

[Introduction](#page-1-0) [Hidden Markov Model \(HMM\)](#page-4-0) [Data](#page-11-0) [Results](#page-14-0) [Conclusions](#page-26-0) [References](#page-27-0) 0000000

 000

000000000000

Multivariate Hidden Markov model An application to study correlations among cryptocurrency log-returns

Fulvia Pennoni†

Bartolucci F.*, Forte G.** and Ametrano F.**

†Department of Statistics and Quantitative Methods University of Milano-Bicocca Email: fulvia.pennoni@unimib.it

[∗]University of Perugia, ∗∗University of Milano-Bicocca

\blacktriangleright Introduction

▶ Multivariate Hidden Markov Model

 \blacktriangleright Maximum likelihood estimation

 \blacktriangleright Applicative example with five cryptocurrencies

 \blacktriangleright Conclusions

Introduction

- \triangleright We propose a statistical and an unsupervised machine learning method based on a multivariate Hidden Markov Model (HMM) to jointly analyse financial asset price series
- \blacktriangleright It provides a flexible framework for many financial applications and it allows us to incorporate stochastic volatility in a rather simple form
- \triangleright With respect to the regime-switching models the HMM is able to provide estimates of state-specific expected log-returns along with state volatility
- \triangleright Estimation and prediction of the volatility is based on the expected log-returns that are parameters to be estimated

Introduction

 \triangleright We account for the correlation structure between crypto-assets

- \triangleright We assume that the daily log-return of each cryptocurrency is generated by a specific probabilistic distribution associated to the hidden state
- \triangleright By accounting for the conditional means that define the expected log-returns we improve the time-series classification
- \triangleright Stable periods, crises, and financial bubbles differ significantly for mean returns and structural levels of covariance

Proposed Hidden Markov Model (HMM)

◆ We denote by:

 \circ

 y_t the random vector at time $t, t = 1, 2, \ldots,$ y_{ti} , $j = 1, \ldots, r$, corresponds to the log-return of asset j

 \blacklozenge We assume that the random vectors $\mathbf{y}_1, \mathbf{y}_2, \ldots$ are conditionally independent given a hidden process

 \blacklozenge The hidden process is denoted as u_1, u_2, \ldots

 We assume that it follows a Markov chain with a finite number of hidden states labelled from 1 to k

Proposed HMM

- \triangleright We model the conditional distribution of every vector y_t given the underlying hidden process u_t
- \triangleright We assume a multivariate Gaussian distribution that is

$$
\mathbf{y}_t|u_t = u \sim N_r(\boldsymbol{\mu}_u, \boldsymbol{\Sigma}_u),
$$

where $\boldsymbol{\mu}_u$ and $\boldsymbol{\Sigma}_u$ are, for hidden state u , the specific mean vector and variance-covariance matrix (heteroschedastic model)

The conditional distribution of the time-series y_1, y_2, \ldots given the sequence of hidden states may be expressed as

$$
f(\mathbf{y}_1, \mathbf{y}_2, \ldots | u_1, u_2, \ldots) = \prod_t \phi(\mathbf{y}_t; \boldsymbol{\mu}_{u_t}, \boldsymbol{\Sigma}_{u_t}),
$$

where, in general, $\phi(\cdot;\cdot,\cdot)$ denotes the density of the multivariate Gaussian distribution of dimension r

Proposed HMM

 \blacktriangleright The structural model is based on two sets of parameters:

 \blacktriangleright The initial probability is defined as:

$$
\lambda_u=p(u_1=u),\quad u=1,\ldots k,
$$

collected in the initial probability vector $\boldsymbol{\lambda}=(\lambda_1,\ldots,\lambda_k)'$

 \blacktriangleright The transition probability is defined as:

$$
\pi_{v|u} = p(u_t = v|u_{t-1} = u), \quad t = 2, ..., u, v = 1, ..., k,
$$

collected in the transition matrix:

$$
\Pi = \begin{pmatrix} \pi_{1|1} & \cdots & \pi_{1|k} \\ \vdots & \ddots & \vdots \\ \pi_{k|1} & \cdots & \pi_{k|k} \end{pmatrix}.
$$

 OOC

000000000000

Maximum likelihood estimation

 000

\blacktriangleright The log-likelihood function of all model parameters (denoted with vector θ) is defined as

$$
\ell(\pmb{\theta}) = \log f(\pmb{y}_1, \pmb{y}_2, \ldots),
$$

 \blacktriangleright The complete-data log-likelihood is defined as

$$
\ell_1^*(\mu_1,\ldots,\mu_k,\Sigma_1,\ldots,\Sigma_k) = \sum_t \sum_u w_{tu} \log \phi(\mathbf{y}_t|\mu_u,\Sigma_u)
$$

\n
$$
= -\frac{1}{2} \sum_t \sum_u w_{tu} [\log(|2\pi\Sigma_u|) + (\mathbf{y}_t - \mu_u)' \Sigma_u^{-1} (\mathbf{y}_t - \mu_u)],
$$

\n
$$
\ell_2^*(\lambda) = \sum_u w_{1u} \log \pi_u,
$$

\n
$$
\ell_3^*(\Pi) = \sum_{t \ge 2} \sum_u \sum_v z_{tuv} \log \pi_{v|u},
$$

where $w_{tu} = I(u_t = u)$ is a dummy variable equal to 1 if the hidden process is in state u at time t and 0 otherwise, z_{tuv} denotes the transition in t from u to v

 000

Maximum likelihood estimation

 000

- ◆ The Expectation-Maximization algorithm (Baum et al., 1970; Dempster et al., 1977) is employed to maximize log-likelihood
- \blacklozenge It is based on two steps:
	- E-step: it computes the posterior expected value of each indicator variable w_{tu} , $t = 1, 2, ..., u = 1, ..., k$, and z_{tuv} , $t = 2, ...,$ $u, v = 1, \ldots, k$, given the observed data
	- M-step: it maximizes the expected complete data log-likelihood with respect to the model parameters.

The parameters in the measurement model are updated in a simple way as:

$$
\mu_u = \frac{1}{\sum_t \hat{w}_{tu}} \sum_t \hat{w}_{tu} \mathbf{y}_t,
$$
\n
$$
\Sigma_u = \frac{1}{\sum_t \hat{w}_{tu}} \sum_t \hat{w}_{tu} (\mathbf{y}_t - \boldsymbol{\mu}_u) (\mathbf{y}_t - \boldsymbol{\mu}_u)',
$$
\nfor $u = 1, \ldots, k$,

Maximum likelihood estimation

◆ M-step:

The parameters in the structural model are updated as:

$$
\pi_u = \hat{z}_{1u}, \quad u = 1, \ldots, k, \n\pi_{v|u} = \frac{1}{\sum_{t \geq 2} \hat{w}_{t-1, u}} \sum_{t \geq 2} \hat{z}_{tuv}, \quad u, v = 1, \ldots, k.
$$

- ◆ The EM algorithm is initialized in a deterministic way with an initial guess of their value based on sample statistics
- ◆ To check if the EM algorithm converges to a global maximum different starting values are generated randomly

Model selection and predictions

 \triangleright To choose the appropriate number of regimes we rely on the Bayesian Information Criterion (BIC; Schwarz, 1978) which is based on the following index

$$
BIC_k = -2\hat{\ell}_k + \log(T) \# \text{par},
$$

where

- $\hat{\ell}_k$ denotes the maximum of the log-likelihood of the model with k states
- with T being the number of observation times
- \bullet #par denotes the number of free parameters equal to $k[r + r(r + 1)/2] + k^2 - 1$ for the heteroschedastic model
- \blacktriangleright The most likely sequence of hidden states is predicted through the so called local decoding or global decoding

Application

- \triangleright The selection of the cryptocurrencies is based on the criteria underlying the Crypto Asset Lab Index (to be published in 2021) concerning crypto-assets in the market that are:
	- more reliable
	- liquid
	- less manipulated

▶ We consider: Bitcoin, Ethereum, Ripple, Litecoin, and Bitcoin Cash

- \triangleright For the sake of comparability on the liquidity side, we consider a recent time span of three-years: from August 2, 2017, to February, 27, 2020
- \triangleright Computational tools are implemented by adapting suitable functions of the R package LMest (Bartolucci et al., 2017)

Application: data description

 \triangleright We shows the BTC prices along with the daily log-returns for the whole period of observation

 \triangleright We recognize two periods of special rise in price (end of 2017 and mid 2019)

Application: data description

 00

 \triangleright Observed variance-covariance matrix:

\triangleright Observed correlations and partial correlations:

 \triangleright The BTC dominance does not necessarily results in a unique co-moving driver

Results: HMM selection

- \blacktriangleright The best order (number of regimes, k) of the hidden distribution is chosen through the BIC
- \triangleright We are showing the results of the heteroschedastic HMM with $k = 5$ hidden states

 000

[Introduction](#page-1-0) [Hidden Markov Model \(HMM\)](#page-4-0) [Data](#page-11-0) [Results](#page-14-0) [Conclusions](#page-26-0) [References](#page-27-0) 0000000

 000

 $0 00000000000$

Results: expected log-returns

 \triangleright According to the estimated expected log-returns of each state there are tree negative $(1,2,3)$ and two positive regimes $(4,5)$

 \blacktriangleright They represent the occurrence of a variety of situations happening on the market

Results: expected log-returns

 \triangleright States 2 and 3 identify more stable phases

 \triangleright States 4 and 5 are related to phases of price rise

[Introduction](#page-1-0) [Hidden Markov Model \(HMM\)](#page-4-0) [Data](#page-11-0) [Results](#page-14-0) [Conclusions](#page-26-0) [References](#page-27-0) 0000000 000 Ω

 000

Results: estimated conditional variances and correlations

 \triangleright Estimated conditional correlations (below the main diagonal), variances (in bold, pink), partial correlations (in italic above the main diagonal)

Results: estimated conditional variances and correlations

In state 2 the correlation between BTC and XRP is high (0.68) but the partial correlation is low and negative (-0.18).

In terms of volatility, it is clear that state 3 is the more stable state and state 5 is the most volatile

 \triangleright State 1 is the one characterized by significant falls of price and by a marked volatility

 \triangleright States 1 and 3 are both marked by negative log-returns, but with very different levels of risk

[Introduction](#page-1-0) [Hidden Markov Model \(HMM\)](#page-4-0) [Data](#page-11-0) [Results](#page-14-0) [Conclusions](#page-26-0) [References](#page-27-0) 0000000 000

 000

000000000000

 Ω

Results: transition probabilities

 \blacktriangleright The estimated matrix of the transition probabilities

 \triangleright States 2, 3, and 4 are the most persistent and 1 and 5 are less persistent

 \blacktriangleright The highest estimated transition from the less persistent state 5 to state 1 can be read as the typical short pullback following a substantial price increase

[Introduction](#page-1-0) [Hidden Markov Model \(HMM\)](#page-4-0) [Data](#page-11-0) [Results](#page-14-0) [Conclusions](#page-26-0) [References](#page-27-0)

Results: posterior probabilities

Fulvia Pennoni - University of Milano-Bicocca **-** *Multivariate Hidden Markov model..., CAL2020, Milano, 27 October*

Results: posterior probabilities

 \triangleright The trend line is overimposed according to a smoothed local regression

 \triangleright We notice the increasing tendency over time for state 3 and a decreasing tendency of states 4 and 5

 \triangleright Apart for few exceptions there are not stable periods

Results: decoded states

 \triangleright State 1 represents negative phases of the market and is visited the 37% of the overall period

- \triangleright States 2 and 3 represent more stable phases and are visited the 16%, and the 32% of the overall period
- \triangleright States 4 and 5 related to phases of a market with textcolorbluerise in prices and are visited the 8% and the 7% of the overall period

Results: predicted averages and standard deviations

▶ Observed XPR log-returns (pink), predicted averages (green), and predicted standard deviations (blue) under the HMM with $k = 5$ hidden states

 \triangleright The model is able to timely detect regimes of high or low returns and volatilities

Results: Predicted averages and s.d.

▶ Observed LTC log-returns (pink), predicted averages (green), and predicted standard deviations (blue) under the HMM with $k = 5$ hidden states

[Introduction](#page-1-0) [Hidden Markov Model \(HMM\)](#page-4-0) [Data](#page-11-0) [Results](#page-14-0) [Conclusions](#page-26-0) [References](#page-27-0) 000 0000000 000 00000000000

Results: Predicted correlations

 \triangleright The predicted correlations of BTC the other cryptos with overimposed smooth trend according to a local regression (blue line) highlight a medium term trend of greater correlation relative to BTC

 \circ

Conclusions

- \triangleright The advantage of employing an HMM with respect to the traditional regime-switching models is to estimate state-specific expected log-returns and state volatility
- \triangleright From the results we notice that the HMM provides quite remarkable predictions of log-returns and volatility for the future time occasions of each crypto
- \blacktriangleright From the predicted correlations of the cryptocurrencies with Bitcoin we estimate an increasing marked correlation over time that is coherent with the hypothesis of an higher systematic risk

[Hidden Markov Model \(HMM\)](#page-4-0) [Data](#page-11-0) [Results](#page-14-0) [Conclusions](#page-26-0) [References](#page-27-0) 0000000

 000

000000000000

Main References

- ▶ Bartolucci, F., Farcomeni, A., and Pennoni, F. (2013). Latent Markov Models for Longitudinal Data. Chapman & Hall/CRC Press, Boca Raton, FL.
- ▶ Bartolucci, F., Pandolfi, S., and Pennoni, F. (2017). LMest: An R package for latent Markov models for longitudinal categorical data. Journal of Statistical Software, 81:1–38.
- ▶ Dempster, A. P., Laird, N. M., Rubin, D.B. (1977). Maximum Likelihood from Incomplete Data via the EM Algorithm (with discussion). Journal of the Royal Statistical Society B, 39: 1–38.
- ▶ Yi, S., Xu, Z., and Wang, G.-J. (2018). Volatility connectedness in the cryptocurrency market: Is bitcoin a dominant cryptocurrency? International Review of Financial Analysis, 60:98–114.
- ▶ Zucchini, W., MacDonald, I. L., and Langrock, R. (2017). Hidden Markov Models for time series: an introduction using R. Springer-Verlag, New York.