor of individual stock (excess) return forecastability is 

undeniable albeit not overwhelming, in Table 1.5, we document the robust predictive 

ability of the IV spillover index for the market-wide, aggregate equity risk premium (as 

proxied by the excess returns on the S&P 500 index) both in terms of statistic accuracy 

and of economic value. Albeit the recursively estimated slope coefficients from the RV 

and IV predictive regressions (plotted in Figure 1.5, Panels A and B, respectively) are 

always statistically significant (with the exception of a short period before the outburst 

of the financial crisis), only the IV spillover-based predictive regression manages to 

consistently outperform the benchmark.21 

In particular, the OOS R-square of the IV predictive regression is 2.11%, more than 

twice the average obtained on individual stocks. Following Goyal and Welch (2008), in 

Figure 1.6, we plot the cumulative difference in the squared forecast errors (CDSFE) for 

the historical average vis-à-vis the RV (Panel A) and the IV (Panel B) forecasts. A 

visual inspection of the plots can reveal whether the predictive regressions have a lower 

MSFE than the historical mean in any given period by simply taking a segment that 

joins the beginning and the end of the period of interest: if the curve is higher (lower) 

at the end of the segment relative to the beginning, then the predictive regression has a 

lower (higher) MSFE than the historical average during that period. Panel A shows that 

the RV spillover index outperforms the historical mean only during a short period at 

 
21 Also in these OOS regressions, the two slope coefficients display opposite signs. While the 
IV coefficient peaks at the beginning of the sample but then remains flat around 0.5-0.6 for 
the rest of the OOS period, the RV slope shows more variability but stabilizes around -0.35 
after 2011. 
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the end of 2008 (in correspondence to the outburst of the financial crisis). The CDSFE 

sharply declines in the middle of 2010 and remains flat since then, meaning that from 

2011 to the end of the OOS period, the historical mean and the RV predictive regression 

display equal predictive power.  

Panel B allows us to identify at least two periods in which the IV spillover index has 

considerably outperformed the historical average. The first one is from the beginning of 

the OOS period (December 2007) to the end of 2009 (corresponding to the financial 

crisis); then, after a short period in which the historical mean has outperformed the IV 

predictive model (from the end of 2009 to end of 2010), the CDSFE raises again from 

the beginning through end of 2011. On the contrary, from 2011 to the end of the OOS 

period there is only episodic evidence of predictability with the CDSFE turning 

completely flat after 2014. This is not surprising for at least two reasons. First, it has 

been shown (see, e.g., Rapach et. al, 2010) that OOS stock return predictability is mostly 

a recessionary phenomenon, irrespective of the choice of the predictor. Therefore, it is 

unsurprising that both predictors seem to work during the latest recession that started 

in December 2007 and ended in June 2009, according to the National Bureau of 

Economic Research (NBER) dating system. More interestingly, the predictive 

performance of the IV spillover index appears to be associated with periods of turmoil 

and contagion in financial markets. This is not unexpected, as the one we are proposing 

is a forward-looking measure of the proportion of uncertainty around future volatility 

that is propagated in the system; as such, it may timely track increases in the risk 

premium required by the investors. We shall return to this point in subsection 1.5.4, 

where we investigate the link between our forecasts and the aggregate level of risk 

aversion, as measured by the VIX Index. 

In addition, the IV predictive regression outperforms both the RV predictive regression 

and the historical mean benchmark in terms of economic value. In particular, when a 

simple switching strategy of the type described in Section 1.5.2 is implemented, an 

investor relying on the IV spillover-based forecast would achieve an average (annualized) 

return equal to 8.25%, which is significantly larger than the average return earned by 
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an investor using the RV-based forecasts (5.9%) or than the one relying on the historical 

mean forecast (5.5%). This is despite the fact that both the historical mean and the RV-

based forecast are more accurate as far as the sign predictions are concerned (they both 

display a percentage of correct sign predictions equal to 52%, in contrast to the slightly 

lower 51.62% of the IV-based forecasts). In addition, in order to consider also the risk 

borne by an investor, we compute the SRs derived from the alternative predictive 

models, and we find that an investor using the IV spillover-driven predictions would 

achieve an annualized SR equal to 0.79. Notably, an investor relying on the RV forecasts 

would realize a SR of 0.59, which is only slightly higher than the one obtained using the 

historical mean forecast (which is equal to 0.55). This happens even though the RV 

spillover forecasts were found to yield considerably higher average returns than those 

implied by the historical mean. This implies that using the RV-based forecasts entails 

taking on more risk than using the historical mean forecast.  

The results concerning the stronger predictive power of the IV spillover index also hold 

when a mean-variance investor is considered. In this case, the investor using the IV-

based forecasts would achieve a (massively) superior risk-adjusted performance than an 

investor using the RV-based forecasts (obtaining a SR of 0.71 vs. 0.31) and a slightly 

better performance compared to an investor who relies on the historical mean forecast 

(the latter achieves an annualized SR of 0.70). Moreover, a MV investor basing her 

portfolio choices on the IV spillover index forecast would obtain a higher average realized 

utility than an investor who employs historical mean or RV-based forecast. In particular, 

she would face an (annualized) utility gain of 3.29%, which can be interpreted as the 

(annualized) fee that she ought to be willing to pay to have access to a predictive model 

that filters information from the network of option implied volatilities.  

Finally, we also report the predictive accuracy and the economic value of a forecast that 

is produced by regressing the excess returns on the changes in both the spillover indices 

simultaneously employed as predictors. Notably, while the RV index does not display a 

superior predictive power compared to the benchmark, when used in combination with 

the IV index it helps to produce an increase in the forecasting performance. Indeed, the 
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predictive model based on both the indices, although it fails to display a positive OOS 

R-square, outperforms all the other models (including the benchmark) in terms of the 

economic value that it is able to generate. For instance, when switching strategies are 

considered, an investor exploiting the predictive model that contains both spillover 

indices would achieve an annualized SR of 0.90, which is considerably higher than 0.71 

(which is the SR obtained using the IV-based forecasts). As far as the MV strategies are 

considered, an investor would be willing to pay 3.60% per year in order to get access to 

the forecasts based on both spillover indices, which is higher than the 3.29% scored by 

the IV-based forecasts.  

These results are not surprising. Indeed, the IV- and RV-based forecasts based on the 

IV and RV indices are weakly correlated (their full-sample correlation is close to zero, 

namely -0.005). As noted by Rapach et al. (2010), when two predictors produce forecasts 

that are weakly (or un-) correlated, using both the predictors may help to stabilize the 

forecast.22  

1.5.3. Long-horizon return predictability  

Because actual investors would be probably interested in  prediction and investment 

horizons longer than one week, in this subsection, we discuss the results obtained when 

we set the forecasting horizon to 4, 12, and 24 weeks corresponding to 1 month, a 

quarter, and a semester, respectively. More precisely, we estimate the (direct) predictive 

regression 

     𝑟𝑟𝑡𝑡+1:𝑡𝑡+𝐻𝐻,𝑗𝑗 = 𝛼𝛼𝑗𝑗
(𝑚𝑚,ℎ) + 𝛽𝛽𝑗𝑗

(𝑚𝑚,ℎ)𝑥𝑥𝑡𝑡,𝑚𝑚 + 𝜀𝜀𝑡𝑡+1:𝑡𝑡+𝐻𝐻,𝑗𝑗
(𝑚𝑚,ℎ) , (1.25) 

 
22 It is worthwhile to notice that we could also use a weighting scheme to combine the 
forecasts coming from the two alternative models. For instance, as recently discussed by 
Tsiakas, Li, and Zhang (2020), because combining two negatively correlated assets in a 
portfolio produces a large diversification gain, a forecast combination of two negatively 
correlated forecasts yields a variance of the forecast error that is lower than the average 
variance of the forecast errors of the individual models. However, we do not pursue this 
analysis as the main goal of this paper is to show the predictive power of the IV spillover 
index, not to find the best predictive model for the market equity risk premium.  
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in which 𝑟𝑟𝑡𝑡+1:𝑡𝑡+𝐻𝐻,𝑗𝑗 = ∑ 𝑟𝑟𝑡𝑡+𝑖𝑖,𝑗𝑗𝐻𝐻
𝑖𝑖=1  is the cumulative H-period excess return on stock j (or 

on the S&P 500 index), 𝑥𝑥𝑡𝑡,𝑚𝑚 is the change of the RV (IV) index between t and t-H, and 

𝛼𝛼�𝑗𝑗
(𝑚𝑚,ℎ) and 𝛽̂𝛽𝑗𝑗

(𝑚𝑚,ℎ) are the ordinary least square (OLS) estimates of the regression 

coefficients obtained using the data available at time t with the same expanding window 

procedure described in subsection 1.5.2. The forecast for the H-period excess return on 

asset j is then given by 

     𝑟̂𝑟𝑡𝑡+1:𝑡𝑡+𝐻𝐻|𝑡𝑡,𝑗𝑗 = 𝛼𝛼�𝑗𝑗
(𝑚𝑚,ℎ) + 𝛽̂𝛽𝑗𝑗

(𝑚𝑚,ℎ)𝑥𝑥𝑡𝑡,𝑚𝑚. (1.26) 

To assess the forecasting performance of the alternative models with respect to the 

benchmark, we use the same statistics proposed in subsection 1.5.2. However, because 

we use overlapping returns on the left-hand side of equation (1.21), the resulting H-step-

ahead forecast errors will be autocorrelated by construction. Therefore, when we test for 

equal predictive accuracy with respect to the benchmarks, we use autocorrelation 

consistent standard errors to compute the t-statistics.23  

Table 1.6 has a similar structure to Table 1.4, but each panel reports the results for a 

different forecast horizon: 1 month (Panel A), 3 months (Panel B), and 6 months (Panel 

C). In the first row of each panel, we report the results concerning the equity risk 

premium. Instead, in the case of the individual stocks, we report the average values 

across different industries (similarly to Table 1.4). While the results for a one-month 

horizon closely resemble those obtained for the one-step-ahead predictions that we have 

discussed in subsection 1.5.2, when 3- and 6-month horizons are analyzed, we find 

considerable long-term predictability vis-à-vis the historical mean for both predictors 

and not only for the IV spillover index. In particular, when we examine the predictability  

of the equity risk premium, we obtain values of the R-square that are equal to 4.75% 

 
23 More precisely, we follow the procedure proposed by Clark and West (2007): we compute 
𝑑̃𝑑𝑗𝑗,𝑛𝑛1+𝑠𝑠 

(𝑚𝑚,𝐻𝐻)  as in (1.18) and we regress it on a constant. However, we use the Newey-West 
standard errors to compute the t-statistic associated to the constant. We reject the null 
hypothesis of equal predictive ability when the statistic is greater than +1.282 (for a one-
sided 10% sized test) or +1.645 (for a one-sided 5% size test). We only report the significance 
of the results concerning the equity risk premium.  
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and 8.40% (for RV and IV predictive regressions, respectively) for 𝐻𝐻 = 12 and to 12.58% 

and 15.59% for 𝐻𝐻 = 24.  

However, we shall refrain from interpreting Table 1.6 as a stark evidence in favor of 

long horizon return predictability. Indeed, recent literature (see, for instance, Boudoukh 

et al., 2019), strikes a cautionary note on the interpretation of the results on long-term 

predictability, as the corrections that have been proposed to address the autocorrelation 

issue coming from the use of overlapping returns may prove insufficient to avoid 

systematic under-rejection of the null hypothesis of equal predictive ability. In any 

event, we can safely state that the proportion of correct sign prediction increases with 

the forecast horizon for both spillover-driven predictors, reaching values in excess of 

65%. For instance, when we forecast the equity premium at a six-month horizon, the 

proportion of correct sign predictions are 66.93% in the case of the RV index and 63.81% 

for the IV index. 

1.5.4. Forecasting during low and high volatility regimes 

As discussed in Section 1.5.2 when commenting Figure 1.6, in light of the literature we 

suspect that the IV spillover index may carry a strong predictive relationship with equity 

returns especially during bear markets. To test this hypothesis, we compute the RMSFE 

for the IV and RV spillover index-based and the historical mean forecasts during times 

of high and low market volatility. To assign the observations to these two regimes, we 

use the S&P 500 implied volatility index, namely the VIX, whose increase is often 

regarded as an indicator of distress in the market. In particular, we adopt the following 

method: at any time t, we compare the current value of the VIX index with its 1-year 

moving average (52 weekly observations); if this value is 20% above the moving average, 

we classify the time t observation as belonging to a high-volatility regime; otherwise, we 

classify the observation as belonging to a low-volatility period. 

In Table 1.7, we evaluate the forecasting power of the two spillover indices (and of a 

combination of the two) for the equity risk premium under the two regimes defined 

above. As we conjectured, while in the low-volatility regime none of the predictive 
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models is able to outperform the historical mean (all the OOS R-squares are negative), 

in the high-volatility regime the IV-based forecasts display a positive (and rather large) 

OOS R-square (6.65%). In order to assess the economic value of the alternative 

forecasting models, we also report the SRs of the switching and the MV investing 

strategies for the alternative predictive models (and for the historical mean benchmark). 

Interestingly, despite it is not able to outperform the benchmark in terms of statistical 

predictive accuracy, the IV-based predictive model implies a better risk-adjusted 

performance compared to the historical mean in both the regimes. However, in the low-

volatility regime, an investor using the IV spillover predictions would only slightly 

outperform an investor using the historical mean forecasts (achieving a SR of 1.61 vs. 

1.49 when a simple switching strategy is considered and of 1.57 vs. 1.53 when a MV 

strategy is applied). Conversely, when the high-volatility period is considered, a MV 

investor using the IV-based forecasts would achieve a SR of -0.84, which is far less 

dreadful vs. the -2.30 obtained by an investor who relies on the historical mean and 

hence fails to exploit the predictability patterns we have uncovered.  

Notably, while the RV spillover index-based model strongly underperforms the IV-based 

one in terms of economic value in the high-volatility regime, the difference is weaker 

during the low-volatility regime. On the contrary, during the low-volatility regime a MV 

investor using the RV-based forecasts would slightly outperform an investor using the 

IV-based forecasts in terms of risk-adjusted performance. An (unreported) analysis of 

the  MV weights shows that employing a predictive model based on the IV spillover 

index allows an investor to massively switch the allocation towards the risk-free bond 

in a more timely manner than the alternative predictive model based on the RV spillover 

index during times of distress (and especially between the end of 2008 and the beginning 

of 2009). This seems to confirm our intuition that the IV spillover index is able to predict 

market distress much better than the RV index does. 
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1.6. Spillover effects vs. the predictive power of the VIX 

Considering that (the changes in) the IV spillover index strongly outperforms the RV 

spillover index, especially in times of high market volatility, one may wonder whether 

this differential predictive power may come from the fact that we are capturing spillover 

effects or we are just featuring the same information that is embedded in option-implied 

volatilities. Indeed, previous literature (see, e.g., Banerjee et al., 2007) has shown that 

the VIX index displays some predictive power for equity returns. In addition, Ang et al. 

(2006) argue that aggregate volatility risk, as proxied by innovations to the VIX index 

is priced in the cross section of stock returns. Although their claim is not a predictive 

one in a formal sense and there is a clear logical difference between implied volatilities 

and building an aggregate network spillover index based on IVs, such findings are of 

course consistent with the existence of a direct predictive power for changes in implied 

volatilities for stock returns. Therefore, in this subsection, we estimate a one week ahead 

predictive regression of aggregate excess returns on the (changes) in the VIX index and 

we assess its forecasting performance in-sample and OOS, in comparison with the results 

based on the IV spillover index. We also estimate a predictive regression that contains 

both the VIX and the IV spillover indices to assess whether the slope coefficient of the 

IV spillover index remains statistically significant also when the (changes in the) VIX 

is included in the regression.  

The results of this analysis are reported in Table 1.8. Panel A shows that the loading of 

(the changes of) the VIX index is small but statistically significant when the VIX is 

used alone in the predictive regression. However, when the IV spillover index is included 

in the predictive regression, the slope coefficient of the VIX index turns out not to be 

statistically different from zero. Panel B shows the predictive accuracy of the VIX index 

(alone and in combination with the IV spillover index) when it is used to recursively 

forecast the equity risk premium OOS. The panel also reports results on the economic 

value that is generated when such forecasts are used to form a mean-variance portfolio 

or, alternatively, to implement simple switching strategies as described in Section 1.5. 

Interestingly, none of the two predictive regressions outperforms the historical mean 



36 

benchmark as far as the forecasting accuracy is concerned. In fact, the OOS R-square is 

equal to -1.96% when the changes in the VIX index are used as the sole predictor and 

to -0.33% when the VIX and the IV spillover index are used in combination. 

Interestingly, this means that the addition of the VIX index to an IV-based predictive 

regression deteriorates its forecasting power even though, at least in our sample, the 

VIX by itself possess no OOS predictive accuracy. 

As far as the economic value is concerned, a predictive regression including the VIX 

does not outperform the historical mean benchmark as it is evident from the fact that 

the expected utility gain is negative. Although the expected utility gain from the 

predictive regressions based on both the VIX and the IV spillover index is positive, it is 

equal to 0.23% only in annualized terms, which is lower compared to 3.29% that was 

achieved in Table 5 when the IV spillover index was used as the sole predictor. Finally, 

unreported results show that the correlation between the IV- and the VIX-based 

forecasts is rather moderate (0.30).  Therefore, we conclude that the IV index is not just 

a different (and more convoluted) way to capture aggregate volatility risk but captures 

instead different, richer information useful to predict market excess returns. 

 

1.7. Robustness checks 

In this section, we test the robustness of our results concerning the predictive accuracy 

of the alternative spillover indices to a set of different assumptions. In Panel A of Table 

1.9, we report the forecasting accuracy statistics that we obtain when the excess returns 

are computed by subtracting the 1-week US LIBOR instead of the 1-month T-bill rate. 

Notably, the results are very similar to those already commented in Section 1.5. For 

instance, the OOS R-square for a predictive regression of the equity risk premium on 

(the changes of) the IV spillover index is 2.08% when the 1-week US LIBOR is used, 

which is really close to the 2.11% that we reported in Table 5. Similarly, the OOS R-
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square for a predictive regression of the equity risk premium on (the change of) the RV 

index is -4.80%, while it was -4.74% in Table 1.5.24 

In Panel B, we report the results that we obtain when we compute the RV (IV) index 

as the average of the indices resulting from a sub-sample of 60 randomly picked stocks 

(we repeat the experiment ten times). The results are in line with those already reported 

and commented in Section 1.5. For instance, the OOS R-square for a predictive 

regression of the equity risk premium on the (changes in the) IV and RV spillover indices 

are 2.01% and -5.12%, respectively. All the main results concerning the individual stocks 

previously shown in Table 4 are confirmed as well. For instance, the energy sector is 

still the one showing the largest amount of predictability, while the technology sector is 

the one showing the lowest strength of predictability (as measured by the OOS R-

square). Therefore, we conclude that our results are not driven by a specific choice of 

the stocks included in the panel.   

Finally, in Panel C of Table 1.9, we show the statistics that we obtain when we compute 

the RV (IV) index as the average of the indices resulting from nine alternative GFEVD 

where the forecasting horizon H varies from 2 to 10. Although the overall message does 

not change and we continue to find evidence of predictive power for the IV spillover 

index at least as far as the equity risk premium is concerned, the OOS R-squares are 

lower in this case, and they turn negative for most of the sectors when we try to forecast 

individual stock returns. In particular, the OOS R-square corresponding to the equity 

risk premium predictive regression drops to 0.93% (from 2.10% when only H = 2 was 

considered). Moreover, as far as the individual stocks are concerned, only the energy 

sector displays a positive average R-square of 0.11%. This confirms our intuition that a 

short-horizon FEVD is more informative for the sake of our application. Also in this 

case, the RV spillover index fails to display forecasting power for either the equity risk 

premium or the individual stock excess returns as it always yields negative R-squares. 

 
24 This is not surprising considering that the correlation between the two proxies of the risk-free 
rate (namely, the 1-week US LIBOR and the 1-month T-bill rate) is 0.85.  
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Considering that our analysis was carried out at a weekly frequency, and therefore that 

the spillover index series can be noisy, we have also experimented with a number of 

transformations of the two indices to investigate whether eliminating the noise can 

improve their predictive ability. For instance, we regress the weekly returns on a moving 

average of the changes of the indices over the previous month; in addition, we also 

compute the changes as the difference between the value of each index at time t and a 

moving average of the values assumed by the index over the previous month. However, 

none of these transformations improves the predictive ability of the RV or of the IV 

spillover indices; conversely, they lead to a loss of important information and actually 

decrease the OOS forecasting power of the two indices.  

 

1.8. Conclusions 

In this paper, we have analyzed whether two alternative indices that measure the 

average strength of volatility spillovers in a network of stocks constructed following the 

methodology introduced by Diebold and Yilmaz (2009, 2012), are able to predict equity 

excess returns. In order to construct the network, we rely alternatively on realized 

volatility (as suggested by Diebold and Yilmaz) and on implied volatilities, extracted 

from a set of liquid, nearly at-the-money options traded on the CBOE. Indeed, as option 

implied volatilities are forward-looking by their nature, our fundamental hypothesis is 

that they can be used to capture early signals of an increase in the spillovers of 

volatilities and therefore an increase in systemic risk. In the measure in which systemic 

risk is at least partially a source of undiversifiable, systemic risk, it is legitimate to 

expect that forward-looking network spillover indices may contain yet untapped 

forecasting power. 

Our intuition is confirmed by the empirical results that we have reported throughout. 

First, we note that the loading of excess returns on the IV spillover index is significant 

both when the index is used as an individual predictor and when it used in combination 

with the RV index. In addition, the sign of this coefficient is positive, as expected: 
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indeed, an increase in volatility spillovers is linked to a higher systemic (hence, 

systematic, to some extent) risk and therefore to a higher required risk premium. Second, 

we report a significant predictive power of (the changes of) the IV spillover index both 

in-sample and (especially) OOS compared to a no-predictability benchmark (where 

returns are assumed to be constant and equal to the historical mean). Notably, the 

stronger predictability also generates significant economic value when different trading 

strategies are considered (i.e., a simple switching strategy where the investor decides to 

allocate all her wealth to equity when the forecasted return is positive and a mean-

variance asset allocation strategies that considers equities and a risk-free bond as the 

asset menu). In particular, a mean-variance investor will achieve a utility gain of more 

than 3% on annualized basis from using a predictive model based on the IV spillover 

index. In contrast, despite showing a statistically significant coefficient and some 

evidence of in-sample predictive power, the predictive model based on RV spillovers is 

never able to outperform the benchmark in OOS experiments or to deliver a positive 

utility gain.  

Interestingly, the predictive power of the IV index is particularly evident in times of 

high market volatility. In periods of low volatility, the IV spillover index does not 

outperform the historical mean benchmark, at least in terms of statistical accuracy. 

However, when markets are highly volatile (as signaled by spikes in the VIX index) the 

IV spillover index-based forecasts strongly outperform both the benchmark and the RV-

based predictions both in terms of statistical accuracy and of economic value. In 

particular, it is worthwhile to note that an investor using the IV-based forecasts would 

have reduced her allocation to equity more quickly during 2008-2009 compared to an 

investor using the historical mean or the forecast based on the RV spillover index. 

Overall, an investor using RV-based forecasts would benefit in normal times, at the cost 

of suffering massive losses during the crisis periods. This seems to confirm our intuition 

that the IV spillover index can be used to perform early detection of situations of market 

distress. It is also worthwhile to notice that using changes in VIX index to predict equity 
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returns would fail to lead to the same results of the IV index in terms of improvements 

in the forecasting ability.  

These findings lead an important question open: given their dynamic, accurate 

relationship with aggregate excess returns, is the presence of volatility spillovers a 

systematic risk-factor priced in the cross-section of stocks? If this were the case, we 

would expect that stocks with different sensitivities to changes to the IV (RV) index 

should have different expected returns. A systematic investigation of the implications of 

our results to asset pricing represents an interesting venue for future research. Finally, 

another potential interesting exercise for the future is to investigate whether the 

differences between the (network of) implied and realized volatilities can be used to 

extract additional predictive content.   
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Table 1.1 

List of stocks  

This table contains the list of all the stocks included in the analysis and the industry to which they belong.  
It also reports their average market cap (in millions of USD), and their mean realized and implied volatilities 
(expressed in percentage points) over the sample period January 2006 – December 2017.  

 

Ticker Name Sector Avrg. Mkt Cap (mln) Mean RV Mean IV
DISH Dish Network Corp Communication 18,370.36 32.99 39.17
ANF Abercrombie & Fitch Consumer Discretionary 3,411.05 45.30 46.46
AZO Autozone Inc Consumer Discretionary 13,859.06 21.89 24.85

BBBY Best Buy Co Inc Consumer Discretionary 10,675.54 29.29 30.72
CCL Carnival Corp Consumer Discretionary 32,017.40 29.60 31.28
KSS Kohls Corp Consumer Discretionary 13,075.98 31.38 32.86
NKE Nike Inc Consumer Discretionary 55,077.01 24.18 25.44
ROST Ross Stores Inc Consumer Discretionary 12,691.40 25.98 29.38
SWK Stanley Black & Decker Inc Consumer Discretionary 11,041.04 26.26 26.79
TOL Toll Brothers Inc Consumer Discretionary 4,628.63 35.84 38.68
VFC VF Corp Consumer Discretionary 16,900.24 25.25 26.72
WHR Whirlpool Corp Consumer Discretionary 8,654.96 34.83 34.93
CL Colgate-Palmolive Corp Consumer Staples 48,487.43 16.69 18.56

COST Costco Wholesale Corp Consumer Staples 43,466.27 20.31 21.75
KMB Kimberly-Clark Corp Consumer Staples 33,798.53 15.74 17.27
APA Apache Corp Energy 29,518.49 34.10 34.31
APC Anadarko Petroleum Corp Energy 32,853.87 37.17 38.29

BHGE Baker Hughes a Co Energy 22,703.04 37.27 36.93
CNQ Canadian Natural Resources Ltd Energy 35,517.55 38.24 37.99
CVX Chevron Corp Energy 190,215.78 22.65 22.97
EOG EOG Resources Inc Energy 34,398.97 34.79 35.67
HES Hess Corp Energy 20,691.63 37.38 37.62
NOV National Oilwell Varco Inc Energy 22,019.34 39.61 39.61
OXY Occidental Petroleum Corp Energy 61,644.42 30.02 30.85
RDC Rowan Cos Plc Energy 3,303.47 42.10 43.40
SLB Schlumberger Ltd Energy 98,291.87 31.39 32.19
AON AON Plc Financials 19,257.02 20.71 23.13
AXP American Express Co Financials 64,263.06 29.02 29.65
COF Capital One Financials Corp Financials 29,988.63 36.50 36.19
GS Goldman Sachs Inc Financials 77,555.44 31.02 30.88
LM Legg Mason Inc Financials 5,455.50 37.19 36.86
PNC PNC Financial Services Group Inc Financials 35,309.92 30.64 29.24

AMGN Amgen Inc Health Care 80,273.10 24.21 26.15
BAX Baxter International Inc Health Care 32,730.18 19.93 22.03

CELG Celgene Corp Health Care 49,424.31 32.18 33.72
CI Cigna Corp Health Care 20,043.98 30.44 32.27

DHR Danaher Corp Health Care 39,654.32 20.63 22.53
ESRX Express Scripts Co Health Care 34,830.85 27.18 29.58
GILD Gilead Sciences Inc Health Care 72,978.24 28.63 30.60
ISRG Intuitive Surgical Inc Health Care 16,215.98 35.92 38.27
LH Laboratory Corp of America Health Care 9,652.85 19.62 22.33

MCK McKesson Corp Health Care 26,400.59 24.52 24.92
BA Boeing Co Industrials 72,243.62 24.99 26.40

CAT Caterpillar Inc Industrials 50,490.74 28.56 29.80
CMI Cummins Inc Industrials 17,881.93 35.69 35.33
FDX FedEx Corp Industrials 34,953.76 25.92 27.17
GD General Dynamics Corp Industrials 34,366.31 21.36 22.54

GWW WW Grainger Inc Industrials 11,359.98 23.73 25.24
HON Honeywell International Inc Industrials 56,493.67 22.48 23.93
LLL L3 Technologies Inc Industrials 9,887.53 21.16 23.11

PCAR Paccar Inc Industrials 18,125.18 30.57 32.24
RTN Raytheon Co Industrials 26,823.65 19.65 21.01
UNP Union Pacific Corp Industrials 57,516.07 25.99 27.13
PH Parker-Hannifin Corp Machinery 13,693.50 27.46 29.12

APD Air Products & Chemicals Inc Materials 21,920.80 23.33 24.44
CCJ Cameco Corp Materials 8,796.96 39.43 39.06
MLM Martin Marietta Materials Materials 6,408.09 31.91 34.29
MMM 3M Co Materials 75,117.83 19.05 20.45
MON Monsanto Co Materials 46,268.01 27.49 29.68
NUE Nucor Corp Materials 15,307.93 34.03 34.90
PX Praxair Inc Materials 30,204.44 21.36 22.82

SCCO Southern Copper Corp Materials 25,527.68 39.12 39.27
RL Ralph Loren Corp Retail Discretionary 10,099.89 32.70 33.26

TPR Tapestry Inc Retail Discretionary 12,860.11 34.76 36.10
AAPL Apple Inc Technology 398,732.91 29.58 32.81
CERN Cerner Corp Technology 12,588.18 28.20 31.01
CTSH Cognizant Technology Solution Technology 22,533.15 32.53 33.48
IBM International Business Machine Corp Technology 170,723.40 19.62 21.08
INTU Intuit Inc Technology 18,296.69 24.92 26.70
ETR Entergy Corp Utilities 14,618.84 19.41 20.82
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Table 1.2 

Predictive regressions for the equity premium 

This table reports the results of the estimation of the predictive regression   

𝑟𝑟𝑡𝑡+1 = 𝛼𝛼 + 𝛽𝛽𝑅𝑅𝑅𝑅ΔRVSI𝑡𝑡 + 𝛽𝛽𝐼𝐼𝐼𝐼ΔIVSI𝑡𝑡 + 𝜀𝜀𝑡𝑡+1, 

where 𝑟𝑟𝑡𝑡+1 is the weekly excess return (over the one month T-bill) of the S&P 500 index, and ΔRVSIt 
(ΔIVSIt) is the change between time 𝑡𝑡 − 1 and 𝑡𝑡 of the realized (implied) volatility spillover index. 
The sample period is December 2006 – December 2017. Models (II) and (III) are restricted versions 
of the baseline predictive regression above in which the coefficients 𝛽𝛽𝐼𝐼𝐼𝐼 and 𝛽𝛽𝑅𝑅𝑅𝑅 are alternatively set 
to be equal to zero. The R-square coefficients are reported in percentages (e.g., i.e., 1.00, means 
1.00%).  

 

 
  

(I) (II) (III)
Intercept 0.0014 0.0013 0.0014
(t-stat) (1.4674) (1.4029) (1.4663)
β coeff. RV -0.3116 -0.2959
(t-stat) (-3.0871) (-2.8971)
β coeff. IV 0.4602 0.4463
(t-stat) (3.9845) (3.8390)
R-square (%) 4.11 1.44 2.51
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Table 1.3 

Predictive regressions for the excess returns of individual stocks 

This table reports the results of the estimation of a set of predictive regressions of the type   
𝑟𝑟𝑡𝑡+1,𝑗𝑗 = 𝛼𝛼𝑗𝑗

(𝑚𝑚) + 𝛽𝛽𝑗𝑗
(𝑚𝑚)𝑥𝑥𝑡𝑡,𝑚𝑚 + 𝜀𝜀𝑡𝑡+1,𝑗𝑗

(𝑚𝑚) , 

where 𝑟𝑟𝑡𝑡+1,𝑗𝑗 is the weekly excess return (over the 1-month T-bill) of an individual stock j, and 𝑥𝑥𝑡𝑡,𝑚𝑚, 
with 𝑚𝑚 = Δ𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,Δ𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, is the change between time 𝑡𝑡 − 1 and 𝑡𝑡 of the realized (implied) volatility 
spillover index. The sample period is December 2006 – December 2017. We report the mean, median, 
minimum, and the maximum values of the slope coefficients (for 𝑥𝑥𝑡𝑡,𝑚𝑚 = 𝑅𝑅𝑉𝑉𝑡𝑡 and 𝑥𝑥𝑡𝑡,𝑚𝑚 =
𝐼𝐼𝑉𝑉𝑡𝑡, respectively) and the R-square coefficients across industry sectors. The R-square coefficients are 
reported in percentages (e.g., 1.00, means 1.00%). For each of the two sets of predictive regressions, 
we also report the number of significant slope coefficients at the 10-, 5-, and 1-percent test size levels. 
 

  

Mean MedianStd Dev. Min Max Mean MedianStd Dev. Min Max
β coeff. - All -0.36 -0.36 0.15 -0.78 -0.10 0.44 0.40 0.21 0.00 1.03
β coeff. -Consumer Discretionary -0.40 -0.39 0.22 -0.78 -0.13 0.35 0.37 0.11 0.15 0.49
β coeff. -Energy -0.42 -0.40 0.13 -0.67 -0.25 0.71 0.66 0.18 0.35 1.03
β coeff. - Financials -0.33 -0.36 0.14 -0.48 -0.12 0.52 0.51 0.22 0.31 0.74
β coeff. -Health Care -0.31 -0.31 0.12 -0.49 -0.11 0.36 0.36 0.16 0.17 0.74
β coeff. - Industrials -0.34 -0.33 0.08 -0.46 -0.19 0.40 0.41 0.11 0.22 0.60
β coeff. - Materials -0.44 -0.41 0.16 -0.69 -0.22 0.48 0.36 0.22 0.27 0.78
β coeff. - Technology -0.23 -0.22 0.10 -0.38 -0.10 0.34 0.35 0.19 0.04 0.53
β coeff. - Others -0.35 -0.32 0.14 -0.54 -0.18 0.35 0.30 0.21 0.00 0.70
R square (%) 0.73 0.62 0.44 0.05 2.06 0.92 0.86 0.59 0.00 2.41
N. of  significant β coeff. (α=10%) 51 50
N. of  significant β coeff. (α=5%) 32 44
N. of  significant β coeff. (α=1%) 10 20

RV Regression IV Regression
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Table 1.4 

Out-of-sample forecast evaluation for the excess returns of individual stocks 

This table reports statistics on forecast errors for out-of-sample (OOS) recursively estimated 
predictive regressions of individual stock excess returns on (changes of) the two alternative spillover 
indices. We report the difference in root mean square forecast error (RMSFE) between each of the 
two predictive models and the historical mean benchmark, 𝑟̂𝑟𝑡𝑡+1,𝑗𝑗|𝑡𝑡 = ∑ 𝑟𝑟𝑖𝑖,𝑗𝑗

𝑛𝑛2
𝑖𝑖=1 . A positive value of 

ΔRMSFE means that the predictive model has a lower RMSFE than the benchmark. We also report 
Campbell and Thompson’s (2008) OOS R-square (OOS R2) and the percentage of correct sign 
predictions for the two alternative predictive models and for the benchmark. The R-squares and the 
proportion of correct sign predictions are expressed as percentages, e.g., 1.00, means 1.00%. 

 

 
  

Benchmark
ΔRMS

FE 
OOS R2 

Correct 
sign

ΔRMSF
E 

OOS R2
Correct 

sign
Correct 

sign
Avrg. All -0.0006 -2.94 51.51 0.0001 0.3283 50.88 50.66
Avrg. Energy -0.0007 -2.70 49.99 0.0003 1.0534 51.38 48.80
Avrg. Consumer Discret. -0.0007 -3.48 52.55 0.0000 0.0548 51.10 50.79
Avrg. Financials -0.0010 -4.04 50.60 0.0001 0.2645 49.65 49.46
Avrg. Health Care -0.0004 -1.97 51.85 0.0000 0.0930 50.78 51.54
Avrg. Industrials -0.0003 -1.40 52.31 0.0001 0.3597 50.49 50.72
Avrg. Technology -0.0014 -7.07 53.52 0.0000 -0.2793 53.22 54.51
Avrg. Materials -0.0006 -3.08 50.45 0.0001 0.2169 50.93 50.90
Avrg. Others -0.0004 -2.30 51.10 0.0001 0.4976 49.98 50.14

RV IV
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Table 1.5 

Out-of-sample forecast evaluation for the aggregate equity risk premium 

This table reports statistics concerning the forecast errors from out-of-sample (OOS) recursively estimated predictive regressions for the S&P 500 
excess returns on (changes in) two spillover indices (either specified together or used alternatively). We report the root mean square forecast error 
(RMSFE) and the difference between the RMSFE of each of the predictive models and the historical mean benchmark, 𝑟̂𝑟𝑡𝑡+1,𝑗𝑗|𝑡𝑡 = ∑ 𝑟𝑟𝑖𝑖,𝑗𝑗

𝑛𝑛2
𝑖𝑖=1 . A positive 

value of ΔRMSFE means that the predictive model has a lower RMSFE than the benchmark. We compute Clark and West’s (2007) MSFE-adjusted 
statistic to assess whether a positive ΔRMSFE is statistically significant. A rejection of the null that ΔRMSFE = 0 at a 10-percent size is denoted by 
*, while a rejection at a 5-percent size is denoted by **. We also report Campbell and Thompson’s (2008) OOS R-square (OOS R2) and the percentage 
of correct sign predictions for the alternative predictive models. In addition, we report the statistics concerning the economic value of the alternative 
forecasting models. In particular, we report the average annualized returns and Sharpe ratios (SR) of a switching strategy (Pesaran and Timmermann, 
1995) in which the investor takes a long position in the equity at any time a positive return is forecasted, while she invests in the risk-free bond 
otherwise. Finally, we report the average annualized returns, Sharpe ratios (SR), and average realized utility for a mean-variance asset allocation 
strategy (𝛾𝛾 = 3). The average utility gain represents the (annualized) fee that the investor would be willing to pay to access the spillover index-based 
models relative to the historical average benchmark forecast. The R-squares, the proportion of correct sign predictions, the annualized returns, and 
the annualized realized utility (and utility gains) are all expressed as percentages, e.g., i.e., 1.00, means 1.00%. 

 

 

Predictive variable RMSFE
ΔRMSF

E 
OOS R2 

Correct 
sign

Ann. 
return 

Ann. SR
Ann.  
return 

Ann. SR
Ann. 

realized 
utility

Ann. 
utility 
gain

RV 0.0241 -0.0006 -4.74 52.19 7.21 0.59 3.78 0.31 1.87 -1.19
IV 0.0233 0.00025** 2.11 51.62 8.25 0.79 8.26 0.71 6.35 3.29
RV + IV 0.0239 -0.0004 -3.04 50.48 10.00 0.90 9.35 0.68 6.66 3.60
Benchmark (Hist- mean 0.0235 - - 52.19 5.71 0.55 3.35 0.70 3.06 -

Predictive Accuracy Switching Strategies Mean Variance Asset Allocation
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Table 1.6 

Long-horizon return predictability  

This table reports statistics on forecast errors for out-of-sample (OOS) recursively estimated long-
horizon predictive regressions  

𝑟𝑟𝑡𝑡+1:𝑡𝑡+𝐻𝐻,𝑗𝑗 = 𝛼𝛼𝑗𝑗
(𝑚𝑚,ℎ) + 𝛽𝛽𝑗𝑗

(𝑚𝑚,ℎ)𝑥𝑥𝑡𝑡,𝑚𝑚 + 𝜀𝜀𝑡𝑡+1,𝑗𝑗
(𝑚𝑚,ℎ), 

where 𝑟𝑟𝑡𝑡+1:𝑡𝑡+𝐻𝐻,𝑗𝑗 = ∑ 𝑟𝑟𝑡𝑡+𝑖𝑖𝐻𝐻
𝑖𝑖=1 , H  is the forecast horizon and j indicates either the S&P 500 or one of 

the individual stocks in the sample; 𝑥𝑥𝑡𝑡,𝑚𝑚 is the vector of the change in each of the two alternative 
spillover indices (𝑚𝑚 = Δ𝑅𝑅𝑅𝑅,Δ𝐼𝐼𝐼𝐼). H is set to 4, 12, and 24 weeks (covered by Panels A, B, and C, 
respectively) corresponding to 1, 3, and 6 months. For each H, we report the difference in the root 
mean square forecast error (RMSFE) between each predictive model and the historical mean, the 
OOS R-square, and the percentage of correct sign predictions, as in Table 2. In the case of the S&P 
500, we compute Clark and West’s (2007) MSFE-adjusted statistic to assess whether a positive 
ΔRMSFE is statistically significant. A rejection of the null that ΔRMSFE = 0 at a 10-percent size is 
denoted by *, while a rejection at a 5-percent size is denoted by **. The OOS R-square and the 
proportion of correct sign predictions are expressed as percentages, e.g., 1.00, means 1.00%.  

 

Benchmark
ΔRMSF

E 
OOS R2 

Correct 
sign 

ΔRMSF
E 

OOS R2
Correct 

sign 
Correct 

sign 
S&P 500 -0.0006 -2.81 59.77 0.0006** 2.47 54.98 55.75
Avrg. All -0.0009 -2.07 53.85 0.0006 1.49 52.71 51.63
Avrg. Energy -0.0012 -2.18 49.74 0.0004 0.82 50.73 48.36
Avrg. Consumer Disc -0.0011 -3.03 55.49 0.0006 1.34 53.88 52.68
Avrg. Financials -0.0005 -0.88 50.73 0.0010 2.09 48.66 47.54
Avrg. Health Care -0.0010 -2.19 56.07 0.0006 1.54 54.56 54.35
Avrg. Industrials -0.0004 -0.95 54.95 0.0006 1.61 53.13 52.37
Avrg. Technology -0.0011 -3.11 57.62 0.0007 1.94 57.32 56.67
Avrg. Materials -0.0004 -0.91 53.07 0.0006 1.43 52.71 51.70
Avrg. Others -0.0011 -3.35 53.71 0.0006 1.68 51.10 50.12

S&P 500 0.0019** 4.75 66.93 0.0035** 8.40 63.81 60.89
Avrg. All 0.0027 3.28 57.11 0.0050 6.36 55.51 53.31
Avrg. Energy 0.0056 5.78 52.62 0.0066 6.86 52.99 48.34
Avrg. Consumer Disc 0.0003 -0.07 57.15 0.0035 4.48 55.15 53.75
Avrg. Financials 0.0033 3.64 53.50 0.0061 6.63 50.13 48.99
Avrg. Health Care 0.0011 2.24 60.74 0.0040 5.52 59.22 57.82
Avrg. Industrials 0.0033 4.34 59.46 0.0048 6.64 56.60 54.12
Avrg. Technology 0.0029 3.95 64.59 0.0053 7.67 63.42 61.75
Avrg. Materials 0.0054 6.94 56.25 0.0062 8.14 55.40 52.99
Avrg. Others 0.0004 -0.05 54.35 0.0040 6.10 52.50 51.09

S&P 500 0.0084** 12.58 72.71 0.0106** 15.59 71.12 66.53
Avrg. All 0.0113 9.52 58.68 0.0139 11.93 57.60 54.13
Avrg. Energy 0.0151 10.64 52.28 0.0165 11.69 51.20 46.25
Avrg. Consumer Disc 0.0067 4.88 60.00 0.0094 7.61 58.91 56.83
Avrg. Financials 0.0104 7.32 51.76 0.0168 11.72 49.93 46.58
Avrg. Health Care 0.0104 10.15 63.09 0.0129 12.04 61.81 58.82
Avrg. Industrials 0.0120 10.76 60.34 0.0153 13.85 59.02 53.57
Avrg. Technology 0.0124 12.18 67.17 0.0134 13.14 67.13 64.06
Avrg. Materials 0.0160 13.56 59.99 0.0170 14.53 59.29 57.74
Avrg. Others 0.0075 7.80 56.47 0.0112 12.20 55.50 51.97

RV IV
Panel A - H = 4 (1-month ahead)

Panel B - H = 12 (3 months ahead)

Panel C - H = 24 (6 months ahead)
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Table 1.7 

Out-of-sample forecast evaluation under different volatility regimes 

This table reports the OOS R-square for three alternative predictive models (based on changes in 
the RV spillover index, on changes of the IV spillover index, and on both the predictive variables) 
over two regimes, namely, a high-volatility and a low-volatility regime. Each observation is classified 
as belonging to a (low-) high-volatility period if the level of the VIX is (below) above the 120% of 
the value of the moving average of the VIX over the previous year. The annualized Sharpe ratios 
(SR) for the switching and the mean-variance (MV) investment strategies based on the three 
alternative predictive models and on the historical mean are also reported. The R-squares are 
expressed in percentages, i.e., 1.35 means 1.35%. 

 
  

Predictive variable
OOS R2

SR 
(Switch. 
Strategy)

SR (MV) OOS R2
SR 

(Switch. 
Strategy)

SR (MV)

RV -1.35 1.10 1.62 -7.86 -1.94 -2.14
IV -2.88 1.61 1.57 6.65 -0.65 -0.84
RV + IV -3.54 1.36 1.60 -2.60 -0.70 -0.95
Benchmark (Hist. Mean) - 1.49 1.53 - -2.00 -2.30

High VolatilityLow Volatility
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Table 1.8 

VIX vs. IV spillover index-based predictive regressions 

The table reports the in-sample and OOS results of a predictive regression for the aggregate equity 
risk premium based on the VIX spillover index (I) and on both the VIX and the IV spillover index 
(II). In particular, panel A shows the results of the estimation of the two predictive regressions and 
the in-sample R-square. Panel B reports the OOS R-square, the percentage of correct sign prediction, 
the annualized Sharpe ratio of a switching investment strategy, the annualized Sharpe ratio of a 
mean-variance asset allocation strategy, and the annualized utility gain from a mean-variance 
strategy that exploits predictability vs. a strategy that relies on the historical mean forecast. The R-
squares, the proportion of correct sign predictions, and the annualized utility gain are all expressed 
in percentages, i.e., 1.00 means 1.00%.  

  

(I) (II)
Intercept 0.0014 0.0014
(t-stat) (1.4102) (1.4631)
β coeff. VIX 0.0007 0.0004
(t-stat) (2.2975) (1.3183)
β coeff. IV 0.40280
(t-stat) (3.2252)
R-square 0.91 2.80

ROOS R2 -1.96 -0.33
Sign Prediction 47.62 48.57
Ann. SR switch. 
strategy 0.16 0.45
Ann. SR MV 
strategy -0.01 0.43
Ann. Utility gain -5.79 0.23

Panel A - In sample 

Panel B - OOS
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Table 1.9 

Robustness to alternative assumptions 

This table reports the same out-of-sample forecasting accuracy measures as in Table 2 but under 
different assumptions concerning: (i) the risk-free rate used to calculate the excess returns; (ii) the 
stocks included in the VAR model from which the two spillover indices are computed; (iii) the 
forecast horizon of the forecast error variance decomposition (FEVD) from which the two spillover 
indices are computed. In particular, in panel A, we use the 1-week USD based LIBOR instead of 1-
month T-bill to compute excess returns. The results in Panel B are based on average RV and IV 
spillover indices where the average is computed across a set of spillover indices obtained using random 
subsamples of 60 stocks (out of 70).  The results in Panel C are based on average RV and IV spillover 
indices when the average is computed across a set of spillover indices obtained using alternative 
forecast horizons (namely, ℎ = 1,2, … ,10). 
 

Benchmark
ΔRMSF

E 
OOS R2 

Correct 
sign 

ΔRMSF
E 

OOS R2
Correct 

sign 
Correct 

sign 
S&P 500 -0.0006 -4.80 51.05 0.0002 2.08 49.90 52.38
Avrg. All -0.0006 -2.97 51.25 0.0001 0.32 50.78 50.50
Avrg. Energy -0.0007 -2.72 49.54 0.0003 1.05 51.55 48.80
Avrg. Consumer Disc -0.0007 -3.52 52.36 0.0000 0.05 51.27 51.08
Avrg. Financials -0.0010 -4.05 49.90 0.0001 0.26 49.46 48.48
Avrg. Health Care -0.0004 -1.99 51.62 0.0000 0.08 50.70 51.73
Avrg. Industrials -0.0003 -1.42 51.93 0.0001 0.35 50.04 50.53
Avrg. Technology -0.0014 -7.13 53.33 0.0000 -0.28 52.46 54.40
Avrg. Materials -0.0007 -3.12 50.26 0.0001 0.21 50.76 50.55
Avrg. Others -0.0005 -2.32 51.33 0.0001 0.49 50.12 49.52

S&P 500 -0.0006 -5.12 51.24 0.0002 2.01 51.62 52.38
Avrg. All -0.0007 -3.04 51.11 0.0001 0.31 50.93 50.50
Avrg. Energy -0.0008 -3.06 49.54 0.0002 0.85 51.52 48.80
Avrg. Consumer Disc -0.0007 -3.18 51.46 0.0000 0.08 51.38 51.08
Avrg. Financials -0.0010 -4.10 49.33 0.0001 0.34 49.46 48.48
Avrg. Health Care -0.0004 -2.17 51.90 0.0000 0.10 50.44 51.73
Avrg. Industrials -0.0003 -1.40 52.05 0.0001 0.42 50.86 50.53
Avrg. Technology -0.0014 -7.48 53.30 0.0000 -0.18 53.03 54.40
Avrg. Materials -0.0007 -3.26 50.43 0.0001 0.19 51.07 50.55
Avrg. Others -0.0005 -2.39 51.12 0.0000 0.43 49.86 49.52

S&P 500 -0.0003 -2.81 52.00 0.0001 0.93 51.24 52.38
Avrg. All -0.0003 -1.57 51.00 0.0000 -0.24 50.11 50.50
Avrg. Energy -0.0005 -2.03 49.02 0.0000 0.11 49.42 48.80
Avrg. Consumer Disc -0.0002 -1.02 52.26 -0.0001 -0.22 50.15 51.08
Avrg. Financials -0.0007 -2.64 49.71 0.0000 -0.20 49.84 48.48
Avrg. Health Care -0.0003 -1.62 50.78 0.0000 -0.22 49.89 51.73
Avrg. Industrials -0.0001 -0.48 51.64 -0.0001 -0.43 50.25 50.53
Avrg. Technology -0.0006 -3.37 53.52 -0.0001 -0.49 52.19 54.40
Avrg. Materials -0.0003 -1.48 50.55 0.0000 -0.26 50.88 50.55
Avrg. Others -0.0002 -1.30 51.21 -0.0001 -0.37 49.26 49.52

Panel A - Changing assumption on risk-free rate 
RV IV

Panel B - Changing assumption on selected stocks

Panel C - Changing assumption on FEVD forecasting horizon
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Figure 1.1 

Volatility spillover indices  

This figure plots the realized (Panel A) and implied (Panel B) volatility spillover indices over the 
period December 2006 – December 2017, estimated using 50-week rolling windows. The solid line 
corresponds to the index computed from a 2-week-ahead forecast error variance decomposition. We 
also report the mean and the median of the indices obtained by experimenting over all the possible 
forecast horizons used in the variance decomposition, between 2- and 10-week-ahead.   
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Figure 1.2 

Volatility spillover indices based on a sub-sample of stocks 

This figure plots the mean (solid line), the minimum, and the maximum (dotted lines) values of 
realized (Panel A) and implied (Panel B) volatility spillover indices estimated using random 
subsamples of 60 stocks (out of 70). They refer to the sample period December 2006 – December 
2017 and are recursively estimated from 2-week-ahead forecast error variance decompositions using 
a 50-week rolling window.  
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Figure 1.3 

In-sample estimated beta coefficient on the realized volatility spillover index  

Panel A displays the distribution of the beta coefficients obtained by regressing each of the 70 stocks 
that compose the sample on changes in the realized volatility spillover index over the period 
December 2006 – December 2017.  Panel B displays the distribution of the associated t-statistics.  
 

 
 

 
 

Figure 1.4 

In-sample estimated beta coefficient on the implied volatility spillover index  

Panel A displays the distribution of the beta coefficients obtained by regressing each of the 70 stocks 
that compose the sample on changes in the implied volatility spillover index over the period 
December 2006 – December 2017.  Panel B displays the distribution of the associated t-statistics.  
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Figure 1.5 

S&P 500 out-of-sample recursive beta coefficients on RV and IV SI 

Panel A plots the recursively estimated out-of-sample beta from a regression of the S&P 500 excess 
returns on the (changes in) the realized volatility index over the period December 2007 – December 
2017. Panel B plots the recursively estimated out-of-sample beta from a regression of the S&P 500 
excess returns on the (changes of) the realized volatility index over the period December 2007 – 
December 2017. The dotted lines represent ±2  standard error confidence bands.  
 

Panel A – S&P 500 Recursive Beta on Realized Volatility 

 
Panel B – S&P 500 Recursive Beta on Implied Volatility 
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Figure 1.6 

Cumulative squared forecast error differences vs. historical mean predictions 

Panel A plots the cumulative squared forecast error for the historical mean benchmark minus the 
cumulative squared forecast error for the RV-based predictive regression for the S&P 500 over the period 
December 2007 – December 2017. Panel B plots the cumulative squared forecast error for the historical 
mean benchmark minus the cumulative squared forecast error for the IV-based predictive regression for 
the S&P 500 over the period December 2007 – December 2017. An increase in the cumulative squared 
forecast error signals that the RV (IV) spillover index predictive regression outperforms the historical 
average and viceversa.  

Panel A 

 
Panel B 
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Appendix 1.A 
 

Figure 1.A1 

IV series of AON Plc under different treatments of missing values 

This figure plots the series of the implied volatility of AON Plc when two different assumptions 
concerning the treatment of missing values. The dotted line represents the series of the implied 
volatility when a 1-month moving average is used to replace missing values; the solid line represents 
the series of the implied volatility when a 3-month moving average is used to replace missing values.   
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Figure 1.A2 

Volatility spillover indices (50- vs. 100-week rolling window) 

This figure plots the realized (Panel A) and implied (Panel B) volatility spillover indices over the 
period December 2007 – December 2017, estimated using alternatively a 50-week rolling window 
(solid line) and a 100-week rolling window (dotted line). 
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Figure 1.A3 

Sparsity plot of the autoregressive matrix of a VAR(1) on realized volatilities 
 

The picture shows the sparsity plot of the autoregressive matrix of a VAR(1) on realized volatilities. 
Each of the squares represents one of the 70 × 70 coefficients. The darker is the colour, the bigger is 
the coefficient (in absolute value). A white square denotes that the coefficient has been set to zero. 
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Appendix 1.B 
 

Table 1.B1 

This table reports the results of the estimation of the predictive regression   

𝑟𝑟𝑡𝑡+1 = 𝛼𝛼 + 𝛽𝛽𝑅𝑅𝑅𝑅ΔRVSI𝑡𝑡 + 𝛽𝛽𝐼𝐼𝐼𝐼ΔIVSI𝑡𝑡 + 𝜀𝜀𝑡𝑡+1, 

where 𝑟𝑟𝑡𝑡+1 is the weekly excess return (over the one month T-bill) of an individual stock j, and 
ΔRVSIt (ΔIVSIt) is the change between time 𝑡𝑡 − 1 and 𝑡𝑡 of the realized (implied) volatility spillover 
index. The sample period is December 2006 – December 2017. We report the mean values of 𝛽𝛽𝑅𝑅𝑅𝑅, 
𝛽𝛽𝐼𝐼𝐼𝐼 and R-square across the sectors. The R-square coefficients are reported in percentages (e.g., i.e., 
1.00, means 1.00%). We also report the number of significant 𝛽𝛽𝑅𝑅𝑅𝑅 and 𝛽𝛽𝐼𝐼𝐼𝐼 coefficients at 5-percent 
test size levels. 

 
  

β coeff. RV β coeff. IVR-square (%)
All -0.78 0.53 1.58
Consumer Discretionary -0.91 0.50 1.44
Energy -0.90 0.77 1.34
Financials -0.70 0.61 2.16
Health Care -0.67 0.53 1.62
Industrials -0.68 0.40 1.59
 Materials -0.90 0.56 1.44
Technology -0.63 0.40 1.73
Others -0.76 0.42 1.61
N. of  significant βRV coeff. (α=5%) 53
N. of  significant βIV coeff. (α=5%) 40

RV + IV Regression
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Table 1.B2 

This table reports the Campbell and Thompson (2008) OOS R-squared for out-of-sample 
(OOS) recursively estimated predictive regressions of individual stock excess returns on 
(changes of) the two alternative spillover indices. The R-squares are expressed as 
percentages, e.g., i.e., 1.00, means 1.00%. The stars refer to the Clark and West’s (2007) 
MSFE-adjusted statistic; ** (*) denotes that the difference in the mean square forecast 
error between the historical mean benchmark and the predictive model based on the RV 
(IV) spillover index is statistically significant for a size of the test of 5% (10%).  

 

Stock 
ticker

R2 OOS         
RV 

Spillover 

R2 OOS       
IV 

Spillover 

Stock 
ticker

R2 OOS         
RV 

Spillover 

R2 OOS       
IV 

Spillover 
AAPL -3.83 0.70** GWW -1.31 -0.52

AMGN -3.79 -0.56 HES -1.58 1.44**

ANF -2.08 -0.43 HON -2.03 0.71*

AON -1.15 0.57* IBM -6.41 -1.54

APA -2.59 0.73** INTU -2.81 -0.58

APC -4.75 1.11** ISRG -2.83 -0.36

APD -1.43 0.02 KMB -0.93 0.44

AXP -5.70 1.02** KSS -2.05 -0.33

AZO -3.54 1.61** LH -2.41 -0.46

BA -1.86 -0.25 LLL 1.29 0.55**

BAX 0.11 -0.03 LM -5.07 0.91**

BBBY -1.56 0.27* MCK -2.37 0.26

BHGE -2.68 -0.07 MLM -2.75 -0.38

CAT -2.06 0.58** MMM -4.41 -0.28

CCJ -2.68 0.35** MON -2.30 0.20*

CCL -1.01 -0.42 NKE -4.70 0.58**

CELG -0.54 1.72** NOV -4.15 0.30**

CERN -7.37 0.42** NUE -2.70 1.17**

CI -1.45 -0.45 OXY -2.20 1.38**

CL -3.02 0.85** PCAR -1.37 0.71**

CMI -3.08 0.48** PH -0.74 1.73**

CNQ -1.82 0.42** PNC -1.90 -0.58

COF -6.59 0.40** PX -4.49 0.27*

COST -2.27 1.09** RDC -4.44 1.65**

CTSH -14.96 -0.39 RL -3.96 -0.60

CVX -1.69 2.13** ROST -4.28 -0.29

DHR -3.26 0.38 RTN -0.35 0.27*

DISH -0.43 -0.53 SCCO -3.87 0.38**

EOG -2.78 0.95** SLB -1.04 1.54**

ESRX -2.59 0.47** SWK -4.80 0.40*

ETR -2.64 1.69** TOL -5.71 0.04

FDX -2.27 0.41** TPR -4.38 -0.68

GD -0.99 0.53* UNP -1.35 0.50*

GILD -0.59 -0.04 VFC -6.29 -0.72

GS -3.84 -0.73 WHR -2.26 -0.13
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Chapter 2  

Option-Implied Volatility Spillovers and the Cross-
Section of Stock Returns  
Manuela Pedio (2020) 
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2.1. Introduction 

The seminal works by Merton (1993) and Ross (1976), and later by Campbell (1993, 

1996), have pointed out that in a multi-period economy, investors have an incentive to 

hedge against future stochastic (unfavourable) shifts in consumption and investment 

opportunities. In this framework, state variables that are correlated with (current and 

future) changes in the consumption and investment opportunity sets should be priced 

in rational asset markets. Notably, time-varying market aggregate volatility induces 

changes in the investment opportunity set by changing the expectation of future market 

returns, or by changing the risk-return trade-off. Because risk-averse investors would 

like to hedge against the deterioration in investment opportunities that is associated 

with an increase in aggregate market volatility, they would be willing to pay a premium 

to hold stocks that are negatively correlated with innovations in aggregate volatility. 

For instance, using changes to the implied volatility index (VIX) as a proxy of 

innovations to market aggregate volatility, Ang, Hodrick, Xing, and Zhang (2006) report 

a negative volatility risk premium.  

In this paper, we postulate that not only aggregate volatility but also the dynamic 

propagation of idiosyncratic volatility shocks within the financial system – what a 

literature led by the seminal paper by Forbes and Rigobon (2002) has defined as 

volatility spillovers – constitutes a relevant state variable that should be priced in the 

cross-section of stock returns. There are at least two reasons why this should be the 

case. First, an increase in the tendency of any individual asset volatility shock to spread 

to other assets will increase future aggregate volatility, all else being equal. Second, a 

high tendency of volatility shocks to spill-over among assets tends to be associated with 

higher (left) tail risks and therefore with higher systemic risks. Similarly to an increase 

in aggregate volatility, an increase in tail risk is likely to be associated with a 

deterioration in future consumption and investment opportunities (see Giglio, Kelly, and 

Pruitt, 2016).  
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Consistently with our preliminary conjecture, we expect that stocks with a high 

sensitivity to volatility spillovers will earn on average lower returns than stocks with a 

low sensitivity. Since an unexpected increase in the propagation of volatility shocks 

makes investors more concerned about future economic outcomes, it reduces their 

optimal consumption. Investors cut their consumption so that they can save more to 

hedge against possible future downturns in the economy. To hedge against such 

unfavourable shifts and to allocate their increased savings, investors prefer holding 

stocks that have higher covariance with volatility spillover innovations. Consequently, 

the prices of stocks that have positive correlation with indicators of volatility spillovers 

increase, and this reduces their average excess returns.  

While several papers have investigated both the time-series (see, e.g., Campbell and 

Hentschel, 1992; Glosten, Jagannathan, and Runkle, 1993) and the cross-sectional (see, 

e.g., Ang et al., 2006) relationship between market excess returns and aggregate 

volatility, to the best of our knowledge, this is the first paper that systematically 

investigates whether volatility spillovers are priced in the cross-section of stock returns. 

A recent literature (see, e.g., Billio, Caporin, Calogero, and Pelizzon, 2017; Kou, Peng, 

and Zhong, 2018; Tebaldi and Buraschi, 2017) has tried to investigate the role played 

by stock interconnections in asset pricing. However, these papers investigate the 

propagation of shocks to returns; instead, we aim at studying the asset pricing 

implication of the spillover of shocks to the (implied) volatilities of individual stocks.   

To measure (innovations to) volatility spillovers, we develop an index based on the 

methodology proposed by Diebold and Yilmaz (2009, 2012). This methodology relies on 

the recursive (rolling basis) estimation of the forecast error variance decomposition 

(henceforth, FEVD) from a vector autoregressive (VAR) model fitted on the volatilities 

of a set of 70 liquid stocks to represent the US equity market.1 A similar methodology 

 
1 A complete list of the individual stocks analysed along with other details concerning the 
estimation of the spillover index can be found in Pedio (2019). The stocks are representative 
of several sectors, including Consumer Discretionary, Consumer Staples, Communication, 
Energy, Health Care, Industrials, Materials, Technology, and Financials. Notably, Pedio 
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has been proposed also by Billio, Getmansky, Lo, and Pelizzon (2012), who use Granger-

causality instead of FEVD to detect spillovers. Differently from Diebold and Yilmaz, we 

fit the VAR model on implied rather than realized stock volatilities (extracted from at-

the-money, short-term options). Indeed, implied volatilities are forward-looking by their 

very nature and therefore they provide a better proxy for future, expected volatilities 

(and hence volatility spillovers). This is also consistent with Ang et al. (2006), who use 

the VIX implied volatility index as a proxy of the aggregate market volatility. The 

(implied) volatility spillover (henceforth, IVS) index obtained from this procedure 

measures the proportion of forecast error variance that is due to spillovers of volatility 

shocks. Moreover, because we use data on the prices of individual stock options, any 

changes in these implicit volatilities have an idiosyncratic, stock-specific nature. A 

positive (negative) change in this index implies an increase (decrease) of the tendency 

of idiosyncratic volatility shocks to spread in the system.  

To test whether volatility spillover risk is priced in the cross-section of stock returns, 

we adopt both a non-parametric portfolio methodology based on univariate and 

bivariate stock sorts, and a parametric Fama-Mac Beth procedure. We use a sample 

containing all the stocks traded on the New York Stock Exchange (NYSE), the 

American Stock Exchange (AMEX), or the National Association of Securities Dealers 

Automated Quotations (NASDAQ) system between January 2007 and December 2017. 

As a first step, we sort the stocks into quintile portfolios based on their estimated 

sensitivities to changes in the IVS index, 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡
𝑖𝑖 . Portfolios are formed at a weekly 

frequency and the sensitivities to changes in the IVS index are estimated using recursive 

regressions based on a rolling window of 52 weeks.  

 
(2019) shows that removing some of the stocks from the analysis does not qualitatively 
affect the properties of the index. Apparently, the spillovers among a few large stocks 
capture well the total connectivity in the system (similar to Gabaix, 2011, who shows that 
the growth rates of largest 100 US firms explain about 1/3 of the aggregate GDP 
fluctuations).  
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The results from the univariate portfolio analysis show that low-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 earn on average 

6.45% per annum in excess of stocks with high-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼. This is consistent with our 

expectations and implies a negative risk premium, as the one found by Ang et al. (2006) 

for aggregate, option-implied volatility risk. Notably, to make our discussion more 

readable, we will flip the sign of premium by taking the perspective of an investor that 

is selling the volatility spillover factor-mimicking portfolio. The average differences in 

the returns of stocks with different sensitivities to innovations in the volatility spillover 

index remain large and statistically significant also when we adjust the returns for risk 

using the capital asset pricing model (CAPM) or the three factor model by Fama and 

French (1993).  

Our results are consistent and robust when we adopt a (conditional) double-sorting 

procedure to control for other variables that show a strong relationship with the 

estimated sensitivities to the IVS index, such as momentum, idiosyncratic volatility, the 

sensitivity to the market factor, or, especially innovations in the VIX index. We are 

particularly aware of the potential concern that, given the high and positive correlation 

between 𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉 and 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼, the average differences in the (excess) returns of the stocks with 

different sensitivities to the IVS index may just reflect the aggregate volatility premium 

already detected by Ang et al. (2006). However, our results show that even after 

controlling for the exposure to innovations to the VIX index, low-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 stocks still earn 

4.20% in excess of high-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 stocks (or 5.16% when an unconditional sorting procedure 

is used instead of the conditional one).  

The results that emerge from the univariate portfolio analysis are also robust to a 

different specification of the pre-formation regression used to estimate stock sensitivities 

to the IVS index (i.e., including also the investment and profitability factors) and to a 

different approach of portfolio formation (i.e., sorting stocks into terciles instead of 

quintiles). Therefore, we conclude that the sizeable overperformance of low-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 stocks 

vs. high-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 is not a result of the specific methodological choices that we had to make.  

The use of Fama- Mac Beth regressions to estimate the volatility spillover risk premium 

leads to somewhat weaker results. Indeed, the premium earned by an investor selling 
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the volatility spillover factor-mimicking portfolio is only 1.08% and imprecisely 

estimated. However, a closer look at the Fama-Mac Beth analysis’ results reveals that 

all the risk premia associated with our chosen pricing kernel are not statistically 

significant. This may be a result of non-linearities (such as regime switches, see, e.g., 

Giampietro, Guidolin, and Pedio, 2018) in the pricing kernel that may hide the 

significance of the results. We leave this to future investigation.  

The rest of this paper is organized as follows. Section 2.2 introduces the theoretical 

framework that drives our analysis and justifies our expectation that volatility spillovers 

may be priced in the cross-section of stock returns. Section 2.3 describes the data. 

Section 2.4 presents the empirical results from univariate and bivariate portfolio sorts 

and from Fama-Mac Beth’s style regressions. Section 2.5 discusses a few robustness 

checks. Section 2.6 concludes. 

 

2.2. Theoretical framework 

When investment opportunities vary over time, the multifactor models of Merton (1973) 

and Ross (1976) show that risk premia are associated with the conditional covariances 

between asset returns and innovations in state variables that describe the time-variation 

of the investment opportunities. Campbell’s (1993, 1996) and Chen’s (2002) versions of 

the Intertemporal Capital Asset Pricing Model (ICAPM) show that investors care about 

risks both from the market return itself and from changes in forecasts of future market 

returns. Moreover, when a representative agent (assumed to exist) has a coefficient of 

relative risk aversion exceeding one, assets that co-vary positively (negatively) with 

shocks to state variables that positively (negatively) forecast future expected returns on 

the market, will be characterized by higher average returns. Simply put, assets that 

positively correlate with good news in terms of future investment opportunities, are 

expected to pay higher returns, and viceversa. These assets command a risk premium 

because they reduce a consumer’s ability to hedge against a deterioration in investment 

opportunities. 
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The intuition from the Campbell and Chen’s models is that risk-averse investors want 

to hedge against both changes in the forecasts of aggregate volatility and in the spillovers 

involving future expected volatility because volatility positively affects future expected 

market returns, as in Merton (1973).2 This intertemporal hedging demand effect arises 

because risk-averse investors reduce current consumption to increase precautionary 

savings in the presence of increased predicted uncertainty about market returns or of 

positive shocks to the ability of such uncertainty to spill-over from the source of the 

shock to other assets and eventually to the entire market. Equivalently, an unexpectedly 

high level of consumption ought to reflect either an improvement in the forecasts of 

future market returns or a reduction in the precautionary savings held as a hedge against 

future uncertainty.  

As for the economic motivation for treating the aggregate (volatility) spillover index 

(based on an empirical network estimated on the basis of VAR(p) models fitted to 

weekly volatilities implicit in individual American options written on US stocks, 

henceforth 𝐼𝐼𝑉𝑉𝑉𝑉𝑡𝑡) as a (potentially priced) risk factor, these can be summarized as follows: 

1. Given the level of aggregate volatility at time t (𝑣𝑣𝑡𝑡𝑚𝑚), the higher is the measured 

spillover index 𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡, the stronger is the tendency of any individual asset volatility 

shock to spread to other assets and hence to propagate to the entire market thus 

turning into future changes in 𝑣𝑣𝑡𝑡+ℎ𝑚𝑚  (h > 0); hence, it can be argued that shocks 

 
2 In Merton’s model, the pillar of modern asset pricing theory, the risk premium on aggregate 
market returns increases linearly with predicted, future aggregate volatility. Chen (2002) 
develops an intertemporal asset pricing model in a framework in which the conditional 
means and variances of state variables vary across time to reflect changes in the investment 
opportunity set. The model begins by positing a pricing kernel in which there are two 
components: the consumption growth rate and the rate of return on aggregate wealth. The 
aggregate budget constraint imposes restrictions under which a priced asset must either 
covary with 1) the market return, 2) the changes in the forecasts of future market returns, 
or 3) the changes in the forecasts of future market volatilities. These variations in the 
investment opportunity set must all eventually affect consumption at some horizon because 
the aggregate budget constraint must hold. 
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to 𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡 forecast future innovations in aggregate volatility and therefore changes 

in the investment opportunities. 

2. As argued by Han and Zhou (2011) and more recently by Piccotti (2017) with 

reference to the cross-section of individual stock returns and by Bekaert et al. 

(2014) with reference to international contagion among national stock markets, 

a high spillover index tends to be associated with higher (left) tail risks and 

therefore with higher systemic risk; intuitively, when spillovers among the implied 

volatility of individual equity options are high, this means that 𝐶𝐶𝐶𝐶𝐶𝐶[𝑣𝑣𝑡𝑡𝑖𝑖, 𝑣𝑣𝑡𝑡
𝑗𝑗] is 

positive and high for 𝑖𝑖 ≠ 𝑗𝑗 and, in the light of the classical formula for the 

aggregate kurtosis of the market portfolio which depends positively on 

𝐶𝐶𝐶𝐶𝐶𝐶[(𝑟𝑟𝑡𝑡𝑖𝑖)2, �𝑟𝑟𝑡𝑡
𝑗𝑗)2� and of the clear analogy with 𝐶𝐶𝐶𝐶𝐶𝐶[𝑣𝑣𝑡𝑡𝑖𝑖, 𝑣𝑣𝑡𝑡

𝑗𝑗], this offers credibility 

to the conjecture that when tail risks are priced in equilibrium, 𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡 may 

represent a state variable proxying for them. 

Implied volatility measures, also as the raw data basis to estimate an index of systemic 

connectedness, are ideal in our research design because they are forward-looking and 

therefore reveal the market views on future aggregate variance and of the way in which 

individual equity variance shocks spread through the network of firms to contribute to 

subsequent variations in aggregate volatility.3 

Formally, we can represent these effects through a stylized ICAPM framework such as 

𝑟𝑟𝑡𝑡+1𝑖𝑖 = 𝐸𝐸𝑡𝑡�𝑟𝑟𝑡𝑡+1𝑖𝑖 � + 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡
𝑖𝑖 (𝑟𝑟𝑡𝑡+1𝑚𝑚 − 𝐸𝐸𝑡𝑡[𝑟𝑟𝑡𝑡+1𝑚𝑚 ]) + 𝛽𝛽𝑣𝑣,𝑡𝑡

𝑖𝑖 (𝑣𝑣𝑡𝑡+1𝑚𝑚 − 𝐸𝐸𝑡𝑡[𝑣𝑣𝑡𝑡+1𝑚𝑚 ])

+ 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡
𝑖𝑖 (𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡+1 − 𝐸𝐸𝑡𝑡[𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡+1]) + � 𝛽𝛽𝑘𝑘,𝑡𝑡

𝑖𝑖 �𝑓𝑓𝑘𝑘,𝑡𝑡+1 − 𝐸𝐸𝑡𝑡�𝑓𝑓𝑘𝑘,𝑡𝑡+1��
𝐾𝐾

𝑘𝑘=1

+ 𝑢𝑢𝑡𝑡+1𝑖𝑖 , 

(2.1) 

where 𝑟𝑟𝑡𝑡+1𝑖𝑖  is the excess return on stock i, 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡
𝑖𝑖  is the time t loading on excess market 

returns, 𝛽𝛽𝑣𝑣,𝑡𝑡
𝑖𝑖  is the asset’s sensitivity to volatility risk, 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡

𝑖𝑖  is the loading on the 

 
3 Christensen and Prabhala (1998) show that implied volatility carries a higher information 
content concerning future volatility than past realized volatility does. Pedio (2019) shows 
that a volatility spillover index based on implied volatilities has a larger predictive power 
for stock excess returns than spillover variables based on realized volatilities.  
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aggregate (implicit) volatility spillover index, and the 𝛽𝛽𝑘𝑘,𝑡𝑡
𝑖𝑖  coefficients (for k = 1, …., K) 

represent loadings on any remaining risk factors, such as the Fama-French factors. The 

𝑢𝑢𝑡𝑡+1𝑖𝑖  are IID shocks that cause idiosyncratic deviations of asset returns from their 

conditional mean, such that they contain no cross-correlations, 𝐶𝐶𝐶𝐶𝐶𝐶[𝑢𝑢𝑡𝑡+1𝑖𝑖 ,𝑢𝑢𝑡𝑡+1
𝑗𝑗 ] = 0,∀𝑖𝑖 ≠

𝑗𝑗. In equilibrium, the conditional mean of stock i is given by: 

𝐸𝐸𝑡𝑡�𝑟𝑟𝑡𝑡+1𝑖𝑖 � = 𝛽𝛽𝑚𝑚,𝑡𝑡
𝑖𝑖 𝜆𝜆𝑡𝑡𝑚𝑚 + 𝛽𝛽𝑣𝑣,𝑡𝑡

𝑖𝑖 𝜆𝜆𝑡𝑡𝑣𝑣 + 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡
𝑖𝑖 𝜆𝜆𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼 + � 𝛽𝛽𝑘𝑘,𝑡𝑡

𝑖𝑖 𝜆𝜆𝑡𝑡𝑘𝑘
𝐾𝐾

𝑘𝑘=1
, (2.2) 

where 𝜆𝜆𝑡𝑡𝑚𝑚 is the price of risk of the market factor, 𝜆𝜆𝑡𝑡𝑣𝑣 is the price of aggregate volatility 

risk, 𝜆𝜆𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼 is the price of systemic spillover risk, and the 𝜆𝜆𝑡𝑡𝑘𝑘 are the prices of risk of the 

other factors. As it is customary, only if a factor is traded the conditional mean of the 

factor is equal to its conditional price of risk. Note that the time variation in the risk 

premia may make the stock risk premia vary over time. Therefore, abstracting from the 

additional K factors, even stocks with identical loadings on the market and aggregate 

variance (i.e., the same 𝛽𝛽𝑚𝑚𝑖𝑖  and 𝛽𝛽𝑣𝑣𝑖𝑖  coefficients), may be expected to pay different risk 

premia: assuming 𝜆𝜆𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼 < 0, those with positive and high 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖  will pay a lower risk 

premium than those with a negative or relatively low 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 . 
 

2.3. Data and definition of the variables 

2.3.1. The stock universe  

Our stock sample includes all the common stocks that traded on the New York Stock 

Exchange (NYSE), the American Stock Exchange (AMEX), or the National Association 

of Securities Dealers Automated Quotations (NASDAQ) system between January 2007 

and December 2017, collected from the Center for Research in Security Prices (CRSP) 

through the Wharton Research Data Services (WRDS).4 Similarly to Chordia, Goyal, 

 
4 Common stocks are those with a share code (SHRCD in CRSP) equal to 10 or 11. The 
stocks traded on the NYSE, Amex or Nasdaq are characterized by an exchange code 
(EXCHCD in CRSP) equal to 1, 2, and 3. We also exclude from our analysis the mutual 
funds and real estate investment trusts (REITs) characterized by Standard Industrial 
Classification (SIC) codes 6720–6730 and 6798. 
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and Shanken (2017), we eliminate stocks that have a price lower than one dollar.5 Given 

that our analysis is performed using weekly data but CRSP files are available 

alternatively at a daily and monthly frequency, we start from the daily files and obtain 

weekly returns by cumulating daily returns over a week (from Wednesday to 

Wednesday).6 Excess returns are then obtained by subtracting the (weekly) risk-free 

rate, proxied by the one-month Treasury bill rate (from Ibbotson Associates). Daily 

stock returns come from the field RET of the CRSP database, with one notable 

exception concerning the day when a stock is delisted from an exchange. In that case, 

the return on the delisting day may not be indicative of the true return that could be 

realized by an investor who held the stock prior to the delisting. Shumway (1997) argued 

that delistings caused by bankruptcies or by other negative events are often surprises; 

hence, if an investor has not liquidated the stock before the delisting, she would be stuck 

with a stock that is no longer traded on an exchange. To avoid introducing a delisting 

(upward) bias in the (excess) returns, we proceed as follows. Whenever it is possible, we 

use the delisting return calculated by CRSP (DLRET) by comparing the value after 

delisting (which is the delisting price or the amount from a final distribution) with the 

price on the last trading day. When the delisting return is not available, we follow the 

procedure suggested by Shumway (1997). If the delisting code (DLSTCD) is equal to 

500, 520, 574, 580, 584, or between 551 and 573 inclusive, we assume a delisting return 

of -30%. Otherwise, we assume that the stock is worth zero after delisting and therefore 

 
5 Returns on penny stocks are largely affected by the minimum tick size of 1/8 dollar. For 
this reason, we exclude from the sample stock-week observations when the price is below 
one dollar.  
6 We need to restrict our sample to the period 2007-2017 because before 2006 it is not 
possible to find an adequate number of frequently traded options from which we can extract 
the implied volatilities that we use to estimate the IVS index (the first year, i.e., 2006, is 
used to initialize the estimate of the index). However, because we perform the analysis at a 
weekly frequency, our number of observations is not dissimilar (when not larger) compared 
to other studies in the literature. For instance, Ang et al. (2006) use 15 year of monthly 
data, for a total of 180 time periods; on the contrary, we have 11 years of weekly data, for 
a total of 574 time periods.   
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we input a delisting return of -100%.7 The accounting data concerning the firms in the 

sample (that are used to compute, for instance, the return on equity and the investment 

ratio) are obtained from the yearly CRSP-Compustat merged dataset.  

2.3.2. The implied volatility spillover index  

The volatility spillover index used in our study is a measure of aggregate stock volatility 

connectedness. More specifically, it exploits the concept of forecast error variance 

decomposition applied to a VAR model for individual stock implied volatilities to 

measure what portion of the forecast error of the volatility of the returns on a stock is 

due to innovations to the volatilities of the other stocks in the system.  

The use of the volatility spillover index as a measure of volatility connectedness was 

firstly introduced by Diebold and Yilmaz (2009, 2012); however, they base their index 

on a multivariate system of historical, realized volatilities. In our analysis, we prefer to 

construct the volatility spillover index using at-the-money (ATM) option implied 

volatilities, which are forward looking by their nature as they represent the expectation 

under the risk-neutral probability measure of future realized volatilities over the residual 

life of an option until its expiration date. To this purpose, we select a subsample of 70 

most liquid stocks with highly traded options and collect their ATM implied volatilities 

(obtained from options with a maturity as close as possible to 60 days) at a weekly 

 
7 DLSTCD 500 means that the delisting reasons are unknown; DLSTCD 520 denotes that 
the stock moved to trading over the counter. DLSTCD 551 indicates an insufficient number 
of shareholders. DLSTCD 552 denotes that the price fell below the acceptable level 
established by the listing market. DLSTCD 560 indicates insufficient capital. DLSTCD 561 
denotes failure to comply with the rules concerning shares floating or assets-in-place. 
DLSTCD 570 indicates that the delisting has been requested by the company. DLSTCD 
572 (573) implies delisting because of liquidation (de-registration) of the company, while 
574 indicates that the company has been declared insolvent. DLSTCD 580 implies delisting 
because of non-payment of fees to the listing exchange. Finally, 584 means that the delisting 
is due to the fact that the company fails to meet the exchange’s financial guidelines. 
Additional information concerning the delisting codes can be found in the CRSP 
documentation.  
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frequency (more precisely, every Wednesday) over a sample period January 2006 – 

December 2017 obtained from the IvyDB database by OptionMetrics.   

The index is computed by recursively estimating a VAR(1) model fitted on the implied 

volatilities using a rolling window of one year of weekly data and obtaining the 2-week-

ahead FEVD from which the implied volatility spillover index is computed, as in Diebold 

and Yilmaz (2009). Additional details concerning the estimation of the volatility 

spillover index are provided in Pedio (2019).  

Figure 2.1 shows the plots of the implied volatility spillover index between January 2007 

and December 2017. Unsurprisingly, the index peaks in correspondence of financial 

crises, such as the Great Financial Crisis in 2008-2009 and the European sovereign crisis 

in 2010-2012. Notably, the plot shows a third peak, starting in the period 2014-2015 and 

ending between 2016 and 2017, which is characterized by an increase in volatility 

connectedness that does not explicitly correspond to any crisis. Although this may seem 

puzzling, similar peaks appear also in the SRISK Index computed according to the 

methodology proposed by Brownlees and Engle (2016) and therefore do not represent a 

reason for concern about the validity of our methodology of spillover estimation.8 

2.3.3. Stock-level characteristics  

Our goal is to test whether stocks with different sensitivities to volatility spillover risk 

earn different average excess returns. To measure the sensitivity of individual stocks to 

changes in IVS, we use the following regression 

𝑟𝑟𝑡𝑡+1𝑖𝑖 = 𝐸𝐸𝑡𝑡�𝑟𝑟𝑡𝑡+1𝑖𝑖 � + 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡
𝑖𝑖 (𝑟𝑟𝑡𝑡+1𝑚𝑚 − 𝐸𝐸𝑡𝑡[𝑟𝑟𝑡𝑡+1𝑚𝑚 ]) + 𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆,𝑡𝑡

𝑖𝑖 (𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡+1 − 𝐸𝐸𝑡𝑡[𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡+1])

+ 𝛽𝛽𝐻𝐻𝐻𝐻𝐻𝐻,𝑡𝑡
𝑖𝑖 (𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡+1 − 𝐸𝐸𝑡𝑡[𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡+1]) + 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡

𝑖𝑖 (𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡+1 − 𝐸𝐸𝑡𝑡[𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡+1]) + 𝑢𝑢𝑡𝑡+1𝑖𝑖

= 𝛼𝛼𝑡𝑡+1𝑖𝑖 + 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡
𝑖𝑖 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡+1 + 𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆,𝑡𝑡

𝑖𝑖 𝑆𝑆𝑆𝑆𝐵𝐵𝑡𝑡+1 + 𝛽𝛽𝐻𝐻𝐻𝐻𝐻𝐻,𝑡𝑡
𝑖𝑖 𝐻𝐻𝐻𝐻𝐿𝐿𝑡𝑡+1

+ 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡
𝑖𝑖 Δ𝐼𝐼𝑉𝑉𝑉𝑉𝑡𝑡+1 +  𝜀𝜀𝑡𝑡+1𝑖𝑖  

(2.3) 

where 𝑟𝑟𝑡𝑡+1𝑖𝑖  is the excess return of stock i at time t, 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡+1 = 𝑟𝑟𝑡𝑡+1𝑚𝑚 − 𝐸𝐸𝑡𝑡[𝑟𝑟𝑡𝑡+1𝑚𝑚 ], 

𝐸𝐸𝑡𝑡[𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡+1] = 0, 𝐸𝐸𝑡𝑡[𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡+1] = 0 because these are long-short portfolios (Fama-French, 

 
8 The updated SRISK index can be found at https://vlab.stern.nyu.edu/ welcome/srisk.  

https://vlab.stern.nyu.edu/%20welcome/srisk
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1992, 1993), 𝐸𝐸𝑡𝑡[𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡+1] = 𝐼𝐼𝐼𝐼𝑆𝑆𝑡𝑡, and 𝛼𝛼𝑡𝑡+1𝑖𝑖  absorbs the mean of the errors 𝑢𝑢𝑡𝑡+1𝑖𝑖  such that 

𝐸𝐸𝑡𝑡�𝜀𝜀𝑡𝑡+1𝑖𝑖 � = 0.9 The multivariate regression model in (3) is a special case of the general 

ICAPM framework in (1) where 𝛽𝛽𝑣𝑣,𝑡𝑡
𝑖𝑖 = 0 (a restriction removed later on), and K = 2 to 

encompass the other two classical Fama-French factors, i.e., size and value. We estimate 

this regression on a rolling window basis, using one year of weekly excess returns (i.e., 

we employ a rolling window of 52 weeks), which implicitly gives substance to the 

assumed, potential time variation in the factor exposures. Therefore, we require that a 

stock has at least 52 weeks of observed data to be included in our analysis. 

We also employ a large set of stock level characteristics as control variables. The market 

exposure, 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡
𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is estimated by regressing the excess returns of stock i over market 

excess returns (from Kenneth French’s website). However, non-tabulated results show 

that using the market exposure estimated from the multivariate model (2.3) instead of 

𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡
𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 does not qualitatively change our results. The size of a firm is defined as the 

natural log of the product of the price per share by the number of shares outstanding 

(in millions of dollars).10 The book-to-market ratio (BM) is computed as the book value 

of  the shareholders’ equity plus deferred tax and investment tax credit (if available) 

minus the book value of the preferred stocks divided by the market value of equity 

(Fama and French, 1993).11 Following Hou, Zhou, and Zhang (2015), investment (INV) 

 
9 The market excess returns and the SMB and HML factors are obtained from Kenneth 
French’s data library at http://mba.tuck.dartmouth.edu/pages/ 
faculty/ken.french/data_library.html. In order to compile weekly time series data, we start 
from the daily file and cumulate the (excess) returns over a week from Wednesday to 
Wednesday.   
10 The stock price is denoted by PRC in CRSP. When a traded price is not available, PRC 
is the average between the bid and the ask prices and it is reported in CRSP as a negative 
price. Therefore, in order to compute the value of the outstanding capital, we multiply the 
absolute value of PRC by the number of outstanding shares (SHROUT). As SHROUT is 
expressed in thousands of shares, we divide the market value of the outstanding capital that 
we obtain by 1,000 before taking the natural log.  
11 The book value of the shareholders’ equity is the item SEQ in the CRSP-Compustat 
merged dataset. When SEQ is not available, we estimate it as the sum of the book value of 
common equity (CEQ) and the par value of preferred stocks (PSTK). Finally, if also CEQ 
is missing, we compute shareholders’ equity as the book value of total assets (AT) minus 

http://mba.tuck.dartmouth.edu/pages/%20faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/%20faculty/ken.french/data_library.html
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is the year-on-year growth in the value of the total assets (AT) divided by the total 

assets in last fiscal year 𝑡𝑡 − 1. In addition, the return on equity (ROE) is computed as 

income before extraordinary items (IBC) divided by the lagged book value of equity.  

Similarly to Amihud (2002), we measure the illiquidity (ILLIQ) of a stock during week 

t as the average over that week of the ratio between the absolute daily return and the 

daily traded volume, i.e., 

    𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑄𝑄𝑖𝑖,𝑡𝑡 = 𝐴𝐴𝐴𝐴𝐴𝐴 � |𝑟𝑟𝑖𝑖,𝑑𝑑|
𝑉𝑉𝑉𝑉𝑉𝑉𝐷𝐷𝑖𝑖,𝑑𝑑

�, (2.4) 

where 𝑟𝑟𝑖𝑖,𝑑𝑑 is the (excess) return of stock i on day d and 𝑉𝑉𝑉𝑉𝑉𝑉𝐷𝐷𝑖𝑖,𝑑𝑑 is the dollar trading 

volume (computed as the item VOL multiplied by the absolute value of the item PRC, 

both from CRSP) for the for stock i on day d. The measure is multiplied by 106. 

Following Ang et al. (2006), we estimate the exposure of a stock to aggregate volatility 

using the Chicago Board Option Exchange (CBOE) volatility index (VIX) as a proxy 

of total market (implied) volatility. To this purpose, we recursively estimate a regression 

that is similar to (2.3) but where Δ𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡 is replaced by Δ𝑉𝑉𝑉𝑉𝑋𝑋𝑡𝑡 (the weekly change in VIX). 

Clearly, compared to (1), 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡
𝑖𝑖 = 0 but 𝛽𝛽𝑣𝑣,𝑡𝑡

𝑖𝑖 = 𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉,𝑡𝑡
𝑖𝑖  becomes estimable and is 

unrestricted. The regression is estimated on a rolling window basis using 52 weeks of 

data. In addition, we compute idiosyncratic volatility of stock i (IVOL) by estimating 

recursively (using 52 weeks of data) the three-factor model (Fama and French, 1993) 

𝑟𝑟𝑡𝑡+1𝑖𝑖 = 𝛼𝛼𝑡𝑡+1𝑖𝑖 + 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡
𝑖𝑖 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡+1 + 𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆,𝑡𝑡

𝑖𝑖 𝑆𝑆𝑆𝑆𝐵𝐵𝑡𝑡+1 + 𝛽𝛽𝐻𝐻𝐻𝐻𝐻𝐻,𝑡𝑡
𝑖𝑖 𝐻𝐻𝐻𝐻𝐿𝐿𝑡𝑡+1 +  𝜀𝜀𝑡𝑡+1𝑖𝑖 . (2.5) 

IVOL is defined as the standard deviation of the residual of the rolling regression in 

(6).12  

 
the book value of total liabilities (LT). The book value of preferred stock is the item PSTKR 
in the CRSP-Compustat merged database. When it is not available, we use the par value 
(PSTK) as its proxy. Finally, deferred tax and investment tax credit is the item TXDITC 
in the CRSP-Compustat merged dataset. 
12 We use the standard deviation of the residuals from the regression in (2.5) as a proxy for 
idiosyncratic volatility for comparability with Ang et al. (2006). However, a non-tabulated 
analysis shows that changing the specification in (2.5) to include investment and 
profitability factors does not qualitatively affect the results.   
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Finally, following Jegadeesh (1990) and Jegadeesh and Titman (1993), we compute the 

short-term reversal (REV) and momentum (MOM) of each stock. Specifically, in our 

framework, reversal is defined as the stock return over the previous week; momentum is 

the cumulative return over the previous six months, i.e., between time 𝑡𝑡 − 2 and time 

𝑡𝑡 − 26 (the period 𝑡𝑡 − 1 is excluded to avoid capturing reversal effects).  

Table 2.1 reports summary statistics for weekly excess returns, for 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 , and for the 

other stock-level characteristics that we use as control variables. The statistics have 

been computed using a two-step procedure, following, e.g., Bali, Engle, and Murray 

(2016): in the first step, we compute the cross-sectional mean, standard deviation, 

skewness, kurtosis, and 5th, 25th, 50th, 75th, and 95th percentiles of each characteristic 

for each of the weeks in the sample; in the second step, we obtain the time series averages 

of these statistics. We also report the average number of stocks for which a given 

characteristic is available.13  

Interestingly, the average exposure to the implied volatility index is very low (-0.07) but 

there is a lot of variability in this estimate, as shown by a 5-th percentile value of -2.58 

and a 95-th percentile value of 2.32 (besides a rather large standard deviation of 1.73). 

The distribution of the loadings is almost symmetric (with a relatively moderate 

negative skewness of -0.94) but substantially fat-tailed (the estimated kurtosis is 45.90).  

Noticeably, also the average exposure to the VIX index is low (0.02) but the variability 

is more limited (the standard deviation is 0.63, the 5-th percentile value is -0.88 and the 

95-th percentile value of is 0.92). Unsurprisingly, the average exposure to the market 

factor is close to one with a standard deviation of 0.72. 

 

 
13 Because the first year of weekly data is used to initialize the estimate of 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 , all the 
summary statistics are computed for the period January 2008 – December 2017.  
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2.4. Empirical Results 

2.4.1. Univariate sorts  

The first goal of this paper is to provide a systematic investigation of how the stochastic 

volatility spillover effects across US equities (as proxied by the IVS index discussed in 

section 2.3.1) are priced in the cross-section of expected equity returns. To this purpose, 

we sort the stock universe in five value-weighted portfolios based on their loadings on 

the changes in the IVS index; the first quintile portfolio (“Low”) collects the stocks with 

the lowest exposure to the index while the last quintile portfolio (“High”) contains the 

stocks with the highest exposure to the index.14 We also form a “High-minus-Low” 

portfolio obtained by selling the stocks in the highest quintile portfolio and buying the 

stocks in the lowest quintile portfolio. The loadings of stock excess returns on the implied 

volatility spillover index are obtained by estimating the regression in (2.3) over the 

previous 52 weeks (one year). Therefore, data from January 2007 to December 2007 are 

employed to obtain the first set of loadings that are used to form the portfolios to be 

held through the first week of January 2008.  

Table 2.2 reports the results of the univariate portfolio analysis. The first column of 

Table 2.2 presents the average exposure to the IVS index for each quintile, obtained by 

first computing the cross-sectional average of the exposures and then averaging along 

the time-series dimension. It is evident that moving from the lowest quintile to the 

highest one, there is a considerable cross-sectional variation in the estimated 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 

loadings; indeed, the average exposure to the implied volatility spillover index increases 

from -2.24 to 2.02. As it had been already evident from the summary statistics, the 

cross-sectional distribution of 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 is almost symmetric and centered around zero.  

In the second and third columns, we report the mean  and the standard deviation of the 

excess returns of the value-weighted quintile portfolios. The t-statistics of the average 

 
14 To form value-weighted portfolios, we assign to each stock composing the quintile portfolio 
a weight that is equal to its market capitalization at the time when the portfolio was formed, 
divided by the total market capitalization of the quintile portfolio.  
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(excess) returns are reported in parenthesis. Notably, the average excess return  

decreases monotonically from 12.37% (on an annualized basis) in the lowest quintile to 

5.92% in the highest quintile, which is consistent with the hypothesis that volatility 

spillover is a priced factor in the cross-section of stock returns. The standard deviations 

for these excess returns are similar and close to 23% for both the highest and lowest 

quintile.  

Notably, the stocks with the lowest exposure to volatility spillovers earn on average 

higher returns than the stocks with the highest exposure. Although this may seem 

counterintuitive, this is consistent with the conditional ICAPM framework in Merton 

(1973), Campbell (1993, 1996) and Chen (2002). As emphasized in section 2.2, a high 

spillover index tends to forecast higher, future aggregate volatility and to be associated 

with higher (left) tail risks and therefore with higher systemic risks. Therefore, stocks 

with a high positive 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 represent a natural hedge for the investors, because their 

(excess) returns increase when the (implied) volatility spillover index increases as well. 

As a consequence, investors may demand lower returns to hold stocks with large positive 

exposures to the IVS index. Despite the fact that this entails a negative premium (as 

the one reported by Ang et al., 2006), to make the rest of the discussion of the empirical 

results easy to follow, we define the premium by taking the perspective of an investor 

that is selling the High-minus-Low volatility spillover portfolio. Hence, for readability, 

in our tables (and throughout the text), we report the positive excess returns earned by 

the Low-minus-High volatility spillover portfolio (as selling the High-minus-Low 

portfolio is equivalent to buying the Low-minus-High one). 

The average difference between the returns of the first and the fifth quintile portfolios 

is equal to 6.45% on annualized basis with a Newey and West (1987) robust t-statistic 

equal to 2.10.15 In square brackets, we report the bootstrapped 5%-95% confidence 

 
15 We use the Newey-West adjustment with 6 lags to compute t-statistics as the time series 
exhibit strong serial correlation. The lags are chosen using a well-known rule of thumb (see, 
e.g., Bali et al.,2016) that sets the number of lags equal to 4 � 𝑇𝑇

100
�
𝑎𝑎
 with 𝑎𝑎 = 2

9
 and T equal 

to the number of periods in the analysis (which is equal to 522 in our case). Note that 
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interval for the average difference in the returns earned by the stocks with low and high 

exposures to the IVS index. In order to account for the serial correlation in the time 

series of the excess returns, we apply a circular block bootstrap procedure (see, e.g., 

Politis and White, 2004; a detailed illustration of this methodology can be found in 

Appendix A). Although the resulting 95% confidence interval is rather large (from 1.18 

to 11.77), the null hypothesis that the average difference in the returns of low- and high-

𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 stocks is not different from zero can be safely rejected.  

In the fourth, fifth, sixth, and seventh columns of the table, we report the average 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀, 

market share, size, and BM for each quintile portfolio. These statistics have been 

obtained using the same two-step procedure that we employ to compute average 

exposures to the IVS index. More, specifically, in the fourth column, we report the 

average exposures to the market for the stocks in each quantile portfolio; notably,  the 

first and the fifth quintile portfolios have a similar average 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀 (1.19 and 1.26, 

respectively) so that the differences in their average excess returns are not due to their 

different exposure to the market factor. 

The market share of each quintile portfolio is the percentage of total market share 

represented by the portfolio. The portfolios with the highest and the lowest exposures 

to volatility spillovers have a similar market share (8.25% and 9.49%, respectively). A 

similar pattern is also evident for the size and the BM ratio: the lowest quintile portfolio 

has an average size (expressed in terms of log-capitalization, as discussed in section 

2.3.2) of 5.64 and an average BM equal to 0.96. Similarly, the highest quintile portfolio 

has an average size of 5.91 and an average BM equal to 0.90. The fact that the two 

extreme quintile portfolios contain stock with similar average sizes and BM ratios rules 

out the concern that the well documented (see, e.g., Fama and French, 1993) size and 

 
changing the number of lags hardly changes the reported values of the t statistics; also the 
adoption of an automatic lag-selection procedure based on Schwarz’s criterion does not 
affect the results.  



81 

value factors may represent a potential, alternative explanation for the average 

difference in the (excess) returns of low- vs. high-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 portfolios. 

Finally, the last two columns present risk-adjusted returns (alphas) from the CAPM 

and the Fama-French three factor model along with the associated Newey-West robust 

t-statistics. The difference in alphas between low and high-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 portfolios is equal to 

6.16% on annualized basis (with a Newey-West t-ratio of 2.02) for the CAPM model 

and to 5.55% (with Newey-West t-statistic of 1.75) for the Fama-French factor model. 

We also report the bootstrapped 90% confidence interval, which goes from 0.82% to 

11.45% when the CAPM is considered and from 0.18 to 11.77 when the three-factor 

model is employed. Therefore, we can conclude that an investor buying the stocks in 

the low-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 portfolio and selling the stocks in the high-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 portfolio would earn a 

statistically significant risk-adjusted return. Interestingly, the average difference in the 

alphas seems to be due more to the underperformance of the stocks in the highest 

quintile than to the overperformance of the ones in the lowest quintile. Indeed, while 

the alpha of the highest quintile portfolio is not statistically significant (it is equal to -

0.32 and -0.37 for the CAPM and the Fama-French model, respectively, with t-statistics 

of -0.14 and -0.16), the alpha of the lowest quintile portfolio is large (-6.48 and -5.92 for 

the CAPM and the Fama-French model, respectively) and precisely estimated.  

Notably, the investors could form their portfolio at time 𝑡𝑡 using a sorting procedure that 

is based on the exposure to changes to the IVS index that has been observed (estimated) 

in the past. This approach is sensible if 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 is a characteristic of the stock that is 

persistent over time. In order to assess whether this is the case, we examine the 

persistence of the connectedness beta by estimating firm-level cross-sectional regressions 

of 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖  on its lagged values, i.e., for each time t, we estimate 

𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼
𝑖𝑖,𝑡𝑡+ℎ = 𝜆𝜆0,𝑡𝑡 + 𝜆𝜆1,𝑡𝑡𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼

𝑖𝑖,𝑡𝑡 + 𝜀𝜀𝑡𝑡+ℎ𝑖𝑖 , (2.6) 

where ℎ is alternatively set to equal to 4 (one month), 13 (three months), 26 (six 

months), and 52 (one year). In Table 2.3, we present the time series average of 𝜆𝜆1,𝑡𝑡 and 

the associated Newey-West t-statistics. From the results, it is evident that 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 is a 
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persistent characteristic of the stocks. When 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 is regressed on its one-month lagged 

value, the slope coefficient is close to 1 (more precisely, it is equal to 0.91). The 

correlation remains significant over time and starts declining after six months. Indeed, 

when 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 is regressed on its six-month lagged value, the slope coefficient is still 0.43; 

however, the coefficient becomes essentially zero (0.009 with a Newey-West t-statistic 

of 0.69) after one year. From this analysis, we conclude that it would be perfectly 

rational for an investor to use the exposure to IVS observed at time 𝑡𝑡 to predict the 

exposure over the following week. 

 2.4.2. Stock characteristics  

In this section, we examine the average characteristics of stocks with different exposures 

to the implied volatility spillover index by estimating the following set of weekly cross-

sectional regressions  

𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼
𝑖𝑖,𝑡𝑡 = 𝜆𝜆0 + 𝜆𝜆1𝑋𝑋𝑖𝑖,𝑡𝑡 + 𝜀𝜀𝑡𝑡𝑖𝑖, (2.7) 

where 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼
𝑖𝑖,𝑡𝑡  is the exposure to volatility spillovers of stock 𝑖𝑖 in week 𝑡𝑡 and 𝑋𝑋𝑖𝑖,𝑡𝑡 is a 

collection of stock-specific characteristics observable at time 𝑡𝑡. More specifically, 𝑋𝑋𝑖𝑖,𝑡𝑡 

collects the following stock characteristics (that have been described in section 2.3.2): 

exposure to the market factor (𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡
𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶), size, book-to-market, investment, profitability, 

exposure to the changes in aggregate volatility (𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉,𝑡𝑡
𝑖𝑖 ), illiquidity, idiosyncratic 

volatility, momentum, and reversal. We also estimate the nested versions of the 

regression in (2.7) where all but one slope coefficients are restricted to be equal to zero.  

In Table 2.4, we report the time series averages of the estimated slope coefficients and 

their associated t-statistics together with the average R-squares of the regressions. From 

the first column of Table 2.4, we notice that the exposure to volatility spillovers has a 

positive and significant (average) loading on the exposure to the market (𝜆𝜆1 = 0.05 with 

a Newey-West t-statistic of 2.57). Similarly, 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 loads positively on the size 

characteristic and on the exposure to the VIX index. In the latter case, the loading is 

equal to 0.17 (with a Newey-West t-statistic of 2.60) and the R-square (which is equal 

to 5.28%) is large compared to the alternative univariate specifications presented in 
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Table 2.4. Such a high correlation is not unexpected, as aggregate implied volatility and 

spillovers of individual stock (implied) volatilities are intimately linked. On the one 

hand, given a certain level of aggregate volatility at time t (𝑣𝑣𝑡𝑡𝑚𝑚), the higher is 𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡, the 

stronger is the tendency of any individual asset volatility shock to spread to other assets 

and hence to propagate to entire market thus turning into a future changes in 𝑣𝑣𝑡𝑡+ℎ𝑚𝑚  (h 

> 0). On the other hand, volatility is more likely to spread in bear markets, when the 

level of aggregate volatility is typically high compared to bull markets (see, e.g., 

Hamilton and Lin, 1996; Guidolin and Timmermann, 2006). 

Conversely, 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 displays negative loadings on the book-to-market ratio, on Amihud’s 

(2002) illiquidity measure, idiosyncratic volatility, momentum, and reversal, while the 

loadings on profitability and investment also imply negative, but not statistically 

significant, estimated coefficients.  

Notably, when we include all the explanatory variables simultaneously, most of the 

cross-sectional relationships between 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 and other stock-specific characteristics become 

weak and not statistically significant. Specifically, only the loadings on 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (equal to 

0.11), 𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉 (equal to 0.22), idiosyncratic volatility (equal to -3.69) and momentum (equal 

to -0.31) remain statistically significant (with Newey West t-statistics of 5.31, 2.49, -

5.09, and -2.40, respectively).  

As the relationship between 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 and 𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉 is of particular interest for our analysis, in 

Figure 2.2, we plot the time series of the cross-sectional correlation between 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡
𝑖𝑖  and 

𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉,𝑡𝑡
𝑖𝑖 . The correlation is generally positive (with some spikes in correspondence to the 

financial crisis, the European sovereign crisis, and in 2015-2016), meaning that stocks 

with a high exposure to aggregate volatility also tend to have a high exposure to 

volatility spillovers. However, it turns negative in 2010 and in 2017. To check that the 

premium earned by low-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 stocks is not due to this high correlation with 𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉 , in the 

next section, we perform conditional bivariate portfolio sorts.  
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2.4.3. Bivariate sorts  

In section 2.4.2, we detected significant relationships between 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 and some other stock 

characteristics (namely, 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, momentum, 𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉 , or idiosyncratic volatility). In this 

section, we use dependent bivariate portfolios sorts to investigate whether the average 

differences in returns between low- and high-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 portfolios persist after we have 

controlled for each one, in turn, of these characteristics. Notably, we follow Ang et al. 

(2006) in our choice to use a conditional sorting procedure. Notoriously, non-dependent 

and dependent sorts do not necessarily lead to the same conclusions, especially when 

the sorting variables are correlated (as it is the case in our exercise). However, we deem 

a sequential sorting procedure to be more appropriate to the question at hand. Indeed, 

dependent sorts allow us to explore the conditional relationship between stock returns 

and our variable of interest with 𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉 (𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, momentum, or idiosyncratic volatility) 

selected to be the conditioning variable. Nonetheless, as a robustness check (section 2.5), 

we also perform independent (unconditional sorts).  

In this section, we form 25 portfolios based on the following procedure. First, we sort 

the stocks into five quantiles according to the characteristic for which we want to control 

(either  𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, momentum, 𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉 , or idiosyncratic volatility). Second, within each 

quintile portfolios, we sort the stocks into five portfolios based on their exposure to the 

volatility spillover index. Finally, we average value-weighted portfolio returns across the 

five 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(momentum, 𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉 , or idiosyncratic volatility) portfolios. This procedure is 

largely employed in the literature (see, e.g., Bali et al., 2016) to obtain portfolios with 

dispersion within the characteristic of interest, but similar levels of a control variable.  

In Table 2.5, we report the average (risk-adjusted) returns for 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼-sorted portfolios after 

controlling for market exposure (Panel A) and momentum (Panel B). Looking at the 

first column of Panel A, we notice that low-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 stocks earn a sizeable and statistically 

significant premium of 4.06% per annum over high-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 stocks even after controlling for 

𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. Similarly to Table 2.4, we also report the Newey-West t-statistic, which is equal 

to 1.91, and the bootstrapped 5%-95% confidence interval, which ranges from 0.71 to 

7.60, leading us to the rejection of the null hypothesis that the difference in the returns 
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of low-  and high-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 portfolios is zero. In the third and the fourth columns, we report 

the risk-adjusted returns from the CAPM and the three-factor Fama-French model, 

respectively. Also in this case, the difference in risk-adjusted returns between low- and 

high-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 portfolios remains large in absolute value and significant (4.19 and 4.13 with 

t-statistics of 2.02 and 1.95, for CAPM and the three-factor model, respectively).   

Similar results are also reported in Panel B, where we control for momentum. The 

difference in the excess returns between low- and high-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 portfolios is slightly lower 

than that reported in Panel A (being equal to 3.22%) but it is still statistically significant 

(the Newey-West t-statistic is equal to 2.02 and the 5%-95% bootstrapped interval 

ranges from 0.63 to 5.86). Our conclusions do not change when we adjust the returns 

using the CAPM or the three-factor asset pricing model. Overall, our findings remain 

robust after controlling for 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and momentum.  

In Panel A of Table 2.6, we control for the exposure to aggregate volatility as proxied 

by the VIX. Indeed, the analysis in section 2.4.2 has shown that the exposure to the 

implied volatility spillover index has a significant relationship with 𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉 with the latter 

being able to explain more than 5% of the total cross-sectional variability of 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼. In 

addition, as showed by Ang et al. (2006) low-𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉 stocks earn higher returns than high-

𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉 ones. Therefore, we need to rule out the hypothesis that the difference in returns 

between high- and low-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 portfolios may be entirely driven by different exposures to 

the aggregate volatility.  

The results reported in Panel A of Table 2.6 are similar to those presented in Table 2.5. 

Low-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 stocks earn an average excess return of 11.45% on annualized basis while high-

𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 stocks have an average excess return of 7.25%, thus implying an average premium 

of 4.20% earned by low-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 stocks. Although smaller than the average difference of 

6.45% per annum that we reported in Table 2.2, the premium earned by low-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 stocks 

after controlling for 𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉 remains quite large and statistically significant. The results do 

not change when we consider risk-adjusted returns: the average differences in the alphas 

of low-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 and high-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 are equal to 4.66% and 4.51% per annum when the CAPM 

and the three-factor model are considered, respectively. Therefore, we conclude that the 
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premium earned by low-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 is robust to controlling for the exposure to aggregate 

volatility, even if its magnitude slightly decreases (from 6.45% to 4.20% per annum).  

Finally, in Panel B of Table 2.6, we report the results obtained after controlling for 

individual stock returns’ idiosyncratic volatility. In section 2.4.2, we detected a 

significant and negative relationship between 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 and idiosyncratic volatility, which 

implies that stocks with a low exposure to IVS tend to have high idiosyncratic volatility 

and may earn a premium simply for that reason (see, e.g., Ang et al., 2006). Despite the 

fact that controlling for idiosyncratic volatility weakens our results (the difference in 

returns between low-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 and high-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 portfolios becomes 1.61% per annum), the 

pattern is still evident. Indeed, the double-sorting procedure still produces average 

difference in returns that are of the expected sign, even if small and not precisely 

estimated. This remains true also when we consider risk-adjusted returns; indeed, the 

average difference in the alphas of low- and high-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 portfolios is 1.77 and 1.57, for the 

CAPM and the three-factor model, respectively.  

2.4.4. The relationship between aggregate volatility and volatility spillovers  

The results presented in Section 2.4.3 show that the extra-returns earned by low-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 

stocks remain large and significant even after controlling for aggregate volatility. In this 

section, we further investigate the relationship between aggregate volatility and the 

volatility spillover index. Panel A of Table 2.7 shows the results of a regression of the 

changes in the IVS index on the changes in the VIX index. Notably, despite the loading 

of the (changes in) the implied volatility index on the (changes in) VIX is statistically 

significant, the residuals of the regression, which we plot in Figure 2.3, are large.16 

Notably, in Figure 2.3, we detect several spikes, especially in correspondence of the 

financial crisis of 2007-2008, the debt crisis of 2011-2012; interestingly, the residuals also 

spike at the beginning of 2015. This indicates that, in spite of the high correlation 

 
16 Notably, it could be interesting to use the residual from this regression instead of the 
changes in the IVS index in our analysis. However, we leave this for future research.  
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between the two indices, the movements in the spillover index cannot be precisely 

explained by the fluctuations in the VIX.  

Panel B reports the results of a Granger-causality analysis performed on a VAR(1) 

system that includes the changes in both the implied volatility spillover and the VIX 

indices.17 Notably, while the lagged value of (changes to) aggregate volatility does not 

help to predict future changes in the spillover index, the lagged value of (changes to) 

the spillover index help to forecast future change in aggregate volatility. This is exactly 

the relationship that we postulated in section 2.2: an increase in the tendency of shocks 

to stock volatilities to spread at a higher rate will increase future aggregate volatility.  

2.4.5. Stock level Fama-Mac Beth regressions 

So far, we have investigated the significance of 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 as a determinant of the cross-section 

of future returns using a non-parametric portfolio approach. This method has several 

advantages, as it does not require that we impose a functional form on the relationship 

between 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 and future excess returns. In this section, we use the methodology 

introduced by the seminal work by Fama and Mac Beth (1973) to estimate the risk 

premium associated with a volatility spillover factor. More precisely, in the first step, 

we estimate the exposures of each stock to the volatility spillover and other priced 

factors by estimating a set of time series, rolling window regression of the type  

  𝑟𝑟𝑡𝑡+1𝑖𝑖 = 𝛼𝛼𝑡𝑡+1𝑖𝑖 + 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡
𝑖𝑖 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡+1 + 𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆,𝑡𝑡

𝑖𝑖 𝑆𝑆𝑆𝑆𝐵𝐵𝑡𝑡+1 + 𝛽𝛽𝐻𝐻𝐻𝐻𝐻𝐻,𝑡𝑡
𝑖𝑖 𝐻𝐻𝐻𝐻𝐿𝐿𝑡𝑡+1 +

𝛽𝛽𝐶𝐶𝐶𝐶𝐶𝐶,𝑡𝑡
𝑖𝑖 𝐶𝐶𝐶𝐶𝐴𝐴𝑡𝑡+1 +  𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅,𝑡𝑡

𝑖𝑖 𝑅𝑅𝑅𝑅𝑊𝑊𝑡𝑡+1 +  𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡
𝑖𝑖 𝑈𝑈𝑈𝑈𝑈𝑈𝑡𝑡+1 + 𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉,𝑡𝑡

𝑖𝑖 Δ𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡+1 +

𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡
𝑖𝑖 Δ𝐼𝐼𝑉𝑉𝑉𝑉𝑡𝑡+1 +  𝜀𝜀𝑡𝑡+1𝑖𝑖 . 

(2.8) 

In a second step, we estimate the following cross-sectional regression on a recursive, 

weekly basis: 

 
17 The order of the VAR model has been selected by minimizing the Schwartz information 
criterion.  
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     𝑟𝑟𝑡𝑡+1𝑖𝑖 = 𝜆𝜆0,𝑡𝑡 + 𝛽̂𝛽𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡
𝑖𝑖 𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡+1 + 𝛽̂𝛽𝑆𝑆𝑆𝑆𝑆𝑆,𝑡𝑡

𝑖𝑖 𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆,𝑡𝑡+1 + 𝛽̂𝛽𝐻𝐻𝐻𝐻𝐻𝐻,𝑡𝑡
𝑖𝑖 𝜆𝜆𝐻𝐻𝐻𝐻𝐻𝐻,𝑡𝑡+1

+ 𝛽̂𝛽𝐶𝐶𝐶𝐶𝐶𝐶,𝑡𝑡
𝑖𝑖 𝜆𝜆𝐶𝐶𝐶𝐶𝐶𝐶,𝑡𝑡+1 +  𝛽̂𝛽𝑅𝑅𝑅𝑅𝑅𝑅,𝑡𝑡

𝑖𝑖 𝜆𝜆𝑅𝑅𝑅𝑅𝑅𝑅,𝑡𝑡+1 + 𝛽̂𝛽𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡
𝑖𝑖 𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡+1

+ 𝛽̂𝛽𝑉𝑉𝑉𝑉𝑉𝑉,𝑡𝑡
𝑖𝑖 𝜆𝜆𝑉𝑉𝑉𝑉𝑉𝑉,𝑡𝑡+1 + 𝛽̂𝛽𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡

𝑖𝑖 𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡+1 +  𝜀𝜀𝑡𝑡+1𝑖𝑖 , 
(2.9) 

where 𝛽̂𝛽𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡
𝑖𝑖 , 𝛽̂𝛽𝑆𝑆𝑆𝑆𝑆𝑆,𝑡𝑡

𝑖𝑖 , 𝛽̂𝛽𝐻𝐻𝐻𝐻𝐻𝐻,𝑡𝑡
𝑖𝑖 , 𝛽̂𝛽𝐶𝐶𝐶𝐶𝐶𝐶,𝑡𝑡

𝑖𝑖 , 𝛽̂𝛽𝑅𝑅𝑅𝑅𝑅𝑅,𝑡𝑡
𝑖𝑖 , 𝛽̂𝛽𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡

𝑖𝑖 , 𝛽̂𝛽𝑉𝑉𝑉𝑉𝑉𝑉,𝑡𝑡
𝑖𝑖 , and 𝛽̂𝛽𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡

𝑖𝑖  are the time series 

coefficients estimated by OLS in the first step using data up to time t; 𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀, 𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆, 𝜆𝜆𝐻𝐻𝐻𝐻𝐻𝐻, 

𝜆𝜆𝐶𝐶𝐶𝐶𝐶𝐶, 𝜆𝜆𝑅𝑅𝑅𝑅𝑅𝑅, 𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀, 𝜆𝜆𝑉𝑉𝑉𝑉𝑉𝑉, and 𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼 are the estimable premia for each of the priced factors.18 

In Table 2.8, we report the time-series average of the risk premia along with their Newey-

West adjusted t-statistics and the associated p-values. Notably, the sign of the volatility 

spillover risk premium is consistent with the findings discussed in sections 2.4.1 and 

2.4.3. Indeed, as we have discussed already, a positive risk premium will be earned by 

the investors who sell the volatility spillover factor-mimicking portfolio (similar to what 

is reported by Ang et. al., 2006, with reference to the aggregate volatility factor-

mimicking portfolio). This is because high−𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 stocks constitute a hedge against 

unfavorable shifts in the investment opportunity set. 

The average risk premium 𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼 reported in Table 2.8 is smaller than the one estimated 

using a non-parametric portfolio approach (1.38% per annum vs. 6.45%) and not 

precisely estimated. However, all the factor risk premia reported in Table 2.8 are not 

precisely estimated. In fact, there is a great variability across the risk premia estimated 

on weekly basis, which denotes that the relationship in (2.8) may be unstable and subject 

to infrequent breaks or regimes (see, e.g., Barroso, Boons, and Karehnke, 2020; Guidolin 

and Timmermann, 2008; Giampietro, Guidolin, and Pedio, 2018).  

Notably, an alternative to the approach that we propose could be to use portfolios 

instead of stocks as base assets to test our asset pricing model in the attempt to reduce 

the standard errors associated with the risk-premia. However, Ang, Liu, and Schwarz 

(2010) have shown that smaller standard errors of portfolio beta estimates do not lead 

 
18 We use a Fama-French five factor model augmented with the aggregate volatility factor 
(Ang et al., 2006) and the momentum factor from Kenneth French’s website. It would be 
interesting to also include Pastor- Stambaugh illiquidity factor, but their data are only 
available at monthly frequency.  
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to more precise estimates of the cross-sectional coefficients. They argued that portfolios 

destroy information by shrinking the dispersion of betas, leading to larger standard 

errors. Also in our case using portfolios as test assets does not improve the estimation 

of the risk premia. Indeed, in Appendix 2.B, we report the results of the estimate of the 

risk premia obtained following the procedure in (2.8)-(2.9) but using the 49 industry 

portfolios (from Kenneth French’s website) instead of individual stocks as test assets. 

Also in this case, we estimate a negative but small risk premium associated to volatility 

spillovers. The most notable differences with respect to the results presented in Table 

2.8 is that now the estimated momentum risk premium is positive and high (it is equal 

to 10.92%); the aggregate volatility risk premium instead is positive (in contrast with 

the findings of Ang et al., 2006). Also in this case all the risk premia are imprecisely 

estimated. However, the fact the estimated volatility spillover premium is similar when 

the two different methodologies are applied and does not change sign (as it happens, for 

instance, in the case of the volatility risk premium) further support the robustness of 

our results.    

 

2.5. Robustness checks  

In this section, we test the robustness of our results to (i) a different specification of the 

pre-formation regression in (2.3), and (ii) to a different choice of the methodology used 

to build the portfolios (i.e., we sort the stocks into terciles instead of quintiles; we also 

use independent double sorts instead of dependent ones). Table 2.9 mimics Table 2.2, 

but the exposure to the IVS is estimated from   

    𝑟𝑟𝑡𝑡+1𝑖𝑖 = 𝛼𝛼𝑡𝑡+1𝑖𝑖 + 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡
𝑖𝑖 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡+1 + 𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆,𝑡𝑡

𝑖𝑖 𝑆𝑆𝑆𝑆𝐵𝐵𝑡𝑡+1 + 𝛽𝛽𝐻𝐻𝐻𝐻𝐻𝐻,𝑡𝑡
𝑖𝑖 𝐻𝐻𝐻𝐻𝐿𝐿𝑡𝑡+1

+ 𝛽𝛽𝐶𝐶𝐶𝐶𝐶𝐶,𝑡𝑡
𝑖𝑖 𝐶𝐶𝐶𝐶𝐴𝐴𝑡𝑡+1 + 𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅,𝑡𝑡

𝑖𝑖 𝑅𝑅𝑅𝑅𝑅𝑅 + 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡
𝑖𝑖 Δ𝐼𝐼𝑉𝑉𝑉𝑉𝑡𝑡+1 +  𝜀𝜀𝑡𝑡+1𝑖𝑖 , (2.10) 

where 𝐶𝐶𝐶𝐶𝐴𝐴𝑡𝑡 and 𝑅𝑅𝑅𝑅𝑊𝑊𝑡𝑡 are the conservative-minus-aggressive and the robust-minus-

weak factors advocated by Fama and French (2014); the model is otherwise similar to 

that specified in equation (2.3). This specification takes into account the exposure to 



90 

the premium allegedly earned by stocks that carry relatively high profitability and a 

low rate of investment growth. 

The results presented in Table 2.9 closely resemble those already discussed in section 

2.4.1. 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 is estimated rather imprecisely and decreases from an average value of -2.20 

in the lowest quintile to an average value of 2.07 in the highest quintile. Stock in lowest 

𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 quintile earn an average annualized excess return of 12.62% (compared to 12.37% 

when the regression in (2.3) was used to form the portfolios). In contrast, stocks in the 

highest quintile earn an average excess return of 7.32% (compared to 5.92% when the 

specification in (2.3) was adopted). On average, low-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 stocks earn 5.30% per annum 

in excess of high-𝛽𝛽𝐼𝐼𝑉𝑉𝑉𝑉 stocks, yielding a risk premium that is only slightly lower than the 

average value of 6.45% that was reported in Table 2.2.  

The results are confirmed also when we investigate the cross-section of risk-adjusted 

returns. The average difference in the alphas of low- and high-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 portfolio is large (5.81 

under the CAPM and 4.90 when a three-factor model is used to adjust the returns) 

although it turns out to be slightly lower than in Table 2.2 (where it was 6.16 and 5.55 

under the CAPM and the three-factor model, respectively). Finally, also in this case, it 

is not possible to identify any pattern in the market exposure, average size, or the book-

to-market ratio of the stocks composing the five quintile portfolios that could possibly 

explain the differences in the average excess returns of low- and high-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 stocks. 

Therefore, we conclude that the results obtained from the univariate portfolio analysis 

are robust to a different specification of the linear pricing kernel.  

In Table 2.10, we report the results obtained by sorting the stocks into terciles, according 

to the value of 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼. In this case, we use the specification in (2.3) to estimate 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 and 

then we divide the stocks into three groups, from those with the highest value of 

𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 down to those with the lowest value. The average exposure to spillover risk ranges 

from -1.65 in the lowest tertile to 1.48 in the highest tertile. The average annualized 

returns decrease monotonically from 12.11% in the first tertile to 7.52 in the last tertile, 

yielding an average return spread of 4.58% per annum associated to low-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 stocks. 
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Despite the fact this risk premium is lower than the average difference between stocks 

in the first and fifth quintile revealed by our analysis in section 2.3, this value is still 

economically large and statistically significant (with a Newey-West t-statistic of 2.12).  

This results holds when risk-adjusted returns are considered: the average (annualized) 

difference in the alpha of low- and high-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 portfolio is equal to 3.93 (3.53) when the 

CAPM (three-factor model) is used to adjust the returns. In addition, market exposure, 

(log) size, percentage of market share and book-to-market value are similar on average 

in the first and in the third terciles, as it was already the case in Tables 2.2 and 2.9. 

Finally, because the choice of the first sorting variable influence the results when a 

sequential sorting procedure is applied (especially when the two sorting variables are 

correlated, as in our case), in Table 2.11 we report the results of independent bivariate 

portfolio sorts based on 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 and each one of 𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉, IVOL, 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀, or MOM.  

In general, the results are consistent with those already presented in Tables 2.5 and 2.6. 

In particular, independent sorts based on 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 and 𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉 show that low-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 stocks earn 

a premium of 5.16% after controlling for 𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉 (compared to 4.20% that was estimated 

when using dependent sorts). This excess return is precisely estimated and robust to 

risk-adjustment (the premium is equal to 4.82% when CAPM is used to adjust for risk). 

In contrast, low-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 stocks seem to earn a low (2.19% in annualized terms) and not 

precisely estimated premium after controlling for 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀. This is lower than the premium 

of 4.06% that was reported in Table 2.5. However, as in Tables 2.2, 2.9, and 2.10 we 

could not detect any pattern that associates 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 and 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀, we do not regard this result 

as major threat for the validity of our analysis.    

Overall, we can conclude that – despite occasionally becoming weaker – the results 

presented in Table 2.2 are robust to a different specification of the linear pricing kernel 

used to estimate 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼, to a different choice concerning the methodology of formation of 

the portfolios, and to different application of the sorting procedure. Therefore, we can 

rule out that our results may just be an artifact of the specific methodological choices 

that we have necessarily made. 



92 

 

2.6. Conclusions 

In this paper, we have investigated whether stochastic volatility spillovers across US 

equities are priced in the cross-section of expected stock returns. There are at least two 

reasons to believe that this may be the case. First, a stronger tendency of volatility 

shocks to propagate in the market causes an increase in the rate of future changes in 

aggregate volatility, as we have shown in section 2.4.4. Second, high volatility spillovers 

tend to be associated with higher (left) tail risks and therefore with higher systemic 

risks. To measure volatility spillovers, we have employed a volatility spillover index 

computed using the methodology proposed in the seminal work by Diebold and Yilmaz 

(2009, 2012), which relies on the estimation of the forecast error variance decomposition 

applied to a VAR model for equity volatilities. In contrast to Diebold and Yilmaz, we 

use option implied and not stock realized volatilities, as we deem the former to provide 

a better proxy for future expected volatilities, so that our index may be an effective 

proxy of future expected volatility spillovers among stocks and hence of aggregate 

volatility shocks that are susceptible to impact the set of investment opportunities 

available to equity investors.19 

First, we have conducted a univariate portfolio analysis by sorting the stocks into 

quintiles according to their exposure to volatility spillovers. This experiment has 

revealed that the stocks in the lowest 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 quintile earn an average premium of 6.45% 

per annum. This premium is statistically significant and persists after we adjust returns 

for risk using the CAPM and the three-factor Fama-French model, respectively. This 

premium is robust to alternative methodological choices (such as using a different pre-

formation regression to estimate 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 or sorting the stocks into terciles).  

 
19 Furthermore, insofar as high connectedness forecasts higher systemic, tail risk in the financial 
system, Giglio, Kelly, and Pruitt (2016) have recently shown that changes in 19 different 
measures of systemic risk skew the distribution of subsequent shocks to industrial production 
and other macroeconomic variables in the US and Europe. 
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We have also ruled out the hypothesis that the existence of this premium may depend 

on different characteristics of the stocks that may display a low (high) exposure to the 

volatility spillover index. In particular, 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 is highly correlated with 𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉, and the 

exposure to market aggregate volatility has been shown to be a priced factor in the 

cross-section of stock returns (see, e.g., Ang et al., 2006). Yet, using a double sorting 

procedure (either conditional or unconditional), we provide evidence that the premium 

that we identify is distinct from the premium already reported by Ang et al. (2006) and 

earned by the stocks with a low exposure to the VIX index. Indeed, after controlling for 

VIX risk exposure, the premium earned by low-𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 stocks remain large (4.20% per 

annum if we use a conditional sorting procedure and 5.16% if we use an independent 

sorting procedure) and statistically significant (even when risk-adjusted returns are 

considered).  

Finally, we have employed a parametric approach based on Fama – Mac Beth 

regressions to estimate the average risk premium associated to 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼. The results show 

that the average risk premium is of the expected sign, even if small and not precisely 

estimated. However, none of the risk premia estimated using the Fama-Mac Beth 

approach is statistically significant (even when we use portfolios instead of stocks as test 

assets). This may be the result of some form of non-linearity affecting the shape or the 

stability over time of the pricing kernel. This leaves room for further research in which 

it one may want to explore the specification of regime-dependent stochastic discount 

factors, similar to those in Giampietro, Guidolin and Pedio (2018).  

There are several additional directions in which this research could be extended. First, 

it could be interesting to relate our findings to the recent literature (see, e.g., Farago 

and Tédongap, 2018; Bali, Demirtas, and Levy, 2009) that finds that downside risk is 

priced in the cross-section of stock returns. Indeed, while our analysis does not 

distinguish between positive and negative changes in the volatility spillover index, it is 

obvious that positive innovations are likely to matter more than negative ones. It could 

also be interesting to compare the results reported in this paper with those that can be 

obtained using alternative measures of spillovers/network linkages/systemic risk (e.g., 
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the systemic risk index of Brownless and Engle, 2017; the financial connectedness index 

developed by Demirer, Gokcen, Yilmaz, 2019). It would also be interesting to see how 

“volatility connectedness” compare with the “real linkages connectedness” measured by 

Ahern (2013). We leave these interesting questions for future research.  
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Table 2.1 

Average cross-sectional summary statistics 

This table presents the time-series averages of the weekly cross-sectional summary statistics for stock excess returns and for a number of stock characteristics: 
𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, i.e., a stock exposure to the implied volatility spillover index; the size of the stock (computed as the log of the market value of the outstanding shares, 
expressed in millions of US dollars); the book-market ratio (BM); 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀, i.e., the exposure of the stock to the market factor; 𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉, i.e., the exposure of the stock 
to aggregate (implied) volatility; an investment index (INV) computed as the ratio between the growth in total asset and the lagged value of total asset; ROE, 
computed as the ratio between income before extraordinary items and lagged book value of equity; the illiquidity  measure (ILLIQ) in Amihud (2002), the 
idiosyncratic volatility computed as in Ang et al. (2006); reversal (REV) and momentum (MOM). The table presents the average mean (Mean), standard 
deviation (SD), skewness (Skew), excess kurtosis (Kurt), the fifth percentile (P5), the 25th percentile (P25), median (Median), the 75th percentile (P75), and 
the 95th percentile (P95) values of the distribution of the variables, where the average is taken over the weeks in the overall sample. The column labeled n 
indicates the average number of observations for which each variable is available. Excess returns, IVOL, MOM, and REV are expressed in percentages, i.e., 1.00 
means 1.00%. The sample period is January 2008 – December 2017.  

 

Mean SD Skew Kurt 5% 25% Median 75% 95% n
Excess Returns 0.33 7.56 4.26 148.59 -8.73 -2.63 0.06 2.83 9.84 3669

-0.07 1.73 -0.94 45.90 -2.58 -0.82 -0.03 0.71 2.32 3464

1.12 0.72 0.54 8.43 0.07 0.67 1.07 1.50 2.34 3464

Size 6.31 2.02 0.24 2.79 3.18 4.84 6.24 7.66 9.80 3669

BM 0.87 1.74 19.82 629.24 0.12 0.34 0.62 1.00 2.06 3352

INV (I/A) 0.12 0.83 25.70 1064.12 -0.25 -0.04 0.04 0.14 0.61 3407

ROE 0.02 2.98 9.08 1305.59 -0.71 -0.04 0.07 0.14 0.39 3270

βVIX 0.02 0.63 -0.47 38.18 -0.88 -0.26 0.01 0.29 0.92 3464

ILLIQ 3.55 67.71 34.96 1519.70 0.00 0.00 0.01 0.09 3.72 3669

IVOL 5.46 3.91 5.80 94.61 2.01 3.16 4.55 6.63 11.67 3464

MOM 7.63 41.38 5.56 123.36 -39.54 -12.07 3.46 20.33 64.52 3567

REV 0.35 7.36 4.76 138.96 -8.72 -2.62 0.07 2.83 9.84 3665

𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀

𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼
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Table 2.2 

Univariate portfolios of stocks sorted by their exposure to volatility spillovers 

This table reports the results for univariate portfolio-level analysis. We form value-weighted quintile 
portfolios every week by sorting stocks based on their 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼, obtained from the recursive regression of 
their excess stock returns on the changes of the implied volatility spillover index, and market, size, 
and value factors: 

𝑟𝑟𝑡𝑡+1𝑖𝑖 = 𝛼𝛼𝑡𝑡+1𝑖𝑖 + 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡
𝑖𝑖 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡+1 + 𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆,𝑡𝑡

𝑖𝑖 𝑆𝑆𝑆𝑆𝐵𝐵𝑡𝑡+1 + 𝛽𝛽𝐻𝐻𝐻𝐻𝐻𝐻,𝑡𝑡
𝑖𝑖 𝐻𝐻𝐻𝐻𝐿𝐿𝑡𝑡+1 + 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡

𝑖𝑖 Δ𝐼𝐼𝑉𝑉𝑉𝑉𝑡𝑡+1 +  𝜀𝜀𝑡𝑡+1𝑖𝑖 . 

The regression is estimated using a rolling window of one year of weekly returns, i.e., to form a 
portfolio on week t, we estimate the regression using data between t and 𝑡𝑡 − 52. The second column 
reports the average pre-formation 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 for each quintile. The columns labeled Mean and St. Dev 
report annualized statistics for portfolio excess returns over the week following portfolio formation 
(expressed in percentage terms). The column 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀 reports the average exposure to the market at 
the time of portfolio formation. The column labelled % Mkt Share reports the percentage of market 
capitalization in each quintile at the time of portfolio formation while the columns Size and BM 
report respectively the average of the log of the market capitalization (in millions of dollars) and the 
book-to-market ratio in each quintile. The last two columns report the alphas (in annualized 
percentage terms) for each of the quintile portfolios and for the Low minus High portfolio estimated 
from a standard capital asset pricing model (CAPM) and a three factor Fama-French model (FF). 
Newey-West adjusted t-statistics are reported in parenthesis. In the case of the average excess return 
and the alpha of the Low minus High portfolio, we also report the bootstrapped 5%-95% confidence 
intervals (in square brackets).   
  

   

Quintile Mean St. Dev
% Mkt 
Share

Size BM

Low -2.24 12.37 23.15 1.19 8.25 5.64 0.96 -0.32 -0.37
(1.71) (-0.14) (-0.16)

2 -0.64 11.17 18.39 1.06 24.10 6.61 0.85 0.74 0.68
(1.96) (0.63) (0.57)

3 -0.03 11.07 16.30 1.01 31.87 6.86 0.81 1.77 1.63
(2.14) (2.15) (1.98)

4 0.55 9.36 16.44 1.06 26.30 6.75 0.82 0.00 0.06
(1.78) (0.03) (0.06)

High 2.02 5.92 22.64 1.26 9.49 5.91 0.90 -6.48 -5.92
(0.85) (-3.27) (-2.84)

Low-High 6.45 6.16 5.55
(2.10) (2.02) (1.75)

[1.18; 11.77] [0.82; 11.45] [0.18; 11.17]

𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀 𝛼𝛼𝐹𝐹𝐹𝐹𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀
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Table 2.3 

Persistence of volatility spillover beta 

This table examines the persistence of 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 by estimating firm-level cross-sectional regressions of 
𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼
𝑖𝑖,𝑡𝑡+ℎ on 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼

𝑖𝑖,𝑡𝑡  where the number of lags is alternatively set to 4 (equivalent to 1 month), 13 
(equivalent to 3 months), 26 (equivalent to 6 months), and 52 (equivalent to 1 year). The value 
reported is the average slope coefficient associated to 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼

𝑖𝑖,𝑡𝑡 . Newey-West adjusted t-statistics (with a 
number of lags equal to 6) are reported in parenthesis.  
 

 
 

  

predictive 
horizon h 

h =4 0.91
(74.63)

h =13 0.72
(26.79)

h =26 0.43
(13.07)

h =52 0.009
(0.69)

𝜆𝜆1,𝑡𝑡
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Table 2.4 

Volatility spillover beta and average stock characteristics 

This table reports the time-series averages of the slope coefficients estimated from the regression of 
the (implied) volatility spillover index beta (𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼) on a set of stock-level characteristics (namely, 
market beta, size, book market ratio (BM), investment over the total assets (INV), profitability 
(ROE), exposure to the VIX index (𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉), illiquidity (ILLIQ), idiosyncratic volatility (IVOL), 
momentum (MOM), and reversal (REV). Newey-West adjusted t-statistics are reported in 
parenthesis. The table also reports the time-series averages of the R-squares of the regressions. R-
squares are reported in percentages, i.e., 1.00 means 1.00%.  
 

Variable (I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI)

0.0536 0.1135
(2.57) (5.31)

SIZE 0.0489 0.0078
(6.16) (1.10)

BM -0.0124 -0.0059
(-3.49) (-1.86)

INV (I/A) -0.0158 0.01
(-1.57) (1.17)

ROE -0.0020 -0.0053
(-0.62) (-1.62)

βVIX 0.1686 0.2246
(2.60) (2.49)

ILLIQ -0.0004 0.0002
(-2.09) (0.94)

IVOL -2.7924 -3.6903
(-4.73) (-5.09)

MOM -0.1957 -0.3105
(-3.04) (-2.40)

REV -0.3769 -0.2776
(-2.27) (-1.46)

R-square 0.62 0.65 0.11 0.10 0.08 5.28 0.07 1.63 2.39 2.24 13.45

𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀
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Table 2.5 

Portfolios sorted by 𝜷𝜷𝑰𝑰𝑰𝑰𝑰𝑰 after controlling for market exposure and momentum 

This table reports the results of a bivariate portfolio-level analysis. First, we sort stocks into quintiles based on their 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (Panel A) or their momentum 
computed as the cumulative return over the previous six months (Panel B). Then, within each 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶-(momentum) quintile, we form value-weighted quintile 
portfolios by sorting the stocks based on 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼. Portfolios are rebalanced at weekly frequency. We then average the excess returns of the 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 portfolios across the 
different 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (momentum) portfolios. The first and the second columns of the table report the time series averages (and the associated Newey-West statistics) 
and the standard deviation (St. Dev) of the excess returns on the 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 portfolios obtained after controlling for 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (momentum). The third and the fourth 
columns report the average risk-adjusted returns from the CAPM and the Fama-French three-factor models, respectively. Excess returns are computed on an 
annualized basis and are expressed in percentages (e.g., 1.00 means 1.00%). In square brackets, we report 5%-95% bootstrapped confidence intervals for the average 
differences in (risk-adjusted) returns. 

 

Quintile Mean St. Dev Mean St. Dev
Low 11.19 19.71 0.10 0.21 11.00 17.13 1.50 1.81

(1.92) (0.07) (0.16) (2.01) (0.92) (1.09)
2 12.69 19.51 1.53 1.80 8.83 16.85 -0.59 -0.37

(2.16) (1.32) (-1.69) (1.65) (-0.39) (-0.25)
3 10.81 19.86 -0.50 -0.23 10.13 16.91 0.83 1.26

(1.73) (-0.42) (-0.20) (1.97) (-0.50) (0.77)
4 11.73 19.55 0.57 0.85 8.46 17.48 -1.22 -0.84

(1.93) (-0.46) (0.78) (1.55) (-0.79) (-0.52)
High 7.13 19.95 -4.10 -3.92 7.78 17.08 -1.73 -1.39

(1.16) (-2.53) (-2.46) (1.47) (-1.15) (-0.96)

Low-High 4.06 6.96 4.19 4.13 3.22 4.86 3.23 3.20
(1.91) (2.02) (1.95) (2.02) (2.02) -1.95

[0.61; 7.60] [0.82; 7.65] [0.69; 7.66] [0.63; 5.86] [0.59; 5.84] [0.52; 5.90]

Panel A - Controlling for market exposure Panel B - Controlling for momentum
𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀 𝛼𝛼𝐹𝐹𝐹𝐹 𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀 𝛼𝛼𝐹𝐹𝐹𝐹
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 Table 2.6 

Portfolios sorted by 𝜷𝜷𝑰𝑰𝑰𝑰𝑰𝑰 after controlling for 𝜷𝜷𝑽𝑽𝑽𝑽𝑽𝑽 and idiosyncratic volatility 

This table reports the results of a bivariate portfolio-level analysis. First, we sort stocks into quintiles based on their 𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉 (Panel A) or their idiosyncratic volatility 
(Panel B). Then, within each 𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉 (idiosyncratic volatility) quintile, we form value-weighted quintile portfolios by sorting the stocks based on 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼. Portfolios are 
rebalanced at weekly frequency. We then average the excess returns of the 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 portfolios across the different 𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉 (idiosyncratic volatility) portfolios. The first 
and the second columns of the table report the time series averages (and the associated Newey-West statistics) and the standard deviation (St. Dev) of the excess 
returns of the 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 portfolios obtained after controlling for 𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉 (idiosyncratic volatility). The third and the fourth columns report average risk-adjusted returns 
from the CAPM and the Fama-French three-factor models, respectively. Excess returns are computed on an annualized basis and are expressed in percentages 
(e.g., 1.00 means 1.00%). In square brackets, we report 5%-95% bootstrapped confidence intervals for the average differences in (risk-adjusted) returns. 
 

 

Quintile Mean St. Dev Mean St. Dev
Low 11.45 19.63 0.42 0.36 10.16 23.75 -2.90 -2.99

(1.93) -0.29 (0.26) (1.41) (-1.37) (1.64)
2 12.11 18.75 1.43 1.38 11.65 23.28 -1.28 -1.24

(2.10) (1.26) (1.24) (1.59) (-0.63) (-0.68)
3 10.23 19.44 -0.83 -0.68 8.42 23.81 -4.86 -4.90

(1.61) (-0.70) (-0.59) (1.09) (-2.51) (-2.87)
4 10.80 19.00 -0.03 0.04 11.34 24.25 -2.17 -2.03

(1.80) (0.03) (0.03) (1.43) (-0.99) (-0.98)
High 7.25 20.39 -4.24 -4.15 8.55 23.90 -4.67 -4.56

(1.08) (-2.63) (-2.54) (1.09) (-2.09) (-2.03)

Low-High 4.20 4.66 4.51 1.61 1.77 1.57
(1.88) (2.10) (2.02) (0.65) (0.73) (0.64)

[0.75; 7.70] [1.15; 8.10] [0.99; 7.99] [-2.37; 5.57] [-2.11; 5.71] [-2.38; 5.63]

Panel B - Controlling for idiosyncratic volatilityPanel A - Controlling for VIX
𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀 𝛼𝛼𝐹𝐹𝐹𝐹 𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀 𝛼𝛼𝐹𝐹𝐹𝐹
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Table 2.7 

The relationship between aggregate volatility and volatility spillovers 

Panel A reports the estimated coefficients from a regression of the changes of the implied volatility 
spillover index on the changes of the VIX index, i.e.,  

Δ𝐼𝐼𝐼𝐼𝑆𝑆𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽Δ𝑉𝑉𝑉𝑉𝑋𝑋𝑡𝑡 + 𝜀𝜀𝑡𝑡. 
The regression has been estimated for the period January 2007 – December 2017. The t-statistics are 
in parenthesis. Panel B reports the results of a Granger-causality test applied to a VAR(1) model 
including the changes in the implied volatility spillover and in the VIX indices. Chi-square statistics 
refer to a Wald test of the null that the lagged coefficients of the “excluded” variable are equal to 
zero (i.e., the “excluded” variable does not help to forecast the selected dependent variable).  
 

Intercept ΔVIX R-squared
-0.0001 0.0007 0.12
(-0.49) (9.10)

Excluded Chi-sq p-value
ΔVIX 0.04 0.840
ΔIVS 7.91 0.005

Panel A - Regression Analysis

Panel B - Granger Causality 
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Table 2.8 

Fama-Mac Beth estimation of the volatility spillover risk premium 

This table reports the results obtained by using the Fama-Mac Beth two-step methodology to 
estimate the risk-premia associated to the following specification of the pricing kernel 
𝑟𝑟𝑡𝑡+1𝑖𝑖 = 𝜆𝜆0 + 𝛽̂𝛽𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡

𝑖𝑖 𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡+1 + 𝛽̂𝛽𝑆𝑆𝑆𝑆𝑆𝑆,𝑡𝑡
𝑖𝑖 𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆,𝑡𝑡+1 + 𝛽̂𝛽𝐻𝐻𝐻𝐻𝐻𝐻,𝑡𝑡

𝑖𝑖 𝜆𝜆𝐻𝐻𝐻𝐻𝐻𝐻,𝑡𝑡+1 + 𝛽̂𝛽𝐶𝐶𝐶𝐶𝐶𝐶,𝑡𝑡
𝑖𝑖 𝜆𝜆𝐶𝐶𝐶𝐶𝐶𝐶,𝑡𝑡+1 +  𝛽̂𝛽𝑅𝑅𝑅𝑅𝑅𝑅,𝑡𝑡

𝑖𝑖 𝜆𝜆𝑅𝑅𝑅𝑅𝑅𝑅,𝑡𝑡+1
+ 𝛽̂𝛽𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡

𝑖𝑖 𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡+1 + 𝛽̂𝛽𝑉𝑉𝑉𝑉𝑉𝑉,𝑡𝑡
𝑖𝑖 𝜆𝜆𝑉𝑉𝑉𝑉𝑉𝑉,𝑡𝑡+1 + 𝛽̂𝛽𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡

𝑖𝑖 𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡+1 + 𝜀𝜀𝑡𝑡+1𝑖𝑖 . 

More specifically, we report the time-series averages of the risk-premia estimated by estimating the 
cross-sectional regressions at a weekly frequency. We also report the Newey-West adjusted, robust 
t-statistics (in parenthesis) and the associated p-values (in square brackets). 𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀 is the market risk-
premium; 𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆 is the risk-premium associated with the small-minus-big factor mimicking portfolio; 
𝜆𝜆𝐻𝐻𝐻𝐻𝐻𝐻 is the risk-premium associated with the high-minus-low factor mimicking portfolio; 𝜆𝜆𝐶𝐶𝐶𝐶𝐶𝐶 is the 
risk-premium associated with the conservative-minus-aggressive factor mimicking portfolio; 𝜆𝜆𝑅𝑅𝑅𝑅𝑅𝑅 is 
the risk-premium associated with the robust-minus-weak factor mimicking portfolio; 𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀 is the 
risk-premium associated with the winner-minus-loser (or momentum) factor mimicking portfolio, 
𝜆𝜆𝑉𝑉𝑉𝑉𝑉𝑉 is the aggregate volatility risk-premium; 𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼 is the volatility spillover risk-premium.  

 

Intercept λMKT λSMB λHML λCMA λRMW λMOM λVIX λIVS

8.61 4.21 3.12 0.47 0.99 -1.35 -5.18 -0.12 -1.38

(3.16) (0.69) (1.02) (0.12) (0.55) (-0.61) (-0.78) (-0.02) (-0.61)

[0.02] [0.49] [0.31] [0.91] [0.58] [0.55] [0.43] [0.99] [0.54]
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Table 2.9 

Controlling for a different specification of the pricing kernel  

We form value-weighted quintile portfolios every week by sorting stocks based on their 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼, obtained 
from the recursive regression of the excess stock returns on the changes of the implied volatility 
spillover index, and market, size, value, investment, and profitability factors. The regression is 
estimated using a rolling window of one year of weekly returns, i.e., to form a portfolio on week t, 
we estimate the regression using data between t and 𝑡𝑡 − 52. The second column reports the average 
pre-formation 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 for each quintile. The columns labeled Mean and St. Dev report annualized 
statistics for portfolio excess returns over the week following portfolio formation (expressed in 
percentage terms). The column 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀 reports the average exposure to the market at the time of 
portfolio formation. The column labelled % Mkt Share reports the percentage of market capitalization 
in each quintile at the time of portfolio formation while the columns Size and BM report respectively 
the average of the log of the market capitalization (in millions of dollars) and the book-to-market 
ratio in each quintile. The last two columns report the alphas (in annualized percentage terms) for 
each of the quintile portfolios and for the Low minus High portfolio relative to a standard capital 
asset pricing model (CAPM) and a three factor Fama-French model (FF). Newey-West adjusted t-
statistics are reported in parenthesis.  
 

   

Quintile Mean St. Dev
% Mkt 
Share

Size BM

Low -2.20 12.62 23.15 1.20 8.21 5.65 0.95 0.29 0.18
(1.77) (0.90) (0.09)

2 -0.62 9.83 18.39 1.06 24.71 6.63 0.85 -0.49 -0.64
(1.71) (0.64) (-0.64)

3 -0.02 11.49 16.30 1.01 32.18 6.88 0.81 2.17 2.08
(2.22) (2.43) (2.31)

4 0.56 8.76 16.44 1.07 25.91 6.73 0.82 -0.65 -0.67
(1.68) (-0.63) (-0.64)

High 2.07 7.32 22.64 1.26 8.99 5.88 0.90 -5.52 -4.71
(0.99) (-2.30) (-2.04)

Low - High 5.30 5.81 4.90
(1.77) (1.91) (1.62)

𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀 𝛼𝛼𝐹𝐹𝐹𝐹𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀
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Table 2.10 

Univariate portfolios obtained by sorting stocks into terciles 

We form value-weighted tertile portfolios every week by sorting stocks based on their 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼, obtained 
from the recursive regression of the excess stock returns on the changes of the implied volatility 
spillover index, and market, size, and value factors. The regression is estimated using a rolling 
window of one year of weekly returns, i.e., to form a portfolio on week t, we estimate the regression 
using data between t and 𝑡𝑡 − 52. The second column reports the average pre-formation 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 for each 
tertile. The columns labeled Mean and St. Dev report annualized statistics for portfolio excess returns 
over the week following portfolio formation (expressed in percentage terms). The column 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀 
reports the average exposure to the market at the time of portfolio formation. The column labelled 
% Mkt Share reports the percentage of market capitalization in each tertile at the time of portfolio 
formation while the columns Size and BM report respectively the average of the log of the market 
capitalization (in millions of dollars) and the book-to-market ratio in each tercile. The last two 
columns report the alphas (in annualized percentage terms) for each of the tercile portfolios and for 
the Low minus High portfolio relative to a standard capital asset pricing model (CAPM) and a three 
factor Fama-French model (FF). Newey-West adjusted t-statistics are reported in parenthesis.  
 

 
 

  

Tercile Mean St. Dev
% Mkt 
Share Size BM

Low -1.65 12.11 20.19 1.15 22.96 5.99 0.85 0.74 0.62
(1.94) (0.53) (0.44)

Middle -0.04 10.70 16.30 1.02 51.37 6.61 0.76 1.35 1.27
(-2.06) (1.96) (1.81)

High 1.48 7.52 18.89 1.19 25.67 6.87 0.81 -3.19 -2.91
(1.26) (-2.64) (-2.35)

Low-High 4.58 3.93 3.53
(2.12) (1.85) (1.63)

𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀 𝛼𝛼𝐹𝐹𝐹𝐹𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀
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Table 2.11 

Independent bivariate portfolio sorts  

This table reports the results of bivariate unconditional portfolio sorts obtained using 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 and each 
of 𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉, idiosyncratic volatility (IVOL), momentum (Mom), and 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 as sorting variables. First, 
we sort stocks into quintiles based on 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 and on the second sort variables (either 𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉, IVOL, Mom, 
or 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) thus forming 25 portfolios. Then, we average the excess returns of the 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 portfolios 
across the different 𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉 (IVOL, Mom, or 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) portfolios. For each of the pairs of sorting variables, 
we report the time series averages (and the associated Newey-West statistics) of the excess returns 
(in annualized percentage terms) on the 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 portfolios obtained after averaging along 𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉 (IVOL, 
Mom, or 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) portfolios. We also report the alphas (in annualized percentage terms) for each of 
the quintile portfolios and for the Low minus High portfolio relative to a standard capital asset 
pricing model (CAPM). Newey-West adjusted t-statistics are reported in parenthesis. 

 

Quintile Mean Mean Mean Mean
Low 12.31 -0.01 11.88 -1.47 12.34 0.28 9.92 -1.32

(1.68) (-0.00) (1.54) (-0.60) (1.71) (0.12) (1.49) (-0.58)
2 13.19 1.39 12.84 -0.79 12.23 0.28 11.56 -11.00

(1.94) (0.81) (1.65) (-0.37) (1.80) (0.18) (1.74) (-0.07)
3 12.18 1.61 9.43 -3.01 13.18 2.11 11.94 0.80

(2.11) (1.43) (1.32) (-1.49) (2.15) (1.63) (1.92) (0.63)
4 12.36 1.73 9.81 -2.85 12.48 1.32 13.14 2.23

(2.11) (1.29) (1.35) (-1.17) (2.02) (0.77) (2.26) (1.68)
High 7.15 -4.83 8.26 -5.58 8.04 -4.30 7.23 -3.91

(1.04) (-2.27) (1.01) (-2.26) (1.16) (-1.97) (1.18) (-2.00)

Low-High 5.16 4.82 3.16 4.11 4.30 4.59 2.19 2.60
(1.83) (1.74) (1.41) (1.60) (1.53) (1.59) (0.80) (0.93)

IVOL Mom
𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀 𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀 𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀 𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀

𝛽𝛽𝐼𝐼𝐼𝐼𝑉𝑉 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀
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Figure 2.1 

Implied volatility spillover index 

This figure plots the implied volatility spillover index over the period January 2007 – December 
2017. The index is obtained from recursive forecast error variance decompositions applied to a 
VAR(1) model fitted on the implied volatilities of 70 large stocks for which options are frequently 
traded. The VAR model is estimated recursively using 50-week rolling windows. The forecast horizon 
of the forecast error variance decomposition is equal to 2 weeks.  
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Figure 2.2 

Correlation between 𝜷𝜷𝑰𝑰𝑰𝑰𝑰𝑰 and 𝜷𝜷𝑽𝑽𝑽𝑽𝑽𝑽 

This figure plots the cross sectional correlation between 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 and 𝛽𝛽𝑉𝑉𝑉𝑉𝑉𝑉 (i.e., the stock exposures to 
the implied volatility spillover index and the VIX index, respectively) over the sample period January 
2007 – December 2017.  
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Figure 2.3 

Residual of a regression of ∆IVS on ∆VIX 

This figure plots the residual the regression of the changes of the implied volatility spillover index 
on the changes of the VIX index, i.e.,  

Δ𝐼𝐼𝐼𝐼𝑆𝑆𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽Δ𝑉𝑉𝑉𝑉𝑋𝑋𝑡𝑡 + 𝜀𝜀𝑡𝑡. 

The regression has been estimated for the period January 2007 – December 2017. 
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Appendix 2.A 

Block Bootstrap Estimation of the OLS Coefficient Confidence Intervals  

Caution should be exercised when interpreting the results on the Wald tests applied to the null 

hypothesis of 𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 0 and 𝛼𝛼𝐹𝐹𝐹𝐹 = 0 in Tables 2, 5, and 6, because the small sample distribution 

of the statistics may show large departures from a standard t-student (or normality), thus 

complicating the task of conducting inferences on the coefficients of the time-series regressions. 

We tackle these issues by block-bootstrapping the distribution of the test statistic for the 

regression coefficients. The simulation procedure consists of three steps: 

1. Generate B bootstrap resamples of the indices {1, 2, ...,T } where T is the length of the

sample. In the bootstrap implementation in the paper we set B = 100, 000. The block

length L is set equal to 4 (equal to 1 month of data). However, we experiment with

different choices of L (12 and 24, alternatively) and this does not affect our results. The

bootstrap resampling under a block length of L can be easily performed as follows:

(a) Determine the number of blocks v needed to span the entire sample size T, i.e. v ≡

int(T /L) + 1 where int(·) denotes the integer part of the rational number T /L. 

(b) For a = 1, ..., v draw τb  as a discrete IID uniform variate over {1, 2, ..., T } obtaining 

a collection of v time indices {𝜏𝜏1𝑏𝑏, 𝜏𝜏2𝑏𝑏, 𝜏𝜏𝑣𝑣𝑏𝑏}. 

(c) The b-th resample indices are then given as {𝜏𝜏1𝑏𝑏, 𝜏𝜏1𝑏𝑏 + 1, … , 𝜏𝜏1𝑏𝑏 + 𝐿𝐿 − 1, 𝜏𝜏2𝑏𝑏, 𝜏𝜏2𝑏𝑏 + 1, … , 𝜏𝜏2𝑏𝑏 +

𝐿𝐿 − 1, … , 𝜏𝜏𝑣𝑣𝑏𝑏, … , 𝜏𝜏𝑣𝑣𝑏𝑏 + 𝐿𝐿 − 1}. If it occurs that for some j ≥ 1 𝜏𝜏𝑎𝑎𝑏𝑏 + j > T , set the time

index to 𝜏̃𝜏𝑎𝑎𝑏𝑏 = 𝜏𝜏𝑎𝑎𝑏𝑏 + 𝑗𝑗 − 𝑇𝑇, i.e. the resampling is restarted from the beginning of the 

sample in case the scheme attempts to draw indices exceeding T. 

(d) repeat a.-c. for b = 1, 2, ..., B. 

2. For each of the B resamples of length T indexed by b we calculate the OLS coefficient

estimates from the CAPM (Fama-French) regression, 𝛽̂𝛽𝑘𝑘𝑏𝑏 for k = 1, 2, … K. 

3. At this point a small-sample simulated distribution of 𝛽𝛽𝑘𝑘 is obtained, �𝛽̂𝛽𝑘𝑘𝑏𝑏�𝑏𝑏=1
𝐵𝐵  for k = 1, 2, 

… K.

4. We report the 5%-95% confidence interval for the regression coefficient.
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Appendix 2.B 

Fama-Mac Beth portfolio-level estimation of the IV spillover risk premium 

This table reports the results obtained by using the Fama-Mac Beth two-step methodology to 
estimate the risk-premia associated to the following specification of the pricing kernel 
𝑟𝑟𝑡𝑡+1𝑖𝑖 = 𝜆𝜆0 + 𝛽̂𝛽𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡

𝑖𝑖 𝜆𝜆𝑀𝑀𝑀𝑀𝑇𝑇,𝑡𝑡+1 + 𝛽̂𝛽𝑆𝑆𝑆𝑆𝑆𝑆,𝑡𝑡
𝑖𝑖 𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆,𝑡𝑡+1 + 𝛽̂𝛽𝐻𝐻𝐻𝐻𝐻𝐻,𝑡𝑡

𝑖𝑖 𝜆𝜆𝐻𝐻𝐻𝐻𝐻𝐻,𝑡𝑡+1 + 𝛽̂𝛽𝐶𝐶𝐶𝐶𝐶𝐶,𝑡𝑡
𝑖𝑖 𝜆𝜆𝐶𝐶𝐶𝐶𝐶𝐶,𝑡𝑡+1 +  𝛽̂𝛽𝑅𝑅𝑅𝑅𝑅𝑅,𝑡𝑡

𝑖𝑖 𝜆𝜆𝑅𝑅𝑅𝑅𝑅𝑅,𝑡𝑡+1
+ 𝛽̂𝛽𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡

𝑖𝑖 𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡+1 + 𝛽̂𝛽𝑉𝑉𝑉𝑉𝑉𝑉,𝑡𝑡
𝑖𝑖 𝜆𝜆𝑉𝑉𝑉𝑉𝑉𝑉,𝑡𝑡+1 + 𝛽̂𝛽𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡

𝑖𝑖 𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡+1 + 𝜀𝜀𝑡𝑡+1𝑖𝑖 , 

where 𝑟𝑟𝑡𝑡+1𝑖𝑖  is the excess return of each of the 49 industry portfolios retrieved from the website of 
Kenneth French.  
More specifically, we report the time-series averages of the risk-premia estimated by performing the 
cross-sectional regressions recursively at a weekly frequency. We also report the Newey-West 
adjusted, robust t-statistics (in parenthesis) and the associated p-values (in square brackets). 𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀 
is the market risk-premium; 𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆 is the risk-premium associated with the small-minus-big factor 
mimicking portfolio; 𝜆𝜆𝐻𝐻𝐻𝐻𝐻𝐻 is the risk-premium associated with the high-minus-low factor mimicking 
portfolio; 𝜆𝜆𝐶𝐶𝐶𝐶𝐶𝐶 is the risk-premium associated with the conservative-minus-aggressive factor 
mimicking portfolio; 𝜆𝜆𝑅𝑅𝑅𝑅𝑅𝑅 is the risk-premium associated with the robust-minus-weak factor 
mimicking portfolio; 𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀 is the risk-premium associated with the winner-minus-loser (or 
momentum) factor mimicking portfolio, 𝜆𝜆𝑉𝑉𝑉𝑉𝑉𝑉 is the aggregate volatility risk-premium; 𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼 is the 
volatility spillover risk-premium.  

Intercept λMKT λSMB λHML λCMA λRMW λMOM λVIX λIVS

11.96 4.47 1.09 -2.39 2.24 4.16 10.92 5.72 -2.80

(2.95) (0.60) (0.24) (-0.46) (0.90) (1.64) (1.53) (0.57) (-0.62)

[0.00] [0.55] [0.81] [0.65] [0.37] [0.10] [0.43] [0.57] [0.54]
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