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Summary

ETV6-RUNX1 (E/R) fusion gene, arising in utero from translocation

t(12;21)(p13:q22), is the most frequent alteration in childhood acute lym-

phoblastic leukemia (ALL). However, E/R is insufficient to cause overt leu-

kemia since it generates a clinically silent pre-leukemic clone which persists

in the bone marrow but fails to out-compete normal progenitors. Con-

versely, pre-leukemic cells show increased susceptibility to transformation

following additional genetic insults. Infections/inflammation are the most

accredited triggers for mutations accumulation and leukemic transforma-

tion in E/R+ pre-leukemic cells. However, precisely how E/R and inflamma-

tion interact in promoting leukemia is still poorly understood. Here we

demonstrate that IL6/TNFa/ILb pro-inflammatory cytokines cooperate with

BM-MSC in promoting the emergence of E/R+ Ba/F3 over their normal

counterparts by differentially affecting their proliferation and survival.

Moreover, IL6/TNFa/ILb-stimulated BM-MSC strongly attract E/R+ Ba/F3

in a CXCR2-dependent manner. Interestingly, E/R-expressing human

CD34+IL7R+ progenitors, a putative population for leukemia initiation dur-

ing development, were preserved in the presence of BM-MSC and IL6/

TNFa/ILb compared to their normal counterparts. Finally, the extent of

DNA damage increases within the inflamed niche in both control and E/R-

expressing Ba/F3, potentially leading to transformation in the apoptosis-re-

sistant pre-leukemic clone. Overall, our data provide new mechanistic

insights into childhood ALL pathogenesis.
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Introduction

ETV6-RUNX1 (E/R), generated from translocation t(12;21)

(p13;q22) (Golub et al, 1995; Romana et al, 1995), is the

most frequent fusion gene in pediatric cancer (Inaba et al.,

2013), exclusively leading to B-cell precursors acute lym-

phoblastic leukemia (BCP-ALL) (Mullighan, 2013). Translo-

cation occurs in utero in 2–5% of healthy newborns (Ford

et al., 1998; Wiemels et al., 1999; Sch€afer et al., 2018) and

drives the expansion of a pre-leukemic clone that contributes

to hematopoiesis but fails to out-compete the normal coun-

terpart (Tsuzuki et al, 2004; Hong et al, 2008; Schindler et al,

2009). On the other hand, pre-leukemic cells show increased

susceptibility to additional genetic insults, leading to leuke-

mia in about 1% of E/R carriers (Inaba et al., 2013; Kantner

et al., 2013). Importantly, secondary mutations in the origi-

nal, chemoresistant pre-leukemic clone are supposed to be

responsible for E/R+ long-term relapses (Levasseur et al.,

1994; Ford et al., 2001; Konrad et al., 2003; Kuster et al.,

2018).

Epidemiological and experimental data indicate that infec-

tions/inflammation are the most accredited triggers for

malignant progression in E/R+ pre-leukemic cells (Heath

&Hasterlik, 1963; Francis et al., 2012; Cazzaniga et al., 2017).

Regarding this, we previously showed that TGFb, a pleiotro-

pic cytokine produced under inflammation (Yoshimura

et al., 2010), favored the emergence of E/R-expressing cells

against controls in competitive growth assays (Ford et al.,

2009). More recently, it has been demonstrated that E/R pre-

leukemic mice developed BCP-ALL when exposed to com-

mon facilities (Rodr�ıguez-Hern�andez et al, 2017; Ford,

unpublished observations), while E/R+ pre-B cells subjected

to repetitive LPS-stimulation induced leukemia when trans-

planted in mice (Swaminathan et al, 2015).

It is well known that both normal and malignant

hematopoietic stem-progenitor cells (HSPC) are strictly regu-

lated by BM-derived signals (M�endez-Ferrer et al., 2010; Lilly

et al., 2011; Asada, 2018). Of note, we have previously sug-

gested that may affect pre-leukemic cells interactions with

the BM stroma by altering their adhesive and migratory

properties (Palmi et al, 2014). In addition to function as

important modulators of inflammation (Bernardo & Fibbe,

2013), BM-mesenchymal stromal cells (MSC) have gained

great interest for their active role in leukemia pathogenesis

(Lo et al., 2014; Polak et al., 2015; Naderi et al., 2015; De

Rooij et al., 2017). In particular, it has been shown that BM-

MSC alterations are able to induce genotoxic stress in HSPC

leading to hematological malignancies (Raaijmakers et al,

2010; Zambetti et al, 2016).

Here we took advantage of two E/R-expressing cellular

systems to demonstrate that BM-MSC and IL6/IL1b/TNFa
pro-inflammatory cytokines cooperate in favoring the emer-

gence of E/R+ pre-leukemic cells in addition to predisposing

them to malignant transformation.

Methods

E/R-inducible Ba/F3 model

E/R-expressing and control Ba/F3 clones were a kind gift of

Dr A.M. Ford. Briefly, the mifepristone-inducible GeneSwitch

system (Life Technologies, Carlsbad, USA) was used to

express E/R fused to the V5 epitope. E/R expression effi-

ciency (>80%) were verified by flow-cytometry using a

FITC-conjugated anti-V5 antibody (Abcam, Cambridge, UK)

(Ford et al., 2009).

Competitive mesenchymal niche model

Control and E/R+ Ba/F3 were mixed (2.5 9 104 total cells) at a

starting ratio of 20:80%, plated in different culture conditions

for 96 h and analyzed by flow-cytometry (details in Data S1).

Migration assay

Control and E/R+ Ba/F3 (3 9 105) were resuspended in

100 µl of migration medium (Advanced RPMI, 2% FBS, 1%

L-glutamine) and loaded into the upper chamber of 8�0 µm
Transwells� inserts (Corning, MA, USA). Unstimulated or

inflamed BM-MSC supernatants (600 ll) were added to the

lower chamber. Details are in Data S1.

Cell cycle analysis

Control and E/R+ Ba/F3 (0.5 9 106) were stained with

2�5 µM carboxyfluorescein succinimidyl ester (CFSE).

2.5 9 104 stained cells were mixed (20%ctr:80%E/R+) and

cultured under basal condition or on murine BM-MSC in

the presence or absence of IL6/IL1b/TNFa. After 4 days,

CFSE mean fluorescence intensity (MFI) was determined.

Details are in Data S1.

Apoptosis and DNA damaging assays

Mixed control and E/R+ Ba/F3 cells (20%:80%, 2.5 9 104

tot) were cultured under basal condition or on BM-MSC in

the presence or absence of IL6/IL1b/TNFa. After 4 days, the

percentage of annexin V-negative cells was determined by

flow-cytometry. Details are in the Supplementary Materials.

Transduced UCB-CD34+ and BM-MSC co-cultures

Sorted pRRL-GFP and pRRL-E/R-GFP-transduced UCB-

CD34+ cells (see Supplementary Materials for details) were

resuspended in stem culture medium (StemSpam SFEM-II,

StemCell Technologies, Vancouver, Canada, supplemented

with SCF, FLT3-ligand, IL3, IL6 and TPO) and plated on

human BM-MSC in presence or absence of IL6/IL1b/TNFa
for 72 h. Details are in the Supplementary Materials.
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Statistical Analysis

Student’s t-test with P < 0�05was used to define statistically sig-
nificant results. To compare variances between groups, the F

test was performed; in case of significantly different variances,

the Welch’s correction was applied. Where indicated, one-

sample t-test was used with the same significance threshold.

Results

IL6/IL1b/TNFa-mediated inflammation favors the
emergence of the E/R+ pre-leukemic clone in an in vitro
model of competitive mesenchymal niche

In order to investigate if BM-MSC and inflammation cooper-

ate in favoring the emergence of E/R+ pre-leukemic cells, we

performed competitive growth assays as we previously did to

evaluate the effect of TGFb (Ford et al., 2009). E/R-express-

ing (E/R+) and control (ctr) Ba/F3 cells were mixed at a

starting ratio of 80%:20%, in consideration of the prolifera-

tive disadvantage of the first (Ford et al., 2009). The mix was

then plated on murine BM-MSC (a system hereafter indi-

cated as “competitive mesenchymal niche”), with or without

IL6/IL1b/TNFa pro-inflammatory cytokines as a general

inflammatory stimulus (Swiergiel & Dunn, 1999; Cappuzzello

et al., 2016; Scutera et al., 2018; Portale et al., 2019) (Fig S1).

Standard liquid cultures without factors (basal condition) or

with TGFb were performed as experimental controls. In

agreement with our previous findings, the percentage of E/R+

Ba/F3 decreased after 96 h in basal condition compared to

day 0 (28%�14% E/R+). To the contrary, however, E/R+ cells

achieved a numerical parity with control cells in the presence

of TGFb (50%�20% E/R+, P < 0�01) (Ford et al., 2009). Co-

culturing the mix on unstimulated BM-MSC provided the

same result of basal condition (21%�12 % E/R+, P = ns),

while, interestingly, the addition of IL6/IL1b/TNFa within

the competitive mesenchymal niche significantly increased

the percentage of E/R+ Ba/F3 (47%�17% E/R+, P < 0�01).
Of note, the effect of IL6/IL1b/TNFa was dose-dependent

and relied on the presence of the mesenchymal component,

since no advantage on E/R+ Ba/F3 was observed by exposing

the mix to IL6/IL1b/TNFa in the absence of BM-MSC

(27%�12% E/R+, P = ns) (Figs 1 and S2). Moreover, we

stimulated the competitive mesenchymal niche with the sin-

gle cytokines or with the double combinations. As shown in

Fig S2, the addition of single cytokines or IL1b/IL6 did not

induce modifications in the mix compared to the unstimu-

lated niche, while stimulation with TNFa/IL6 and, particu-

larly, TNFa/IL1b provided a significant advantage on E/R-

expressing cells, albeit to a lesser extent compared to IL6/

IL1b/TNFa. Since it has been demonstrated that lipopolysac-

charide (LPS) promotes E/R-driven leukemogenesis in vivo

(Swaminathan et al, 2015), we also wanted to test this infec-

tive agent in our competitive mesenchymal niche model, in

addition to other well-known infective/inflammatory stimuli

such as IFNa, Poly (I:C), PAM3CSK4 and S100A8/9. Except

for a slight increase in the case of Poly (I:C), we did not

observe differences compared to unstimulated BM-MSC (Figs

S2 and S3). To countercheck the role of pro-inflammatory

cytokines in our observations, we treated the mesenchymal

competitive niche with the anti-inflammatory cytokine IL10.

As shown in Fig S2, however, addition of IL10 did not alter

the mix composition compared to the unstimulated niche.

Finally, we investigated if soluble factors rather than cell-

cell contacts mediated the pre-leukemia-advantaging effect

within the IL6/IL1b/TNFa-stimulated competitive mesenchy-

mal niche. As shown in Fig S4A, no differences emerged by

performing experiments on 0�4 µm Transwell� compared to

direct co-cultures, indicating that secreted factors played the

major role. Notably, an involvement of TGFb could be ruled

out, since its concentration in BM-MSC supernatants did not

increase after IL6/IL1b/TNFa stimulation (Fig S4B).

The inflamed mesenchymal niche preferentially attracts
E/R+ B-progenitors through the CXCR2 receptor

Our preliminary studies on human BM-MSC showed that

IL6/TNFa/IL1b stimulation induced a strong release of

CXCL1 and other CXCR1/2-binding chemokines (Fig 2A,

grey rows; Table S1). Accordingly, murine BM-MSC

increased secretion of CXCL1 after IL6/TNFa/IL1b stimula-

tion (inflamed: 28199 � 3098 pg/ml; unstimulated:

60 � 16 pg/ml; P < 0�01) (Fig 2B). On the other hand, gene

expression profile of E/R+ and control Ba/F3 (Fig S5A)

revealed that pre-leukemic cells activated pathways involved

in inflammatory responses and myeloid-cells activation,

including the CXCR2 signaling (Figs S5B–S5C). Indeed, E/R+

Ba/F3 transcriptionally upregulated CXCR2 and its cognate

receptor CXCR1 (Rosu-Myles et al, 2000; Stillie et al, 2009)

(CXCR1 mRNA fold increase E/R+ versus ctr = 55�3 � 7�9,
P < 0�001; CXCR2 mRNA fold increase E/R+ versus

ctr = 140�2 � 45�2, P < 0�001), but they expressed only the

first at the membrane surface (CXCR2 MFI: E/R+=
1378 � 807; ctr = 284�167, P < 0�05) (Fig 3A–B). Interest-
ingly, E/R-positive patients expressed higher levels of CXCR2

mRNA than E/R-negative ones (Fig S6).

CXCR2 regulates survival and self-renewal of normal HSPC

as well as AML stem cells (Schinke et al, 2015; Sinclair et al,

2016). However, blocking CXCR2 with the specific inhibitor

SB265610 did not abolish the advantage of E/R+ Ba/F3 in the

presence of BM-MSC and IL6/IL1b/TNFa (Fig S7). Likewise,

addition of CXCL1 in standard liquid culture did not increase

the percentage of pre-leukemic cells (Fig S8).

CXCR2 primarily mediates neutrophil migration to sites of

inflammation (Richardson et al, 2003); in addition, it represents

a selective migratory pathway for BCP-ALL blasts toward the

leukemic niche (De Rooij et al, 2017). Since we previously

showed that E/R altered cell migration (Palmi et al, 2014), we

asked if CXCR2 overexpression was associated with increased

migration of E/R+ Ba/F3 towards inflamed BM-MSC. As shown
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in Fig 4, both normal and pre-leukemic Ba/F3 cells migrated

more towards inflamed BM-MSC supernatants compared to

unstimulated BM-MSC conditioned media, despite the increase

being significant only in the latter case (% control migrated cell/

input: MSC-CM = 5�9 � 2�9; INFL.MSC-CM: 14�3 � 9�6,
P = ns) (% E/R+ migrated cell/input: MSC-CM = 4�6 � 3�3;
INFL.MSC-CM: 30�2 � 9, P < 0�01). In particular, E/R+ cells

migrated 2-fold more efficiently towards inflamed MSC-CM

compared to controls (% migrated cell/input toward

INFL.MSC-CM: E/R+=30�2 � 9�1; ctr = 14�3 � 9�6,
P < 0�01). On the other hand, no significant differences were

observed between control and E/R+ Ba/F3 in case of unstimu-

lated MSC-CM (% migrated cell/input toward MSC-CM: E/

R+=4�6 � 3�3; ctr = 5�9 � 2�9, P = ns). As expected, CXCR2

inhibition hampered migration of E/R+ Ba/F3: of note, the

inhibitory effect was not statistically significant in case of

unstimulated MSC supernatants (%E/R+ migrated cells/input: -

SB265610 = 4�6 � 3�3; +SB265610 = 2�2 � 1�3, p = ns),

whereas it was significantly consistent in the presence of

inflamed supernatants (% E/R+ migrated cells/input: -

SB265610 = 30�2 � 9; +SB265610 = 7�7 � 4�3; P < 0�01). In
stark contrast, migration of control Ba/F3 was not significantly

affected by CXCR2 inhibition in both conditions.

Proliferation and survival of normal, but not E/R+, pro-
B cells strongly decrease in the presence of BM-MSC and
IL6/TNFa/IL1b

In order to elucidate mechanisms underlying the emergence of

pre-leukemic Ba/F3 within the competitive inflamed niche, we

Fig 1. Pro-inflammatory cytokines favor the emergence of E/R+ Ba/F3 cells in a model of competitive mesenchymal niche. A mixture of E/R+

and control Ba/F3 cells (80%:20%) was grown under the indicated conditions. BASAL: standard liquid culture; +TGFb: standard liquid cul-

ture + TGFb (10 ng/mL); + inflammatory cytokines (INFL. CK): standard liquid culture + IL6 (20 ng/mL), TNFa (25ng/mL) and IL1b (25 ng/

mL); +MSC: Ba/F3 and murine BM-MSC co-culture; +MSC + INFL.CK: Ba/F3 and murine BM-MSC co-culture + IL6, TNFa and IL1b. After
4 days, the percentage of E/R+ cells in the mix was quantified by flow-cytometry using a FITC-conjugated anti-V5 tag antibody. An anti-mCD45

was used to discriminate between MSC (mCD45-) and Ba/F3 cells (mCD45+). Peak histograms in the figure are from a representative experiment,

while values indicate mean � SD of 6 independent experiments. Paired Student’s t-test (two-sided, **P < 0�01) was applied to compare the per-

centage of E/R+ cells grown for 4 days under the indicated conditions vs the basal culture.
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analyzed proliferation and apoptosis in control and E/R+ Ba/F3

when exposed to that microenvironment (Fig 5A). Consistent

with our previous report (Ford et al., 2009), E/R+ Ba/F3 cul-

tured in basal condition for 96 h displayed a lower proliferative

rate than control cells, as judged by higher CFSE intensity. Of

note, comparable results were observed by co-culturing the mix

(20% ctr:80% E/R+) on unstimulated BM-MSC. Interestingly,

both populations decreased proliferation compared to the

unstimulated condition if cultivated on BM-MSC + IL6/IL1b/
TNFa. However, decrease was stronger in control (CFSE MFI

fold change + MSC+INFL.CK vs + MSC: ctr = 4�4 � 1�8,
P < 0�05) than pre-leukemic Ba/F3 (CFSE MFI fold

change + MSC+INFL.CK vs + MSC: E/R+=2�2 � 0�6,
P < 0�001). Very interestingly, a striking difference was observed

in terms of apoptosis: cell death, in fact, was strongly induced in

control cells exposed to the inflamed niche (% ANN-V-negative

cells: +MSC = 68�4 � 5�7; +MSC + INFL.CK = 48�2 � 1�3,
P < 0�05), whereas survival of E/R+ cells was completely unaf-

fected in the same condition (Fig 5B).

Human normal, but not E/R+, CD34+IL7R+ progenitors
decrease in number in the presence of BM-MSC and
IL6/TNFa/IL1b

Although inducible E/R-expressing Ba/F3 cells proved to be a

reliable system to study E/R+ pre-leukemia (Diakos et al.,

2007; Ford et al., 2009; Linka et al., 2013; Palmi et al., 2014),

we wanted to test the effects of BM-MSC and IL6/IL1b/
TNFa also in a human pre-leukemic cellular model. It has

recently been demonstrated that fetal CD34+CD19-IL7R+

progenitors are the bona fide initiating population of E/R+

pre-leukemia during development (B€oiers et al, 2018). We

thus transduced umbilical cord blood-CD34+ progenitors

with pRRL-GFP or pRRL-E/R-GFP lentiviral vectors (control

or E/R+ UCB-CD34+ respectively) and separately cultured

them for 72 h on human BM-MSC in the presence or

absence of IL6/IL1b/TNFa. By adopting this short-term cul-

ture system, the whole population lacked CD19 expression;

on the contrary, a CD34+IL7R+ subpopulation clearly

emerged in both control and pre-leukemic cells (Fig S9A,

gate P7). In line with previous findings (B€oiers et al, 2018),

expression of the E/R itself led to a specific expansion of the

CD34+IL7R+ compartment (Fig 6B, upper graph; control

CD34+IL7R+=373 � 101; E/R+ CD34+IL7R+= 635 � 44,

P < 0�05), while it had no significant impact on the

CD34+IL7R- and CD34- fractions.

Addition of IL6/IL1b/TNFa to control UCB-CD34+/BM-MSC

co-cultures increased the number of total GFP+ cells (tot control

GFP+: +MSC = 6117�1646; +MSC + INFL.CK = 8077�1087;

P < 0�05). Such increase was accompanied by the expansion of

differentiating CD34- cells and a significant reduction of control

CD34+IL7R+ progenitors (control CD34-: +MSC = 3649�963;

+MSC + INFL.CK: 5516 � 622, P < 0�05; control CD34+IL7R+

number: +MSC = 373�101; +MSC + INFL.CK: 254 � 56,

P < 0�05; control CD34+IL7R+ percentage: +MSC = 6�1%
�0�5%; +MSC + INFL.CK: 3�1%�0�3%, P < 0�01). Notably,

any alterations were observed in the control CD34+IL7R- subpop-

ulation (Fig 6A, lower graph).

Very interestingly, in the presence of BM-MSC and IL6/

TNFa/IL1b, E/R-expressing CD34+IL7R+ progenitors were pre-

served from reduction (E/R+ CD34+IL7R+: +MSC = 635�44;

+MSC + INFL.CK: 727 � 142, P = ns) (Fig 6B, lower graph).

On the other hand, the number of total pre-leukemic GFP+ cells

decreased (tot E/R+ GFP+: +MSC + INFL.CK = 6374 � 997;

+MSC = 6727�1300; P < 0�05), possibly due to a reduction of

the CD34- fraction (E/R+ CD34-: +MSC = 4403 � 726;

+MSC + INFL.CK: 3615 � 542, P < 0�05). As in the control

group, E/R+ CD34+IL7R- cells were unaffected compared to the

uninflamed niche.

Fig 2. BM-MSC increase secretion of CXCR1/2 ligands after stimula-

tion with pro-inflammatory cytokines. A) Human BM-MSCs from

three different healthy-donors were grown in 2% FBS-supplemented

media in presence or absence of IL6 (40 ng/mL), IL1b (50 ng/mL)

and TNFa (100 ng/mL) for 24 h. Conditioned media (CM) were

collected, centrifuged, and analyzed by Human Cytokines Array

C1000 protein arrays (RayBio). Data were acquired through the

UVITEC Cambridge� instrument and densitometry quantification

performed by ImageJ� software. For each donor, protein fold-

changes (FC) of inflamed vs unstimulated supernatants were calcu-

lated. The table shows the FC mean values of the 10 most upregu-

lated proteins obtained in three independent experiments. CXCR1/2

ligands are indicated in grey. B) CXCL1 quantification by enzyme-

linked immunosorbent assay (ELISA) in the supernatants of murine

BM-MSCs grown in 2% FBS-supplemented media in the absence

(MSC) or presence of IL6, TNFa and IL1b (MSC + INFL.CK) for

24 h. Values are shown as mean � SD of 3 independent experi-

ments. Paired Student’s t-test: two-sided, **P < 0�01.
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Since a CD34highIL7R+ phenotype was recognisable in con-

trol and E/R+ UCB-CD34+-derived populations (Fig S9A,

gate P8), we extended the analysis to these fractions as well.

Similar to the CD34+IL7R+ compartment, in the presence of

BM-MSC + IL6/TNFa/IL1b, CD34highIL7R+ progenitors

significantly decreased in controls (fold-change control + MSC+
INFL.CK vs + MSC=0�63 � 0�07; P < 0�05) while they were

unaffected in number within the pre-leukemic population (fold-

change E/R+ +MSC + INFL.CK vs + MSC=1�09 � 0�03; P <
0�05, Fig S9B).

The inflamed mesenchymal niche represents a genotoxic
microenvironment for hematopoietic progenitors

It has been demonstrated that mesenchymal inflammation

induces genotoxic stress in HSPC (Zambetti et al, 2016).

Fig 3. Overexpression of CXCR2 mRNA and

cell surface protein in E/R+ Ba/F3 cells. A) RT-

qPCR analysis of CXCR1 and CXCR2 mRNA

expression in control and E/R+ Ba/F3 cells after

72 h of mifepristone treatment. cDNA was

subjected to TaqMan qRT-PCR and normal-

ized for HPRT gene expression. Values are

shown as mean � SD of 6 independent experi-

ments; for each experiment, the 2�DDCt value

of Ba/F3 control was considered as reference.

One-sample t-test: §§§P < 0�001. B) CXCR1
and CXCR2 protein membrane expression was

quantified as mean fluorescence intensity

(MFI) by FACS analysis. In the scattered dot

plot, values are expressed as mean � SD of 6

independent experiments. Student’s t-test with

Welch’s correction: two-sided, *P < 0�05.

Fig 4. Enhanced migration of E/R+ Ba/F3 cells

towards inflamed BM-MSC conditioned med-

ium is CXCR2-dependent. Transwell� migra-

tion (3 h) of control and E/R+ Ba/F3 towards

basal (MSC-CM) or inflamed (INFL.MSC-CM)

MSC supernatant in the presence or absence of

the CXCR2-inhibitor SB265610 (1 µM). The

number of migrated cells was determined by

flow cytometry. A set number of fluorescent

reference beads (BD Trucount� tubes) was

used as internal calibrator, as described in the

Material and Methods. Cells were counted in

technical triplicates for 30 s. The percentage of

migrated cells was determined by dividing the

number of cells in the lower chamber by the

number of cells loaded into the upper chamber

(input). Values are given as mean � SD of 5

independent experiments. Paired Student’s

t-test: two-sided, **P < 0�01.
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Thus, we sought to determine the extent of DNA Double-

Strand Break (DSB) in control and E/R+ Ba/F3 in the pres-

ence of BM-MSC and IL6/TNFa/IL1b. As judged by the

levels of histone 2AX phosphorylation (cH2AX), under basal

conditions, pre-leukemic cells were characterized by higher

levels of DNA DSB compared to controls (cH2AX MFI fold

increase: E/R+ vs ctr = 1�86 � 0�65, P < 0�05) (Fig 7A).

Interestingly, exposure to unstimulated BM-MSC did not

affect basal cH2AX in either E/R+ Ba/F3 or control cells,

while in the presence of IL6/TNFa/IL1b levels of cH2AX sig-

nificantly increased in both groups (cH2AX MFI fold

increase + MSC+INFL.CK vs + MSC: E/R+ = 2�28 � 1�56,
P < 0�05; ctr = 4�36 � 1�61, P < 0�01).

Deregulation of activation-induced cytidine deaminase

(AID) is a possible mechanism driving E/R+ pre-leukemia to

leukemia transition in vivo (Swaminathan et al, 2015). As

shown in Fig 7B, pre-leukemic Ba/F3 basally expressed higher

levels of AID mRNA compared to controls (AID mRNA fold

increase: E/R+ vs ctr = 4�9 � 2�1, P < 0�05). Very interest-

ingly, AID expression further increased in both control and E/

R+ Ba/F3 once exposed to the inflamed niche secretome (AID

mRNA fold increase + MSC+infl.ck versus basal:

ctr = 14�7 � 10�9, P < 0�05; E/R+=6�3 � 1�6). However,

further experiments are needed to functionally assess this

observation.

Discussion

Dysregulated inflammatory and immune responses to com-

mon infections are the main candidate risk-factors for pre-

leukemia to leukemia transition in BCP-ALL (Heath &

Hasterlik, 1963; Francis et al, 2012; Cazzaniga et al, 2017).

Here, we show that BM-MSC cooperate with IL6/TNFa/IL1b
pro-inflammatory cytokines in favoring the persistence of E/

R-expressing Ba/F3 as well as human CD34+IL7R+ progeni-

tors, recently indicated as a putative E/R+ leukemia initiating

population during human development (B€oiers et al, 2018).

IL6, TNFa and IL1b are pleiotropic cytokines precociously

secreted by pathogen receptors (PRRs)-expressing cells in

response to several types of infections (Swiergiel & Dunn,

1999). In addition to regulating normal HSPC under infec-

tive conditions (Riether et al, 2015), they contribute to the

establishment and maintenance of the leukemic niche

(Kagoya et al, 2014; Vilchis-Ordo~nez et al, 2015; Carey et al,

2017). Notably, no advantaging effect was observed on pre-

leukemic clone by treating the competitive E/R+ :ctr Ba/F3

mix with IL6/IL1b/TNFa in the absence of BM-MSC,

indicating that the emergence of pre-leukemic cells against

controls strictly depends on IL6/IL1b/TNFa-mediated mes-

enchymal inflammation. At the same time, treating the com-

petitive mesenchymal niche with LPS, an infective stimulus

prompting E/R leukemogenesis in mice (Swaminathan et al,

2015), did not increase the relative percentage of E/R+ Ba/F3

against the normal counterpart. Discrepancy may be

explained by supposing that LPS affects other niche compo-

nent in vivo or indirectly acts on BM-MSC: for example, by

stimulating antigen-presenting cells to secrete IL6/IL1b/TNFa
(Swiergiel & Dunn, 1999).

By transwell experiments, we have evidence that soluble

molecules are the main determinants of the pre-leukemia

advantage within the inflamed niche. Regarding this, we pre-

viously demonstrated that TGFb, a key immune modulator

produced during inflammation (Yoshimuta et al., 2010),

Fig 5. Differential effect of the inflamed mesenchymal niche on the

proliferation and survival of control and E/R+ Ba/F3 cells. A) E/R+

and control Ba/F3 cells were stained with carboxyfluorescein succin-

imidyl ester (CFSE) and co-cultured (80%:20%) for 4 days in stan-

dard liquid culture (basal) or on murine BM-MSC monolayers in

the presence or absence of IL6/TNFa/IL1b. CFSE MFI of mCD45+

cells was evaluated by flow cytometry. The E/R+ fraction was

detected thanks to a specific antibody against the E/R fusion

sequence in place of the FITC-conjugated anti-V5 antibody. MFI of

control Ba/F3 in basal condition at the end of the culture was con-

sidered as reference for fold increase calculation. The graph shows

mean � SD of 5 independent experiments. §§§P < 0�001, one-sample

t-test; paired Student’s t-test: *P < 0�05; **P < 0�01; ***P < 0�001.
FC: fold change B) E/R+ and control Ba/F3 (80%:20%) were grown

as above in the presence or absence of inflammatory cytokines. For

each condition, the percentage of mCD45+/annexin V� cells was

evaluated, and E/R + cells quantified using the FITC-conjugated

anti-V5 antibody. The graph shows mean � SD of 3 independent

experiments: Paired Student’s t-test: two-sided, *P < 0�05;
**P < 0�01.
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reduced proliferation in control but not E/R-expressing Ba/

F3 (Ford et al., 2009). However, IL6/IL1b/TNFa-stimulated

BM-MSC do not increase TGFb secretion compared to

unstimulated cells. More recently, B€oiers et al. (2018) showed

that human E/R-expressing fetal pro-B cells can survive in

myeloid culture conditions. Despite E/R+ Ba/F3 transcrip-

tionally activate inflammatory myeloid pathways and

inflamed human BM-MSC release myeloid factors (data not

shown), preliminary ongoing experiments seem to rule out

their role in our observations.

CXCL1 was the most upregulated protein in the supernatants

of inflamed compared to unstimulated BM-MSC; on the other

hand, pre-leukemic Ba/F3 and patient-derived E/R+ blasts over-

express its receptor CXCR2. Although CXCR2 does not directly

favor the emergence of pre-leukemic cells within the inflamed

mesenchymal niche, it is responsible for the preferential migra-

tion of E/R-expressing cells toward the sustaining niche, thus

becoming a possible future therapeutic target (Ijichi et al, 2011;

Martz, 2012; Schinke et al, 2015; Jaffer &Ma, 2016).

It is well established that additional mutations are required

to complete malignant transformation of E/R+ pre-leukemic

cells (Greaves, 2018). Very interestingly, we demonstrate that

exposure to the inflamed niche increased both the extent of

DNA DSB and AID mRNA in E/R+ Ba/F3. Although an effec-

tive role of AID in leukemia transition of B-cell precursors has

yet to be proven, the increase of DNA damage observed in the

apoptosis-resistant pre-leukemic clone could provide a means

for their malignant transformation.

In conclusion, we propose a model where the concerted

action of pro-inflammatory cytokines and BM-MSC creates

a selective niche for E/R-expressing cells in terms of migra-

tion, proliferation and survival. In addition, the inflamed

niche predisposes pre-leukemic cells to transformation by

increasing DNA damage. Further characterization of the

crucial pathways sustaining E/R+ pre-leukemic cells within

the inflamed niche could provide mechanistic insights into

E/R-driven pathogenesis and, possibly, novel therapeutic

interventions.

Fig 6. ETV6/RUNX1 safeguards the number of

human CD34+IL7R+ in the presence of BM-

MSC and inflammation. Transfected control

and E/R-expressing human UCB-CD34+ cells

were separately grown in stem culture medium

on BM-MSC in the absence (+MSC) or pres-

ence of IL6 (40 ng/mL), TNFa (100 ng/mL)

and IL1b (50ng/mL) (+MSC + INFL.CK) for

72 h. At the end of the culture, cells were

stained with anti-CD34 and anti-IL7Ra anti-

bodies and counted by FACS. The cell number

was normalized to a determined number of

fluorescent reference beads (BD Trucount�

tubes) added into tubes and to the percentage

of GFP positivity in the two groups. Percent-

ages of CD34-, CD34-IL7R+ and CD34+IL7R+

fractions in control UCB-CD34+-derived popu-

lation (A) and in E/R+ UCB-CD34+-derived

population (B) after 72 h of culture at the

indicated conditions. Values indicate the num-

ber of cells relatively quantified by flow cytom-

etry (mean � SD of one infection experiment

in which cells were cultivated on three different

healthy donor-derived BM-MSC). Paired Stu-

dent’s t-test: * = same experimental group,

inflamed vs non-inflamed condition; # = same

experimental condition, control vs E/R+ group;

two-sided, *,#P < 0�05; ##P < 0�01.
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Figure S1. Schematic representation of the competitive

niche assay.

Figure S2. The competitive niche assay in the presence of

several stimuli.

Figure S3. LPS stimulation does not provide advantage to

E/R+ Ba/F3 in the competitive mesenchymal niche.

Figure S4. Soluble factors, other than TGFb, mediate the

pre-leukemia selective advantage within the inflamed mes-

enchymal niche.

Figure S5. A) Gene expression profiling by Gene Chip

Mouse 2.0 Arrays of control and E/R+ Ba/F3. Only those E/R

induction experiments showing >90% viability and >90%
FITC positivity were chosen for analysis (n = 3). B) E/R+ Ba/

F3 upregulated pathways involved in the immune and

inflammatory response, included myeloid cell activation

pathways. Gene ontology (GO) analysis was performed by

Fig 7. The inflamed mesenchymal niche increases DNA double-

strand breaks and AID expression in both control and E/R+ Ba/F3

cells. A) E/R+ and control Ba/F3 cells were co-cultured (80%:20%)

for 4 days in standard liquid culture (basal) or on murine BM-MSC

monolayers in the presence or absence of IL6/TNFa/IL1b. Phospho-
rylated levels of H2AX (cH2AX) in mCD45+, both V5-positive and

V5-negative, cells were measured as MFI by FACS. The MFI of con-

trol Ba/F3 cells grown under basal condition was considered as refer-

ence for fold increase calculation. Values are expressed as

mean � SD of 6 independent experiments. One-sample t-test:
§P < 0�05. Paired Student’s t-test: *P < 0�05; **P < 0�01. B) Control
and E/R+ Ba/F3 cells were separately grown in standard liquid cul-

ture (basal) or loaded into the upper chamber of 0�4 µm Transwell�

inserts in the presence of MSC (lower chamber) and inflammatory

cytokines (+MSC + INFL.CK). RT-qPCR analysis was performed to

quantify AID expression, normalizing values on Hprt expression.

Analysis was performed on 3 independent experiments. Paired Stu-

dent’s t-test: two-sided, *P < 0�05; **P < 0�01.
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Metascape. Differentially expressed genes were identified by

significance analysis of microarray (SAM) algorithm coded in

the samr R package and by estimating the percentage of false

positive predictions (i.e. false discovery rate, FDR) with 100

permutations; q-value <0.01. In the dendogram, the 20 best

p-values are indicated. C) Signaling associated to IL-8, a

CXCR2-ligand, was one of the top canonical pathways upreg-

ulated in pre-leukemic cells. Ingenuity Pathway Analysis was

performed on filtered GEP data (E/R+ versus control Ba/F3:

FC < 0.75 and FC > 1.5). As evidenced, the IL-8 signaling

was activated in pre-leukemic Ba/F3 compared to controls.

Figure S6. E/R+ BCP-ALL patients overexpress CXCR2

mRNA.

Figure S7. Inhibition of CXCR2 did not abolish the rela-

tive increase of pre-leukemic cells percentage within the

inflamed niche.

Figure S8. CXCL1 does not provide a selective advantage

to E/R+ Ba/F3 in competitive liquid culture.

Figure S9. A) Representative plots for relative quantita-

tive analysis of the CD34-, CD34+IL7R-, CD34+IL7R+ and

CD34highIL7R+ fractions within control and pre-leukemic

GFP+ populations. Control and E/R-transduced UCB-

CD34+ cells were separately grown in stem culture medium

on BM-MSC, in absence (+MSC) or presence of IL6/

TNFa/IL1b (+MSC+INFL.CK) for 72 h. At the end of the

culture, cells were stained with APC-conjugated anti-

hCD34 and PE-Cy7-conjugated anti-hIL7R antibodies and

analyzed by quantitative flow cytometry. Plots show a rep-

resentative phenotypic analysis of both cell groups after

the cultivation on unstimulated BM-MSC. P4 = GFP+ ;

P5 = CD34+IL7R+ ; P6 = CD34+IL7R�; P7 = CD34- ; P8 =
CD34highIL7R+. B) Human E/R+ CD34highIL7R+ progenitors

are preserved under mesenchymal inflammation. Control

and E/R-transduced UCB-CD34+ cells were separately

grown in stem culture medium on BM-MSC, in absence

(+MSC) or presence of IL6/TNFa/IL1b (+MSC+INFL.CK)
for 72 h. At the end of the culture, cells were stained with

the anti-hCD34 and anti-hIL7Ra antibodies and number

of cells quantified by FACS. The cell number was normal-

ized on a determined number of fluorescent reference

beads (BD Trucount� tubes) and percentage of GFP posi-

tivity in the two groups. The graph shows results of one

infection experiment in which cells were cultivated on

three different healthy donor-derived BM-MSC monolayers.

For every BM-MSC healthy donor, FC between the num-

ber of CD34highIL7R+ in the inflamed and unstimulated

BM-MSC niche was calculated and the mean�SD indicated

in the graph. One-sample t-test: §P < 0.05.

Table S1. BM-MSC from three different healthy donors

were cultivated in 2% FBS-supplemented medium for 24 h

in the presence or absence of IL1b, IL6 and TNFa. Collected
supernatants were analyzed by Human Cytokines Array

C1000 and Student’s t-test was applied to compare inflamed

vs unstimulated values. For each donor, the fold change (FC)

between the two conditions was calculated.

Table S2. Gene expression profile by Gene Chip Mouse

2.0 Arrays of control and E/R+ Ba/F3 cells. E/R induction

experiments showing >90% viability and FITC positivity were

chosen (n = 3). Differentially expressed genes were identified

by using Significance Analysis of Microarray algorithm

(SAM) coded in the samr R package and estimating the per-

centage of false positive predictions (i.e., False Discovery

Rate, FDR) with 100 permutations.

Table S3. General characteristics of patients whose cDNA

were analyzed for CXCR1/2 expression. Sixty-six BCP-ALL

patients (32 E/R-positive patients and 34 patients negative

for all common translocations), enrolled in the AIEOP-BFM

ALL 2009 protocol and treated in AIEOP Centers, were

included in the study. BCP-ALL diagnosis was performed

according to standard cytomorphology, cytochemistry and

immunophenotypic criteria. RNA were isolated from

mononuclear cells and cDNA was synthesized according to

standard methods.

Data S1. Supplementary materials.
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