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Abstract Large slow rock-slope deformations, including deep-
seated gravitational slope deformations and large landslides, are
widespread in alpine environments. They develop over thousands
of years by progressive failure, resulting in slow movements that
impact infrastructures and can eventually evolve into catastrophic
rockslides. A robust characterization of their style of activity is
thus required in a risk management perspective. We combine an
original inventory of slow rock-slope deformations with different
PS-InSAR and SqueeSAR datasets to develop a novel, semi-
automated approach to characterize and classify 208 slow rock-
slope deformations in Lombardia (Italian Central Alps) based on
their displacement rate, kinematics, heterogeneity and morpho-
metric expression. Through a peak analysis of displacement rate
distributions, we characterize the segmentation of mapped land-
slides and highlight the occurrence of nested sectors with differ-
ential activity and displacement rates. Combining 2D
decomposition of InSAR velocity vectors and machine learning
classification, we develop an automatic approach to characterize
the kinematics of each landslide. Then, we sequentially combine
principal component and K-medoids cluster analyses to identify
groups of slow rock-slope deformations with consistent styles of
activity. Our methodology is readily applicable to different land-
slide datasets and provides an objective and cost-effective support
to land planning and the prioritization of local-scale studies aimed
at granting safety and infrastructure integrity.

Keywords Slow rock-slope deformation . Deep-seated
gravitational slope deformations . Landslide
activity . Kinematics . InSAR . PS-InSAR . Multivariate
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Introduction
Slow rock-slope deformations are common in mountain ranges
worldwide. They affect entire hillslopes and displace volumes up
to hundreds of millions of cubic meters (Bovis 1990; Chigira 1992;
Saroli et al. 2005; Audemard et al. 2010; Agliardi et al. 2013; Crosta
et al. 2013; Lin et al. 2013). Although characterized by very low
displacement rates (mm/yr to cm/yr; Rott et al. 1999; Wasowski
and Bovenga 2014; Frattini et al. 2018; Crippa et al. 2020), they
damage infrastructures and may promote secondary failures. Het-
erogeneity and segmentation of these phenomena result in differ-
ential deformations of both surface (e.g. buildings, roads,
pipelines) and underground structures (tunnels), strongly affect-
ing the vulnerability of elements at risk with different structural
characteristics, topologies and relative positions to different land-
slide sectors (Frattini et al. 2013).

The mechanism and internal segmentation of individual slow
rock-slope deformations are constrained by inherited tectonic

features (Agliardi et al. 2001; Ambrosi and Crosta 2006; Agliardi
et al. 2009; Stead and Wolter 2015) both at regional (e.g. major
tectonic lineaments) and local scales (e.g. faults, folds, master
fractures). In paraglacial environments, slow rock-slope deforma-
tions are promoted by stress and hydrological perturbations asso-
ciated to deglaciation. These trigger progressive slope failure until
the development of differentiated rockslides, sensitive to hydro-
logical forcing and mirrored by complex creep behaviour (Crosta
et al. 2013; Riva et al. 2018; Agliardi et al. 2020).

Slow rock-slope deformations are recognized by peculiar
morpho-structural evidence (Zischinsky 1966; Radbruch-Hall
et al. 1976; Massart 1983; Agliardi et al. 2001; Bovis 2013), including
both extensional (double-crested ridges, trenches, scarps and
counterscarps also associated in half-graben systems) and com-
pressional features (toe bulging, thrusting and folding) that mirror
deep deformation patterns and localization. These mass move-
ments include a full spectrum of phenomena, ranging from
deep-seated gravitational slope deformations (DSGSD) to large
landslides (here LL). DSGSDs affect entire high-relief mountain
slopes (>1000 m) involving the ridge crest and exhibit sharp
morpho-structural features often controlled by inherited tectonic
features. Large landslides are generally smaller than DSGSD (few
square kilometres) and can evolve independently or nucleate
within DSGSDs. In this case, large landslides show evidence of
larger internal deformation and morphological maturity than
thehost DSGSD (Agliardi et al. 2012).

Because of the variability of their mechanisms, slow rock-slope
deformations exhibit diverse styles of activity, defined by the
interplay of displacement rate, kinematics and internal segmenta-
tion (Agliardi et al. 2012; Frattini et al. 2018). For example, land-
slides with translational global kinematics (Cruden and Varnes
1996; Hungr et al., 2014; Rainer et al., 2005; Rotaru et al., 2007)
are intrinsically more unstable and prone to higher mobility than
landslides with rotational kinematics. On the other hand, slope
deformations characterized by similar kinematics and rates can
evolve as coherent masses or break up in smaller sectors, depend-
ing on their structural segmentation and internal damage.

This complexity, associated with the low typical displacement
rates, makes these phenomena difficult to tackle in a risk manage-
ment perspective. Thus, a regional-scale classification is needed to
gather a preliminary characterization of recognized phenomena.

Because of the depth and lack of characterization of basal shear
zones, rarely reached by geotechnical and geophysical investiga-
tions (Brückl et al. 2006, 2013), the assessment of slow rock-slope
deformation kinematics is not obvious and strongly relies on
surface displacement measurements. In the past, these were limit-
ed to sparse traditional ground-based measurements (Bovis, 1990),
unable to capture spatial displacements patterns. In the last
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decades, spaceborne SAR radar interferometry (InSAR) became a
powerful tool to characterize ground deformation rates from few
millimetres to centimetres per year, acquiring information along
the satellite line-of-sight (LOS; Gabriel et al. 1989). The technique
maximizes the spatial and temporal coverage of wide areas and
proved useful to map and assess the activity of landslides
(Colesanti and Wasowski 2006; Del Soldato et al., 2019). In partic-
ular, multi-temporal persistent scatterer interferometry (PSI) tech-
niques (e.g. PS-InSARTM, Ferretti et al. 2001; SqueeSARTM, Ferretti
et al. 2011) allow measuring ground deformations with millimetric
precision, making them suitable for regional-scale landslide map-
ping and inventory studies (Colesanti et al. 2003; Colesanti and
Wasowski 2006; Rosi et al. 2014; Wasowski and Bovenga 2014;
Frattini et al. 2018). However, as an intrinsic limitation of
spaceborne SAR platforms, when true landslide deformation vec-
tors deviate from the satellite line-of-sight (LOS), radar sensitivity
decreases and slow movements become difficult to resolve
(Schlögel et al. 2015; Eriksen et al. 2017; Crippa et al. 2020).

InSAR application to slow rock-slope deformations is further
complicated by low signal-to-noise ratio and atmospheric and
scatter (e.g. leafs) disturbances, limiting the number of PS, and
by the ambiguities related to landslide mechanisms (Notti et al.
2012). Evaluating landslide activity in terms of mean along-slope
projected velocity (Meisina et al. 2008; Notti et al. 2014; Tofani
et al. 2014) is unsuitable for complex phenomena with kinematics
unknown a priori. This can be better tackled using multi-geometry
SAR processing combining ascending and descending data
(2DInSAR; Eriksen et al. 2017).

In this paper, we use PSI products products (TRE AltamiraTM),
acquired over the alpine sector of the Lombardia region (Northern
Italy; Fig. 1a), to propose a novel approach to characterize and
classify slow rock-slope deformations based on their style of ac-
tivity. We developed algorithms and Matlab/GIS tools that capture
the kinematics, internal segmentation and activity of slow rock-
slope deformations for a rapid regional-scale analysis. We use
multivariate statistical analyses to achieve a robust style of activity
classification of mapped slow rock-slope deformations and imple-
ment the procedures in a semi-automated workflow that can be
readily applied to other landslide datasets in a fast and cost-
effective way.

Study area
The study area (Fig. 1a) includes the alpine and prealpine sectors
of Lombardia region. Here, N-verging Austroalpine and Penninic
units are separated from the S-verging Southalpine units by the
Insubric Line, a steep E-W trending fault zone active during Oligo-
Miocene (Schmid 2017). Penninic units include oceanic litho-
sphere remnants (e.g. Malenco-Forno units) and portions of Eu-
ropean margin (e.g. Adula, Tambò and Suretta nappe) and outcrop
in western Lombardia (Valchiavenna and Valmalenco; Fig 1a).
Overlying Austroalpine units mainly consist of continental litho-
sphere of the Apulian margin, including metamorphic basement,
intrusives and Mesozoic sedimentary successions (Florineth and
Froitzheim 1994; Schmid 2017). They extend from Valmalenco to
the eastern part of Valtellina (Fig 1a) and are intruded by two
major Tertiary tonalitic and granodioritic bodies outcropping in
Valchiavenna-Val Masino (Masino-Bregaglia) and Val Camonica
(Adamello). Southalpine units, south of the Insubric Line, form a
fold-and-thrust belt made, from N to S, of a Variscan metamorphic

basement, Permian volcaniclastic and sedimentary successions
and Mesozoic sedimentary succession including carbonate and
terrigenous rocks (Fig. 1a).

The alpine sector is characterized by high peaks (up to 4000 m
a.s.l.), high local relief and relatively steep topography, all progres-
sively decreasing moving south towards the Southalpine sector
and the foothills (Agliardi et al. 2013). This bulk topography is
the result of complex interplay between rock type, Cenozoic tec-
tonic forcing and Quaternary exhumation in fluvial and glacial
environments (Sternai et al. 2012). During the Last Glacial Maxi-
mum (LGM; Ivy-Ochs et al. 2008; Grämiger et al. 2017), a thick ice
cap covered the axial alpine sector with ice stages reaching 2800 m
a.s.l. (Bini et al. 2009), feeding major valley glaciers (e.g. Adda and
Oglio) that carved the topography reaching the Po Plain to the
south. Post-LGM deglaciation caused major stress and hydrologi-
cal perturbations that triggered paraglacial slope response and
progressive failure (Grämiger et al. 2017; Riva et al. 2018,
Spreafico et al. 2020). Fluvial incision reshaped the valleys espe-
cially in the prealpine and foothill areas. These perturbations
promoted the onset and spatial distribution of large, slow rock-
slope deformation (Ambrosi and Crosta 2006; Agliardi et al. 2013;
Pánek et al. 2019), modulated by lithology and preconditioned by
inherited tectonic structure on different scales, from clustering
around regional tectonic boundaries (Agliardi et al., 2013) to slope
scale controls by master fractures and folds (Agliardi et al., 2001,
2009, 2019a, b; Pedrazzini et al., 2016). Slow rock-slope deforma-
tions are widespread in axial alpine areas characterized by
medium-strength anisotropic (e.g. foliated) rocks, high local relief
and valley incision and tend to cluster along major tectonic struc-
tures. In areas with sedimentary rocks and relatively low relief (e.g.
Southern Alps), giant slow rock-slope deformations are less fre-
quent and often controlled by second-order stratigraphic and
structural features (Crosta and Zanchi 2000; Agliardi et al. 2013)
that can only be accounted for in site-specific studies.

Materials and methods
A robust characterization of the style of activity of slow rock-slope
deformations must consider the interplay between their displace-
ment rates, kinematics and complexity (e.g. segmentation, hetero-
geneity, internal damage, structural controls). To this aim, we
combine an original geomorphological mapping dataset with dif-
ferent PS-InSARTM and SqueeSARTM datasets to develop a novel
approach to characterize and classify slow rock-slope deforma-
tions on a regional scale using deterministic and multivariate
statistical analyses.

Geomorphological mapping
We consider 208 slow rock-slope deformations selected from dif-
ferent inventories (GeoIFFI landslide inventory, Ceriani and
Fossati 2005; DSGSD inventory, Crosta et al. 2013, Agliardi et al.
2013), including 134 deep-seated gravitational slope deformations
(DSGSDs) and 74 large landslides. The latter are extracted from the
GeoIFFI database based on areal extent (area >1.5 km2, >1 km2

when interacting with elements at risk) and practical relevance
(e.g. actively monitored or undergoing remediation works).

Selected slow rock-slope deformations cluster in alpine sectors
(e.g. Val Chiavenna, Valtellina, upper Orobic Alps; Fig. 1). Some
have already been studied in detail (Crosta 1996; Crosta and
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Zanchi 2000; Agliardi et al. 2001; Zanchi et al. 2002; Allievi et al.
2003; Ambrosi and Crosta 2006; Agliardi et al. 2009), also with the
support of PSInSAR™ data (Ambrosi and Crosta 2006; Frattini
et al. 2018).

We perform an original geomorphological mapping of the
selected cases by detailed photo-interpretation of aerial stereo-
photos (Regione Lombardia TEM1 series, 1981-1983; nominal
scale 1:20000), digital orthophotos (2000; resolution 1m, 2007,
2012, 2015; resolution 0.5m), GoogleEarthTM imagery and Dig-
ital Elevation Models (Regione Lombardia, cell size: 5m),
validated by local field visits and literature data. Our geomor-
phological dataset includes major slope-scale features,
allowing a rapid mapping of hundreds of cases yet providing
site-specific information to support the evaluation of geome-
try, kinematics, accumulated deformation and long-term ac-
tivity. The dataset includes six vector layers, namely (Figs.

1b,c): (1) landslide boundaries (polygons), (2) nested land-
slides (immature or deformed, polygons), (3) areal geomor-
phological features (polygons, e.g. debris fans, shallow
landslide deposits, sediment fans, periglacial features), (4)
linear geomorphological features (polylines, e.g. debris flow
channels, erosion gullies), (5) gravitational morpho-structures
(polylines, e.g. scarps, counterscarps, trenches) and (6) tecton-
ic lineaments (polylines).

For each mapped case, we extract the dominant lithology from
a published 1:250,000 digital geological map (Montrasio et al.
1990). Lithostratigraphic units are grouped into 9 rock type classes
(Table 1) based on their typical geomechanical behaviour (Agliardi
et al. 2013), namely: carbonates (C), foliated metamorphics (MF),
massive metamorphics (M), clastic rocks (S), quarzite (Q),
orthogneiss (OT), flysch-type rocks (FL), granitoid/metabasite
(IT) and volcanic rocks (V).

Fig. 1 Inventory of slow rock-slope deformations in Lombardy region and relative mapped features. (a) 208 slow rock-slope deformations, classified by the InSAR dataset
selected for the analysis and best satellite acquisition geometry. Major tectonic units (Schmid et al. 2004) are reported. Mapping example: Vigna Soliva DSGSD, (b)
ortophoto and (c) geomorphological map
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We also consider a set of morphometric variables (Lebuis
et al. 1983; Hengl and Reuter 2008; Mansour et al. 2015;
Table 1), namely: (1) elongation ratio (L/W), (2) shape factor
(A/2p), (3) relief (Δh), (4) mean aspect (aspect), (5) mean
slope angle (slope) and (6) hypsometric integral (Hi). More-
over, we include the following geomorphological variables as
proxies of the mechanisms, damage state and long-term evo-
lution of slow rock-slope deformation (Table 1): (1) immature

nested landslide density (NB), (2) deformed nested landslide
density (DB), (3) landslide scarp sector density (LS) and (4)
morpho-structure density (DM).

InSAR data
We use 3 different PS-InSARTM and SqueeSARTM datasets (TRE
AltamiraTM) derived from ERS 1-2, Radarsat and Sentinel 1A/B C-
band SAR imagery. Images were acquired between 1992 and 2017

Table 1 Lithological, morpho-structural, morphometric and InSAR-derived variables, quantified for each of the 208 slow rock-slope deformations and considered for
multivariate statistical analysis

Rock type Description

C Carbonate rocks (both massive and layered)

S Sedimentary clastic rocks

FL Flysch-type rocks

M Massive metamorphic rocks

MF Phyllosilicate-rich foliated metamorphic rocks

OT Quartz-rich foliated metamorphic rocks

IT Intrusive rocks

Q Quartzite

Morpho-structure Definition Description

Density of immature nested landslide (NB) (Nested area/total landslide area)*100 Areal density of nested bodies in an embryonic
stage of evolution

Density of deformed nested landslide
(DB)

(Nested area/total landslide area)*100 Areal density of nested bodies in an advanced
stage of evolution

Landslide scarps (LS) (Scarp area/total landslide area)*100 Proxy of total accumulated landslide strain

Density of linear morpho-structures (DM) Total morpho-structure length/landslide area Proxy of internal damage

Morphometry Definition Description

Elongation ratio (L/W) Landslide length (L)/width (W) Form factor assuming an elliptical landslide area
with axes L and W

Shape factor (A/2p) Landslide area (A)/landslide perimeter (2p) Form factor based on the ratio of landslide spatial
and linear extent

Relief (Δh) Δh= maximum elevation – minimum elevation Relief energy in the landslide area

Hypsometric integral (Hi) Hi ¼ Mean elevation−minimum elevation
Maximum elevation−minimum elevation

Proxy of the morphological maturity of the
landslide area

Mean aspect Mean azimuth (dip direction) of the landslide
area

Mean aspect calculated as circular mean of each
pixel

Activity (InSAR) Definition Description

Modal LOS velocity (v_PM) Most frequent peak velocity Modal landslide LOS velocity (mm/yr), equal to the
highest velocity frequency peak (Fig. 7)

Velocity of the smallest peak (v_Pm) Less frequent peak velocity Velocity corresponding to the smallest velocity
frequency peak identified

Quartile deviation (Q_dev) QDev ¼ Q3−Q1

Q3þQ1

Dispersion of the velocity frequency distribution in
each landslide, proxy of velocity heterogeneity

Δ Skewness( Δ_SK) Skewness of Δ distribution Asymmetry of the frequency distribution curve of
Δ angles (Fig. 4)

Δ Median( Δ_M) Median of Δ distribution Median value of Δ angle frequency distribution
(Fig. 4)
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along ascending and descending tracks (Table 2) and processed
over the entire study area.

For each mapped rock-slope deformation (Fig. 1a), we select a
reference best dataset, characterized by the highest spatial density
of PS (permanent scatterers) and DS (distributed scatterers) and
the most suitable acquisition geometry. The latter is selected de-
pending on landslide slope and aspect parameters (Figs. 2a,b) and
satellite orbit parameters (LOS and azimuth angle), according to
the C index (Notti et al., 2012, 2014; Fig. 2c). This index quantifies
the amount of along-slope movement that can be recorded by a
SAR sensor with specific orbital and LOS directions. Datasets
derived from Sentinel 1A/B images always provide the best
spatial coverage and highest number of PS and DS and, when
available, are preferred in the analysis. Since velocity values asso-
ciated to PS and DS data can be locally related to shallow move-
ments of slope deposits (e.g. scree, periglacial features) and not
directly related to deep-seated landslides (Meisina et al. 2008;
Frattini et al. 2018), we remove PS inside slope deposits. To this
aim, we use geomorphological maps accompanying the GeoIFFI
inventory, refined by interpretation of Google EarthTM imagery
and recent orthophotos.

The robustness of InSAR data analyses is affected by the density
and distribution of active PS or DS within individual landslides
(Frattini et al. 2018; online Resource Fig.S1), which depend on
slope orientation (aspect and inclination) and vegetation cover.
Fewer PS and DS limit the statistical robustness of velocity value
samples, resulting in a more uncertain definition of landslide
segmentation, representative velocities and kinematics. As a

limiting condition, less than three PS or pseudo-PS hamper the
spatial interpolation of LOS velocity, required to retrieve informa-
tion on landslide segmentation, degree of activity and kinematics.

Deterministic analysis: segmentation, heterogeneity and kinematics
The simplest InSAR-based descriptor of landslide activity is the
mean LOS velocity of active scatterers inside each landslide
area. We consider “active” all the PS and DS with coherence >
0.7 and associated mean velocity outside the non-specific un-
certainty (noise) range of ±2 mm/yr, commonly used in
regional-scale studies (Bianchini et al., 2015; Del Ventisette
et al., 2015; Raspini et al., 2018; Ciampalini et al., 2019). Howev-
er, the mean LOS velocity computed from point-like PS and DS
over a landslide area may not represent its actual activity
(Frattini et al. 2018). In fact, large slope deformations are often
characterized by nested sectors faster than the main body, as
well as heterogeneities related to rock mass damage and active
morpho-structures (Crippa et al. 2020), resulting in large LOS
velocity variability.

We thus develop an objective method to characterize the inter-
nal segmentation of each landslide, based on the identification of
peaks on the frequency distribution curve of LOS velocity (Fig. 3).
In general, landslide bodies with little internal damage or segmen-
tation (Fig. 3a) exhibit homogeneous displacement fields and
unimodal velocity distributions (Fig. 3b). On opposite, landslides
with segmented activity (Fig. 3c) are characterized by multimodal
velocity distributions (Fig. 3d).

Table 2 InSAR PSI datasets used in the analysis

Satellite PSI technique Mode Θ
(°)

Δ
(°)

Revisit time
(days)

Time interval
(years)

ERS 1/2 PSInSARTM Ascending 23.20 ~13.00 35 1992–2003

ERS 1/2 PSInSARTM Descending 23.09 ~12.00 1992–2000

RADARSAT-S3 SqueeSARTM Ascending 32.49 12.12 24 2003–2007

RADARSAT-S3 SqueeSARTM Descending 36.27 9.60 2003–2007

Sentinel 1A/B SqueeSARTM Ascending 41.99 10.23 12
(6 after 2016)

2015–2017

Sentinel 1A/B SqueeSARTM Descending 41.78 8.89 2015–2017

Fig. 2 Maps of mean slope (a), aspect (b) and C factor (c) computed on each landslide. C values (Notti et al., 2012, 2014) indicate the amount of along-slope movement
that can be recorded by a SAR sensor on each slope according to its morphometry and orbital parameters. High values of C correspond to favorably oriented slopes (green
in the map) that are better sensed by the satellites, low values point out landslides with unfavorable orientation (red values)
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In our analysis, peaks are defined as local maxima exceeding a
certain probability density threshold that can be set arbitrarily to
detect peaks with different relevance. In this study, we set its value
to 1/10 of the maximum probability density. Each detected peak
represents the distribution of a specific cluster of velocity values,
without providing clues on its spatial distribution. Distinct peaks
emerging from the threshold indicate the occurrence of clearly
segmented domains, each characterized by a given mean velocity
and dispersion. Minor peaks (frequency < threshold) are usually
related to outliers or noise. We quantify the activity heterogeneity
(i.e. dispersion of velocity values) of each landslide in terms of
quartile deviation Q_Dev=(Q3-Q1)/(Q3+Q1), where Q1 and Q3 are
the 25th and 75th percentiles of the velocity distribution, respec-
tively. Larger heterogeneity is mirrored by a larger value of Q_Dev.

Slope deformation kinematics can be estimated using a multi-
geometry analysis of InSAR data, combining measurements pro-
vided by ascending and descending tracks to decompose the 2D
velocity vector in the E-W trending vertical plane (2D-InSAR;
Dalla Via et al. 2012; Eriksen et al. 2017; Crippa et al. 2020). We
developed a MatlabTM script to automatically discretize each land-
slide area into regular square cells (size: 25 m), in which the

average LOS velocity of PS and DS from the same acquisition
geometry is assigned to cell centroids. For each “pseudo-PS” (i.e.
cell centroids for which information from both ascending and
descending data are available), the script derives the vertical (Vz)
and horizontal (Ve) displacement rate components, the 2D dis-
placement rate vector VT in the E-W vertical plane, as well as its
inclination τ (Manzo et al. 2006; Dalla Via et al. 2012; Eriksen et al.
2017; Crippa et al. 2020). The cell size (25 m) was selected to
optimize the number of pseudo-PS and the accuracy of computed
mean velocity values, avoiding mixing distant scatterers. In slopes
with spatially heterogeneous deformations, large cells (100 m) can
extend over different deformation domains, resulting in unrealis-
tic estimates of local kinematics. On the contrary, small grid cells
(10 m, below the spatial resolution of the sensor, about 20 m for
Sentinel-1) result in a reduced probability of finding pseudo-PS.

The local (cell-scale) slope kinematics can be readily inferred
(Agliardi et al. 2019b) by observing the difference between the 2D
velocity vector inclination (τ) and the local slope dip (α) in each
square cell, namely Δ=τ-α (Fig. 4a). Where Δ is positive, we have
a dominant downward movement dipping in the slope (Figs. 4b,c).
Values of Δ close to zero indicate slope-parallel sliding, while

Fig. 3 Products of the segmentation analysis. (a) homogenous DSGSD with a constant velocity field over the entire slope. (b) Probability density curve showing a single
peak value corresponding to the most frequent velocity value. (c) Example of a segmented DSGSD with slope sectors characterized by different displacement rates. (d)
Corresponding density curve with several peaks indicating a heterogeneous displacement field. Peaks are identified as local maxima in the curve exceeding an arbitrary
threshold
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negative values indicate daylighting or bulging movements. The
global (i.e. slope-scale) landslide kinematic is inferred by analysing
the statistical distribution of the parameter Δ within each entire
landslide area (Figs. 4d,e). In particular, the frequency distribution
of Δ values of translational landslides tends to be symmetrical and
centred around zero or slightly shifted towards positive (“dip-in”)
values, accounting for the local kinematics of scarp areas (Fig. 4d).
Instead, rotational landslides have either bimodal distributions or
distributions skewed towards positive values, as the displacement
vector becomes steeper within the entire mass and daylights (neg-
ative Δ) at the toe (Figs. 4e).

In order to exploit this concept in a regional-scale analysis, we use
Δ descriptive statistics (i.e. mean, mode, median, skewness, kurtosis)
as inputs to a supervised machine learning analysis through the
MatlabTM “classification learner” tool. This trains different classifi-
cation models (e.g. decision trees, discriminant analysis, support
vector machines, logistic regression, nearest neighbours, naïve Bayes

and ensemble classification) to select the best-performing ones. We
train the model on a subset of 16 landslides (Online Resource Fig. S2)
with known kinematics (Agliardi et al. 2001; Allievi et al. 2003;
Ambrosi and Crosta 2006; Frattini et al. 2018) and generate predic-
tions for the remaining data. Linear discriminant (Fisher, 1936)
proves to be the best predictive model, with a mean accuracy higher
than 80% over several (>20) iterations. We also validate the result
using a subset of 6 selected case studies (Online Resource Fig. S2)
and by local-scale detailed observation of morpho-structures, pro-
viding surface expression of the deep mechanisms. Our results show
that the median (Δ_M) and in minor portion skewness (Δ_SK) of
the frequency distribution of Δ values are effective predictors of
global landslide kinematics (Fig. 4f).

Multivariate statistical analysis: PCA and cluster analysis
We run a series of multivariate statistical analyses, including
principal component analysis (PCA, Pearson 1901; Hotelling 1933;

Fig. 4 Results of the kinematic analysis. (a) quantities considered in the analysis. α: local slope angle; τ: inclination of the 2D velocity vector derived by 2D SAR
decomposition; Δ: difference between α and τ. Δ values distinguish (b) along slope movement and (c) dip-in or daylight displacements. Δ value distribution over a
landslide area provides an indicator of its main deformation style: (d) translational; (e) rotational. (f) machine learning classification of mapped landslide kinematics
according to Δ distribution skewness and median. The background coloured fields correspond to the kinematic groups (R, RT, T) and are defined using linear discriminant
decision surfaces
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Ballabio 2015; Cohen-Waeber et al. 2018) and cluster analysis, to
identify the lithological, morphometric, morpho-structural and
InSAR-derived activity variables (Table 1 and Table 2) that influ-
ence the style of activity of slow rock-slope deformations at the
regional scale for classification. After a careful evaluation of the
activity of landslides with different dominant lithologies (Online
Resource Fig. S1), we excluded this variable from the subsequent
analyses. In fact, although rock type is a well-recognized control
on the occurrence of slow rock-slope deformations (Agliardi et al.
2013; Crosta et al. 2013; Pedrazzini et al. 2016), on regional scale, it
appears uncorrelated with activity and kinematics (Online
Resource Fig. S3).

In the different analysis steps, we keep principal components
with eigenvalues > 1. Cases missing values of some variables, e.g.
due to lack of PS, DS or pseudo-PS, are automatically excluded
from the PCA according to a listwise deletion procedure.

We use PCA results as inputs for an unsupervised cluster
analysis, aimed at detecting similarities and classifying cases into
few groups (Massart 1983; Ballabio and Consonni 2013; Ballabio
2015), representative of different styles of activity. For the cluster
analysis, we use the K-medoids method instead of the traditional
K-means. K-medoids uses actual sample points as cluster centres
(Kaufman and Rousseeuw 1990; Jin and Han 2010). Medoids are
selected randomly from data objects to form n clusters, and
remaining data objects are grouped to minimize the sum of dis-
similarities of the surrounding points, making the approach more
robust to noises and outliers (Arora and Varshney 2016).

We perform the following multivariate analyses (MV), i.e. PCA
and cluster analysis, considering the following subsets of land-
slides and variables:

– MV1: rock-slope deformations (DSGSDs + large landslides)
covered by InSAR data (166 cases out of 208), considering 14
variables: 5 morphometric, 4 morpho-structural and 5 InSAR-
derived related to activity and kinematics (Table 1)

– MV2: all the mapped rock-slope deformations (DSGSDs + large
landslides, 208 cases), considering 9 variables: 5 morphometric
and 4 morpho-structural (no InSAR variables; Table 1)

– MV3: DSGSDs covered by InSAR data (117 cases), considering
14 variables: 5 morphometric, 4 morpho-structural and 5
InSAR-derived (Table 1)

– MV4: large landslides covered by InSAR data (49 cases), con-
sidering 14 variables: 5 morphometric, 4 morpho-structural and
5 InSAR-derived (Table 1)

– MV5: proximity analysis on rock-slope deformations (DSGSDs
+ large landslides) not covered by InSAR data (42 cases)

Results

Slow rock-slope deformation segmentation, activity and kinematics
Our results, validated using field data, show that 57 slow rock-
slope deformations move as coherent blocks (“homogenous” class,
e.g. Mt. Letè in Fig. 5a), while most mapped cases undergo a
variable degree of internal segmentation. Segmented landslides
are usually characterized by one (55 cases) or two (81 cases)
distinct nested sectors, with different LOS velocity than the back-
ground, e.g. Mt. Padrio Varadega DSGSD (Ambrosi and Crosta

2006) and Mt. Mater (Crippa et al. 2020). Fifteen cases are very
segmented, with more than three nested sectors (Fig. 5a; e.g. Corna
Rossa DSGSD, Agliardi et al. 2018).

Modal values of LOS velocity representing the state of activity
of main landslide bodies are generally in the range of 3–5 mm/yr
(absolute values). When landslide movements are homogeneous,
mean and modal velocities tend to converge. Mean landslide
velocity (Fig. 5b) usually exceeds the modal one (Fig. 5c) when
the main landslide body hosts smaller and faster nested sectors.
On opposite, modal velocity exceeds the mean one (Fig. 5d) when
faster nested sectors, with abundant PS and DS, involve a high
percentage of the total landslide extent (e.g. Piz Groppera large
landslide, Valchiavenna n°4 in Fig. 11). Differences between modal
and mean velocity are usually in the range of few mm/yr, but can
reach several mm/yr (e.g. Belviso n°12 in Fig. 11: mean velocity~13
mm/yr, modal velocity ~15 mm/yr ) and up to 1 cm (e.g. Piz
Groppera: mean velocity ~33 mm/yr, modal velocity~42 mm/yr).

Our objective quantification of landslide global kinematics al-
lows classifying the mapped landslide population into translation-
al, roto-translational and rotational landslides (Figs. 4 and Fig. 5e).
Mapped slow rock-slope deformations have dominant rotational
(72 cases) or roto-translational kinematics (42 cases), while 57
cases exhibit translational kinematics (Figs. 5e,f).

Style of activity classification

MV1: DSGSD and large landslides covered by InSAR data, all variables
PCA on the bulk inventory (including both DSGSDs and large
landslides) allows characterizing only 166 landslides out of 208.
In fact, 42 cases with less than 3 active PS or lacking pseudo-PS are
automatically discarded from PCA by listwise deletion.

In this analysis, we select the first 6 principal components
(PCs), accounting for about 70% of the entire multivariate space
variance, and focus on the relationships between the first three
principal components (PC1, PC2 and PC3, Fig. 6), which explain
about 49% of the variance.

PC1 and PC2 loadings (Fig. 6a) are mainly related to morpho-
metric and morpho-structural variables. The strongest control on
PC1 is exerted by the density of immature nested landslides (NB)
and deformed nested landslides (DB), which distribution is com-
plementary as suggested by their opposite direction along PC1.
PC2 is mainly related to the hypsometric integral (Hi), the relief
energy (Δh) and the density of morphostructures (DM). PC3 (Fig.
6b) accounts for InSAR-derived parameters such as modal LOS
velocity (v_PM), quartile deviation (Q_dev) and kinematics statis-
tics (Δ_SK, Δ_M).

The PC1/PC2 biplot (Fig. 6a) shows a clear trend along PC1,
corresponding to different distributions of cases pre-classified as
“DSGSD” and “large landslide” in the inventory. The distinction
between the two classes is dominated by their morphological
features, such as a different L/W (i.e. more elongated shape for
large landslides), and the abundance of deformed nested bodies
(DB) in large landslides with respect to DSGSDs, the latter hosting
abundant immature nested bodies (NB). The same distinction
between DSGSD and large landslide groups is evident in the PC1/
PC3 plot (Fig. 6b). We checked the statistical consistency of the
inventory pre-classification into these 2 classes by performing a K-
medoids cluster analysis on the first 3 PCs (Fig. 6c,d), repeating the
analysis 20 times to improve the robustness of the classification.
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Fig. 5 Maps showing distribution of activity, segmentation and kinematics over the entire inventory. (a) Distribution of segmented and homogeneous phenomena with
associated indicative number of internal sectors outlined by the peak analysis. (b) Mean LOS velocity computed for each landslide considering active PS (velocity <-2mm/
yr). (c) Modal LOS velocity resulting from the peak analysis on active PS distribution for each landslide. (d) plot representing the mean LOS velocity and the peak LOS
velocity for each element. Red triangles correspond to some evident cases in which the peak velocity exceeds the mean value. (e) distribution of kinematics and (f) bar plot
representing the frequency distribution of slow rock-slope deformations by type of kinematism
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The resulting two clusters displayed in PC1/PC2 (Fig. 6c) and PC1/
PC3 (Fig. 6d) plots are in very good agreement with inventory-
based classification into large landslides and DSGSDs.

MV2: all DSGSD and large landslides, morphometric and morpho-structural
variables
The second bulk-dataset PCA, considering only morphometric
and morpho-structural variables, allows characterizing all the
208 landslides with respect to the first 3 PCs, which account for
the 67% of the multivariate space variance.

Most morphometric variables (CB, NB, LS, Δh, A/2p, DM) are
related to PC1 and PC2 (Fig. 7a), while elongation ratio (L/W) and
hypsometry (Hi) mainly influence PC3 (Fig. 7b).

Cluster analysis with PC1, PC2 and PC3 as input variables and a
3-cluster partition of the dataset define three main groups, namely:
gm1, gm2 and gm3. The first cluster (gm1, Fig. 7c,d) includes
landslides with high density of deformed nested bodies (DB) and
well-developed scarp areas (LS), testifying significant accumulated
deformation. The cluster gm2 (Fig. 7c,d) includes both large land-
slides and DSGSD with high values of elongation ratio L/W and
affecting a relatively immature topography (high Hi). The third
cluster (gm3) mainly includes DSGSDs affecting entire high-relief

slopes and characterized by high density of immature nested
bodies (NB). These clusters are mainly classified according to
PC1, as their boundaries are almost parallel to PC3 axis in the
PC1-PC3 plot (Fig. 7c,d).

MV3: DSGSD covered by InSAR data, all variables
This PCA allows establishing links between morphometric,
morpho-structural and activity characteristics in DSGSD areas
covered by Sentinel InSAR data. These are characterized by high
areal PS and pseudo-PS (mean density 43 PS/km2), with a maxi-
mum of 259/km2 in a single DSGSD. We analyse PCA results
considering the first three PCs, which account for 50.2% of
variance.

Again, PC1 and PC2 are related to morpho-structural and mor-
phometric information (Fig. 8a). When cases are classified accord-
ing to their kinematics, the PC1/PC2 plot (Fig. 8b) shows a clear
trend from the left to the right hand, corresponding to a shift from
translational to roto-translational and rotational mechanisms, in
agreement with the orientation of Δ skewness (Δ_SK) and Δ
median (Δ_M) eigenvectors. A trend in the PC space can be also
found by classifying cases by their modal velocity, respectful of
segmentation effects and ranging between 2 and 21 mm/yr towards

Fig. 6 MV1:PCA and cluster analysis on the SAR covered bulk dataset of rock-slope deformations (DSGSD + large landslides, 166 cases) (a) PC1-PC2 biplot with the result
of the PCA and the distribution of DSGSDs (red dots) and Large Landslides (green dots). Blue lines are the eigenvectors corresponding to the input variables. (b) PC1-PC3
biplot resulting from the PCA (c) PC1-PC2 classification plot resulting from a K-medoids analysis run on the PCs scores. The two clusters almost correspond to DSGSD and
LL distribution, confirming the distinction between the two groups. (d) PC1-PC3 classification graph resulting from the K-medoids cluster analysis on the PCs scores. The
distinction between DSGSDs and LL is evident in both the plots
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the upper left of the PC1/PC2 plot (Fig. 8c). In general, transla-
tional DSGSDs move faster than rotational and roto-translational
ones.

These relationships are outlined in a five-class K-medoids clas-
sification, based on PCs as input variables in which the resulting
groups (gc1 to gc5) have consistent morphometric and morpho-
structural characteristics and represent different styles of activity,
illustrated by the arrows in Fig. 8d, which are oriented as the
corresponding variables eigenvectors. Cluster gc1 includes the
fastest DSGSDs, characterized by translational kinematics and
hosting deformed nested bodies undergoing differential evolution.
Clusters gc2 and gc3 include slower DSGSDs, significantly seg-
mented but with different kinematics (gc2 mainly translational,
gc3 mainly rotational) and internal deformation (gc2 characterized
by distributed damage, gc3 hosting deformed nested sectors).
Finally, clusters gc4 and gc5 include slow-moving DSGSDs with
mainly roto-translational to rotational kinematics, limited internal
damage and immature nested bodies.

MV4: large landslides covered by InSAR data, all variables
The same procedure used in MV3 allows classifying large land-
slides. These usually affect densely vegetated middle-lower slope
sectors; therefore, the areal density of PS and pseudo-PS in these

areas is quite low (35PS/km2 on average), with a maximum of 163
PS/km2 in a single landslide. PCA interpretation is based on the
first three PCs accounting for the 47.2% of variance (Fig. 9a).

The PC1-PC2 plot shows a weak trend with respect to landslide
kinematics, with a dominantly translational behaviour on the left
and a mainly rotational/roto-translational one to the right (Fig.
9b). Similar distribution is found for other variables such as the
densities of immature nested bodies (NB) and deformed nested
bodies (DB), mainly related to PC1. Activity-related variables, like
velocity quartile deviation (Q_dev) and modal LOS velocity
(v_PM), are oriented almost perpendicular to PC1 (Fig. 9a) without
any clear velocity trend (Fig. 9c).

Because of the small number of input variables, K-medoids
cluster classification only considers two groups, to avoid over
splitting the sparse dataset. The groups (Fig. 9d) are mainly dis-
criminated by PC1 values and defined by the density of immature
nested bodies (NB) and deformed nested bodies (DB).

MV5: DSGSD and large landslides lacking InSAR data, proximity analysis
Since 42 out of 208 rock-slope deformation lack significant InSAR
data coverage, they are not classified in the MV3 and MV4 analyses
but only in MV2, based on morphometric and morpho-structural
variables and lacking InSAR activity measurements. A two-step

Fig. 7 MV2:PCA and cluster analysis on the entire bulk dataset (208 elements) considering 5 morphometric and 4 morpho-structural variables. (a) and (b) are the PC1-PC2
and PC1-PC3 biplots deriving from a PCA on the whole dataset considering only morphometric and morpho-structural variables. A distinction between inventory based
DSGSDs and LL is still evident. (c) and (d) are the result of a 3 clusters K-medoids analysis on the PCs scores. gm1, gm2 and gm3 are the resulting groups and all the 208
mapped slow rock-slope deformations can be classified in one of them
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proximity analysis is then performed to obtain a complete classi-
fication of all the mapped landslides. First, all the mapped land-
slides were classified in the three main groups extracted from MV2
(gm1, gm2, gm3; Fig. 10) and displayed in a PC1-PC2 plot. Then, all
landslides with InSAR data belonging to the different gm groups
were further reclassified in terms of the style of activity classes
resulting from MV3 and MV4 (Figs. 8 and 9). Eventually, the 42
SAR-blind cases were reclassified through a proximity analysis
considering the surrounding points (minimum Euclidean dis-
tance) and their class signature (Fig. 10).

Discussion

Redefining the activity of slow rock-slope deformations
Despite the apparent simplicity of the concept (Cruden and Varnes
1996), a comprehensive definition of “activity” for complex, slow
rock-slope deformations remains elusive. A definition only based
on a representative displacement rate can be insufficient to cap-
ture the behaviour of slope instabilities evolving over thousands of
years (Agliardi et al. 2013, 2019a, b; Pánek and Klimeš 2016), for
which present-day displacement rates are just a snapshot of longer
or variable trends (Riva et al. 2018). Moreover, different phenom-
ena moving at similar rates can have different impacts on elements
at risk, depending on their size, mechanisms, maturity and pre-
disposition to collapse (Agliardi et al. 2020; Peduto et al. 2017;
Nappo et al. 2019).

We propose that a complete definition of the style of activity of
large slow rock-slope deformations must include different aspects,
namely: displacement rate, segmentation/heterogeneity, kinemat-
ics, internal damage and accumulated strain.

Since slow rock-slope deformations are widespread in moun-
tain ranges and especially in alpine areas, we need to quantify such
style of activity on the regional scale, to perform a cost-effective
screening of the different landslides’ evolutionary characters and
orient further hazard assessment analyses or local-scale engineer-
ing geological studies. To do this, we develop a novel approach
that combines information derived from persistent scatterer inter-
ferometry and from ad hoc systematic geomorphological mapping,
to obtain an objective description of the mapped phenomena.

Our analysis benefits from both deterministic and statistical
components. The deterministic component consists of original
routines in MatlabTM (i.e. peak analysis for the segmentation
analysis and 2DInSAR decomposition and machine learning ap-
proach for a kinematic assessment) and GIS (semi-detailed
mapping and extraction of morphometric and morphological
variables) that allow quantifying the internal segmentation, het-
erogeneity, kinematics and representative displacement rates of
each mapped landslide, through a refined post-processing of
persistent-scatterer datasets validated using geomorphological
mapping. These routines can be used as stand-alone tools and
provide variables that, together with morphometric and morpho-
structural variables, feed a multivariate statistical analysis aimed at

Fig. 8 MV3: combined PCA and cluster analysis for DSGSD covered by InSAR data (117 cases), (a) PC1-PC2 biplot resulting from a PCA on morphometric, morpho-
structural and InSAR-derived variables. (b) kinematics distribution in the PC1-PC2 plot showing a trend from rotational to translational style from the right to the left side.
(c) velocity distribution in the PC1-PC2 plot outlining an increasing velocity trend from the bottom right corner to the upper left one. (d) classification graph in which the
coloured fields correspond to the groups identified by a 5 cluster K-medoids analysis on the PCs scores. Boundaries between groups are set according to quadratic
discriminant analysis surfaces. Arrows cosrrespond to the direction of representative eigenvectors
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classifying the mapped landslides in groups with consistently
different styles of activity.

Objective characterization of segmentation and kinematics from PSI
data
Despite the common application of persistent scatterer data to the
assessment of landslide activity (Ambrosi and Crosta 2006;
Colesanti et al. 2006; Frattini et al. 2018), a full exploitation of
their potential for slow rock-slope deformations remains challeng-
ing, because of the low signal-to-noise ratio, heterogeneity and
complex displacement patterns that can be hardly caught by
sparse or unfavourably oriented PS data (Fig. 2). Some authors
(Meisina et al. 2008; Notti et al. 2014; Frattini et al. 2018; Aslan
et al. 2020) deal with these problems under the assumption of
simplified mechanisms (i.e. dominant slope-parallel displace-
ments) not respectful of the complexity of slow rock-slope defor-
mations. The common “unbiased” representation of landslide
activity by means of LOS velocity projection along slope (Vslope;
Notti et al. 2012, 2014; Aslan et al. 2020) facilitates the interpreta-
tion of VLOS data, but hampers any interpretation of global land-
slide kinematics (Meisina et al. 2008; Frattini et al. 2018).

Also, when exploiting multi-geometry 2DInSAR techniques
(Manzo et al. 2006; Dalla Via et al. 2012; Eriksen et al. 2017;
Crippa et al. 2020) that allow deriving the vertical and horizontal
components of the 2D velocity vector lying in the E-W vertical
plane, the assessment of landslide kinematics is not

straightforward. In fact, (a) objective criteria are needed to inte-
grate point-like scatterer information within a global interpreta-
tion; (b) internal segmentation affects landslide displacement
patterns. We tackle these problems sequentially in a semi-
automated workflow.

First, we objectively assess landslide segmentation, i.e.
partitioning of slope deformation into discrete nested sectors with
differential evolution (Fig. 3). Since a mean landslide LOS velocity
(Fig. 5b), computed on all the active PS, potentially mixes signals
from discrete landslide sector as well as scattered noise, we use a
peak analysis of the velocity frequency distribution to identify the
occurrence of segmentation within the main landslide mass (Fig.
5a). The highest peak (Fig. 3), corresponding to the modal LOS
velocity, is a representative descriptor of the displacement rate of
the main landslide mass (Fig. 5c). Lower (i.e. less frequent) peaks
(Fig. 3) outline the signals of discrete nested sectors emerging from
the background displacement signals and from scattered noise.

Our method’s ability to outline segmentation is influenced by
the abundance and homogeneity of PS and DS in nested sectors
(Online Resource Fig. S1, Fig. S4) and by the frequency threshold
values used in the peak analysis. Thus, the number of sectors in
Fig. 5a must be regarded as a lower-bound estimate. At the same
time, our analysis is unable to detect fast-moving landslides within
slow rock-slope deformation, due to the temporal baselines of PS-
InSARTM and SqueeSARTM analyses processed on the regional
scale.

Fig. 9 MV4: combined PCA and cluster analysis for Large Landslides (LL) covered by InSAR data (49 cases). (a) PC1-PC2 biplot resulting from a PCA on morphometric,
morpho-structural and InSAR-derived variables. (b) kinematics distribution in the PC1-PC2 plot showing a trend from rotational to translational style from the left to the
right side. (c) Velocity distribution in the PC1-PC2 plot outlining an almost homogeneous velocity range with only an extreme values reaching -40mm/yr. (d) classification
graph in which the coloured fields correspond to the groups identified by a 2 cluster K-medoids analysis on the PCs scores. Boundaries between groups are set according
to quadratic discriminant analysis surfaces. Arrows correspond to the direction of representative eigenvectors
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Fig. 10 MV5: proximity analysis on DSGSDs and large landslides not covered by InSAR data (42 cases).according to similarity criteria (Euclidean distance) with the other
style of activity classes. (a) shows the distribution of SAR blind elements in gm1, (b) the distribution in gm2 and (c) the distribution in gm3. The stacked column indicates
the percentage of each group inside gm1, gm2 and gm3
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To achieve an objective evaluation of landslide kinematics, we
combine measures from ascending and descending datasets to
reconstruct the 2D total displacement vector in the vertical E-W
plane. The difference Δ between the inclination (τ) of this dis-
placement vector and the local slope angle allows identifying cells
with movements dipping in the slope, parallel to the slope, or
daylighting. The statistical distribution of Δ (Fig. 4) over each
landslide area provides a signature of its global kinematics. This
evaluation of landslide kinematics is biased at slopes where real
displacements diverge from the LOS directions, due to slope aspect
(i.e. north- or south-facing slopes; Fig. 2b) or to oblique slope
movements, and cannot be completely read by the radar sensor
(Fig. 2c) due to the intrinsic geometrical limitations of spaceborne
SAR platforms. A precise quantification of such bias requires
information from additional LOS direction (e.g. other satellite
tracks; UAV-SAR ad hoc acquisitions, Hu et al., 2020; GPS or pixel
offset tracks), usually unavailable in regional-scale studies, or the a
priori knowledge of landslide kinematics, which is our unknown.
As we depart from the LOS plane, we can generally expect to
underestimate the 2D displacement vector inclination, resulting
in a less effective detection of rotational movements. Nonetheless,
our proposed approach is suitable for a regional-scale objective
screening of landslide kinematics, providing guidance to further
local-scale studies.

Our analysis approach can be applied to other large landslide
datasets, provided that InSAR data with suitable quality is avail-
able and, at the same time, provides information useful for the
site-specific characterization of individual landslides.

Style of activity classification of slow rock-slope deformations
A practical evaluation of the style of activity of slow rock-slope
deformation for land planning, hazard assessment and engineer-
ing purposes must account for a suite of kinematic, morphometric
and morpho-structural descriptors. Our multivariate statistical
analysis allows classifying the studied dataset into 7 groups with
fairly homogeneous styles of activity, even including cases for
which InSAR data are unavailable to describe the present-day
patterns of movement.

First, our results (MV1) outline clear differences between
DSGSD and large landslide phenomena according to the con-
sidered variables. This is not obvious, because the distinction
between these two classes of slope instability is debated and
usually only relies on morphometric and morpho-structural
criteria, including the affected relief and slope sectors,
morpho-structural expression and total accumulated strain
(Crosta et al. 2013). On the other hand, the very similar
magnitude-frequency scaling of hundreds of DSGSD and large
landslides suggests that the two classes of phenomena belong
to a continuous spectrum of slow rock-slope deformations,
where the diagnostic features used for their distinction are
constrained by size (Agliardi et al. 2012). Interestingly, multi-
variate statistical analysis provides a sharp distinction in two
groups, well-fitting the geomorphological pre-classification in-
to DSGSDs and large landslides (Fig. 6). More elongated
shapes and high density of deformed nested bodies, testifying
higher accumulated internal deformation, characterize large
landslides with respect to DSGSDs (Fig. 7). This suggests that
DSGSDs and large landslides undergo different mechanisms
and/or evolutionary stages and should be treated separately.

Multivariate statistical analyses, performed on DSGSD and
large landslides separately (MV3 and MV4) and expanded through
a similarity analysis to include SAR-blind landslides (MV5), led to
the classification of the landslide inventory into seven style-of-
activity classes, five for DSGSDs and two for large landslides. The
distributions of the different variables in each group (boxplots in
Online Resource Fig. S5) demonstrate the impossibility to use
single variables as reliable indicators of the style of activity of slow
rock-slope deformations.

Furthermore, the concept of “inactive” landslides implies a
capability to correctly measure displacements at all sites, not
guaranteed by InSAR techniques due to (a) the inability of radar
sensors to illuminate unfavourably oriented slopes and (b) the
lack of coherence of interferograms in densely vegetated or debris
covered slopes. Since we cannot be sure that SAR-blind landslides
are not moving, to avoid underestimation of the related risks, we
dropped the concept of “inactive landslides” and classified all the
cases in the seven style-of-activity classes.

Our classification provides an accurate mapping (Fig. 11) of
slow rock-slope deformations with consistent style of activity. This
is useful to identify critical phenomena to prioritize site-specific
analyses and to analyse the damage potential of slow rock-slope
deformations on specific classes of elements at risk, depending on
the most important interaction factors (e.g. rate, volume,
heterogeneity).

The class gc1 includes the fastest DSGSDs (5, all covered by
InSAR data; Fig. 11), typically affecting high relief slopes (>1200 m)
and characterized by dominant translational kinematics (Fig. 8
and Online Resource Fig. S5). These DSGSDs evolve at modal rates
up to 15–20 mm/yr and host deformed nested bodies that undergo
faster differential evolution at displacement rates exceeding 25
mm/yr (Online Resource Fig. S5). This class includes the most
active DSGSDs in Lombardia (i.e. Corna Rossa, Agliardi et al.
2018, 2019a; Saline, Agliardi et al. 2001; Mt. Mater, Crippa et al.
2020; 11, 10 and 3, respectively, in Fig. 11), that pose major risk to
infrastructures (roadways, hydroelectric facilities and lifelines).
These are the most important candidates for site-specific studies
to quantify their potential for slow-to-fast evolution and cata-
strophic failure (Crosta et al. 2017; Agliardi et al. 2020).

The other classes include far slower landslides (i.e. modal
and mean LOS velocities lower than 5–10 mm/yr) that cannot
be distinguished in terms of displacement rates (Online
Resource Fig. S5), but are characterized by different mecha-
nisms and degrees of segmentation, internal damage and
accumulated strain (Online Resource Figs. S5 and 11). Clusters
gc2 (32 DSGSD, including 7 SAR-blind cases) and gc3 (21
DSGSD; Fig. 11) include phenomena affecting middle-high
relief slopes and characterized by significant segmentation,
but with different kinematics and internal deformation style.
gc2 are dominantly translational and characterized by signifi-
cant distributed damage (e.g. Bosco del Conte DSGSD;
(Agliardi et al. 2009); Fuipiano DSGSD; (Forcella, 1984); 8
and 14, respectively, in Fig. 11), while gc3 are dominantly
rotational and segmented into deformed nested sectors (e.g.
Masuccio DSGSD, (De Finis et al., 2015); 6 in Fig. 11). Al-
though these DSGSDs are slow, their strong heterogeneity
must be considered in practical engineering geological prob-
lems including (a) the definition of potential collapse scenar-
ios, i.e. actually evolving nested volumes constrained by
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segmentation; (b) the quantification of rock mass properties
for stability modelling, strongly depending on internal dam-
age; and (c) the prediction of damage to infrastructures that
is significantly complicated by differential displacements in
heterogeneous landslide masses. Finally, classes gc4 (38
DSGSD, including 10 SAR-blind cases) and gc5 (40 DSGSD,
including 2 SAR-blind cases) include slow-moving DSGSDs
characterized by either dominant roto-translational (gc4; e.g.
Lake Palù DSGSD (Frattini et al., 2013); 5 in Fig. 11) or
rotational kinematics (gc5; e.g. Albenza DSGSD; (Forcella,
1987) 13 in Fig. 11). Both classes include phenomena with
limited internal damage and segmentation into poorly de-
formed nested bodies (Online Resource Fig. S5).

Style of activity classes defined for large landslides, i.e. LL1
(32 large landslides, including 12 SAR-blind cases) and LL2
(40 large landslides, including 11 SAR-blind cases), differs
according to morpho-structural characteristics that witness
different geomorphological maturities and accumulated defor-
mations (Online Resource Fig. S5). In particular, class LL1
(e.g. Mt. Solena; 9 in Fig. 11) includes translational landslides
affecting slopes with relatively low relief (Online Resource Fig.

S5), characterized by limited scarp areas and segmented into
immature nested masses, suggesting a limited accumulated
strain. Instead, class LL2 (e.g. Pizzo Groppera; 4 in Fig. 11)
mainly includes roto-translational and rotational landslides,
affecting high-relief slopes and characterized by large accumu-
lated deformations.

Conclusions
Slow rock-slope deformations are widespread in alpine valleys.
Despite their limited displacement rates (mm to few cm per year),
these phenomena are long-lived and deform slowly, possibly until
massive sector collapse, posing major risks to infrastructures and
human lives. Our regional-scale analysis allows performing a com-
plete screening of ongoing slow rock-slope deformations, with the
following results:

– New semi-automated, objective methods and tools to charac-
terize the internal segmentation and kinematics of slow rock-
slope deformations. These methods, readily applicable to other
datasets, highlight phenomena subjected to a certain degree of
segmentation, with the presence of internal nested bodies that

Fig. 11 Style of activity classification map of slow rock-slope deformations in Lombardia. Mapped cases are classified in the seven group arising from the multivariate
statistical analysis. Key to the case studies cited in the text: 1: Mt. Letè (Cancelli 2017); 2: Mt Legnone DSGSD (Ambrosi and Crosta, 2006); 3: Mt. Mater DSGSD (Crippa
et al., 2020); 4: Piz Groppera large landslide; 5: Lake Palù DSGSD (Frattini et al., 2013); 6: Mt. Masuccio DSGSD (De Finis et al. 2015) 7: Padrio-Varadega DSGSD (Forcella
1984; Ambrosi and Crosta 2006; Frattini et al. 2013); 8: Bosco del Conte DSGSD (Agliardi et al. 2009); 9: Mt Solena large landslide; 10: Saline DSGSD (Agliardi et al., 2001;
Frattini et al., 2018; Agliardi et al., 2018); 11: Corna Rossa DSGSD (Agliardi et al., 2018); 12: Belviso DSGSD; 13: Albenza(Forcella 1987); 14: Fuipiano DSGSD (Forcella and
Rossi 1987)
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can potentially evolve into faster landslides, and their global
kinematics.

– A statistically based evidence that DSGSD and large landslides
have different mechanisms and/or evolutionary stages, with
different associated morphological features that testify higher
accumulated internal deformation for large landslides with
respect to DSGSD.

– A statistically based classification of slow rock-slope deforma-
tions based on their style of activity, including the contribu-
tions of displacement rate, segmentation, kinematics and
internal damage. This classification supports regional-scale
land planning and the prioritization of detailed site-specific
mapping, monitoring and modelling studies, required to un-
derstand and deal with issues posed by slow rock-slope
deformations.
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