Intro	du	cti	on
000			

Hidden Markov Model (HMM)

Data F

Results

Conclusions O References

Multivariate Hidden Markov model An application to study correlations among cryptocurrency log-returns

Fulvia Pennoni[†]

Bartolucci F.*, Forte G.** and Ametrano F.**

[†]Department of Statistics and Quantitative Methods University of Milano-Bicocca Email: fulvia.pennoni@unimib.it

* University of Perugia, ** University of Milano-Bicocca

Introduction	Hidden Markov Model (HMM)	Data	Results	Conclusions	References
●○○	0000000	000	000000000000	O	O
		Outlir	ne		

Multivariate Hidden Markov Model

▶ Maximum likelihood estimation

► Applicative example with five cryptocurrencies

Conclusions

ntroduction	Hidden Markov Model (HMM)	Data	Results	Conclusions	Reference
000	000000	000	00000000000	0	0

- We propose a statistical and an unsupervised machine learning method based on a multivariate Hidden Markov Model (HMM) to jointly analyse financial asset price series
- ► It provides a flexible framework for many financial applications and it allows us to incorporate stochastic volatility in a rather simple form
- With respect to the regime-switching models the HMM is able to provide estimates of state-specific expected log-returns along with state volatility
- Estimation and prediction of the volatility is based on the expected log-returns that are parameters to be estimated

Introduction	Hidden Markov Model (HMM)	Data	Results	Conclusions	Refer
○○●	0000000	000	000000000000	O	0

▶ We account for the correlation structure between crypto-assets

- ► We assume that the daily log-return of each cryptocurrency is generated by a specific probabilistic distribution associated to the hidden state
- ► By accounting for the conditional means that define the expected log-returns we improve the time-series classification
- ► Stable periods, crises, and financial bubbles differ significantly for mean returns and structural levels of covariance

duction	Hidden Markov Model (HMM)	Data	Results	Conclusions	Reference
	•000000	000	00000000000	0	0

Proposed Hidden Markov Model (HMM)

• We denote by:

```
m{y}_t the random vector at time t, t = 1, 2, \ldots,
y_{tj}, j = 1, \ldots, r, corresponds to the log-return of asset j
```

We assume that the random vectors y₁, y₂,... are conditionally independent given a hidden process

• The hidden process is denoted as u_1, u_2, \ldots

We assume that it follows a Markov chain with a finite number of hidden states labelled from 1 to k

Introduction	Hidden Markov Model (HMM)	Data	Results	Conclusions	Refere
000	000000	000	00000000000	0	0

Proposed HMM

- We model the conditional distribution of every vector y_t given the underlying hidden process u_t
- ▶ We assume a multivariate Gaussian distribution that is

$$\boldsymbol{y}_t | \boldsymbol{u}_t = \boldsymbol{u} \sim N_r(\boldsymbol{\mu}_u, \boldsymbol{\Sigma}_u),$$

where μ_u and Σ_u are, for hidden state u, the specific mean vector and variance-covariance matrix (heteroschedastic model)

► The conditional distribution of the time-series **y**₁, **y**₂,... given the sequence of hidden states may be expressed as

$$f(\mathbf{y}_1, \mathbf{y}_2, \dots | u_1, u_2, \dots) = \prod_t \phi(\mathbf{y}_t; \boldsymbol{\mu}_{u_t}, \boldsymbol{\Sigma}_{u_t}),$$

where, in general, $\phi(\cdot; \cdot, \cdot)$ denotes the density of the multivariate Gaussian distribution of dimension r

Introduction	Hidden Markov Model (HMM)	Data	Results	Conclusions	References
000	000000	000	00000000000	0	0

Proposed HMM

▶ The structural model is based on two sets of parameters:

▶ The initial probability is defined as:

$$\lambda_u = p(u_1 = u), \quad u = 1, \ldots k,$$

collected in the initial probability vector $\boldsymbol{\lambda} = (\lambda_1, \dots, \lambda_k)'$

▶ The transition probability is defined as:

$$\pi_{v|u} = p(u_t = v|u_{t-1} = u), \quad t = 2, \ldots, u, v = 1, \ldots, k,$$

collected in the transition matrix:

$$\Pi = \begin{pmatrix} \pi_{1|1} & \cdots & \pi_{1|k} \\ \vdots & \ddots & \vdots \\ \pi_{k|1} & \cdots & \pi_{k|k} \end{pmatrix}$$

roduction	Hidden	Markov	Mode
0	00000	000	

ata Results

Maximum likelihood estimation

The log-likelihood function of all model parameters (denoted with vector θ) is defined as

$$\ell(\boldsymbol{\theta}) = \log f(\boldsymbol{y}_1, \boldsymbol{y}_2, \ldots),$$

▶ The complete-data log-likelihood is defined as

(HMM)

$$\begin{split} \ell_1^*(\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_1, \dots, \boldsymbol{\Sigma}_k) &= \sum_t \sum_u w_{tu} \log \phi(\boldsymbol{y}_t | \boldsymbol{\mu}_u, \boldsymbol{\Sigma}_u) \\ &= -\frac{1}{2} \sum_t \sum_u w_{tu} [\log(|2\pi\boldsymbol{\Sigma}_u|) + (\boldsymbol{y}_t - \boldsymbol{\mu}_u)' \boldsymbol{\Sigma}_u^{-1} (\boldsymbol{y}_t - \boldsymbol{\mu}_u)], \\ \ell_2^*(\boldsymbol{\lambda}) &= \sum_u w_{1u} \log \pi_u, \\ \ell_3^*(\boldsymbol{\Pi}) &= \sum_{t>2} \sum_u \sum_v z_{tuv} \log \pi_{v|u}, \end{split}$$

where $w_{tu} = I(u_t = u)$ is a dummy variable equal to 1 if the hidden process is in state u at time t and 0 otherwise, z_{tuv} denotes the transition in t from u to v

Intro	duc	tio	n
000			

Hidden Markov Model (HMM)

Maximum likelihood estimation

- The Expectation-Maximization algorithm (Baum et al., 1970; Dempster et al., 1977) is employed to maximize log-likelihood
- It is based on two steps:
 - **E-step**: it computes the posterior expected value of each indicator variable w_{tu} , t = 1, 2, ..., u = 1, ..., k, and z_{tuv} , t = 2, ..., u, v = 1, ..., k, given the observed data
 - **M-step**: it maximizes the expected complete data log-likelihood with respect to the model parameters.

The parameters in the measurement model are updated in a simple way as:

$$\begin{split} \boldsymbol{\mu}_{u} &= \frac{1}{\sum_{t} \hat{w}_{tu}} \sum_{t} \hat{w}_{tu} \boldsymbol{y}_{t}, \\ \boldsymbol{\Sigma}_{u} &= \frac{1}{\sum_{t} \hat{w}_{tu}} \sum_{t} \hat{w}_{tu} (\boldsymbol{y}_{t} - \boldsymbol{\mu}_{u}) (\boldsymbol{y}_{t} - \boldsymbol{\mu}_{u})', \end{split}$$
for $\boldsymbol{\mu} = 1, \dots, k,$

Introduction	Hidden Markov Model (HMM)	Data	Results	Conclusions	References
000	0000000	000	00000000000	0	0

Maximum likelihood estimation

M-step:

The parameters in the structural model are updated as:

$$\begin{aligned} \pi_u &= \hat{z}_{1u}, \quad u = 1, \dots, k, \\ \pi_{v|u} &= \frac{1}{\sum_{t \geq 2} \hat{w}_{t-1,u}} \sum_{t \geq 2} \hat{z}_{tuv}, \quad u, v = 1, \dots, k. \end{aligned}$$

- The EM algorithm is initialized in a deterministic way with an initial guess of their value based on sample statistics
- To check if the EM algorithm converges to a global maximum different starting values are generated randomly

Introduction	Hidden Markov Model (HMM)	Data	Results	Conclusions	References
000	000000	000	00000000000	0	0

Model selection and predictions

 To choose the appropriate number of regimes we rely on the Bayesian Information Criterion (BIC; Schwarz, 1978) which is based on the following index

$$BIC_k = -2\hat{\ell}_k + \log(T) \# \operatorname{par},$$

where

- $\hat{\ell}_k$ denotes the maximum of the log-likelihood of the model with k states
- with T being the number of observation times
- #par denotes the number of free parameters equal to $k[r + r(r+1)/2] + k^2 1$ for the heteroschedastic model
- ► The most likely sequence of hidden states is predicted through the so called local decoding or global decoding

Introduction	Hidden Markov Model (HMM)	Data	Results	Conclusions
000	0000000	000	00000000000	0

Application

References

- ► The selection of the cryptocurrencies is based on the criteria underlying the Crypto Asset Lab Index (to be published in 2021) concerning crypto-assets in the market that are:
 - more reliable
 - liquid
 - less manipulated

▶ We consider: Bitcoin, Ethereum, Ripple, Litecoin, and Bitcoin Cash

- For the sake of comparability on the liquidity side, we consider a recent time span of three-years: from August 2, 2017, to February, 27, 2020
- Computational tools are implemented by adapting suitable functions of the R package LMest (Bartolucci et al., 2017)

ntroduction	Hidden Markov Model (HMM)	Data	Results	Conclusions	References
00	000000	000	00000000000	0	0

Application: data description

We shows the BTC prices along with the daily log-returns for the whole period of observation

 We recognize two periods of special rise in price (end of 2017 and mid 2019)

Application: data description

Data

000

▶ Observed variance-covariance matrix:

	втс	ETH	XRP	LTC	BCH
втс	0.15				
ETH	0.13	0.38			
XRP	0.09	0.23	0.28		
LTC	0.16	0.29	0.21	0.29	
BCH	0.19	0.45	0.27	0.35	0.61

▶ Observed correlations and partial correlations:

	втс	ETH	XRP	LTC	BCH	втс	ETH	XRP	LTC	BCH
втс	1.00					1.00				
ETH	0.55	1.00				-0.38	1.00			
XRP	0.44	0.71	1.00			-0.16	0.14	1.00		
LTC	0.74	0.86	0.73	1.00		0.63	0.46	0.37	1.00	
BCH	0.62	0.94	0.66	0.82	1.00	0.34	0.82	-0.04	-0.12	1.00

 The BTC dominance does not necessarily results in a unique co-moving driver

oduction	Hidden Markov Model (HMM)	Data	Results	Conclusions	References
C	0000000	000	•0000000000	0	0

Results: HMM selection

- ► The best order (number of regimes, *k*) of the hidden distribution is chosen through the BIC
- ▶ We are showing the results of the heteroschedastic HMM with k = 5 hidden states

k	log-likelihood	#par	BIC
1	7,785.46	15	-15,468.25
2	9,044.87	43	-17,795.41
3	9,334.88	68	-18,204.31
4	9,455.30	95	-18,260.35
5	9,565.06	124	-18,281.36
6	9,667.93	155	-18,274.90

Hidden Markov Model (HMM)

ita Res

Results

Conclusions O References

Results: expected log-returns

 According to the estimated expected log-returns of each state there are tree negative (1,2,3) and two positive regimes (4,5)

	1	2	3	4	5
BTC	-0.0057	0.0054	-0.0013	0.0173	0.0159
ETH	-0.0044	-0.0016	-0.0020	0.0175	0.0126
XRP	-0.0067	-0.0051	-0.0039	0.0007	0.0629
LTC	-0.0090	0.0029	-0.0032	0.0121	0.0398
BCH	-0.0091	-0.0060	-0.0037	0.0634	-0.0016
average	-0.0070	-0.0009	-0.0028	0.0222	0.0259

They represent the occurrence of a variety of situations happening on the market

ntroduction	Hidden Markov Model (HMM)	Data	Results	Conclusions	References
000	0000000	000	0000000000	0	0

Results: expected log-returns

► States 2 and 3 identify more stable phases

States 4 and 5 are related to phases of price rise

Hidden Markov Model (HMM)

Results Conclusions

References

Results: estimated conditional variances and correlations ▶ Estimated conditional correlations (below the main diagonal), variances

(in bold, pink), partial correlations (in italic above the main diagonal)

State 1	втс	ETH	XPR	LTC	BCH
втс	0.0019	-0.0404	0.0722	0.5347	0.1967
ETH	0.3554	0.0028	0.1060	0.0805	0.0561
XRP	0.7705	0.3875	0.0035	0.3919	0.0305
LTC	0.9058	0.4016	0.8306	0.0033	0.5011
BCH	0.8501	0.3823	0.7581	0.8977	0.0056
State 2					
втс	0.0017	0.3531	-0.1846	-0.1072	0.5238
ETH	0.7799	0.0015	0.3110	0.2513	0.1188
XRP	0.6822	0.8006	0.0013	0.0845	0.5324
LTC	0.6095	0.7265	0.7079	0.0029	0.2916
BCH	0.8254	0.8333	0.8579	0.7547	0.0016
State 3					
втс	0.0002	0.2714	0.2234	0.2655	0.2789
ETH	0.6332	0.0003	0.1702	0.0858	0.0227
XRP	0.7323	0.5937	0.0003	0.3167	0.2131
LTC	0.7559	0.5792	0.7562	0.0006	0.3488
BCH	0.7394	0.5439	0.7179	0.7636	0.0007
State 4					
втс	0.0023	-0.1527	0.3547	0.1877	-0.3043
ETH	0.1163	0.0014	0.1897	0.0985	-0.0655
XRP	0.6215	0.3303	0.0021	0.6565	0.2106
LTC	0.5977	0.3083	0.8058	0.0028	-0.0709
BCH	-0.2477	-0.0279	0.0024	-0.0802	0.0221
State 5					
втс	0.0061	0.1235	-0.0930	0.2351	0.3836
ETH	0.2951	0.0039	-0.0205	0.1710	0.0429
XRP	0.2155	0.1047	0.0255	0.0380	0.3890
LTC	0.5324	0.3261	0.3044	0.0163	0.3932
BCH	0.5887	0.2729	0.4752	0.6259	0.0136

Introduction	Hidden Markov Model (HMM)	Data	Results	Conclusions	References
000	0000000	000	00000000000	0	0

Results: estimated conditional variances and correlations

▶ In state 2 the correlation between BTC and XRP is high (0.68) but the partial correlation is low and negative (-0.18).

▶ In terms of volatility, it is clear that state 3 is the more stable state and state 5 is the most volatile

State 1 is the one characterized by significant falls of price and by a marked volatility

States 1 and 3 are both marked by negative log-returns, but with very different levels of risk

 Itroduction
 Hidden Markov Model (HMM)
 Data
 Results
 Conclusions
 References

 00
 0000000
 000
 00000000
 0
 0

Results: transition probabilities

▶ The estimated matrix of the transition probabilities

	1	2	3	4	5
1	0.6879	0.0548	0.1722	0.0175	0.0676
2	0.1445	0.7145	0.1190	0.0220	0.0000
3	0.2035	0.0825	0.7140	0.0000	0.0000
4	0.1137	0.0196	0.0000	0.7757	0.0909
5	0.2441	0.0791	0.0010	0.1079	0.5678

▶ States 2, 3, and 4 are the most persistent and 1 and 5 are less persistent

The highest estimated transition from the less persistent state 5 to state 1 can be read as the typical short pullback following a substantial price increase

 Introduction
 Hidden Markov Model (HMM)
 Data
 Results
 Conclusions
 References

 000
 0000000
 000
 000000000000
 0
 0

Results: posterior probabilities

Introduction	Hidden Markov Model (HMM)	Data	Results	Conclusions	References
000	000000	000	000000000000	0	0

Results: posterior probabilities

 The trend line is overimposed according to a smoothed local regression

▶ We notice the increasing tendency over time for state 3 and a decreasing tendency of states 4 and 5

Apart for few exceptions there are not stable periods

Introduction	Hidden Markov Model (HMM)	Data	Results	Conclusions	References
000	000000	000	0000000000000	0	0

Results: decoded states

- State 1 represents negative phases of the market and is visited the 37% of the overall period
- States 2 and 3 represent more stable phases and are visited the 16%, and the 32% of the overall period
- ► States 4 and 5 related to phases of a market with textcolorbluerise in prices and are visited the 8% and the 7% of the overall period

Introduction	Hidden Markov Model (HMM)	Data	Results	Conclusions	Reference
000	0000000	000	000000000000	0	0

Results: predicted averages and standard deviations

► Observed XPR log-returns (pink), predicted averages (green), and predicted standard deviations (blue) under the HMM with k = 5 hidden states

The model is able to timely detect regimes of high or low returns and volatilities

Introduction	Hidden Markov Model (HMM)	Data	Results	Conclusions	Reference
000	000000	000	00000000000	0	0

Results: Predicted averages and s.d.

► Observed LTC log-returns (pink), predicted averages (green), and predicted standard deviations (blue) under the HMM with k = 5 hidden states

 Introduction
 Hidden Markov Model (HMM)
 Data
 Results
 Conclusions
 References

 000
 0000000
 000
 000000000
 0
 0

Results: Predicted correlations

The predicted correlations of BTC the other cryptos with overimposed smooth trend according to a local regression (blue line) highlight a medium term trend of greater correlation relative to BTC

oduction	Hidden Markov Model (HMM)	Data	Results	Conclusions	Referenc
0	000000	000	00000000000	•	0

Conclusions

- The advantage of employing an HMM with respect to the traditional regime-switching models is to estimate state-specific expected log-returns and state volatility
- ► From the results we notice that the HMM provides quite remarkable predictions of log-returns and volatility for the future time occasions of each crypto
- ► From the predicted correlations of the cryptocurrencies with Bitcoin we estimate an increasing marked correlation over time that is coherent with the hypothesis of an higher systematic risk

Intro	du	cti	on
000			

Hidden Markov Model (HMM)

Results

Conclusions

References

Main References

- ▶ Bartolucci, F., Farcomeni, A., and Pennoni, F. (2013). Latent Markov Models for Longitudinal Data. Chapman & Hall/CRC Press, Boca Raton, FL.
- Bartolucci, F., Pandolfi, S., and Pennoni, F. (2017). LMest: An R package for latent Markov models for longitudinal categorical data. Journal of Statistical Software, 81:1-38.
- Dempster, A. P., Laird, N. M., Rubin, D.B. (1977). Maximum Likelihood from Incomplete Data via the EM Algorithm (with discussion). Journal of the Royal Statistical Society B. 39: 1-38.
- ▶ Yi, S., Xu, Z., and Wang, G.-J. (2018). Volatility connectedness in the cryptocurrency market: Is bitcoin a dominant cryptocurrency? International Review of Financial Analysis, 60:98-114.
- Zucchini, W., MacDonald, I. L., and Langrock, R. (2017). Hidden Markov Models for time series: an introduction using R. Springer-Verlag, New York.